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Abstract

The pollen grains of different plant taxa exhibit various
shapes and sizes. This structural diversity has made the
identification and classification of pollen grains an impor-
tant tool in many fields. Despite the myriad of applications,
the classification of pollen grains is still a tedious and time-
consuming process that must be performed by highly skilled
specialists. In this paper, we propose an automatic classifi-
cation method to discriminate pollen grains coming from a
variety of taxonomic types. First, we develop a new feature
that captures the spikes of pollen to improve the classifica-
tion accuracy. Second, we take advantage of the classifica-
tion rules extracted from the existing pollen types and apply
them to the new types. Third, we introduce a new selec-
tion criterion to obtain the most valuable training samples
from the unlabeled data and therefore reduce the number of
needed training samples. Our experiment demonstrates that
the proposed method reduces the training effort of a human
expert up to 80% compared to other classification methods
while achieving 92% accuracy in pollen classification.

1. Introduction

The pollen grains of different plant taxa exhibit many
different shapes and sizes, often bearing characteristic or-
naments like spines or furrows. This structural diversity
has made the identification of pollen grains an important
tool in a variety of fields. Aerobiologists identify wind-
borne pollen to warn allergy sufferers in periods of elevated
risk. Classifying pollen collected from pollinators like bees,
hummingbirds and butterflies provides a record of different
flower taxa each individual has visited. In agriculture and
conservation biology, pollen classification has practical im-
plications for which plants are actually receiving pollination
services, as well as the nutrition and health of the pollinators
themselves. Figure 1 shows a dense population of pollen
containing various types under an optical microscope.

Figure 1. The typical image of pollen contains a dense population
of many pollen types viewed under a microscope. Several rep-
resentative samples from different pollen types are zoomed in to
show the diversity in shape and texture of the pollen.

Previous Research Despite the myriad of applications,
the classification of pollen is still a tedious and time-
consuming process that must be performed by highly skilled
palynologists who specialize in the study of pollen. Re-
cently, several groups have developed automated methods
for pollen classification. Most such methods involve a small
number of known pollen types and require a large number
of training samples per type [6, 9, 5]. As the number of
pollen types increases, it seems that more and more training
samples are required. For example, an automated system
proposed by Allen et al. requires 40 training samples per
type to classify 7 types, but as many as 150 training sam-
ples per type for 17 types [1]. To build a more comprehen-
sive classifier that could deal with an increasing number of
types over time, the number of samples required for training
would thus likely be prohibitive. Another study has shown
good performance up to 30 types with as few as 18 train-
ing samples per type [2]; however, the classification rules
are derived by human experts. Such an approach is likely
to scale poorly as the number of types increases, because
the complexity of the classification models and the amount
of expert knowledge required to build them grow rapidly as



(a) (b) (c) (d)
Figure 2. An example of pollen classification using the proposed method. (a) A cropped region from a microscopic image containing a
few pollen types. (b) The pollen grains are detected with active contours where features are extracted. (c) The classification pollen grains
shown in unique colors. (d) The corresponding manual labels from a human expert.

more similar types are added.
In this paper, we introduce a machine learning approach

designed to reduce the amount of training effort required
to classify an increasing number of pollen types. With-
out loss of generality, we assume there are some existing
pollen types with available labels. As the number of types
increases, the new types usually have a small number of
training samples initially. We propose to reduce the num-
ber of training samples for the classification on the new
types by leveraging the knowledge learned from the exist-
ing types. To this end, a classifier is trained on a few exist-
ing types (source types) and is able to extrapolate some of
that knowledge into new types (target types). Furthermore,
we propose a selection criterion to search for the most con-
fusing samples that are most likely to belong to the target
types from a large pool of unlabeled samples. Using a set
of pollen images containing various mixtures of nine pollen
types, we demonstrate that the proposed method reduces the
training effort of a human expert as much as 80% compared
to other classification methods while achieving 92% classi-
fication accuracy. Additionally, we show an application of
the proposed method in pollen counting. Figure 2 illustrates
an example of the pollen classification using the proposed
method.

2. Methods
Our aim is to automatically identify and classify pollen

grains of various types in images captured by an optical mi-
croscope. We first localize the boundary of pollen grains,
then extract representative features from the boundary shape
and the texture region (Section 2.1). Next, we propose to
minimize the amount of effort to train the classifier by trans-
ferring the classification rules (Section 2.2) and selecting
the most valuable training samples (Section 2.3).

2.1. Pollen Detection and Feature Extraction

To localize the precise boundary of each pollen grain,
we utilize active contours [11] which have been used ex-
tensively in many applications. Since the shapes of pollens

are varied from circular to slightly elliptical, we estimate
the initial boundary of active contours by detecting circles
using the circular Hough transform.

Previous studies have compiled a set of shape and texture
features derived from the detected boundary [6, 1, 9]. The
shape features computed from the boundary of the active
contours include area, diameter, ratio of area and perime-
ter, compactness, roundness, rates of changes, thickness,
elongation, centroid, Euclidean norm, mean size, eccen-
tricity, and circularity. While shape features utilize the ex-
tracted boundary, the texture features are derived from the
rectangular region which encloses the extracted boundary.
Our texture features include the first-order statistics, Haral-
ick’s Coefficients from the gray level co-ocurrence matrix
(GLCM), and the gray-level run length. The computation
details of these features are described in [9].

Spike Count Spikes are important features that can be
discriminative among some pollen types. Figure 3 provides
details on the extraction of the spikes. Due to the inherent
image quality and resolution, the active contours are unable
to capture the spikes which often are too noisy and faint.
However, knowing the final position of the active contour
will help identify these spikes. Thus, we extract a “ring-
like” binary mask along the active contour to estimate the
region of the spikes. Within this mask, a spike usually ap-
pears as a fluctuation in intensity. For each pollen grain, the
average intensity of pixels at each angle is computed. Then,
a 1-D signal formed by the intensity values at every angle
is generated. A local minimum in the signal is detected as
a spike if its difference to the values at both adjacent local
maxima are within a range of [0.05, 0.40]. Note that we are
able to distinguish a spike from the border of a neighbor
grain which yields a large intensity difference (as seen in
Figure 3).

2.2. Transfer of Classification Rules

Transfer learning has been shown to achieve high classi-
fication accuracy from a small number of training samples
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Figure 3. The spike count discriminates pollen type which has
many spikes (upper row) from no spike (lower row). Left column:
the active contour is unable to capture the spikes. Middle column:
the radial mask indicates the estimated region of the spikes. Right
column: a radial intensity curve consists of the average intensity
of the pixels at each angle. The local minima which satisfies a
specific condition are counted as spikes (as black dots along the
curve). Note that although the pollen in the lower row has a neigh-
bor with spikes, no spike is counted as the intensity fluctuation at
the boundary is too large.

in several applications [3, 12, 8]. In our approach, we take
advantage of some classification rules, in the form of base
classifiers, extracted from the existing pollen types (source
types). These classification rules then are applied to the new
pollen types (target types) given only a small number of la-
beled samples.

Extracting Classification Rules In order to extract the
classification rules from the source types, we employ a well-
known learning algorithm, adaptive boosting (AdaBoost)
[4], to distinguish the labeled samples of one source type
from another. We collect the base classifiers from all possi-
ble pairs of the source types into a candidate set according
to the transferability to the target type. The highest transfer-
ability occurs when one of the source type is equivalent to
the target type. In such a case, the transfer learning would
become a traditional machine learning problem. To ensure
a high transferability, we select only the base classifiers that
yield an classification error less than a threshold value in
their respective source type. Additionally, we find a re-
dundancy problem where some base classifiers from mul-
tiple sources are practically identical. Thus, we sort the
base classifiers on their splitting attributes and then elimi-
nate ones which have a negligible difference to others.

Applying Rules to Target Samples Training the classi-
fier directly from a small number of target samples might
lead to over-fitting those samples. Thus, we modify a trans-
fer learning algorithm, TaskTrAdaBoost [12], to evaluate
each base classifier in the candidate set using the target
samples as positive data and samples from a source type

as negative data. At each boosting iteration, a base classi-
fier which minimizes the error over the labeled data is cho-
sen. The error is based on the number of labeled samples
which are incorrectly classified. When we apply base clas-
sifiers from source types to the target data, it is possible that
a base classifier has a classification error exceeding 50%.
This happens when the samples of a target and a source
type occupies the opposite sides of the decision boundary
(refer to the first plot of Figure 4). Thus, we invert the rule
of the base classifier to adapt to the target data and the er-
ror becomes less than 50%. This training error satisfies the
boosting condition described in [4].

Extending to Multi-class So far, we have trained a bi-
nary classifier to discriminate a target type against a source
type. To extend to a multi-class classification, we use an
“one-versus-one” strategy: for K types, a total of K(K−1)

2
binary classifiers are trained for all possible pairs. Given
the feature vector xi of a pollen sample, a binary classifier
which distinguishes a pair of pollen types is derived sim-
ilarly to the boosting framework as f̂ =

∑T
t=1 αtht(xi)

where ht is selected as the base classifier, αt is computed
from the classification error, and T is the boosting itera-
tions. Let pl(k|xi) be the probability output for the boosting
algorithm to classify type k from type l 6= k. This probabil-
ity output is directly computed from the classifier f̂ using
a sigmoid function pl(k|xi) =

1
1+exp(−f̂)

. Assume that all
pl(.) are independent, the posterior probability for type k
can be computed as P (k|xi) =

∏
l∈K pl(k|xi). Finally, the

type of the pollen sample xi is predicted as

ŷi = arg max
k∈K

P (k|xi). (1)

2.3. Selection Criterion for Unlabeled Samples

Since the detection and feature extraction are fully au-
tomatic, a large pool of unlabeled grains can be collected
from the pollen images. In Section 2.2, we leverage the
classification rules from the source types to handle small
training samples of the target type. Based on these classi-
fication rules, additional target samples are selected from
the unlabeled pool to re-train the classifier. In this section,
we further enhance the classification of the target type by
selecting valuable target samples from the unlabeled pool.
A simple approach would be to randomly select samples
from the unlabeled pool and then use only the samples of
the target types for training. However, in a classification
problem with a large number of pollen types, the random
sampling approach obtains only a small portion of target
samples from the unlabeled pool. Instead, we formulate a
search for the samples which are confusing to the classifier
as well as likely to be a target type.

We obtain valuable target samples by modifying a popu-
lar active learning approach, margin sampling [7, 10]. The
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Figure 4. A simple illustration of the decision boundary formation
in a training iteration using the transferred rules to select valuable
target samples. Left: the classification rules from the source types
(in dashed blue lines) are transferred to form the decision bound-
ary of the target type (in green lines). Center: the proposed method
actively selects the most confusing unlabeled samples (in red cir-
cles) located near the decision boundary between the target type
and a source type. Right: knowing the labels of these samples
helps improve the decision boundary (now in dark green lines).

improvement of a simple decision boundary using the modi-
fied margin sampling to select training samples is illustrated
in Figure 4. An unlabeled sample is said to be confusing if
the difference between its probabilities of belonging to two
types is minimal. Consequently, we select the unlabeled
sample which has minimal difference between its highest
probability type ŷ1 = argmaxk P (k|xi) and second high-
est probability type ŷ2 = argmaxk,ŷ2 6=ŷ1

P (k|xi) where
xi is the unlabeled sample (similar to Equation 1). As we
aim to improve the target classifier, the unlabeled samples
with a small difference between the target type and a source
type are more likely to be valuable. To encourage the clas-
sifier to search for the target samples, we introduce a new
selection criterion:

arg min
xi

P (ŷ1|xi)− P (ŷ2|xi)

satisfies (ŷ1 − τ)(ŷ2 − τ) = 0
(2)

where ŷ1 and ŷ2 are the predicted labels which return the
highest and second highest posterior probability P (.), and τ
is the target type. In the above equation, we employ the min-
imization constraint (ŷ1−τ)(ŷ2−τ) = 0 to focus the search
on the target samples. Constrained by the above equation,
samples with a small margin between the target type and a
source type are more likely to be selected. While the tradi-
tional margin sampling would have focused on selecting a
minimal margin samples from any type, this selection cri-
terion favors the confusing samples that are most likely to
belong to a target type. Using this selection criterion, we
rank all unlabeled samples into an ordered set. Finally, the
top samples of this ordered set are selected to be labeled by
the human annotator for the next iteration of training.

3. Experiment
We conduct a series of experiments on pollen images

to demonstrate the performance of the proposed method

against two boosting-based classification algorithms: Ad-
aBoost [4] and TaskTrAdaBoost [12]. The AdaBoost al-
gorithm does not employ either the transferred knowledge
from the source types or any selection strategy for new
training samples. A recent transfer learning approach, Task-
TrAdaBoost, exploits the knowledge from source types to
be re-used on the target types. Since TaskTrAdaBoost does
not explicitly provide a strategy to select new samples, its
new training samples are selected randomly from the un-
labeled data. When the target training data is small, Task-
TrAdaBoost is demonstrated to be effective in exploiting the
existing knowledge to learn the new data in [12].

Data The pollen images used to test the proposed method
were taken from an experiment done on domestic honey
bees. On a microscope with a motorized stage, non-
overlapping regions of the microscope slide are scanned at
40x magnification into a digital image using the software
NIS-Elements (Nikon). Each image covers approximately
1mm2 at a resolution of 0.23 µm/pixel. Previous classifica-
tion by a human expert indicates that these samples contain
a various mixtures of pollen types. We collect a total of 768
grains of 9 pollen types as shown in Figure 1.

Detection Evaluation We use a standard metric to eval-
uate the detection performance: precision and recall. By
definition, precision = TP / (TP + FP) and recall = TP / (TP
+ FN) where TP is the number of true positives, FN is false
negatives, and FP is false positives. A detected grain from
the algorithm is a true positive if the distance to the closest
manually labeled grain is within the diameter of the smallest
pollen type; otherwise it is a false positive. Any undetected
grain is considered a false negative. Overall, the detection
method performs at 93.8% recall and 89.5% precision.

Classification Procedure To evaluate the accuracy of a
classification method, we select each pollen type as the tar-
get and randomly choose 6 other types from the training set
to be used as the source types. All classification methods are
provided initially with only 3 target samples which are se-
lected randomly, and the rest of samples form the unlabeled
pool. At each iteration of training, 5 additional unlabeled
samples are selected for a human expert to label; then the
classifier is re-trained based on the newly labeled samples.
We repeat the training for 50 iterations. The classification
accuracy on the target type is evaluated by the ratio between
the number of correctly classified target samples and the to-
tal number of target samples in the test set. We record the
classification accuracy of the target type per each iteration.
The overall accuracy is computed as the average over all
types. To eliminate the bias of selecting the initial target
training samples, the experiment is replicated 30 times and
the average performance of each method is recorded.
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Table 1. The classification accuracy of the proposed method (in %) with respect to the spike count feature. The spike count improves the
classification accuracy in many types (bold faced).

Pollen Type 1 2 3 4 5 6 7 8 9 Average

Accuracy (%) without Spike Count 96 100 97 89 72 93 92 93 70 89
Accuracy (%) with Spike Count 100 100 97 89 77 93 89 98 83 92

Figure 5. Comparison of the classification methods with respect
to the number labeled samples. The proposed method achieve a
comparative performance to other method while requires 80% less
number of labeled samples.

4. Results

We assess the effectiveness of the proposed method on
three different aspects: (1) the accuracy improvement with
respect to the spike count feature; (2) the reduction of the
number of labeled samples to achieve the performance of
previous classification methods; and (3) the consistency to
a human expert in a biological application.

4.1. Improvement in Classification Accuracy

We first measure the improvement in classification ac-
curacy by integrating the spike count feature (described in
Section 2.1). Table 1 provides the accuracy of the proposed
method with and without the spike count. Without the spike
count, type 5 and 9 are confused with type 1 with the errors
rates of 13% and 18% respectively. The spike count feature
improves the accuracy by 5% for type 5 and 13% for type
9 since it discriminates them with type 1 which has many
spikes. Additionally, the accuracy improves in type 8 by
5% since it has a smooth boundary with no spike. We also
observe a slight increase in error rate for type 7 due to its
confusion to type 6 which has a similar number of spike.
Overall, the error rate is reduced over 3% in all types result-
ing in 92% accuracy.

Figure 6. Comparison of classification methods with the same
number of target samples. Higher accuracy is observed in the pro-
posed method implying that it selects more valuable target samples
to improve the classification.

4.2. Reduction in Training Effort

Figure 5 displays the average testing accuracy on all
target types with respect to the number of labeled sam-
ples. Note that the accuracy improves with the proposed
method at any number of labeled samples. The improve-
ment with a small number of labeled samples is especially
large: 11% over TaskTrAdaBoost and 23% over AdaBoost
when trained with 10 samples. While TaskTrAdaBoost and
AdaBoost require more than 250 labeled samples to achieve
a 91% accuracy, the proposed method only requires 20%
of the training effort, or 50 samples, to achieve a similar
performance (as shown in the red dotted lines in Figure 5).
This result suggests that the proposed method reduces the
workload of the human annotator as high as 80% and still
achieves a comparative performance to other methods. The
reduction in training effort is caused by two reasons. First,
the proposed method selects more target samples, on aver-
age 23 target samples out of the first 50 unlabeled samples
while TaskTrAdaBoost and AdaBoost select only 11 target
samples. Second, the selection criterion (Equation 2) se-
lects more useful training samples. Figure 6 compares the
results of all three methods with the same number of tar-
get samples. The accuracy of each classification method is
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Table 2. Comparison between the automatic and manual methods in the application of pollen count. Since the experiment is replicated 30
times, the automatic count is provided as Mean±Standard Deviation. The manual count is done only once by a palynologist. Using t-tests
at 90% confidence level, there is no significant difference found between the automatic and manual methods.

Pollen Type 1 2 3 4 5 6 7 8 9

Automatic Count 286±2.6 123±0.7 147±3.1 38±1.7 32±3.0 28±1.0 20±0.7 62±2.6 32±2.8
Manual Count 289 120 145 39 31 26 22 63 33

Count Error (%) 1.0 2.6 1.5 1.0 3.9 6.6 9.8 2.4 3.4

plotted according to the number of target samples is pre-
sented in the selected unlabeled samples. The performance
of TaskTrAdaBoost is higher AdaBoost due to the transfer
of rules which is consistent with [12]. Our method shows
an additional improvement over TaskTrAdaBoost support-
ing that it selects more effective ones.

4.3. Application in Pollen Counting

Counting the grains of each pollen type on the micro-
scope slides is a slow laborious process that must be per-
formed by highly skilled palynologists. We compute the
pollen distribution from the classified grains and compare
to the ground truth established by a palynologist on the data
set (described in Section 3). Using t-tests with 90% con-
fidence level, there is no statistically significant difference
between manual and automated methods; and the average
error is as small as 3.6% (refer to Table 2). Higher error
rates are observed on type 6 (6.6%) and 7 (9.8%) due to
the low sample frequency of such types. Compared to other
automated pollen counters such as in [5], the difference in
count in our case is indeed small (on average≤ 2 grains per
type). Thus, we believe the method has enabled a reliable
pollen counter for the biology community.

5. Conclusions

In this paper, we propose an automatic classification
method to discriminate pollen grains with a variety of tax-
onomic types. First, we develop a new feature that cap-
tures the spikes of pollen to improve the classification ac-
curacy. Second, we take advantage of the classification
rules extracted from existing pollen types and apply them
to the training samples of the new types. Third, we in-
troduce a new selection criterion to obtain the most con-
fusing samples of the target types from the unlabeled data
and therefore improve the classification performance. The
proposed method achieves 92% accuracy in pollen classi-
fication while reducing the training effort up to 80% com-
pared to other classification methods. We believe the pro-
posed method shows great potential toward the automation
of pollen identification and counting which is commonly
done by palynologists. As a future work, we would like to
investigate on improving the classification performance as

the number of pollen types increases over time.
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