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Significance. Sepsis is a syndrome of critical illness defined as life-threatening organ dysfunction due to a 
dysregulated host response to infection. It is the leading cause of global mortality causing approximately 1 out 
of every 5 global deaths1,2. Bloodstream infections (BSIs) are a frequent cause of sepsis and are associated 
with a high mortality rate3–5. Clinical signs and symptoms of BSI are nonspecific, and published guidelines do 
not provide clear indications for when it is most appropriate to obtain blood cultures6. Therefore, clinicians often 
have a low threshold to perform blood culture testing7. This leads to a low diagnostic yield, with true positive 
rates of only 4%-7%7,8. In addition, false positives (i.e. contaminants) lead to unnecessary antibiotic use and 
associated toxicities, increased cost, and length of hospital stay9–13. We systematically reviewed 25 studies 
assessing 256 unique predictors of BSI. Attempts to compose multivariable scoring systems and clinical 
prediction rules for BSI primarily involved categorical variables (e.g. heart rate >90 bpm or <90 bpm), utilized 
relatively small data sets, and led to only moderate predictive efficacy14–17. However, routine physiological 
monitoring data contain dynamic multivariable signatures of critical illness states, and there is growing 
recognition of the heterogeneity of sepsis physiology, including the recent 
identification of four physiological phenotypes of sepsis18,19. Applying this 
type of detailed physiologic modeling to BSI prediction could improve 
earlier recognition of infected patients, maximize diagnostic stewardship 
of blood cultures, measure the effectiveness of treatments, and identify 
opportunities for development of novel therapeutics.  
 
Proof-of-principle. We tested the hypothesis that routine monitoring data 
may identify a detailed physiological phenotype of BSI in critically ill adult 
patients. We analyzed 9,954 UVA intensive care unit (ICU) admissions 
from 2011-2015 with over 144 patient-years of vital sign and 
cardiorespiratory monitoring (CRM) data, totaling 1.3 million hourly 
measurements. These admissions included 15,577 episodes of blood 
culturing leading to 1,184 instances of BSI. The multivariable physiological 
signature of BSI was characterized by abnormalities in 15 different 
physiological features, and the area under the receiver operating 
characteristic curve for the logistic regression model was 0.78 (Figure 1). 
Figure 2 shows the predicted risk of BSI as a function of time to blood 
culture and time to systemic antimicrobial administration. For patients with 
positive cultures, the average predicted risk began to rise 24-48 hours 
prior to the time of culture (panel A). The predicted risk peaked three 
hours after cultures were obtained – with a greater than twofold increase 
in risk compared to baseline – and slowly dropped over 48 hours. 
Similarly, the relative risk of BSI increased up until the time of antibiotic 
administration and was then slowly reduced over 48 hours (panel B). 
 
Approach. We propose to capitalize on the large amounts of continuous 
physiological data captured in the ICUs of multiple hospitals to develop 
stronger predictive models of BSI than previously published models. With 
access to an updated UVA dataset from 2015 to the current day, and a 
large dataset from the University of Pittsburgh Health System (Pitt), we 

Figure 1. Physiological features 
comprising a signature of BSI in 9,954 
critically ill patients, 2011-2015. Each tile 
plots the value of the feature on the x-
axis against the log-odds of BSI on the y-
axis. The translucent ribbon represents 
the 95% CI. Background hue represents 
the direction of association with BSI - 
orange indicates positive association, 
blue indicates negative association, and 
green indicates nonlinear or biphasic 
association. Background color saturation 
indicates the strength of the association 
with BSI. 
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plan to expand this work to externally validate our previously derived 
predictive models and to create new models of BSI. One solution to the 
problem of creating an accurate predictive monitoring tool is to exploit 
machine learning, a type of artificial intelligence that provides computers 
with the ability to learn without being explicitly programmed. Instead, pattern 
recognition, predictions, and generation of data-driven hypotheses from 
massive amounts of multidimensional data can be done with automatically 
learning algorithms, where computers build models that are not explicitly 
programmed in advance, based on the data being fed to them20. These 
models can learn extremely complex relationships between data inputs and 
outcomes, and have exceeded human abilities in performing classification 
tasks similar to identifying patients at risk for BSI20,21.  

Deep learning is different from traditional machine learning in how 
representations are learned from the raw data. In deep learning, 
computational models are composed of multiple processing layers based on 
neural networks to learn representations of data with multiple levels of 
abstraction. Every layer of a deep learning system produces a 
representation of the observed patterns based on the data it receives as 
inputs from the layer below. For classification tasks such as identifying BSI, 
higher layers of representation amplify aspects of the input that are 
important for discrimination and suppress irrelevant variations. Our deep 
learning algorithms will change with the input of new clinical data, and will 
integrate a variety of clinical parameters such as continuous 
cardiorespiratory monitoring data (CRM), comorbidities, and the trend of 
clinical and laboratory parameters. Once established, these techniques can 
also be used to identify specific types of BSI including Gram positive (GP) 
and Gram negative (GN) bacteria, and fungi; drug resistant bacteria; other 
types of clinical infection leading to bloodstream infection, e.g. pneumonia 
and intra-abdominal infection; and other adverse outcomes such as ICU 
transfer, emergent intubation, and hemorrhage. The large size of our 
dataset will allow us to be the first group to apply deep learning techniques 
to BSI prediction. 

 
Our hypothesis is that our deep learning algorithms will lead to significantly better predictions of BSI 
than both conventional representation learning methods (e.g. Principal Component Analysis, k-means) 
and logistic regression with only physiological features. 
 
Aim 1. Externally validate previously derived predictive models of bloodstream infection. To externally validate 
our prior models, we will apply our prior models of BSI to the updated UVA dataset and the Pitt dataset. The 
updated UVA dataset will include roughly 52,000 patients, 75,000 blood cultures, and 3,000 BSI episodes. The 
Pitt dataset includes multiple hospitals, including regional and tertiary care academic hospitals, totaling 
~200,000 patients, ~266,000 blood cultures, and ~10,000 episodes of BSI. Initially, we will collate and clean 
the data from both UVA and Pitt for validation of our prior models and deep learning. 
 
Aim 2. Create deep learning algorithms for predicting bloodstream infection. We will employ sophisticated 
deep learning approaches to train models and select variables that will predict the onset of BSI in hospitalized 
patients. We will focus on emerging techniques such as deep neural networks with baseline comparisons to 
conventional methods such as logistic regression, random forests, and support vector machines. We will 
compare the performance and clinical interpretability of these models to each other to select the best model. 
We will also develop individualized subgroup-specific models for unique categories of BSI (i.e. GP, GN, fungal, 
and drug resistant infections) and in special clinical populations such as transplant recipients whose clinical 
and physiological response to BSI may be different than non-transplant recipients due to immunosuppression.  

We propose to use deep learning to combine both CRM data and physiological abnormality features in a 
joint representation for analysis and prediction. First, we will use unsupervised learning to derive a latent 
representation of CRM using a Stacked Denoising Autoencoder (SDA)23. Then, we will combine this latent 
representation with the physiological features from vital signs and laboratory tests. We plan to detect any 

Figure 2. Predicted risk of bloodstream 
infection according to a multivariable 
logistic regression model as a function 
of time relative to blood culture (panel 
A) and time relative to antimicrobial 
administration (panel B) in 9,954 
critically ill patients, 2011-2015. Patient 
data were grouped as positive, 
negative, or contaminant based on the 
ultimate result of the culture instance 
obtained at time 0. Abbreviations: BSI, 
bloodstream infection. 
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irregularities, noisy, or missing signals in CRM data by employing Recurrent Neural Networks (RNNs) 
architecture with a multi-layer long short-term memory (LSTM) and a decay effect26,27. This deep architecture 
can recognize patterns in multivariate time series with several million measurements21,22. In order to improve 
the interpretability of the model, we will consider a simple yet effective interpretation measure called feature 
importance, which indicates the statistical contribution of each feature to the model. This approach is efficient 
since the physiological abnormality features are generally explainable by a clinician. 

Despite the promises of using deep learning in healthcare, there remain several potential challenges which 
we expect to overcome: 1) Data: Deep learning relies on the availability of a massive amount of data. The 
addition of the Pitt data will increase our data ten-fold and allow us to train a comprehensive deep learning 
model. Additionally, patient data tend to be heterogeneous, ambiguous, noisy, and incomplete28. Our deep 
learning approach is designed to handle data sparsity, redundancy, and missing values; 2) Interpretability: In 
healthcare, not only is quantitative algorithmic performance essential, but the reason why the algorithm works 
is also relevant. Such model interpretability is crucial for convincing medical professionals about the action 
recommended by the prediction systems29. Clinicians are unlikely to adopt a system they cannot understand, 
so we will build-in clinical interpretability in our deep learning models. 

 
Roles. Dr. Moore: coordination of analyses with Co-PIs, clinical interpretation of data and models with Dr. Alex 
Zimmet; Dr. Moorman: supervision of Dr. Amanda Zimmet and Mr. Andris in data acquisition and cleaning 
(UVA and Pitt), and logistic regression analysis; Dr. Nguyen: supervision of Dr. Amanda Zimmet, Mr. Andris, 
and computer science students in deep learning models; Dr. Clermont: data acquisition (Pitt); consultation on 
deep learning. 
 
Potential impact. Deep learning algorithms may be able to augment a clinician’s bedside perception of the 
likelihood of BSI in a given critically ill patient by their ability to rapidly integrate and process massive amounts 
of physiological data. This in turn could lead to earlier diagnostic and therapeutic interventions, and thus, better 
outcomes. For example, in a study by Co-PI, Dr. Moorman, bedside displays of sepsis risk based on 
physiological data reduced mortality in very low birth weight infants, even without establishing thresholds or 
guidelines for interpretation24. Successful prediction models created during the course of this funding period 
could be tested prospectively in a clinical trial to determine their impact on earlier diagnostic and therapeutic 
interventions and patient outcomes25. Furthermore, recognition of patients unlikely to have BSI may prevent 
acquisition of unnecessary blood cultures, which are expensive and often lead to contaminated samples and 
unnecessary antibiotics along with their potential toxicities. A tangible and crucial impact of this GIDI grant will 
be the ability to use preliminary data to submit additional grants to continue this line of investigation, and build 
capacity for academic careers in our trainees (a postdoctoral scientist, a clinical resident, and Computer 
Science students). 
 
Project milestones. 6-month: 1) Collect, clean, and analyze patient care data from Pitt and an updated UVA 
dataset, including understanding the available variables and collection standards (e.g. how often these 
variables are collected across units and in what patient populations); 2) validate our UVA derived BSI model; 3) 
begin deep learning modeling of BSI. 9-month: Validate new deep learning models including SDA, the 
investigation in the deep representation of the RNN that might contain information for interpretation, and a 
model explanation which might quantify the contribution of individual physiological features to the BSI 
prediction. 12-month: We will complete deep learning modeling, write papers, and submit extramural grant 
proposals.  
 
Extramural support. There are several possible mechanisms of funding to support this work through 
prospective validation and clinical trials. We anticipate a submission date of Spring/Summer 2021 for a large, 
collaborative National Institutes of Health cooperative (U01) or program project (P01) grant with Pitt. We also 
anticipate submitting multiple applications to the Department of Defense (DoD) and Medical Technology 
Engagement Consortium (MTEC) funding announcements. We will also pursue Biomedical Advanced 
Research Development Authority (BARDA) opportunities, as well as any relevant program announcements that 
occur during the project. 
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