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Abstract. Recent advances in biomedical imaging have enabled the
analysis of many different cell types. Learning-based cell detectors tend
to be specific to a particular imaging protocol and cell type. For a
new dataset, a tedious re-training process is required. In this paper, we
present a novel method of training a cell detector on new datasets with
minimal effort. First, we combine the classification rules extracted from
existing data with the training samples of new data using transfer learn-
ing. Second, a global parameter is incorporated to refine the ranking of
the classification rules. We demonstrate that our method achieves the
same performance as previous approaches with only 10% of the training
effort.

1 Introduction

Dramatic advances in biological imaging over the past decade, including both the
development of more powerful imaging hardware and novel fluorescent probes,
have revolutionized many areas of biological research [9]. The manual approach
of cell analysis is too tedious and error-prone; thus it is not feasible for handling
large datasets. Automated cell detection is a growing field of interest with a wide
range of applications which permits statistical analysis of various cell parameters
such as apoptosis, adherence, morphology and motility [1]. Thus, it has the
potential to identify even subtle effects of many physiological stimuli on many
cell types [4].

Recently, a number of automated cell detection methods, which are based on
machine learning algorithms, have been proposed [2, 4, 8]. To our knowledge,
these cell detection methods are not effective on different cell types since they
required a large number of training samples from each cell type. For each new
cell dataset with different appearance (e.g., size, shape, color), the users often
need to re-train the algorithm by collecting training samples. This is a tedious
and time-consuming process. Thus, there is a great need for a method that can
be rapidly trained on new datasets with minimal training effort.

In this paper, we propose a novel cell detection method that can be rapidly
trained to new datasets. The goal is to minimize the number of samples required
to train the detection method which should translate to the reduction of human
effort. We use a transfer learning algorithm [10] to leverage the classification
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Fig. 1. Sample detection results from AdaBoost and our method. Note the poor per-
formance of AdaBoost with a small training effort (10 samples). The proposed method
with only 10 training samples is able to achieve equal performance of AdaBoost with
100 training samples.

rules gathered from existing data (source classes) to improve detection on the
new data (target class). By incorporating the cell size distribution as a global
parameter on new dataset, we further increase the accuracy of the detection
algorithm using only a minimal number of training samples. The cell size distri-
bution is determined during the training step and does not need to be re-trained
for each individual image. We refer to our method as the GlobalTrAdaBoost,
a boosting-based method that integrates a global parameter into the transfer
learning framework. The evaluation on five cell types with 50 real images (2660
cells) demonstrates that the GlobalTrAdaBoost is able to achieve equal perfor-
mance of a typical pattern recognition algorithm with only 10% of the training
effort required. Sample detection results are shown in Figure 1.

2 Method

We first describe a baseline cell detection using Adaptive Boosting. Then, we
explain the proposed method of using transfer learning, followed by the inclusion
of the global parameter. The overview of the method is shown in Figure 2.

Fig. 2. The overview of the proposed method. The gray arrow indicates the training
step while the white arrow indicates the testing step.



2.1 Adaptive Boosting (AdaBoost)

Boosting is an iterative method of constructing an accurate classifier by combin-
ing many weak classifiers, each of which only needs to be reasonably accurate
[3]. One of the most popular boosting methods, Adaptive Boosting (also known
as AdaBoost), can be used to train the cell detector.

The AdaBoost algorithm weights each weak classifier based on its prediction
accuracy. In the feature space X , and the label space Y = {−1,+1} denoting a
pixel as background or cell sample, the detection task is to estimate a classifier
function f : X → Y given training data D = {(xi, yi)|xi ∈ X , yi ∈ Y, 1 ≤ i ≤ n}
where xi and yi are respectively the feature vector and the label of training
sample i, and n is the number of training samples. Initially, AdaBoost constructs
a distribution of weights w = {wi|wi = 1

n , 1 ≤ i ≤ n} over the training data.
For each iteration t = 1 to T , AdaBoost selects a weak classifier that gives the
least classification error as ht(xi) = arg min(εt) where εt =

∑
i wi[yi 6= ht(xi)].

In the next iteration, the weights associated with the samples misclassified by
the selected weak classifier are increased as

wi ← wie
−αtyiht(xi) (1)

where αt = 1
2 ln 1−εt

εt
. Finally, the strong classifier f̂ is computed as the signum

function of the weighted linear combination of T weak classifiers

f̂ = sign(
∑
t

αtht(xi)). (2)

2.2 Transfer Learning with AdaBoost (TaskTrAdaBoost)

Since AdaBoost requires a large number of training samples to be effective,
training with only few samples often leads to poor performance. Transfer learn-
ing re-uses the classification rules from source classes with the target class to
minimize the required amount of target training samples. We use a recent trans-
fer learning algorithm, TaskTrAdaBoost, to conduct the training process [10].

First, we would like to gather the classification rules (weak classifiers) from
the source classes. Let source class Sk (1 ≤ k ≤ K where K is the number of
source classes) contain the source training data DSk = {(xj , yj)|1 ≤ j ≤ nSk}
where nSk is the number of source training samples. We use AdaBoost from
Section 2.1 to train the classifier function f̂Sk based on DSk . Then, we collect
all candidate weak classifier hc from f̂Sk of K source classes into set Hc =
{hc(xj)|hc(xj) ∈ f̂Sk , 1 ≤ c ≤ C} where C = T ×K.

Second, we use set Hc to build the strong classifier f̂τ for the target class
T given training data Dτ = {(xl, yl)|1 ≤ l ≤ nτ} where nτ is the number of
target training samples (note that nτ � nSk). The target weight distribution
is initialized as wτ = {wl|wl = 1

nτ , 1 ≤ l ≤ nτ}. For each iteration, we find a
transferable weak classifier hβ that minimizes the error over target data Dτ as

hβ(xl) = arg min
hβ∈Hc

(εl) (3)



where the classification error is computed as: εl =
∑
l wl[yl 6= hβ(xl)].

With few training samples nτ , it is possible that more than one hβ yield
the same minimal error εl over Dτ . Since the TaskTrAdaBoost uses only one
hβ , it could select the hβ which over-fits the training samples and thus reduces
performance on the target class. In the next section, we propose to use a global
parameter, distribution of cell sizes, to refine the ranking of weak classifiers to
regularize the problem and alleviate the risk of over-fitting.

2.3 Global Parameter Integration (GlobalTrAdaBoost)

We select the transferable weak classifier hβ to conform with a global parameter,
the cell size distribution, in addition to minimize the target training error. We
measure the conformity of hβ to the cell size distribution using the Kullback-
Leibler divergence, a non-symmetric measure of the difference between a true
distribution and an approximated model [5]. Under in vivo microscopy, the flo-
rescent intensity within the cell population differs depending on the location of
a cell with respect to the microscope focal lens resulting in different cell sizes
[6]. Thus, we model the cell sizes using a Gaussian distribution.

Let us define the cell size distribution P ∼ N (µm, σ
2
m) with µm = 1

M

∑
m(rm),

σm =
√

1
M

∑
m(rm − µm)2 where rm is the cell size and 1 ≤ m ≤M is the num-

ber of size samples. In other words, the cell size distribution P can be estimated
using set R = {rm|1 ≤ m ≤ M}. In the target training image Iτ , a user can
measure rm by one additional mouse click on the cell boundary after getting the
cell location. Thus, acquiring M samples of cell sizes requires only additional M
mouse clicks. In Section 3.3, we show that the estimation of P is robust enough
to maintain stable performance with M = 6.

After acquiring P, we collect all hβ into set Hβ = {hβ(xl)|1 ≤ β ≤ B}
where B is the number of weak classifiers that satisfy (3). Then, we employ each
hβ ∈ Hβ to classify the target training image Iτ to obtain a binary classification
image containing cell and background pixels. Using the connected component
labeling procedure, we group cell pixels into cell regions and construct set Rβ =
{ru|1 ≤ u ≤ U} where ru is the radius of a cell region and U is the number of
detected regions. From setRβ , we can compute the detected cell size distribution
Qβ ∼ N (µu, σ

2
u). We select the transferable weak classifier h′β which minimizes

the Kullback-Leibler divergence between P and Qβ :

h′β(xl) = arg min
hβ∈Hβ

(DKL(P||Qβ)) (4)

where DKL(P||Qb) =
∑
p P log P(p)Qβ(p) and p is the bin containing the range of

cell size values [5]. As the result, the weak classifier h′β conforms with the global
parameter P besides minimizing the target training error. The procedures to
update wτ for each iteration and to construct the strong classifier f̂τ are similar
to (1) and (2), respectively.



3 Experiments

3.1 Evaluation Procedure

Data Description Five different cell types (white blood cells, natural killer
T-cells, HT29 colon cancer, red blood cells, and drosophila) are acquired using
2 imaging protocols (in vivo epi-fluorescence and isolated fluorescently labeled)
and 3 magnification levels (10X, 20X, and 40X). Sample images of each cell types
are shown in Figure 3. We evaluate the performance of the detection algorithms
on a total of 50 real images (10 images from each cell type). Each image contains
from 25 to 100 cells (total of 2660 cells). We divide the images from each cell type
into two halves for training and evaluating. A biology technician has manually
determined the center and the radius of the cells in 50 images.

Fig. 3. Representative images of five different cell types (from left to right): white
blood cells, natural killer T-cells, HT29 colon cancer, red blood cells, and drosophila.

Local Features The feature space X is defined by a 10-D local feature vector xi
from the training sample i. The description of each feature is explained as follow.
First, we compute the normalized radial mean response of sample i as the ratio
between the mean intensity of the inner circle to the outer circle surrounding
the pixel location of i [7]. We apply six different scales for the inner and outer
circle diameters to accommodate a variety of cell sizes. Second, we calculate the
mean of gradient magnitude within a square region around sample i. The edge
length of the region is same as the largest circle diameter from above. Third,
we collect the filtering responses at sample i from circular averaging, low-pass
Gaussian and isotropic Laplacian of Gaussian kernels. The response values are
normalized by dividing with the maximum within the entire image. Note that
additional features can be added for potential improvement.

Performance Metric We measure the performance according to the manually
marked ground truth data. Each cell detection by an algorithm is determined as
true positive if there is a corresponding ground truth cell within the mean value
of cell radii rm (estimated by the user, as discussed in Section 2.3). We com-
pute the number of true positives (TP), false positives (FP) and false negatives



(FN). Recall and precision are computed as TP
TP+FN and TP

TP+FP , respectively.
For measuring the overall performance, we use F-measure, a harmonic mean of
precision and recall, as F = 2× Precision×Recall

Precision+Recall .

3.2 Detection Accuracy

To evaluate the detection accuracy, each cell type is chosen as a target class,
and the remaining cell types are used as source classes. We measure the training
effort Eτ as the number of target training samples and the number of size samples
required to obtain the global parameter (Eτ = nτ + M). Note that M = 6 for
GlobalTrAdaBoost and M = 0 for AdaBoost and TaskTrAdaBoost. Training is
conducted with Eτ varying from 10 to 100. For each value of Eτ , we conduct 30
executions of training and testing on each of 5 target classes. In each execution,
the target training samples Dτ are randomly selected. The performances (in
terms of F-measures) are shown in Table 1.

Table 1. F-Measures (Mean ± Standard Error of the Mean) of boosting-based cell
detection methods for different training efforts. A performance number is highlighted
in bold if it is significantly better than other methods based on a paired t-test at
p = 0.05. Globalunder and Globalover (as discussed in Section 3.3) are two versions of
GlobalTrAdaboost with fluctuated values of the cell size distribution.

Eτ AdaBoost TaskTrAdaBoost GlobalTrAdaBoost Globalunder Globalover
10 0.57 ± 0.024 0.69 ± 0.018 0.81 ± 0.014 0.78 ± 0.032 0.79 ± 0.038
20 0.68 ± 0.019 0.72 ± 0.018 0.82 ± 0.011 0.79 ± 0.039 0.80 ± 0.042
30 0.69 ± 0.018 0.75 ± 0.015 0.81 ± 0.011 0.79 ± 0.031 0.80 ± 0.012
40 0.76 ± 0.013 0.78 ± 0.012 0.81 ± 0.008 0.81 ± 0.034 0.81 ± 0.008
50 0.76 ± 0.012 0.77 ± 0.012 0.82 ± 0.006 0.82 ± 0.023 0.82 ± 0.023
60 0.79 ± 0.010 0.80 ± 0.010 0.83 ± 0.008 0.82 ± 0.008 0.81 ± 0.043
70 0.80 ± 0.009 0.82 ± 0.007 0.83 ± 0.004 0.82 ± 0.007 0.82 ± 0.014
80 0.80 ± 0.012 0.81 ± 0.010 0.83 ± 0.006 0.83 ± 0.008 0.82 ± 0.011
90 0.80 ± 0.012 0.81 ± 0.009 0.83 ± 0.004 0.83 ± 0.009 0.83 ± 0.010
100 0.82 ± 0.009 0.83 ± 0.007 0.84 ± 0.004 0.83 ± 0.008 0.83 ± 0.010

When trained with a large number of samples (Eτ = 100), AdaBoost, Task-
TrAdaBoost, and GlobalTrAdaBoost reach similar maximum performance (F-
measures equal to 0.82, 0.83, and 0.84, respectively). However, GlobalTrAd-
aBoost shows significant improvement to other methods with small training ef-
forts. First, at training effort Eτ = 10, 20, and 30, the average improvement of
the proposed method over TaskTrAdaBoost is 17%, 14%, and 8% with stan-
dard error reduced by 22%, 39%, and 27%, respectively (see Table 1). Second,
GlobalTrAdaBoost only needs 10% of the training effort (Eτ = 10 versus 100) to
achieve the same performance (p = 0.87) as AdaBoost. Third, with just 10 train-
ing samples, GlobalTrAdaBoost’s F-measure is already 0.81, which is only 4%
lower than the maximum performance. The sample results comparing AdaBoost
and the proposed method are shown in Figure 4.
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Fig. 4. Sample results comparing AdaBoost and the proposed method (GlobalTrAd-
aBoost) using 10 training samples.

3.3 Sensitivity of Global Parameter

In this section, we investigate the sensitivity of the algorithm’s performance with
respect to the accuracy of the global parameter estimation. To fully estimate the
range of values that a global parameter can take for a dataset, we randomly select
sets of M size samples. For each set of M samples, we compute the mean and
standard deviation of cell sizes. We repeat this randomly sampling process 30
times in each dataset. We observe that the mean of the standard deviations
of multiple sets start converging when M ≥ 6. For each cell type, we examine
multiple sets of 6 size samples and compute the mean µ∆ and standard deviation
σ∆. If the GlobalTrAdaBoost performance is still higher than other methods
when the global parameter estimation varies by the value of σ∆, then 6 cell size
samples (M = 6) are sufficient to estimate the cell size distribution.

Consequently, we integrate the GlobalTrAdaBoost with two fluctuated values
of the global parameter Punder ∼ N (µ∆−σ∆, σ2

∆), and Pover ∼ N (µ∆+σ∆, σ
2
∆).

The corresponding methods Globalunder and Globalover are executed 30 times
in the same procedure described in Section 3.2. We show the F-measures in
conjunction with other detection methods in Table 1. The performance of both
Globalunder and Globalover at each Eτ are significantly better (p < 0.05) than
both AdaBoost and TaskTrAdaBoost up to Eτ = 60.



4 Conclusion

In this paper, we integrate a global parameter into the transfer learning algorithm
to reduce the amount of training effort required for cell detection. Our method
is able to achieve the performance of previous boosting-based algorithms with
only 10% of the training effort. To further improve our algorithm, we plan to
incorporate additional global features to handle overlapping cells and investigate
in the automated estimation of the global parameter. We believe that these re-
sults demonstrate the potential of the proposed method for greater applicability
in cell detection by reducing the amount of manual effort.
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