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Abstract—Environmental metagenomic sampling is instrumen-
tal in preparing for future pandemics by enabling early identifi-
cation of potential pathogens and timely intervention strategies.
Novel pathogens are a major concern, especially for zoonotic
events. However, discovering novel pathogens often requires
genome assembly, which remains a significant bottleneck. A
robust metagenomic sampling that is directly searchable with
new infection samples would give us a real-time understanding
of outbreak origins dynamics. In this study, we propose PArtial
Read Matching with Inexpensive K-mers (PARMIK), which is
a search tool for efficiently identifying similar sequences from
a patient sample (query) to a metagenomic sample (read). For
example, at 90% identity between a query and a read, PARMIK
surpassed BLAST, providing up to 21% higher recall. By filtering
highly frequent k-mers, we reduced PARMIK’s index size by over
50%. Moreover, PARMIK identified longer alignments faster
than BLAST, peaking at 1.57×, when parallelizing across 32
cores.

Index Terms—Genome Partial Matching, K-mer, Smith-
Waterman, Metagenomic Surveillance, BLAST, BWA

I. INTRODUCTION

Environmental metagenomic sampling is a pivotal tool
in preparing for future pandemics by enabling the early
identification of potential pathogens and facilitating prompt
intervention strategies. When we encounter patient samples of
unknown origin, it would be helpful to draw a connection to
environmental data to discover the pathogen, especially for
zoonotic events. As illustrated in the figure 1, this process
starts with the collection of environmental samples, followed
by a whole-genome sequencing step. Today’s high-throughput
sequencing technologies like Illumina [1] can generate mil-
lions to billions of reads, short substrings of DNA molecules
represented by base pairs (A, C, G, T). However, the subse-
quent data analysis step, involving assembling or identifying
the reads through alignment with reference genomes, is no-
tably slower. A robust and directly searchable environmental
metagenomic database for newly collected patient samples
would significantly enhance our ability to rapidly identify the
origins of outbreaks, bypassing the slow assembly phase.

In reference genome alignment-based methods, a significant
portion of reads fail to find alignment with any reference
genome, thus remaining unidentified. This problem is pri-
marily related to the inherent genetic diversity and novel
sequences within metagenomic samples, which often lack
suitable matches in existing reference databases. Hence, anal-
ysis of these unidentified metagenomic samples (red dotted
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Fig. 1. Environment Sampling, Sequencing, Alignment, and Partial Matching.

rectangle in figure 1) remains an under-studied area, with no
effective tool as far as we know. However, it holds significant
importance in the context of pandemic preparedness, making
it the main focus of our research.

One case of metagenome analysis methodologies begins by
identifying specific, fixed-length substrings within the reads,
often referred to as k-mers *. The underlying principle here is
that if two reads are similar, they should share some k-mers.
K-mer search methods, such as the well-known Kraken [13],
[14], can identify well-known pathogens. However, they fall
short when detecting previously undiscovered pathogens for
which no reference genome exists. Although k-mer processing
algorithms are diverse, they all require large storage for k-mer
sets, making the reduction of storage needs and optimization
of query speed critical challenges. A second class of methods
based on pseudo-alignment, like Themisto [16], exhibit rapid
estimation of read alignments between two sequences. While
these methods can quickly indicate the presence or absence
of highly similar sequences within a metagenomic dataset,
they fall short of providing precise details, such as whether
the matches are biologically relevant or just random, non-
specific alignments, which is necessary for comprehensive
epidemiological or virological analysis.

To address these shortcomings, a critical need arises for an
advanced search tool. This tool should be able to identify and
extract all potentially relevant reads with ”partial matches”

*The letter ”k” refers to the length of the substring.
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from hundreds of millions of unassembled and unaligned
metagenomic reads quickly and with an efficient memory
footprint. A partial match (figure 2) is a region between
a read and a query where the boundaries of the read and
query do not necessarily align, and the overlapping region
can be small, including regions of exact matches and a few
mismatches, substitutions and indels. Existing tools like BWA
often overlook alignments below a specific size, while BLAST
struggles with alignments that contain significant mismatches
despite exact matches in certain segments of the alignment.
When aligning Wuhan-Hu-1 to Bat Feces, BLAST, and BWA
miss finding any match for 1.7% and 10.3% of queries,
respectively. To our knowledge, there is currently no tool that
effectively addresses these types of partial matches.

read

query
Mismatches

Matches

Partial Match

Fig. 2. In the partial match region, the boundaries of the read and query
are not necessarily aligned, and the overlap region can be small, including
regions of matches and a few mismatches.

In this project, we introduce PArtial Read Matching with
Inexpensive K-mers (PARMIK), a search tool designed to
identify the partial match between all sequences from a patient
sample (query) to a metagenomic sample (read). PARMIK em-
ploys a four-step approach: indexing, pre-filtering, alignment,
and post-filtering. The indexing stage selects only k-mers that
are below a certain frequency (occurrences in the metagenomic
dataset) and stores them in an inverted index called the
Inexpensive K-mer Index (IKI.) This approach, inspired by
the Cheap K-mer Selection step in prior work, mrFast [9],
[10], filters non-informative k-mers (so-called —expensive k-
mers) and reduces the memory footprint. The pre-filtering
stage collects reads from the metagenomic dataset (i.e., the set
of reads that have not been aligned to a reference) that exhibit
over a predefined threshold number of inexpensive k-mers in
common with the query. Then, all these candidate reads and
the query are processed in the alignment stage using SSW [22],
[23], a rapid SIMD implementation of the Smith-Waterman
algorithm. Using five different pnealty score sets, PARMIK
attempts to find the optimal alignment between the query
and each candidate read. In the post-filtering step, alignment
results are evaluated against user-customizable criteria, such
as percentage identity and alignment size, with a focus on
maximizing alignment size that meets these criteria, providing
a flexible and efficient solution for metagenomic research.

Given the need to search in a large database of metage-
nomic sequences, there are several existing search tools. BWA
(Burrows-Wheeler Aligner) [6] is commonly used for search-
ing against a reference genome and has also been applied to
metagenomic datasets [29]. BWA provides the best alignment
per query. BLAST (Basic Local Alignment Search Tool)

[7], [8], is a well-known multi-aligner that provides multiple
alignments per query. We compared PARMIK to BLAST and
BWA to find alignments between coronavirus-related samples
(queries) and bat feces metagenomic datasets (reads). At a
percentage identity of 90% for the alignments between queries
and reads, PARMIK exceeded BLAST by achieving up to 21%
higher recall. Since BLAST removes low complexity regions
before indexing, BLAST’s index size was 3× smaller than
PARMIK. Similarly, PARMIK removes low complexity and
non-informative segments of sequences by filtering out highly
frequent k-mers. After filtering highly frequent k-mers, the size
of PARMIK’s index decreased by a factor of two, resulting in
an index that was 1.5× larger than BLAST’s index. Moreover,
PARMIK identified longer alignments faster than BLAST (up
to 1.57×) when parallelizing across 32 cores. At this rate, we
expect PARMIK to scale to the thousands of metagenomic
environmental samples the community will generate in the
coming years, allowing public health officials and researchers
to fully exploit this critical resource’s capabilities to improve
the analysis of metagenomic sampled data.
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Fig. 3. PARMIK consists of 4 steps: A. Intexing, B. Pre-filtering, C.
Alignment, D. Post-filtering (*The output of the Pre-filtering step is a list
of queries, each accompanied by a list of read candidates that shares exact
match regions with the query.)

II. METHODS

Suppose we have a query sequence for which we want
to find all the similar reads, including exact and non-exact
matches, in a large metagenomic dataset with hundreds of
millions of reads. To do so, we take a metagenomic dataset and
create a storage-efficient inverted index (figure 3-A.) Using
the index and the input queries, we find all the candidate
reads that have a region of the exact match with the query
(figure 3-B.) Then, each query (Q) and its candidate reads
([R]) need to go through the alignment step to find the best
alignment for each (Q, R) pair (figure 3-C.) Finally, the post-
filtering step should check the alignment against the user-
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Fig. 4. K-mer Frequency Histogram for K = [9, 10, 11].

defined criteria and improve the alignment size if possible
(figure 3-D.) Detailed explanations of these steps are provided
in the following sections.

A. Indexing

Metagenomic data often contains numerous sequencing er-
rors and repetitive sequences, such as long runs of a single nu-
cleotide, which tend to be non-informative and inflate dataset
sizes significantly. Without having the reference genome, we
are unable to correct errors in the metagenomic dataset, includ-
ing sequencing errors. Many previous alignment methods, e.g.,
BLAST [7], [8], incorporate a pre-processing step to eliminate
the sequencing error-related and low-complexity segments
from sequences. This refinement enhances their accuracy and
speed, resulting in smaller indexes.

In our study, which focuses on metagenomic datasets lack-
ing reference genomes, we need to eliminate sequencing error-
related and non-informative segments of metagenomic reads
from our index. To detect these non-informative segments,
we divide each read from the metagenomic dataset into k-
mers and count the frequency (occurrence rate) of each k-
mer. Figure 4 shows the cumulative frequency of three k-
mer sizes (i.e., 9, 10, and 11) for different k-mer frequency
thresholds. As the k-mer frequency threshold increases, there
will be more distinct k-mers in the index. For instance, with
k set to 11 and a k-mer frequency threshold of 5000, nearly
99.4% of distinct k-mers are accommodated within the index.
However, with a reduction in k-mer size, keeping over 99% of
k-mers in the index demands larger thresholds—specifically,
15,000 and 100,000 for k values of 10 and 9, respectively.
Using this strategy, we effectively filter out non-informative k-
mers that offer minimal alignment benefits, thereby preventing
unnecessary inflation of the index size. Further discussion of
this approach and its impact on the number of true positives,
execution time, and index size is provided in section III.

As illustrated in Figure 5 (Indexing), all k-mers (k-1 over-
lapping) are extracted from the reads within the metagenomic
dataset and organized into an inverted index [19]. If the k-mer
frequency is higher than a pre-defined threshold (Inexpensive
K-mer Threshold, IKT), we call it an expensive k-mer, and we
do not add it to the inverted index. The inexpensive k-mers,
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Fig. 5. Indexing (top) and Pre-filtering (bottom) steps.

along with their corresponding read IDs, are then incorporated
into an inverted index structure called the inexpensive k-mer
index (IKI). This approach is inspired by the Cheap K-mer
Selection step from prior work, mrFast [9], [10]. We use the
inexpensive k-mer index for the pre-filtering step.

B. Pre-filtering

PARMIK first finds reads with regions of exact matches to
the query. Using k-mer matching, a well-known method [20],
PARMIK ensures that two sequences share a sufficiently large
common region by verifying that the number of shared k-mers
surpasses a predefined threshold (M).

11
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read

query

M = 4K
K KK

(b)

Fig. 6. (a) An example for minimum number of k-mers shared between
the read and the query sequence (M). (b) The M k-mers do not need to be
consecutive.

PARMIK uses two user-provided criteria (explained in II-D)
and the k-mer size to determine the M. For example, as shown
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in figure 6(a), if the percentage identity is 95% and minimum
alignment size is 48, the maximum number of mismatches the
user expects to see in the resulting alignment is 2. If the k-
mer size is 11, M is (46/11) + (46%11) = 4 + 2 = 6. To
efficiently find reads similar to a query, as shown in Figure 5
(pre-filtering), we extract (k-1) overlapping k-mers from the
query (and its reverse strand) and leverage IKI to identify reads
sharing at least M k-mers with the query. The M k-mers do not
need to be consecutive, as illustrated in Figure 6(b). Finally,
we forward the query and the collected reads to the alignment
step.

Given the large size of data structures used for the inverted
index and read ID lists in this step, achieving rapid and
efficient data insertion and retrieval is imperative. We opted for
the Robin map [31], implemented in C++, over the standard
STL map due to its superior speed for insertions and lookups,
as shown in [32].

C. Alignment

The alignment step takes the queries and their corresponding
candidate read ID lists collected during the pre-filtering stage
as inputs. While Smith-Waterman [21] is a widely used method
for sequence alignment, its computational cost can be pro-
hibitive for large datasets. PARMIK uses a highly parallelized
implementation of the Smith-Waterman algorithm, known as
SSW. SSW incorporates an efficient SIMD (Single-Instruction-
Multiple-Data) implementation of the Striped Smith-Waterman
algorithm, as detailed in [22], [23].

TABLE I
PENALTY SCORES

Penalty sets #1 #2 #3 #4 #5

Match 1 2 2 2 2
Substitution 1 4 4 8 2
Gap Open 1 4 8 4 8

Gap Extend 1 4 4 8 8

SSW takes two sequences and the penalty scores, including
match, substitution, gap open, and gap extend, to run the align-
ment. We used five distinct sets of penalty scores, as shown
in the table I to check the alignments based on prioritizing
different mismatch types. For instance, the penalty score set #3
prioritizes substitution (score=4) over the gap open (score=8).
Then, we select the longest alignment. After identifying the
optimal alignment between each read and query, the outcome
is forwarded to the post-filtering step for verification against
our predefined criteria.

D. Post-filtering

Two sequences (query, read) collected from the genome
sequencing may not align well, even if they are from the
same genome. As shown in figure 2, the alignment region
(partial match) between the query and read may be small,
with regions of exact matches and some mismatches, including
substitutions and indels. In this project, our goal is to identify
partial matches between a read and a query. To do so, PARMIK

[0-
25

]

[26
-50

]

[51
-10

0]

[10
1-1

50
]

[15
1-2

00
]

[20
1-2

50
]

[25
1-5

00
]

[50
1-7

50
]

[75
1-1

00
0]

[10
01

-15
00

]

[15
01

-20
00

]

K-mer Frequency Ranges

105

106

107

108

Fr
eq

ue
nc

y 
(L

og
 S

ca
le

)

k=11
k=14
k=17

Fig. 7. K-mer frequency variation for different k-mer sizes for Bar Feces
metagenomic dataset.

focuses on two alignment metrics: Percentage Identity (PI),
which refers to the minimum percentage of the alignment
containing exact matches, and Minimum alignment Size (R).
The results generated by PARMIK must adhere to these user-
defined parameters, ensuring the percentage identity and align-
ment size are greater than or equal to PI and R, respectively.

Many of the alignments found by the brute force Smith-
Waterman algorithm were very short (median = 11.) In our
case, to help finding the pathogens for a newly discovered
infection, the matches should be long enough to help us to
figure out the origins of a sampled genome. Figure 7 shows
as the k-mer size (size of the exact match) becomes larger,
there are fewer number of reads that contain them leading to
more specific read candidates for a query. Hence, our heuristics
eliminate the short alignments by using the R criterion.

If the percentage identity falls below the predefined PI,
PARMIK trims the alignment from the end with fewer exact
matches and recalculates the percentage identity. This process,
called Trimming, iterates until either the percentage identity
equals or surpasses PI or the alignment size decreases below
the specified R threshold. After trimming, PARMIK expands
the alignment by adding back the trimmed substrings, alternat-
ing sides to explore the potential for a larger alignment while
ensuring the percentage identity remains equal to or greater
than PI, a step we refer to as Second Chance. We call the
trimming and second chance process as Polishing.

Figure 8 illustrates post-filtering for a query (Q) and read
(R) where the percentage identity is initially 86% and PI=90%.
To ensure alignment meets a percentage identity (pi) exceeding
90% criteria, PARMIK starts by trimming the read and query
( 1 ). It counts the matches preceding the first mismatch (5)
against those succeeding the last mismatch (6). Since there are
fewer matches before the first mismatch, in step 2 , PARMIK
trims the read and query from the front end, removing the
first five exact matches followed by one mismatch. Then,
PARMIK recalculates pi, which is (87%) still below 90%.
Since the number of matches in the back (i.e., 6) end is fewer
than in the front end (i.e., 12), in step 3 , six base pairs

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.14.618242doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.14.618242
http://creativecommons.org/licenses/by/4.0/


5

CAGCCCAACGCGTTCCAGGTTTGCCAGCCGGCTTTAAC
CAGCCTAACGCGTTCCAGCTTTGCCAGCCAAGTTTAAC 86%

Trim front

AACGCGTTCCAGGTTTGCCAGCCGGCTTTAAC
AACGCGTTCCAGCTTTGCCAGCCAAGTTTAAC

AACGCGTTCCAGGTTTGCCAGCC
AACGCGTTCCAGCTTTGCCAGCC 95%

Trim back

87%

CAGCCCAACGCGTTCCAGGTTTGCCAGCC
CAGCCTAACGCGTTCCAGCTTTGCCAGCC

Second Chance

93%

Q:
R:

Q:
R:

Q:
R:

Q:
R:

2

1

3

4

Percentage
Identity

Alignment
Size

38

32

23

29

StepAlignment

Fig. 8. Post-filtering (PI=90%) step includes two sub-steps: (1) Trimming and
(2) Second chance. Together, these sub-steps are referred to as ”Polishing.”

and three mismatches are trimmed from the back end. While
pi > 90%, in step 4 , PARMIK gives a second chance to the
substrings previously trimmed from the opposite end of the
last trim (front end in step 2 ) to potentially be added again.
It recalculates pi to assess whether a larger alignment can be
achieved while maintaining pi > 90%. At the end of the step,
4 , with the pi still surpassing 90%, PARMIK concludes this

iteration by reporting the alignment as a match for the query.
For each query, PARMIK picks the longest polished align-

ment from the ten alignments generated against a read: five
from the forward strand and five from the reverse strand (five
penalty score sets.)

III. RESULTS

To evaluate PARMIK against a multi-aligner, we compared
it to BLASTN, the nucleotide-focused version of BLAST+
(version 2.15.0). We set the maximum number of matches
per query (max targe seqs) to an extremely high value
(50,000,000) to ensure all potential matches fitting the BLAST
criteria were captured. Regarding the best match per query, we
compared to BWA-MEM.

Baseline: We defined the baseline that runs the Smith-
Waterman algorithm for each query against all the reads from
the metagenomic dataset. If the percentage identity of the
alignment result is higher than the predefined threshold (PI)
and the alignment size is longer than the minimum alignment
size (R), it reports the alignment for the query. For aligning
each (query, read) pair and its reverse strand, we use all the
penalty scores in table I and pick the alignment with the
longest size.

TABLE II
DATASETS USED IN EXPERIMENTS

Dataset Name Size Classification

Query Wuhan-Hu-1 29 Kb Sars-2
SarsGenome 29 Kb Sars-1

Metagenomic

SRR12432009 3.56 Gb Sarbecovirus
SRR14381418 3.03 Gb Sarbecovirus
SRR14381421 2.70 Gb Sarbecovirus
SRR14381422 3.13 Gb Decacovirus

Input Datasets: To evaluate PARMIK, we compared
the alignments from BLAST and PARMIK to the baseline
for two query files against four metagenomic files (Table
II.) The two query files are Sars-1 and Sars-2 (Wuhan-Hu-
1.) All metagenomic datasets are collected from rainforest
except SRR14381418 which is from limestone forest. The
four metagenomic datasets originated from samples taken from
Bat feces. We selected these metagenomic datasets based on
their predicted viral load. Three of the metagenomic datasets
are classified under Sarbecovirus, while SRR14381422 falls
into a distinct classification of Decacovirus. We sampled 150
bp queries from assembled genomes with 149 bp consecutive
overlaps. For metagenomic 150 bp reads, we removed dupli-
cate reads and any reads containing ’N’.
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Fig. 9. (A) Comparison of recall rates between PARMIK [K=11, M=4,
PI=90%, IKT=all, polishing] and BLAST across various minimum alignment
sizes (B) A zoomed-in view of the recall rate of PARMIK vs. BLAST for
the range of minimum alignment sizes between 21 and 35 (Wuhan-Hu-1 vs.
SRR12432009).

A. Recall & Precision

We assessed the recall and precision for PARMIK and
BLAST with respect to our baseline. We ran the three tools
(BLAST, PARMIK, and baseline) for the Wuhan-Hu-1 against
SRR12432009 for a k-mer size of 11, a percentage identity
of 90%, and Inexpensive K-mer Index contains all k-mers
(IKT=all). We discuss more about the impact of different IKT
later in this section.

1) Recall: Figure 9(A) illustrates that throughout different
minimum alignment sizes (R), the recall rate for PARMIK
was higher than BLAST. This is because PARMIK found the
same number or more true positives compared to the baseline,
whereas BLAST lags. In addition, as the alignment size
surpassed 25, PARMIK’s FN diminished compared to BLAST.
Figure 9(B) focuses on the recall of the two tools for R
between [21-35]. For R ≥ 21, PARMIK exceeds BLAST by a
higher recall rate, peaking at 21% for R=21. This superiority is
attributed to PARMIK’s post-filtering mechanism, particularly
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the second chance step, which extends alignments as much as
possible to maximize alignment coverage. Indeed, BLAST’s
speed advantage, achieved through its heuristic approximation
of the Smith-Waterman algorithm [7], is remarkable—it’s 50×
faster than Smith-Waterman. However, this speed comes at the
cost of precision, as BLAST tends to be less accurate than
Smith-Waterman [37].

2) Precision: Neither BLAST nor PARMIK had false posi-
tives in the experiments. Hence the precision for both of them
was 1.

B. Speed vs. Recall

Figure 10 shows the trade-off between recall rate and
execution time (minutes) for PARMIK with Inexpensive K-
mer Index containing all k-mers (IKT=all), K=11, for M=4
(blue) and M=7 (green) against BLAST (red), across varying
percentage identities of 85%, 90%, and 95%. Based on figure
9(B), at minimum alignment size R=30, both PARMIK and
BLAST converged to high recall rates. Therefore, alignments
smaller than 30 were filtered out for this experiment. While
PARMIK [M=4] demonstrates a superior recall rate across
various PI values, it falls short in speed compared to both
BLAST and PARMIK [M=7]. As the percentage identity
increases, PARMIK demonstrates reduced variability in recall
rate, whereas BLAST shows increased variability in recall rate.
Throughout different percentage identities, BLAST maintains
a consistent runtime but shows a reduction in recall rate
in some experiments. As the percentage identity increases,
PARMIK’s recall rate improves, though the speed decreases.
At PI = 95%, PARMIK achieves identical recall rates for M=4
and M=7, suggesting that choosing M=7 offers a good balance
between recall and speed. PARMIK [M=7] is 3-5× faster than
M=4 at PI=85, while the recall rate is less than 2× lower.
Finally, PARMIK [M=7] has a higher recall rate and performs
faster in most experiments than BLAST.

Multi-core execution: We parallelized PARMIK using
OpenMP [35] and compared its performance on 32 physical
cores to the parallelized version of BLAST. For Wuhan-Hu-1
against SRR12432009, under the conditions of K=11, M=4,

IKT = all, and PI=90%, PARMIK and BLAST produced
30,409 and 19,227 matches per second, respectively. PARMIK
was 1.57× faster than BLAST as the number of cores in-
creased from 1 to 32.

TABLE III
MEMORY FOOTPRINT

Tool Index Size (GB)
BLAST 2.3

PARMIK 7.63

C. Memory Footprint

For the metagenomic dataset SRR12432009, with K=11,
M=4, and IKT = all (meaning IKI contains all k-mers, in-
cluding expensive ones,) BLAST’s index is over 3× smaller
than PARMIK’s index (table III.) However, we can reduce
PARMIK’s memory footprint for over 2× by removing ex-
pensive k-mers from the index (more details in section III-F.)

D. Best Match per Query

PARMIK finds all matches, while many use cases are only
interested in the best match. For all three tools, including
PARMIK, BLAST, and BWA, we select the alignment with the
longest length among all matches to identify the best match
for each query. In the experiments of aligning Wuhan-Hu-1
against SRR12432009 with a k-mer size of 11, IKT = all, and
a percentage identity threshold of 90%, PARMIK successfully
found at least one match for all queries. Figure 11(a)(green
bars) demonstrates that for the queries that BLAST failed
to identify any alignments, 507 (1.7%) of the total queries,
PARMIK found alignments ranging between 20 to 60 bp. Sim-
ilarly, figure 11(b)(green bars) shows that PARMIK identified
alignments of size up to 150 bp for the cases that BWA found
no alignments for the query, 3076 (10.3%) of the total queries.

As shown in figure 12, BLAST and BWA identified at least
an alignment for 29,247 and 26,678 out of 29,754 queries,
respectively. When comparing the best match for each query
between PARMIK and BLAST as well as BWA, for 99.2% and
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Fig. 11. Histogram of alignment length difference for the best match per
query (PARMIK vs. BLAST/BWA.) ”Different read” or ”same read” means
PARMIK and BLAST/BWA found different or the same best read per query
(Wuhan-Hu-1 vs. SRR12432009).

96.6% of queries, PARMIK identifies alignments of longer
or the same alignment size per query compared to BLAST
and BWA, respectively. However, there is a small number
of queries, 0.8% and 3%, that BLAST and BWA outperform
PARMIK in terms of alignment size of best match. We checked
alignments where BLAST and BWA outperformed PARMIK.
For BLAST, all such cases involved short alignment sizes,
typically around 20 bp. For BWA, these alignments exhibited
a median of 1 bp fewer soft clips compared to PARMIK.
The slightly higher number of soft clips in PARMIK results
from the SSW algorithm, which extends the alignment until it
reaches a score of 0 at either end, then adds soft clips for the
0-scored ends of the alignment.

Among the cases where PARMIK finds a similar alignment
size to BLAST and BWA, it identifies the same read as BLAST
for 78.5% of the times and the same read as BWA for 55.5%
of the times. Additionally, PARMIK outperforms BLAST and
BWA by identifying a longer alignment for 18.7% and 31% of
queries, respectively. Figures 11(a) and 11(b) show the number
of cases that each tool found better alignment than the other
tool, measured by the difference in the length of alignment
found by the two tools. PARMIK outperforms BLAST and
BWA by identifying longer alignments with a median of 2
and 3 more bp, respectively.
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Fig. 12. Comparing best match per query (PARMIK vs. BLAST/BWA).
Different (Same) read means PARMIK and BLAST/BWA found different
(similar) read for the query (Wuhan-Hu-1 vs. SRR12432009).
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Fig. 13. Impact of using Polishing on PARMIK’s Alignment Size. (a)
Alignment size improvement due to polishing per alignment. The x-axis shows
the preliminary alignment size, and the y-axis shows the alignment size after
polishing. (b) Heatmap of the histogram of polishing improvements. Each box
shows the count of the preliminary alignment size range (x-axis) improved to
the range shown on the y-axis. For example, 232K alignments of size between
[30-59] bp improved to a range of [1-9] bp. An alignment improvement range
of [0,0] signifies no improvement achieved from using the polishing technique
(Wuhan-Hu-1 vs. SRR12432009).
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105S18=27S 18No

10=1X57=1X1=3I4=3I1=69S 81Yes

= Match

X Substitution

I Insertion

S Soft Clip

D Deletion

Q : CGCTTCTAGAAAGTGAACTCGTAATCGGAGCTGTGATCCTTCGTGGACAT
    CTTCGTATTGCTGGACACCATCTAGGACGCTGTGACATCAAGGACCTGCC
    TAAAGAAATCACTGTTGCTACATCACGAACGCTTTCTTATTACAAATTGG
R : CTTCTTAATGTGCCACTTCATGGCACTATTCTGACCAGACCGCTTCTAGA
    GAGTGAACTCGTAATCGGAGCTGTGATCCTTCGTGGACATCTTCGTATTG
    CTGGACACGAAGGATCACAGCTCAAGGACCTGCCTAAAGAAATCACTGTT

Fig. 14. An example of improved alignment size due to polishing.

E. Impact of Polishing in the Post-filtering Step

To assess the polishing technique’s efficacy detailed in
Section II-D, we employed two variants of the PARMIK tool:
one equipped with polishing in the post-filtering step and
another without this capability. For this analysis, we used the
Wuhan-Hu-1 dataset against SRR12432009 using a k-mer size
of 11 and a 90% percentage identity threshold.

Figure 13(a) depicts the relationship between the prelim-
inary alignment size (x-axis) and the alignment size after
polishing (y-axis). Notably, every data point either maintained
the same size as the preliminary alignment or exceeds it after
polishing since there are no points below the line y = x.
Furthermore, in some cases, the alignment size significantly
increased after polishing.

Figure 13(b) shows the extent to which polishing enhances
alignment size. The x-axis represents ranges of preliminary
alignment sizes, while the y-axis depicts ranges of alignment
improvement after using the polishing technique. An align-
ment improvement range of [0,0] signifies no improvement
achieved from using the polishing technique, comprising 75%
of the observed cases. This figure shows the significant impact
of polishing during the post-filtering step, resulting in an
increase in alignment size for over 10 million or 25% of the
alignments. Moreover, polishing enhanced alignment size 3 to
9 times for shorter alignments, such as those within the range
[10-29], extending up to [60-99].

Figure 14 illustrates an example that an initial alignment
of size 18 improves to 81 after polishing. PARMIK uses five
different penalty score sets and performs alignments on both
the forward and backward strands of the read and query (10
alignments per query.) After post-filtering, PARMIK picks the
longest alignment size among 10 alignments for this read
and query. The two alignments in the figure are from the
two different strands of the query, which indicates that the
strand identified with the polishing technique enabled did
not pass the post-filtering step when the polishing technique
was disabled. In other words, a preliminary alignment that is
discarded for a particular penalty score set may be accepted
and significantly improved in size (e.g., from 18 to 81) when
PARMIK’s polishing technique is enabled.
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Fig. 15. (A, B) Comparison of recall rates between PARMIK [IKT=all] (with
and without polishing), PARMIK [IKT=5000] (with and without polishing),
and BLAST across various minimum alignment sizes (C) Comparison of
true positive rates between PARMIK [IKT=all] (with and without polishing),
PARMIK [IKT=5000] (with and without polishing), and BLAST across var-
ious minimum alignment sizes (D) Comparison of alignments sizes between
PARMIK PARMIK [IKT=all] and Baseline for the true positives they found
(Wuhan-Hu-1 vs. SRR12432009).

F. Impact of using Inexpensive K-mers

Metagenomic data often contain sequencing errors and non-
informative, highly repetitive sequences, which leads to larger
datasets and needs more memory. Pre-processing steps in
previous alignment methods, such as BLAST, address this
by filtering out these errors and low-complexity segments,
reducing the memory footprint. To address this, we filter
expensive k-mers resulting in smaller memory footprint.

Figure 4 shows that for K=11 and IKT=5000, 99% of k-
mers were included within the IKI. Figure 15-A illustrates
the impact of excluding expensive k-mers with IKT > 5000
on recall rate. For all minimum alignment sizes, the recall
rate of PARMIK [IKT=5000] exceeded that of BLAST but
fell short compared to PARMIK [IKT=all], particularly for
25 < R < 35 (Figure 15-B). When R > 35, the recall
rate of PARMIK with a 5000-threshold became close to
the PARMIK [IKT=all]. Additionally, the size of the index
decreased by more than 2×, from 7.63 GB to 3.47 GB, and

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.14.618242doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.14.618242
http://creativecommons.org/licenses/by/4.0/


9

9 10 11 12
K-mer Length

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
. o

f F
al

se
 N

eg
at

iv
e 

(×
10

^8
)

1e8

100

200

300

400

500

600

700

800

Ex
ec

ut
io

n 
Ti

m
e 

(M
in

ut
es

)

(a) K-mer Length Sensitivity Analysis (M=5,
IKT=All)

0k 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k All
K-mers

Inexpensive K-mer Threshold

0.0

0.2

0.4

0.6

0.8

1.0

No
. o

f F
al

se
 N

eg
at

iv
e 

(×
10

^7
)

1e7

120

125

130

135

140

145

Ex
ec

ut
io

n 
Ti

m
e 

(M
in

ut
es

)

(b) IKT Sensitivity Analysis (K=11, M=4)
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Fig. 16. Sensitivity Analysis of PARMIK: The false negative values are normalized to the highest IKT in 16(b) (when IKI has all the k-mers) or the lowest
value in 16(a) (i.e., 9) and 16(c) (i.e., 2). The median alignment size of the false negative cases is 13 for 16(a) when k=11, 15 for 16(b) when IKT=5000,
and 12 for 16(c) when M=4 (Wuhan-Hu-1 vs. SRR12432009).

the execution time was reduced by 12% when using the 5000-
threshold. Figure 15-C shows that PARMIK [IKT=all] outper-
forms all others, including the Baseline, in terms of the number
of true positives across various values of R. Figure 15-D
presents a histogram of the alignment size differences between
PARMIK [IKT=all, polishing] and the Baseline, highlighting
that PARMIK identifies more longer alignments thanks to the
polishing step.

Fig. 17. Cluster of 25 highly-frequent expensive k-mers of size 11, each
exceeding 1 Million in frequency.

PARMIK containing k-mers with threshold over 5000
missed 8,437 (0.0004%) matches due to filtering out expensive
k-mers. We analyzed these expensive k-mers in the reads and
found that 94% of them would not be considered expensive
if we increased the IKT to a higher value, i.e., 10,000. We
collected the most expensive k-mers with a frequency greater
than one million in the missed matches and constructed their
phylogenetic tree using Clustal Omega [36]. The analysis
revealed that these expensive k-mers are highly clustered,
forming 8 distinct clusters. In each cluster, the k-mers are
quite similar, partly or totally. Figure 17 illustrates a cluster
of 25 k-mers, each with a frequency over 1 million, showing
their remarkable similarity. Additionally, the complexity in 72
out of 150 of these k-mers is less than 50%. The analysis also
showed that the top three most expensive k-mers are Illumina
global adapters which are required for the sequencing step but
not informative for the analysis step.

Eliminating expensive k-mers from the IKI not only de-
creases the memory footprint and execution time but also

maintains the same level of TP comparable to PARMIK
[IKT=all], which includes all k-mers. To show this, we
compared the recall rate of the PARMIK with K=11, M=4,
for IKT=all and IKT=5000, and polishing against BLAST
across all different datasets. Figure 18 illustrates that PARMIK
[IKT=all, polishing] achieves superior performance, followed
by PARMIK [IKT=5000, polishing], both of which outperform
BLAST. The impact of filtering expensive k-mers on recall rate
was less than 5% throughout all datasets. The impact of only
using inexpensive k-mers on IKI size and speed is anticipated
to be significantly greater when comparing a query against
multiple large metagenomic datasets, which is more abundant
in non-informative, expensive k-mers.
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Fig. 18. Comparison of recall rates for PARMIK [IKT=5000, polishing],
PARMIK [IKT=all, polishing], and BLAST across all datasets, evaluated at
R=30.

G. Sensitivity Analysis of PARMIK

To evaluate the sensitivity of PARMIK to its various pa-
rameters (figure 16), we changed one parameter while keeping
the others fixed and measured the false negative (blue diagram)
compared to the baseline and the execution time (red diagram.)

Figure 16(a) shows the sensitivity analysis of PARMIK to
k-mer length. We set M=5 and IKT=0 and change the k-mer
length from 9 to 12. Increasing the k-mer length led to a rise in
the number of false negatives and a fall in execution time. All
false negative numbers were normalized to K=9 (subtracted by
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its false negative.) There was a sharp increase of about 140
million in false negatives when the k-mer length was changed
from 9 to 10.

We also evaluated the sensitivity analysis of PARMIK to
Inexpensive K-mer Threshold (IKT) by setting K=11 and
M=4. Figure 16(b) shows that (all false negative numbers were
normalized to the case we have all k-mers in the IKI) as IKT
increased, the number of false negatives decreased, and the
execution time increased. This effect was particularly more
significant when IKT changed from 2k to 10k.

We assessed the sensitivity analysis of PARMIK with re-
spect to the minimum number of shared k-mers (M) by setting
K=11 and IKT=0. Figure 16(c) shows that (all false negative
numbers were normalized to M=2) as M increased, the number
of false negatives increased, and the execution time decreased.
This effect was particularly more significant when M changed
from 2 to 3.

IV. RELATED WORK

A. BLAST

The Basic Local Alignment Search Tool (BLAST) [7],
[8] is a widely utilized bioinformatics tool for sequence
comparison and analysis. BLAST was first introduced by
Altschul et al. in 1990 and has since become a cornerstone in
molecular biology research. Numerous studies have focused on
enhancing BLAST’s algorithmic efficiency, accuracy, and ap-
plicability to various biological data types. Although BLAST
generally outpaces most Smith-Waterman implementations in
speed, it doesn’t assure optimal alignments as the Smith-
Waterman algorithm does. Instead, BLAST employs a heuris-
tic method to search for high-scoring sequence alignments
between the query and database sequences, approximating the
Smith-Waterman algorithm [33]. BLAST+ [25] is the most
recent version of BLAST, which offers improved performance
and additional functionalities. We compared PARMIK with
BlastN, the nucleotide alignment variant of BLAST+ (version
2.15.0), evaluating various metrics, including sensitivity and
speed.

B. BWA

Burrows-Wheeler Aligner (BWA) [6] is a prominent read
alignment tool that accounts for about 30-40% time of the
reference-guided assembly pipeline. At its core, BWA em-
ploys the Burrows-Wheeler Transform [18] (BWT) and the
Ferragina-Manzini index [17] (FM-index) to facilitate efficient
alignment processes. The BWT [18] is a reversible transforma-
tion of the reference genome that enhances compression and
accelerates search operations. The FM-index, derived from the
BWT, further optimizes the ability to locate specific sequences
within the reference genome swiftly. BWA employs a seed-
and-extend strategy where it first generates short substrings
(seeds) from the reads. The algorithm then extends these
seeds using dynamic programming, incorporating a variant of
the Smith-Waterman [21] algorithm for accurate and sensitive
alignment. The algorithm is robust to sequencing errors and
applicable to a wide range of sequence lengths from 70 bp

to a few megabases. For mapping 150 bp sequences, BWA-
MEM (BWA’s latest variant) shows better performance than
several state-of-the-art read aligners to date. Since BWA is
not a multi-aligner—meaning it is designed to identify only
the best (longest) alignment per query rather than multiple
alignments—we compared PARMIK to BWA (BWA-MEM
variant) solely in terms of identifying the best alignment.

C. mrFast

Another notable tool in sequence alignment is mrFast [9],
a storage-efficient and versatile short-read alignment tool.
The tool efficiently handles large-scale sequencing data, mak-
ing it particularly valuable for projects demanding accurate
alignment, such as genome-wide association studies (GWAS)
and clinical genomics. mrFast integrates FastHASH [10], an
indexing scheme that boosts performance in seed-and-extend
hash table-based read mapping algorithms. FastHASH main-
tains high sensitivity while introducing two key techniques:
Adjacency Filtering (AF) and Cheap K-mer Selection (CKS).
Our Inexpensive K-mer Collection step was inspired by the
CKS method used in mrFast. We initially tried both the
binary and docker versions of mrFast but found them to be
prohibitively slow. As a result, we decided to exclude mrFast
from our comparison.

D. Bowtie

Bowtie [11] is a genome alignment tool known for its speed
and memory efficiency. It aligns short DNA reads to large
genomes using Burrows-Wheeler indexing, aligning 25 million
reads per CPU hour for the human genome with only 1.3
GB of memory. Bowtie’s quality-aware backtracking algorithm
allows for mismatches, improving alignment accuracy. It also
supports multiple processor cores for faster alignment. The
first version of Bowtie does not support gapped alignment.
Bowtie2 [12], released in 2012, addresses these limitations
and adds support for gapped, local, and paired-end alignment
modes. Similar to BWA [6], Bowtie2 uses the FM index. Since
Bowtie2 and BWA are working similarly, we chose BWA for
comparison with PARMIK.

E. Kraken

Kraken [13] stands as a well-known tool for fast and
accurately assigning taxonomic labels to metagenomic DNA
sequences. Unlike its predecessors, which were slower and
computationally intensive, Kraken excels in speed and preci-
sion. Through exact k-mer alignment, it achieves classification
accuracy comparable to the fastest BLAST programs. In its
fastest mode, Kraken can classify 100 base pair reads at a rate
of over 4.1 million reads per minute, outpacing alternative
tools by a large margin. We opted not to compare PARMIK
with Kraken because Kraken is a taxonomy classification tool
that does not provide alignment coordinates.

F. Centrifuge

Centrifuge [15] is a microbial classification engine for desk-
top computers, offering rapid and precise labeling of genetic
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reads. Its indexing scheme, based on BWT [18] and FM-index
[17], allows for accurate species quantification with a small in-
dex size (4.2GB for 4078 bacterial and 200 archaeal genomes).
The FM-index empowers Centrifuge to swiftly search k-mers
of varying lengths, achieving speeds akin to traditional k-mer
table indexing algorithms. Centrifuge initiates with a brief
exact match (minimum 16 base pairs) and extends the match to
its maximum extent. Moreover, Centrifuge’s space-optimized
indexing can encompass the extensive NCBI nonredundant
nucleotide sequence database (109 billion bases) with only
a 69 GB index size, a notable improvement over k-mer-based
approaches. We did not compare PARMIK with Centrifuge
since it does not give the alignment coordinates.

G. Themisto

Pseudoalignment is a fast and cost-effective method for
determining if a read matches a reference sequence without
providing exact alignment coordinates. Themisto [16], an
example of a pseudoalignment method, is a scalable colored
k-mer index tailored for extensive collections of microbial
reference genomes, accommodating both short and long-
read data efficiently. It indexes 179,000 Salmonella enterica
genomes within 9 hours, resulting in a 142 GB index. In
contrast, leading competitors such as Metagraph [38] and
Bifrost [39] only managed to index 11,000 genomes within
the same timeframe. Notably, in pseudoalignment, Themisto
significantly outperforms these alternatives, showcasing either
superior speed or memory efficiency. Additionally, Themisto
achieves higher recall on Nanopore read sets, emphasizing its
superior pseudoalignment quality. Themisto is a pseudoalign-
ment method that does not provide exact alignment coordi-
nates, making it unsuitable for comparison with PARMIK.

V. CONCLUSIONS

Metagenomic sampling is important for pandemic pre-
paredness, providing a proactive means to detect potential
pathogens and implement timely interventions. However, ana-
lyzing diverse metagenomic environments, where many reads
lack matches in reference databases, remains a bottleneck
despite rapid DNA read generation through high-throughput
sequencing technologies. Existing tools may fail in detecting
emerging or undiscovered pathogens, necessitating advanced
search tools for efficient and precise identification of relevant
reads. We proposed PARMIK, a partial matching tool to
identify a partial match between two sequences where the
boundaries of the two sequences do not necessarily align, and
the overlapping region can be small. Our study demonstrates
that at a 90% percentage identity threshold, PARMIK sur-
passes BLAST achieving up to 21% higher recall than BLAST.
Additionally, PARMIK outperforms BLAST in identifying
longer alignments and retrieves them much faster, with up to
1.57× faster end-to-end execution time compared to BLAST
when parallelizing across 32 cores. Moreover, by filtering out
highly frequent (expensive) k-mers, PARMIK operates 12%
faster than BLAST while reducing the index size by more
than 50%. With multiple large metagenomic datasets, where
expensive k-mers are more prevalent, we anticipate a greater

impact of excluding expensive k-mers on the IKI size and
speed. Hence, PARMIK is expected to scale to accommodate
thousands of metagenomic environmental samples, empower-
ing public health officials and researchers to fully leverage its
capabilities to improve the analysis of metagenomic sampled
data.
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