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Abstract
A generalized indoor light sensor can provide information to

build and monitor indoor lighting arrangement that is aesthetically
pleasing and conforming to the requirements set forth by the in-
habitants. However, the identification of the surrounding lighting
environment from the sensed parameters has some limitations and
challenges. Till-to-date, classifiers are designed to identify only a
single source, even in a multi-source environment. Classification
based only on sensed values can be imperfect, as multi-type sources
can share common parameters, or readings from a single source
can fluctuate over time. The classification performances are mostly
evaluated in controlled environments. In this work, we use a cus-
tomised Bluetooth Low Energy (BLE) based light sensor that can
sense and advertise major lighting parameters as instructed. Based
on sensed parameters and adopting several Machine Learning (ML)
and Neural Network (NN) based models off-board, we try to iden-
tify the singular and mixed presence of the four dissimilar types of
sources: Incandescent, LED, CFL, and Sunlight in indoor surround-
ings. Off-board identification can get challenging where packet
loss scenario is common. For that, we study how IoT devices with
superior computational capability can utilise dimensional reduction
techniques to minimize the required on-air traffic for classification.
We then test classifiers with all those approaches both in controlled
environments and real-world testbeds. The result shows that our
best model can detect lighting environments with an accuracy of
up to 98.22% in the controlled scenario and 83.33% in real-world
testbeds.

CCS Concepts
• Computer systems organization→ Embedded systems, Sen-
sor networks.
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1 Introduction
Indoor lighting has a substantial influence on determining peo-

ple’s frame of mind, alertness at work, and finally, circadian rhythm
[9]. Daylong indoor mobility exposes inhabitants to natural and
various types of artificial lights, which operate at specific wave-
lengths and generate illumination of contrasting features. A key
requirement there is to first sense and then process the lighting
parameters for the identification of surrounding lighting environ-
ments. Based on that, inhabitants can calculate the number of daily
hours in blue-enriched sources (like LED) for correlating nighttime
sleep quality with blue light hours or for documenting natural light
disclosure period to meet the minimum daily recommended vitamin
D generation [1, 8].

Apart from meeting the inhabitants’ visual necessity, multi-
source lighting environments are encouraged by experts for high-
lighting consumer products/artworks or controlling agro-environments [6,
7]. However, illumination from natural light can vary at different
hours of the day or the quality of illumination from artificial sources
can degrade over time. Even after arranging proper lighting setup,
disruption can take place due to renovation, or repositioning of
fitments/appliances due to various reasons. A generalized light sen-
sor can help us not only monitor and maintain optimal conditions
but also identify which combination of sources is responsible for
bringing out a particular luminous environment.

For classification, offloading sensed parameters is always encour-
aged, as it allows deployment of light sensors that are low-powered,
transfers major computational and memory-intensive classification
tasks to the receiving side, and facilitates long term data storage and
retrieval. One of the key challenges is to establish a communication
strategy that can perform classification with minimal information.
This is particularly essential for resource-bound sensing at enclo-
sures that are overcrowded with multi-type sensors, where the
packet loss scenario is common due to network congestion and
communication bottleneck.

For minimizing traffic by air, we need to first figure out how to
condense information for classification and what specific operation
needs to get performed onboard. For memory/power constrained
scenarios, sensors may have the capacity to operate for a certain
period but can fail to perform all day long. Prior knowledge regard-
ing methods to classify indoor lighting environments with minimal
information and on-device resource requirements for such method
adaptation, is therefore crucial.

By addressing these aforementioned concerns, we make the
following key contributions to this paper:
• We conduct experiment to identify both single and multi-source
environments, for which we collect standalone light parameter
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Figure 1: Illustration of our work: Identification of sin-
gle/multi source environments (left), Efficient off-board
source detection through dimension reduction in a crowded
sensor surrounding (right).

data from the most common indoor light sources, (Incandescent
(Inc.), CFL, LED, and Sun). We utilise a customised Bluetooth Low
Energy (BLE) enabled color sensing board that can sense basic
lighting parameters in the background [11]. For multi-source
environments, we first observe multi-source effect by placing a
sensor in between multi-type sources and recreate similar envi-
ronments through blending sources of different types at various
ratios. We then divide dataset into 10 classes (Inc, CFL, Led, Sun,
Inc-CFL, Inc-LED, Inc-Sun, CFL-Led, CFL-Sun, Led-Sun). Later, we
implement different Machine Learning (ML) and Neural Network
(NN) based techniques for identifying sensed time varying RGB
patterns. After analyzing performance under ideal conditions, we
select the best-performing classifier, observe relationship between
accuracy and blending ratios, and record classifiers’ identifying
performances under unfamiliar sources and smart on/off scenar-
ios.

• We investigate different dimension reduction methods with the
necessary number of principal components to minimize on-air
traffic. Dimension reductions were accomplished using with and
without original data reconstruction approaches. We compare
them based on time, power, and memory requirements and anal-
yse the performances of all the different techniques both at ideal
and real-world scenarios (Figure 1).

2 Related Works
C12666MA mini-spectrometer from Hamamatsu electronics was

used to study melanopic influence from different sources [2]. Neck-
lace shape wearable spectrometer titled Spectrace was developed
including motion elements for personal light monitoring [12]. RGB-
based machine learning approach was also implemented. [3] uti-
lized low cost TCS3414CS color sensor. Later they classify vari-
ous artificial sources (34 LED, 16 incandescent and 6 fluorescent
sources).Alejandro et. al Ma et. al [5] did similar kind of research
with TSL2561, ISL29125 color sensors, AM1815CA, POW11D2P solar
cells and USB2000+ spectrometer, where sensor data for Halogen,
Fluorescent, LED and Incandescent bulbs were collected via USB in-
terface and I-V tracers and KNN, SVM and Decision tree algorithms
were utilised.

3 Limitations of earlier approaches
Information from spectrum analyzers can be used for source

classification. However, they are expensive, high power consuming
and rely on memory-intensive high-resolution spectral information.
Classification based on a specific spectral window is incorrect,
as the same source can exhibit different spectra throughout the
day/different phases after lightening up and different classes can
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Figure 2: Observing 50 recorded RGB and Lux values in a
multi-source environment, where Inc was set as primary
(60cm from sensor) and CFL as secondary source (90 cm from
sensor). Result deviates from simple arithmetic addition.(x-
axis: Number of Samples, y-axis: Recorded RGB and Lux
intensity in Lux/𝑚2 values in decimal).

share a common spectral band. With RGB color-sensitive sensors,
sources were differentiated based on color component magnitudes.
Nonetheless, different sources can share commonmagnitudes based
on the distance between sensor/source placement. Sources were
thought to exhibit specific RGB patterns. However, such patterns
are only observed during switching.

Machine Learning (ML) based classifiers were utilised, but the
effectiveness of such classifiers was barely examined outside the
training set or smart on/off environment for universal deployment,
where RGB signals can consist of transient shapes from missing
samples and can significantly differ from regular patterns.

With the superior memory and calculative power of modern
IoT edge devices, dimension reduction techniques can be adapted
to facilitate the minimization of heavy on-air workload. However,
such techniques may require a trade-off with accuracy, where a
systematic investigation is missing.

4 Methodology
Different distances bring various structures and elements into

the scene as reflecting elements, which create a complex signal,
where readings are not inversely proportional to distance. We vary
distances from 50cm to 150cm and set the advertising interval to
25 ms for rapid acquisition. The customised board advertises BLE
data packet containing device ID, the number of the latest packet,
and raw data (clear, red, green, and blue) split into two bytes per
color [11]. A Bluegiga BLED112 Bluetooth Smart Module was set as
a receiver with a distant computer through which we collect 500
samples for each observation. Based on [10], we consider 25 suc-
cessive samples containing only RGB information to capture
varying features of different source types for classification.

4.1 Realistic data generation and classification
To capture wide variation for each class of source, we have in-

cluded 27 different bulbs (9 from each of LED, Incandescent, and
CFL) on dark environments and in sunlight at different weather con-
ditions/times of the day, with/without window blinds and various
indoor corners at different buildings. For multi-class scenarios, we
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Figure 3: Violin plot showing red color component distri-
bution of training data [top] (x-axis:source type, y-axis:
recorded values). As observed, different classes generate
common readings and cannot be segregated solely based on
threshold setting. First two principal components of 2D tSNE
plot exhibits linear inseparability of single and multi-type
source environments [bottom].

first place two sources of different types and observe their resultant
on the sensor point (Figure 2).

In a multi-source environment, when nearby sources interact,
the result depends on different measurements: (a) the intensity of
each source, (b) the relative distance between two sources, and (c)
the positioning of the sensor. As a result, a simple addition of RGB
values to mimic a multi-source environment is inaccurate, as shown
in figure 2. We first fix the position of the sensor and the sources
and mix signals from different light sources at various ratios where
the secondary signal intensity went down to 20% of the primary.
To encompass a variation of phase, we consider the extremes of
constructive and destructive interference in our dataset, as these
cases contain the highest deformations where the possibilities of
misclassifications are the greatest.

Figure 3 (left) shows the red color component distribution of
all samples. As depicted, different sources/scenarios share com-
mon values, which were also observed for Green and Blue read-
ings. As a result, classification based on magnitudes is inaccurate.
Two-dimensional tSNE visualization of RGB values depict linear
inseparability of classes (Figure 3) (right).

For classification, we investigate ML-based classifiers which are
simple, high-performing, memory friendly, and easily transferable
on embedded devices. From ML based classifiers, we pick Decision
Tree (DT), Random Forest (RF), Gradient Boost (GB), Gaussian
Naive Bias (NB), K-Nearest Neighbour (KNN), Logistic Regression
(LR), and Support Vector Machines with linear (SVM-Lin), radial
(SVM-Rad) and polynomial (SVM-poly) kernels. For reputation in
identifying unseen pattern-based examples, we also studyNN-based
Feedforward Multilayer Perceptron Model (MLP), Convolutional
Neural Networks (with 1-D and 2-D filters) and Long Short Term
Memory (LSTM) for classification.

After collecting sensor data, we have scaled, normalized, and
divided the balanced dataset of all 25 samples’ windows into
training, test and validation sets (80%, 10% and 10% respectively).
For better evaluation of the built model and to ensure representation
from each group, we have implied stratified 10-fold cross-validation
by tuning aforementioned models to their best hyperparameters
using Gridsearch.

4.2 Dimension reduction
Classification with 25 consecutive samples, each with 3-channel

information can be alternatively considered as 75-dimensional data.
This high-dimensional data can be reconstructed using fewer dimen-
sions, with necessary information packed inside. With the modified
dimensions, compressed RGB data has elevated robustness, and

Classification

Dim.
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Reconstruction

Classification

Dim.
Red

Classification

RGB Signal

RGB Signal

RGB Signal

BLE Sensor

Edge Device

Edge Device

Figure 4: Different classification approaches: Without dimen-
sion reduction with our BLE sensor (top), with reduction by
method 1 (middle) and method 2 (bottom)

can be advertised even in a single packet with repetition if neces-
sary. This process can significantly truncate the operational power
budget. In this work, we analyze classification by compressing (di-
mension reduction) sensed RGB data using linear and non-linear
compression techniques, record their accuracy and compare the
result with the uncompressed method (Figure 4). Two different ap-
proaches were analysed for classification with compressed informa-
tion, as shown in Table 1. To the best of our knowledge, dimension
reduction to minimize on-air traffic for indoor light sensing
has been implemented for the first time.

For dimension reduction, we choose six different methods: Prin-
cipal Component Analysis (PCA), Truncated Singular Value Decom-
position (Trun-SVD), Linear Discriminant Analysis (LDA), Kernel-
PCA with cosine function (KPCA), ISOMAP, and tSNE. Our goal is
to select the best classifier among all scenarios. We start by taking
only two principal components with method 1, apply our best-
performing classifier KNN for classification and compare accuracy
with familiar sources, smart on-off scenarios ,and with unfamiliar
sources. We select PCA from linear and Kernel PCA from non-linear
technique and consider dimensions up to 10 principal components
(based on Figure 5). We then classify with reduced dimension utiliz-
ingmethod 1 (PCA/KPCA) andmethod 2 [PCA-Reconstructing from
PCA (RPCA)/ KPCA-Reconstructing from Kernel-PCA (RKPCA)].

Finally, we deploy our sensor in multiple testbeds. Scenarios in-
cludemulti-type unfamiliar bulbswith random switch-overs/window

Table 1: Approaches for Dimension Reduction

Method 1 Method 2
Step 1: Perform dimension reduc-
tion on training RGB data, tun-
ing ML models and storing clas-
sifier model at receiver

Step 1: Storing classifiermodel at
receiver after tuning with orig-
inal training data (25 samples
consisting RGB info)

Step 2: Store specific number of
RGB samples, perform dimen-
sion reduction on stored data
and advertising

Step 2: Store specific number of
RGB samples, perform dimen-
sion reduction on stored data
and advertising

Step 3: After receiving adver-
tised packets, we feed the input
values as input to the classifier

Step 3: After receiving adver-
tised packets, first we recon-
struct data to get back the origi-
nal dimension, then we feed val-
ues as input to the classifier
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Figure 5: Comparing reduction techniques performances re-
veals superiority of PCA for linear and KPCA for non linear
classification (left), PCA over collected data reveals overall
variance lies within first few principal components (x axis:
no of principal components, y-axis: variation ratio) (right)
blinds on/off, the presence of other indoor smart sensors and arbi-
trary switching. The workflow of the whole process is shown in
figure 6.
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Figure 6: Workflow of this paper.
5 Data Collection Hardware

Our utilised BLE sensor is a printed circuit board (PCB) that
interfaces TCS3475 sensor and is regulated with nRF51822 micro
controller. It communicates over 2.4GHz Bluetooth Low Energy
(BLE) and has a dimension of roughly 24𝑚𝑚 × 39.5𝑚𝑚. nRF51822
micro controller has been reduced to only contain clock circuits, 3.3
V regulatory circuitry and a power supply connector for minimum
energy consumption. This device senses the surrounding light and
stores red-filtered, green-filtered, blue-filtered, and clear (unfiltered)
diodes data of TCS34725 as a 16-bit value, split between two registers.
TCS34725 was chosen as it offers low operating voltage (2.7-3.6 V)
and higher sensitivity (dynamic range: 3.8M:1). Figure 7 depicts a
BLE advertisement event. The per unit cost of the whole package is
nearly $10-$15, compared to several hundred dollars for wearable
spectrometers. With the setup of recording one observation per
second, it can run up to 45 days with 3.3V conventional lithium
coin battery [10].

(a) (b) (c) (d)
Figure 7: Fully assembled BLE enabled customised LowPower
Color Sensing Board (a), Board Dimension is suitable to de-
ploy as a handheld (b) or fixed point device (encircled) (c).
Color Sensing followed with an advertisement event (d).

6 Evaluation
We analyse prediction accuracy in different backgrounds and

record mean values of classifying accuracy (with standard devia-
tions).

6.1 Performance of classifiers
Figure 8 (top left) illustrates the variability of accuracy for differ-

ent classification techniques with deviations. As observed, overall
performance of ML algorithms is better than NNs in the known
scenarios. The best result with maximum average accuracy (up to
98.2%, F1 score:0.97) with minimum deviation was recorded with
KNN.
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Figure 8: Comparing accuracy among different ML and NN
architectures(top left), Accuracy with KNN after mixing two
sources at various proportion reveal disassociation of accu-
racy with mixing ratios (top right, Variation of accuracy for
tuned ML classifiers at smart env. and with unseen sources
(bottom).

Now we observe whether the blending ratio has any impact
on the accuracy. As observed (Figure 8 (top right)), accuracy is
not proportional to the mixture ratio of multiple sources. With
tuned ML classifiers, we then examine how each classifier performs
at smart on/off environments and at identifying sources outside
training set. As seen, KNN performs the best at classifying in smart
scenarios whereas Random Forest (RF) is the highest performer
at identifying unknown sources (Figure 8 (bottom)) . We continue
with KNN for being the overall best classifier.

Our tests with different methods and various scenarios exhibit
that classification accuracy varies with the varying principal com-
ponents (Figure 9). Finally, we deploy our sensor at two different
real-world testbeds that include single/multi-source scenarios with
completely unfamiliar indoor bulbs, random switching from one
type to another and human movements. Based on the results in all
scenarios in Figure 9 and classification with minimal information,
we consider 2 principal components with PCA, KPCA, PCA-RPCA,
and KPCA- RKPCA and apply KNN algorithm for classification.
We record accuracy with/without reduction methods (Figure 10).
As seen, after real-world deployment, the classification accuracy
degraded significantly from 98.22% down up to 77.5%. Again, in-
correct predictions could not be specified for any single/multi-
source type and noticeably, some of them occurred during switch-
overs/movements, as the signal patterns were significantly different
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Figure 9: Reduction of on-air traffic for advertising only prin-
cipal components compare to advertising 25 RGB samples
(x-axis:no. of principal components, y-axis: Reduction Per-
centage), Comparing accuracy: familiar (top right), unfamil-
iar (bottom left) and smart on/off scenario (bottom right)(x-
axis:no. of principal components, y-axis: accuracy).

RGB PCA KPCA PCA-RPCA KPCA-
RKPCA

83.33% 41.67% 66.67% 58.83% 83.33%

77.5% 40.0% 60.0% 52.5% 77.5%
Figure 10: RGB readings at two different testbeds (circle point
placement of sensor, (x-axis: sample no., y-axis= recorded
values). Performance of KPCA/RKPCA was found compara-
ble to RGB value based classification.

at those instances. However, KPCA-RKPCA accuracy in both cases
was comparable to accuracy with 25 RGB samples. For general com-
parison, we run dimension reduction on two different edge devices.
Along with recording the highest accuracy, KPCA-RKPCA method
demands the highest time, memory, and power to operate (Figure
11). Compare to PCA, KPCA constructs a full 𝑛 × 𝑛 kernel matrix
over 𝑛 data points to allow for nonlinear relations, which demands
extra resources for execution [4].

6.2 Discussion
Data acquisition: Integration time and ADC gain of BLE sensor

settings can be modified for superior sensitivity at low light levels.
Sampling and advertising rates can also be readjusted for better
power management on the transmitting side. Our analyses were
sensor specific, which has limitations regarding the highest value
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Figure 11: Overall Comparison exhibits KPCA-RKPCA
method requires the highest time (left) [y-axis= sec-
onds], memory (middle) [y-axis= MB] and power(right)[y-
axis=Watt] for execution.

it can record or the functional spectra, especially for natural light.
Similar accuracy is expected from light sensors that have different
sensitivity and operating spectra (like AMS AS726x sensors), as
values considered for analysis were normalised and algorithms for
source recognition were pattern based.

Elevating performance: Synthetic time series examples can be
generated from the current data distribution to improve the identi-
fication of unknown sources. To mimic random changing of bulbs
or smart on/off cases, we can pass regular RGB signals through
different filters and then we can include them in the training set to
familiarize our classifiers with such instances. Statistical features
of time series observations may be used for classification, but that
will require additional power, memory, and time. While running
the control tests, we have not considered multi-source environ-
ments that contain more than two sources, colored glass sources,
or searchlights in our training set.

7 Conclusion and Future work
Our work demonstrates BLE based RGB sensor, coupled with Ma-

chine Learning can be used for identifying single/multi-source sur-
roundings. Analyses also reveal where transmitters can be operated
with additional capacity, low dimensional data can be used alterna-
tively for classifications, where reduction/reconstruction (method
2) was found better performing than only reduction (method 1).
However, identification accuracy in familiar environments with
non-ideal scenarios and in a completely unknown environments
with real-world interruptions can degrade.

Our future endeavors include modification of sensor parameters
to gather knowledge regarding indoor illumination more quickly,
power efficiently and with better accuracy after real-world deploy-
ments. We plan to further investigate how we can utilize the com-
putational capability of existing devices for dimension reduction
and build an intelligent system that can execute classification based
on surroundings. Finally, as time series signals, feature-based clas-
sification can be considered but will require extra memory and
processing power.
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