
ECG: Expressing Locality and Prefetching for
Optimal Caching in Graph Structures

Abdullah T. Mughrabi∗, Morteza Baradaran∗, Ahmed Samara†, and Kevin Skadron∗
∗Department of Computer Science, University of Virginia, Charlottesville, Virginia

Email: {atmughra, rgq5aw, skadron}@virginia.edu
†Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina

Email: asamara@ncsu.edu

Abstract—Despite state-of-the-art caching strategies, graph ana-
lytics pose a significant challenge for prefetching and replacement
policies, as their access patterns are often random with low locality.
Prior attempts at addressing these issues involved architectural
solutions such as specialized graph prefetchers, compressed graph
representation stored in a reserved cache section, or graph
reordering for custom replacement policies. However, combining
these solutions required extensive modifications to the processor
architecture. In this paper, we propose Expressive Caching for
Graphs (ECG), which masks the graph clustering knowledge with
previous cache optimization techniques into the unused bits (ECG
bits) of the graph vertex ID. The processor pipeline’s specialized
graph addressing mode can extract the vertex ID from the graph
edge list to request property data while utilizing the masked ECG
bits to determine the replacement policy for better caching and
prefetching the next related vertex.

Index Terms—Caching, Reordering, Graph Processing, hard-
ware/software co-design

I. INTRODUCTION

In the ever-evolving field of data science, graph analytics is

widely used to interpret complex relationships in large datasets

across various domains, such as social networks, recommender

systems, and bioinformatics [1]–[3]. A graph, composed of

vertices and edges, represents the relationships between various

entities in the dataset. Fig. 1 illustrates how a graph processing

technique, i.e., vertex-centric model, uses a Compressed Sparse

Row (CSR) matrix data structure to represent the graph in

memory. As explained in section II, the CSR model makes it

easy to access neighboring vertices, random neighbor IDs for

each visited vertex results in irregular memory access patterns,

leading to poor spatial and temporal cache locality [4]–[7],

which causes delays in retrieving data from lower memory

levels. Additionally, stride prefetching [8]–[11] techniques are

less effective due to unpredictable access patterns in graph

processing.

Several techniques, including Practical Optimal Cache Re-

placement (P-OPT) [12] and GRAph SPecialized (GRASP)

Last-Level Cache (LLC) management [13]–[15], have focused

on developing prefetch and cache replacement policies specifi-

cally designed for graph analytics. However, these solutions

may necessitate significant modifications to the processor

architecture, which can be advantageous but challenging to

implement for most existing systems that rely heavily on CPU

architecture and design features.

Fig. 1: Graph representation in CSR format, accessing vertex

data is random and fine-grained, with a high cache miss rate.

In contrast, our novel solution, Expressive Caching for

Graphs (ECG,) utilizes the power-law distribution present in

real-world graphs [16]–[21], where most vertices have few

connections, and a small number of vertices (the hubs) have

many connections. ECG encodes the clustering information

derived from prior graph-specialized caching techniques into

the unused bits of the graph vertex ID, called ECG bits.

The processor pipeline, equipped with a specialized graph-

addressing mode, can extract the vertex ID from the graph

edge list to request property data while using the masked ECG

bits to dictate the replacement policy and predict the next

related vertex to prefetch. Consequently, ECG bits increase

cache utilization and reduce miss rate, thus improving the

overall performance of graph processing without requiring any

major architectural modifications.

II. BACKGROUND: GRAPH REORDERING AND CACHE

OPTIMIZATIONS

Graph Reordering [7], [22]–[33] involves assigning new

vertex labels that consolidate neighbor vertex data accesses

based on their temporal or spatial reuse, as illustrated in Fig. 2.

Degree Based Grouping (DBG) [14] utilizes coarse grain

degree-based sorting on a graph by dividing the vertices into

different buckets based on their degree range. Rabbit Order

520

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00105

20
24

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
79

-8
-3

50
3-

64
60

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

63
11

9.
20

24
.0

01
05

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 03,2024 at 22:45:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: How different hardware graph cache optimization

techniques interact with LLC.

[18], [33] achieves hierarchical community-based ordering by

using a parallel incremental aggregation function and modifying

it to serve as a new criterion of vertex ID mapping. Gorder
[34] analyzes the graph through a sliding window technique

to determine the optimal neighbor permutation that provides

the best caching.

The LLC cache tends to be the most impacted in graph

algorithms, making it the focus of optimization efforts for

graph cache hardware, some of which are depicted in Fig. 2.

Re-reference Interval Prediction (RRIP) A is a cache

management scheme that uses a probabilistic approach to

classify cache blocks as low- or high-reuse when new blocks are

inserted. GRAph SPecialized (GRASP) LLC management
B improves the RRIP for graph structures and introduces

specialized cache management policies prioritizing hot vertices

in the LLC by utilizing DBG with a lightweight interface that

helps hardware pinpoint hot vertices among irregular access

patterns. Practical Optimal Cache Replacement (P-OPT)
C employs Transpose-based Cache Replacement (T-OPT,) a

policy that utilizes next-reference data for all graph information.

III. ECG ARCHITECTURE

A. Creating ECG bits

As mentioned before, large-scale power-law graphs exhibit a

lower number of unique vertex IDs in a specific range compared

to the total number of edges. Hence, using 64-bit or 32-bit

representation for a vertex ID, as benchmark tools often do [20],

may be excessive considering the range of the graph’s unique

vertex IDs. Expressive Caching for Graphs (ECG) offers a

solution to utilize the unused bits in vertex ID more effectively

since a 32-bit or less representation is sufficient for most graphs.

As shown in Fig. 1, ECG incorporates P-OPT, GRASP, and

prefetch information into the vertex ID. Out of the 64-bit

representation for the vertex ID, ECG designates:

Fig. 3: How different hardware graph cache optimization are

encoded into ECG bits, while ECG bits are handled within the

processor pipeline to improve performance.

• 32 bits for the vertex ID (which is sufficient for most

large-scale graphs.)

• 8 bits for GRASP metadata (affects cache eviction policy.)

Mark the vertex as hot/warm/cold. To preserve the integrity of

the original reorder, the GRASP eviction policy should not be

applied with a DBG reorder. Instead, DBG (GRASP) data can

be masked in ECG bits while maintaining the original graph

labels.

• 8 bits for P-OPT re-reference matrix (affects cache eviction

policy.) These 8 bits represent the re-reference matrix from the

P-OPT quantization algorithm, which are typically stored in

preserved sets of the LLC cache.

• 16 bits to encode the ”hot” prefetch vertices. These hot

vertices have high connectivity or frequent access degrees.

In summary, the ECG strategy efficiently encodes P-OPT,

GRASP, and clustering information in the unused bits of

the vertex IDs to improve data management for caching and

prefetching. In the past, P-OPT required maintaining one or

more ways of the LLC for the re-reference matrix, but ECG

eliminates this overhead through its proposed scheme.

B. ECG Pipeline and Instruction Flow
In Fig. 3, the processor pipeline 3 uses a specialized graph

instruction with ECG addressing mode to extract vertex IDs

from the edge list and request related property data. At the same

time, the masked ECG bits guide the cache replacement policy

and facilitate the prefetching of the next predicted ”hot” vertices.

Despite extending the edge list to a 64-bit representation, ECG’s

streaming behavior ensures minimal impact on performance.

The streaming pattern, sequential and one-time processing, of

the edge list in graph structure data ensures that the growth in

its size only raises the memory footprint without affecting the

time complexity of graph processing.

IV. EVALUATION AND RESULTS

The implementation used for evaluation is part of the

OpenGraph framework [35], and instructions on how to run it

are available on https://github.com/atmughrabi/ECG.

521

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 03,2024 at 22:45:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I: System environment for ECG evaluation

Host CPU

Model‖Cores‖Threads Intel Xeon Silver 4216‖16‖16

Clock Speed 2.10GHz
Memory 256GB
OS Ubuntu 22.04 LTS

L1‖L2‖L3 512 kB (8-way)‖16MB (16-way)‖22MB (11-way)

TABLE II: Graph workloads used in ECG evaluation

Graph #Vertices #Edges Avg. degree References

amazon-2008(amazon) 735324 5158388 7 [23]

cnr-2000(cnr) 325558 3128710 9 [23]

dblp-2010(dblp) 326184 807700 2 [23]

enron(enron) 69245 274608 3 [23]

A. Methodology

System Environment: The specifications of the host system

and its cache hierarchy are listed in Table. I. Additionally,

Gorder, DBG, and Rabbit Order were tested on the same host

system using reference implementations to accurately compare

each technique.

Cache Simulation: To showcase ECG’s cache performance,

we have developed a basic trace-driven cache simulator. This

tool extracts the access pattern of the designated graph

algorithm during its execution and measures the miss rate. We

test ECG with various cache sizes (32 kB-1MB) for Gorder,

DBG, and Rabbit orders. It is worth noting that due to the size

of the graphs we choose smaller cache sizes, the full version

of the paper will conduct larger simulations with larger graphs.

Graph Datasets: In this study, we focus on evaluating

the graphs from the Laboratory for Web Algorithmics (LAW)

[23]. These graphs are designed to improve cache locality by

reordering clustered vertices. Table II in the graph collection

includes real-world examples of graphs that test read/write

scenarios to identify potential bottlenecks in the simulated

cache performance. To demonstrate the effectiveness of the

reordering technique for generating cache-optimized labels, the

graphs use random (Rand) initialized labels.

Algorithm: We investigate the concepts behind ECG uti-

lizing PageRank [20], [36]–[38], an algorithm that operates

iteratively on a graph. PageRank algorithm assigns a popularity

score (rank) to each vertex during each iteration by traversing

the graph vertices. The rank of a vertex is determined by the

popularity of its incoming edges (in-neighbors.) The algorithm

continues to iterate until the ranks converge within a specified

error margin.

B. Cache Policy Performance and ECG prefetching

In Fig. 4d, Fig. 4e, and Fig. 4f, the cache uses ECG

prefetching for loading the hot neighboring vertex of the

processed node. This results in lower cache miss rates as the

next vertex from the same cluster is often already prefetched.

However, when prefetching is disabled in the first row of

Fig. 4, a higher cache miss rate is consistent regardless of the

policy or the ordering technique. To illustrate, let us consider

the ”amazon” dataset using the ”PLRU” replacement policy.

When using the ”Rand-Order” strategy, the cache miss rate

increases from 72.76% with prefetching enabled in Fig. 4e

to 80.48% with prefetching disabled in Fig. 4b. The ”Rabbit”

strategy also benefits from prefetching, although the miss rate

improvement is smaller than the ”Rand-Order” strategy. Based

on the previous observations, ECG prefetching reduces the

cache miss rate across all datasets in table II. This trend is

consistent for all evaluated replacement policies, with higher

cache miss rates observed in Fig. 4a, Fig. 4b, and Fig. 4c

(prefetching disabled) compared to Fig. 4d, Fig. 4e, and Fig. 4f

(prefetching enabled.)

C. GRASP-DBG Ordering vs. ECG-DBG Masking

Fig. 5a and Fig. 5b showcase the impact of maintaining the

original ordering of the graph while using ECG MASK as a

standalone optimizations against GRASP cache eviction policy

with DBG reordering.

GRASP vs. ECG Rand+MASK: Generally, GRASP seems

to be outperforming ECG MASK for randomly relabeled graphs.

This is a projected result since GRASP depends on DBG

reordering for its eviction policy, unlike ECG MASK, which

keeps its order intact. For example, for the ’amazon’ dataset,

the cache miss rate using the DBG strategy is lower for GRASP

(70.4%) compared to MASK (72.04%.) This pattern repeats

for ’cnr’ and ’dblp’ and ’enron’.

Rabbit+GRASP vs. ECG Rabbit+MASK: When paired

with Rabbit, GRASP tends to have higher cache miss rates than

ECG MASK due to GRASP depending on DBG reordering,

which changes the original optimal Rabbit order. For instance, if

we study Fig. 5b ’amazon’ with ECG Mask there is a reduction

of 63.44% in cache miss rate.

Gorder+GRASP vs. ECG Gorder+MASK: Similarly to

Rabbit order, GRASP has higher cache miss rates than MASK

for ’amazon’ a reduction of 29.03% in cache miss rate.

Although Gorder is known to be more efficient in traversal

algorithms such as Breadth First Search (BFS), which were

not evaluated in this study, its high preprocessing overhead is

not ideal. Therefore, Rabbit order could be a more practical

reordering technique to be used in conjunction with ECG.

D. DBG Reordering Impact On Relabeled Graphs

The GRASP strategy depends on reordering the graph

structure using DBG, which can disrupt the original order

of the data. This is evident in the increased cache miss rates

when GRASP is combined with the Rabbit or Gorder strategies,

which rely on particular data orderings. Disrupting this order

can lead to more cache misses. On the other hand, the MASK

strategy maintains the original order of the data. This can

be beneficial when combined with strategies like Rabbit and

Gorder that rely on a specific clustering order. In Fig. 5, we

can see that ECG MASK often has lower cache miss rates than

GRASP when combined with these strategies, which suggests

that preserving the original order can lead to better performance

in these cases. In conclusion, GRASP performs better when

used alone, but there might be better choices when combined

with ordering-dependent strategies like Rabbit and Gorder. On

522

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 03,2024 at 22:45:28 UTC from IEEE Xplore. Restrictions apply.

(a) 32KB cache with no ECG prefetching

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

amazon cnr dblp enron

0

20

40

60

80

100

Rand-Order DBG Rabbit
Rabbit+DBG Gorder Gorder+DBG

C
ac

he
 M

is
s

R
at

e
(b) 256KB cache with no ECG prefetching

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

amazon cnr dblp enron

0

20

40

60

80

Rand-Order DBG Rabbit
Rabbit+DBG Gorder Gorder+DBG

C
ac

he
 M

is
s

R
at

e

(c) 1MB cache with no ECG prefetching

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

amazon cnr dblp enron

0
10
20
30
40
50
60
70

Rand-Order DBG Rabbit
Rabbit+DBG Gorder Gorder+DBG

C
ac

he
 M

is
s

R
at

e

(d) 32KB cache with ECG prefetching

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

amazon cnr dblp enron

0

20

40

60

80

Rand-Order DBG Rabbit
Rabbit+DBG Gorder Gorder+DBG

C
ac

he
 M

is
s

R
at

e

(e) 256KB cache with ECG prefetching

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

amazon cnr dblp enron

0
10
20
30
40
50
60
70
80

Rand-Order DBG Rabbit
Rabbit+DBG Gorder Gorder+DBG

C
ac

he
 M

is
s

R
at

e

(f) 1MB cache with ECG prefetching

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

P
LR

U

S
S

R
IP

P
O

P
T

amazon cnr dblp enron

0

10

20

30

40

50

60

Rand-Order DBG Rabbit
Rabbit+DBG Gorder Gorder+DBG

C
ac

he
 M

is
s

R
at

e

Fig. 4: Cache performance and miss rate. Results of simulating PageRank (PR) pull approach on a simple trace-driven cache

simulator, combined with different reordering techniques

amazon cnr dblp enron
0

10
20
30
40
50
60
70
80

DBG MASK Rabbit+DBG
Rabbit+MASK Gorder+DBG Gorder+MASK

C
ac

he
 M

is
s

R
at

e

(a) 256KB cache GRASP vs. ECG

amazon cnr dblp enron
0

0.5

1

1.5

2

2.5

3

3.5

MASK Rabbit+MASK Gorder+MASK

C
ac

he
 M

is
s

R
ed

uc
tio

n

(b) 256KB cache GRASP with ECG

Fig. 5: Cache Policy miss rate against masking re-reference value into ECG bit and miss rate. Results of simulating PageRank

(PR) pull approach on a simple trace-driven cache simulator, combined with different reordering techniques.

the other hand, ECG MASK might offer better performance in

such cases due to its ability to maintain the original order of

the data. Ultimately, the choice between GRASP and MASK

should consider the specifics of the data, the importance of

maintaining data order, and the cache miss costs associated

with each strategy.

E. Processor Design and Architecture, Why ECG?

ECG & GRASP: Encoding GRASP cache eviction hints

(hot/cold) in ECG Mask via the edge list structures maintain the

original order of the graph while allowing the GRASP policy

to operate. ECG & P-OPT: Instead of preserving several ways

in the cache for the re-reference matrix, ECG encodes them to

the unused bits mask.

This work hypothesizes that while ECG combines multiple

graph/eviction policies and prefetching techniques [15], [39],

it achieves less overhead with the simple masking technique,

thus maintaining a manageable architecture compared to fusing

different graph optimization separately.

V. CONCLUSION AND FUTURE WORK

By proposing a pipeline-specialized graph addressing mode,

we can extract the vertex ID from the graph edge list to request

property data and use the masked ECG bits to determine the

replacement policy for better caching and prefetching of the

adjacent related hub vertex.

Moving forward, we plan to implement an ECG-based tie-

breaker eviction policy where cache lines with equal P-OPT

RRPV (re-reference prediction value) consult the GRASP part

of ECG bits to keep the cache lines with hottest vertices from

eviction. For a more comprehensive end-to-end evaluation, we

will explore other clustering masks with ECG while evaluating

the results on more graph datasets and algorithms using cycle-

accurate simulation for valid performance measurement.

VI. ACKNOWLEDGEMENT

This work was supported in part by Semiconductor Research

Corporation (SRC.)

523

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 03,2024 at 22:45:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. A. Ang, B. W. Barrett, K. Wheeler, and R. C. Murphy, “Introducing
the Graph 500,” 2010.

[2] J. Lee, H. Kim, S. Yoo, K. Choi, H. P. Hofstee, G.-J. Nam, M. R.
Nutter, and D. Jamsek, “ExtraV: boosting graph processing near
storage with a coherent accelerator,” Aug. 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137776

[3] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph Neural Networks: A Review of Methods and Applications,”
arXiv:1812.08434 [cs, stat], Jul. 2019, arXiv: 1812.08434. [Online].
Available: http://arxiv.org/abs/1812.08434

[4] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges
in parallel graph processing,” Parallel Processing Letters, vol. 17,
no. 01, pp. 5–20, Mar. 2007, publisher: World Scientific Publishing Co.
[Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/
S0129626407002843

[5] S. Beamer, K. Asanovic, and D. Patterson, “Locality Exists in Graph
Processing: Workload Characterization on an Ivy Bridge Server,” in 2015
IEEE International Symposium on Workload Characterization, Oct. 2015,
pp. 56–65.

[6] S. Beamer, K. Asanović, and D. Patterson, “Reducing Pagerank Commu-
nication via Propagation Blocking,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2017, pp. 820–831,
iSSN: 1530-2075.

[7] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup Graph Processing by
Graph Ordering,” New York, NY, USA, Jun. 2016, pp. 1813–1828.
[Online]. Available: https://doi.org/10.1145/2882903.2915220

[8] M. Baradaran, A. Ansari, M. Sadrosadati, and H. Sarbazi-Azad, “Energy
Consumption Analysis of Instruction Cache Prefetching Methods,” in
2023 International Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW), Oct. 2023, pp. 60–67.
[Online]. Available: https://ieeexplore.ieee.org/document/10306038

[9] A. Ansari, F. Golshan, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“MANA: Microarchitecting an Instruction Prefetcher,” Feb. 2021,
arXiv:2102.01764 [cs]. [Online]. Available: http://arxiv.org/abs/2102.
01764

[10] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-44. New York, NY, USA: Association
for Computing Machinery, Dec. 2011, pp. 152–162. [Online]. Available:
https://dl.acm.org/doi/10.1145/2155620.2155638

[11] A. Kolli, A. Saidi, and T. F. Wenisch, “RDIP: return-address-
stack directed instruction prefetching,” in Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-46. New York, NY, USA: Association for Computing
Machinery, Dec. 2013, pp. 260–271. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2540708.2540731

[12] V. Balaji, N. Crago, A. Jaleel, and B. Lucia, “P-OPT: Practical Optimal
Cache Replacement for Graph Analytics,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), Feb.
2021, pp. 668–681, iSSN: 2378-203X.

[13] P. Faldu, J. Diamond, and B. Grot, “Domain-specialized cache manage-
ment for graph analytics,” in 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2020, pp.
234–248.

[14] ——, “A Closer Look at Lightweight Graph Reordering,”
arXiv:2001.08448 [cs], Jan. 2020.

[15] A. Manocha, J. L. Aragón, and M. Martonosi, “Graphfire: Synergizing
Fetch, Insertion, and Replacement Policies for Graph Analytics,” IEEE
Transactions on Computers, vol. 72, no. 1, pp. 291–304, Jan. 2023,
conference Name: IEEE Transactions on Computers.

[16] A.-L. Barabási, “Scale-Free Networks: A Decade and Beyond,” Science,
vol. 325, no. 5939, pp. 412–413, Jul. 2009, publisher: American
Association for the Advancement of Science Section: Perspective.
[Online]. Available: https://science.sciencemag.org/content/325/5939/412

[17] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in 2017 IEEE International
Conference on Big Data (Big Data), Dec. 2017, pp. 293–302.

[18] V. Balaji and B. Lucia, “When is Graph Reordering an Optimization?
Studying the Effect of Lightweight Graph Reordering Across Applications
and Input Graphs,” in 2018 IEEE International Symposium on Workload
Characterization (IISWC), Sep. 2018, pp. 203–214.

[19] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships
of the Internet topology,” ACM SIGCOMM Computer Communication
Review, vol. 29, no. 4, pp. 251–262, Aug. 1999. [Online]. Available:
https://doi.org/10.1145/316194.316229

[20] S. Beamer, K. Asanović, and D. Patterson, “The GAP Benchmark
Suite,” May 2017, arXiv:1508.03619 [cs]. [Online]. Available:
http://arxiv.org/abs/1508.03619

[21] Y. Zhang, V. Kiriansky, C. Mendis, M. Zaharia, and S. Amarasinghe,
“Optimizing cache performance for graph analytics,” arXiv preprint
arXiv:1608.01362, 2016, publisher: CoRR.

[22] J. Petit, “Experiments on the minimum linear arrangement problem,”
ACM Journal of Experimental Algorithmics, vol. 8, p. 2.3, Dec. 2004.
[Online]. Available: https://doi.org/10.1145/996546.996554

[23] P. Boldi and S. Vigna, “The WebGraph Framework I: Compression
Techniques.” ACM Press, 2003, pp. 595–601.

[24] R. Barik, M. Minutoli, M. Halappanavar, N. R. Tallent, and A. Kalya-
naraman, “Vertex Reordering for Real-World Graphs and Applications:
An Empirical Evaluation,” in 2020 IEEE International Symposium on
Workload Characterization (IISWC), Oct. 2020, pp. 240–251.

[25] M. Frasca, K. Madduri, and P. Raghavan, “NUMA-aware graph mining
techniques for performance and energy efficiency,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Washington, DC, USA: IEEE
Computer Society Press, Nov. 2012, pp. 1–11.

[26] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998, publisher: SIAM.

[27] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J. Garzarán, and
K. Pingali, “Parallelization of Reordering Algorithms for Bandwidth and
Wavefront Reduction: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014,” International
Conference for High Performance Computing, Networking, Storage
and Analysis, SC, vol. 2015-January, no. January, pp. 921–932, Jan.
2014. [Online]. Available: http://www.scopus.com/inward/record.url?
scp=84976618589&partnerID=8YFLogxK

[28] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse
symmetric matrices,” in Proceedings of the 1969 24th national
conference, ser. ACM ’69. New York, NY, USA: Association for
Computing Machinery, Aug. 1969, pp. 157–172. [Online]. Available:
https://doi.org/10.1145/800195.805928

[29] A. Z. Broder, “On the resemblance and containment of documents,” in
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No. 97TB100171). IEEE, 1997, pp. 21–29.

[30] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi,
and P. Raghavan, “On compressing social networks,” in Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2009, pp. 219–228.

[31] D. LaSalle and G. Karypis, “Multi-threaded Graph Partitioning,” 2013
IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing, 2013.

[32] A. George, “Nested Dissection of a Regular Finite Element Mesh,”
SIAM Journal on Numerical Analysis, vol. 10, no. 2, pp. 345–363,
Apr. 1973, publisher: Society for Industrial and Applied Mathematics.
[Online]. Available: https://epubs.siam.org/doi/10.1137/0710032

[33] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph Analysis,”
May 2016, pp. 22–31.

[34] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix computations
via data compression,” in Proceedings of the 20th annual international
conference on Supercomputing, ser. ICS ’06. New York, NY, USA:
Association for Computing Machinery, Jun. 2006, pp. 307–316. [Online].
Available: https://doi.org/10.1145/1183401.1183444

[35] A. T. Mughrabi, M. Ibrahim, and G. T. Byrd, “QPR: Quantizing PageRank
with Coherent Shared Memory Accelerators,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2021, pp.
962–972, iSSN: 1530-2075.

[36] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web.” Nov. 1999, library
Catalog: ilpubs.stanford.edu:8090 Publisher: Stanford InfoLab. [Online].
Available: http://ilpubs.stanford.edu:8090/422/

[37] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine,” in Proceedings of the seventh international conference
on World Wide Web 7, ser. WWW7. NLD: Elsevier Science Publishers
B. V., Apr. 1998, pp. 107–117.

524

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 03,2024 at 22:45:28 UTC from IEEE Xplore. Restrictions apply.

[38] M. Bianchini, M. Gori, and F. Scarselli, “Inside PageRank,” Feb. 2005.
[Online]. Available: https://doi.org/10.1145/1052934.1052938

[39] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and
Y. Xie, “Analysis and Optimization of the Memory Hierarchy for Graph
Processing Workloads,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Feb. 2019, pp. 373–386,
iSSN: 2378-203X.

525

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 03,2024 at 22:45:28 UTC from IEEE Xplore. Restrictions apply.

