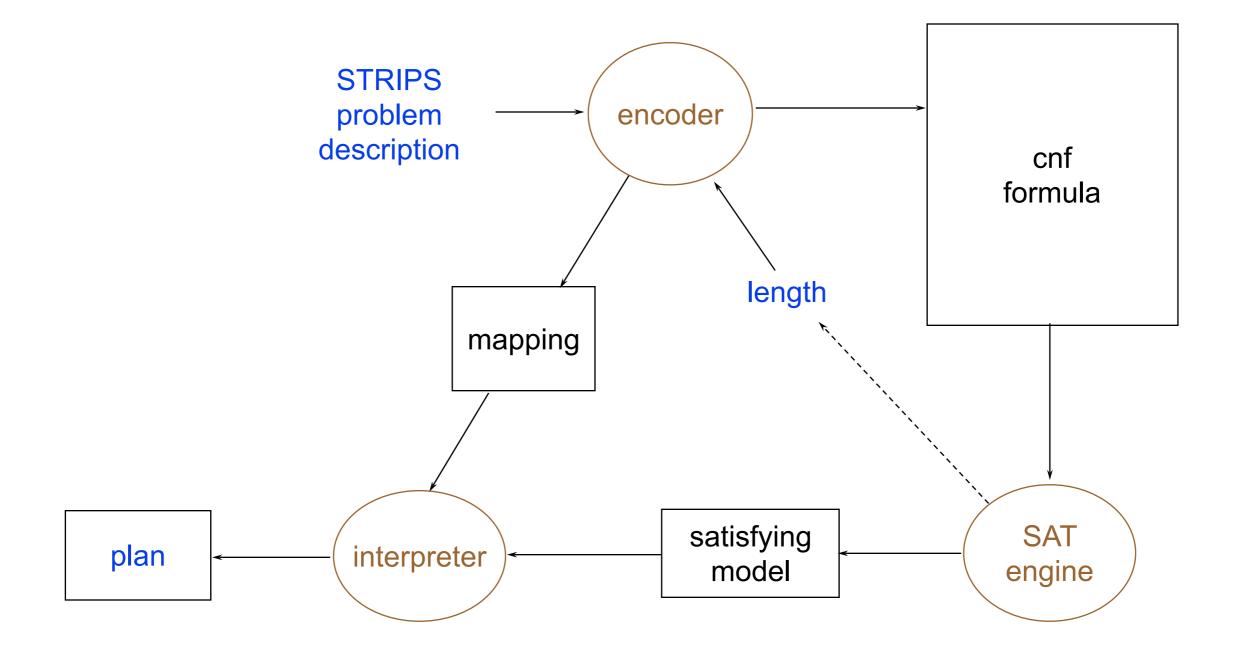
CSC242: Intro to AI

Lecture 13 Planning as Satisfiability Efficient Satisfiability Algorithms

Skillful Manipulation Based on High-speed Sensory Motor Fusion

Planning as Satisfiability

SATPLAN



Translating STRIPS

- Ground action = a STRIPS operator with constants assigned to all of its parameters
- Ground fluent = a precondition or effect of a ground action

operator: Fly(a,b)

precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled constants: NY, Boston, Seattle

Ground actions:

Ground fluents:

Translating STRIPS

- Ground action = a STRIPS operator with constants assigned to all of its parameters
- Ground fluent = a precondition or effect of a ground action

operator: Fly(a,b)

precondition: At(a), Fueled

effect: At(b), ~At(a), ~Fueled

constants: NY, Boston, Seattle

Ground actions: Fly(NY,Boston), Fly(NY,Seattle), Fly(Boston,NY), Fly(Boston,Seattle), Fly(Seattle,NY), Fly(Seattle,Boston)

Ground fluents: Fueled, At(NY), At(Boston), At(Seattle)

Clause Schemas

```
\forall x \in \{A, B, C\} P(x)
represents
P(A) \land P(B) \land P(C)
```

This is not the same as FOL quantification, because we are quantifying over a set of symbols (constants), not over the elements of a domain of an interpretation (model).

Existential Quantification

$\exists x \in \{A, B, C\} P(x)$

represents $P(A) \lor P(B) \lor P(C)$

This is not the same as FOL quantification, because we are quantifying over a set of symbols (constants), not over the elements of a domain of an interpretation (model).

Named Sets

It is often convenient to give a name to a set of constants: $T = \{A, B, C\}$ $\forall x \in T \ P(x)$ $\exists y \in T \ Q(y)$ means the same thing as: $\forall x \in \{A, B, C\}P(x)$

 $\exists x \in \{A, B, C\}Q(x)$

In full FOL, we could define sets using predicate that is true just for members of the set: T(A) + T(D) + T(C)

 $T(A) \wedge T(B) \wedge T(C) \wedge$

$$\forall y T(y) \supset (y = A \lor y = B \lor y = C)$$

Conditions on Quantifiers

Expressions that can be evaluated to "true" or "false" can be added as conditions on the quantifiers in schemas. Equality is interpeted as "the same symbol". $\forall x, y \in \{A, B, C\} : x \neq y \ . \ P(x)$ expands to the ground formula $P(A,B) \wedge P(A,C) \wedge P(B,A) \wedge P(B,C) \wedge P(C,A) \wedge P(C,B)$ Similarly,

$$\exists x, y \in \{A, B, C\} : x \neq y \ . \ P(x)$$

expands to the ground formula

 $P(A,B) \vee P(A,C) \vee P(B,A) \vee P(B,C) \vee P(C,A) \vee P(C,B)$

- Time is sequential and discrete
 - Represented by integers
 - Actions occur instantaneously at a time point
 - Each fluent is true or false at each time point
- If an action occurs at time i, then its preconditions must hold at time i
- If an action occurs at time i, then its effects must hold at time i+1
- If a fluent changes its truth value from time i to time i+1, one of the actions with the new value as an effect must have occurred at time i
- Two conflicting actions cannot occur at the same time
- The initial state holds at time 0, and the goals hold at a given final state K

 If an action occurs at time i, then its preconditions must hold at time i

> operator: Fly(a,b) precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled cities: NY, Boston, Seattle

 $\forall i \in \{1, 2, ..., K\}$ $\forall a \in \{NY, Boston, Seattle\}$ $\forall b \in \{NY, Boston, Seattle\}$ $fly(a, b, i) \supset (at(a, i) \land fuel(i))$

 If an action occurs at time i, then its preconditions must hold at time i

> operator: Fly(a,b) precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled cities: NY, Boston, Seattle

 $\forall i \in Times$ $\forall a \in Cities$ $\forall b \in Cities$ $fly(a,b,i) \supset (at(a,i) \land fuel(i))$

 If an action occurs at time i, then its effects must hold at time i+1

operator: Fly(a,b)

precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled constants: NY, Boston, Seattle

 If an action occurs at time i, then its effects must hold at time i+1

> operator: Fly(a,b) precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled constants: NY, Boston, Seattle

 $\forall i \in Times$ $\forall a \in Cities$ $\forall b \in Cities$ $fly(a,b,i) \supset (at(b,i+1)) \land \neg at(a,i+1) \land \neg fuel(i+1))$

 If a fluent changes its truth value from time i to time i+1, one of the actions with the new value as an effect must have occurred at time i

> precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled cities: NY, Boston, Seattle

 $\forall i \in Times$ $\forall b \in Cities$ $(\neg at(b,i) \land at(b,i+1)) \supset$ $\exists a \in Cities . fly(a,b,i)$

 If a fluent changes its truth value from time i to time i+1, one of the actions with the new value as an effect must have occurred at time i

> precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled cities: NY, Boston, Seattle

 $\forall i \in Times$

 $\forall b \in Cities$

 $(\neg at(b,i) \land at(b,i+1)) \supset$

(fly(NY,b,i) v fly(Boston,b,i) v fly(Seattle,b,i))

- If a fluent changes its truth value from time i to time i+1, one of the actions with the new value as an effect must have occurred at time i
- Change from true to false:

 $\forall i \in Times$ $\forall a \in Cities$

operator: Fly(a,b)

precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled cities: NY, Boston, Seattle

 $(at(a,i) \land \neg at(a,i+1)) \supset$ $\exists b \in Cities$. fly(a,b,i)

Action Mutual Exclusion

• Two conflicting actions cannot occur at the same time – Actions conflict if one modifies a precondition or effect of another

operator: Fly(a,b)

precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled cities: NY, Boston, Seattle

Action Mutual Exclusion

• Two conflicting actions cannot occur at the same time – Actions conflict if one modifies a precondition or effect of another

operator: Fly(a,b)

precondition: At(a), Fueled effect: At(b), ~At(a), ~Fueled cities: NY, Boston, Seattle

 $\forall i \in Times$ $\forall a, b, c, d \in Cities : a \neq b \lor c \neq d$ $\neg fly(a, b, i) \lor \neg fly(c, d, i)$

Satplan Demo (blackbox)

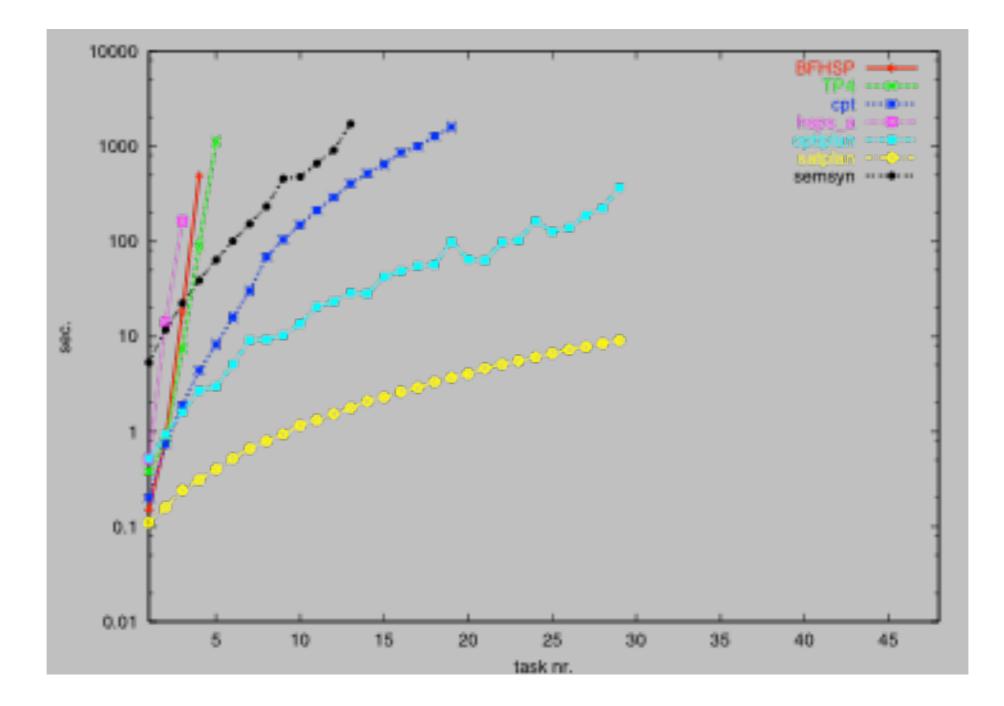
The IPC-4 Domains

- Airport: control the ground traffic [Hoffmann & Trüg]
- Pipesworld: control oil product flow in a pipeline network [Liporace & Hoffmann]
- Promela: find deadlocks in communication protocols [Edelkamp]
- PSR: resupply lines in a faulty electricity network [Thiebaux & Hoffmann]
- Satellite & Settlers [Fox & Long], additional Satellite versions with time windows for sending data [Hoffmann]
- UMTS: set up applications for mobile terminals [Edelkamp & Englert]

The Competitors: Optimal planners

optimal								
team repres.	login	planner	adl	fl	da	:m	til	dp
M) V. Vidal	cpt	16) cpt	-	_	+	-	-	?
N) P.Haslum	patrick	17) TP4	-	lim	+	-	-	-
N) P.Haslum	patrick	18) hsps_a	-	lim	+	-	-	-
O) H.Kautz	satplan	19) satplan	-	-	-	-	-	?
P) M.Briel	optiplan	20) optiplan	-	-	-	-	-	-
Q) E.Parker	eriqueparquer	21) semsyn	+	-	-	-	-	-
R) R.Zhou	zhou	22) BFHSP	-	-	-	-	-	-

Dining Philosophers



International Planning Competition

Hosted at NCAPS² International Conference on Automated Planning and Scheduling Performance Award: 1st Prize, Optimal Track

Henry Kautz, David Roznyai, Farhad Teydaye-Saheli, Shane Neth and Michael Lindmark

\$ 200

"SATPLAN04"

Stefan Edelkamp Jörg Hoffmann IPC-4 Co-Chairs Classical Part

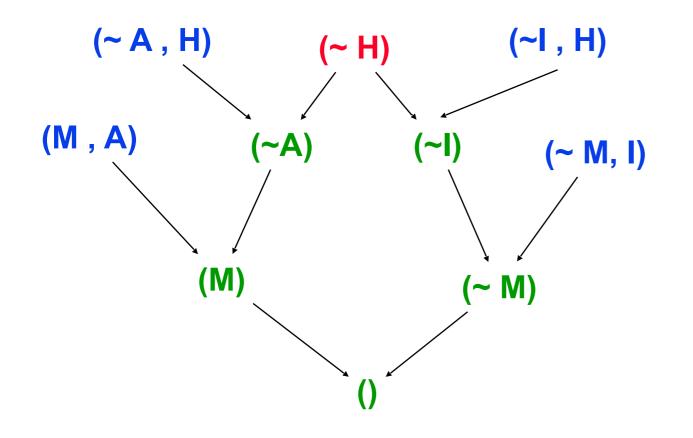
Whistler, June 6, 2004

Blackbox Demo

SAT Algorithms

Resolution Refutation Proof

DAG, where leaves are input clauses Internal nodes are resolvants **Root is false (empty clause)**



KB:

- If the unicorn is mythical, then it is immortal,
- if it is not mythical, it is an animal
- If the unicorn is either immortal or an animal, then it is horned.

Prove: the unicorn is horned.

Efficient Backtrack Search for Satisfiability Testing

Basic Backtrack Search for a Satisfying Model

```
Solve( F ): return Search(F, { });
```

```
Search( F, assigned ):
    if all variables in F are in assigned then
        if assigned |= F then return assigned;
        else return FALSE;
    choose unassigned variable x;
    return Search(F, assigned U {x=0}) ||
        Search(F, assigned U {x=1});
end;
```

Is this algorithm complete? What is its running time?

Basic Backtrack Search for a Satisfying Model

```
Solve( F ): return Search(F, { });
```

```
Search( F, assigned ):
    if all variables in F are in assigned then
        if assigned |= F then return assigned;
        else return FALSE;
    choose unassigned variable x;
    return Search(F, assigned U {x=0}) ||
        Search(F, assigned U {x=1});
end;
```

Is this algorithm complete? YES What is its running time?

Basic Backtrack Search for a Satisfying Model

```
Solve( F ): return Search(F, { });
```

```
Search( F, assigned ):
    if all variables in F are in assigned then
        if assigned |= F then return assigned;
        else return FALSE;
    choose unassigned variable x;
    return Search(F, assigned U {x=0}) ||
        Search(F, assigned U {x=1});
end;
```

Is this algorithm complete? YES What is its running time? $O(2^n)$ and $o(2^n)$

Propagating Constraints

- Suppose formula contains (A v B v ~C) and we set A=0.
- What is the resulting constraint on the remaining variables B and C?

(B v ~C)

Suppose instead we set A=1. What is the resulting constraint on B and C?

No constraint

Empty Clauses and Formulas

 Suppose a clause in F is shortened until it become empty. What does this mean about F and the partial assignment?

F cannot be satisfied by any way of completing the assignment; must backtrack

Suppose all the clauses in F disappear.
 What does this mean?

F is satisfied by any completion of the partial assignment

Better Backtrack Search

```
Search( F, assigned ):

if F is empty then return assigned;

if F contains [] then return FALSE;

choose an unassigned variable c

return Search(F • c, assigned U {c}) ||

Search(F • ~c, assigned U {~c});

end
```

F• L = remove clauses from F that contain literal L, and shorten clauses in F that contain ~L

Unit Propagation

Suppose a clause in F is shortened to contain a single literal, such as
 (L)

What should you do?

Immediately add the literal to assigned.

- This may shorten some clauses and erase other clauses.
- Repeat if another single-literal clause appears.

Even Better Backtrack Search

```
Search( F, assigned ):

if F is empty then return assigned;

if F contains [] then return FALSE;

if F contains a unit clause [L] then

return Search(F • L, assigned U {L})

else

choose an unassigned variable c

return Search(F • c, assigned U {c}) ||

Search(F • \simc, assigned U {\simc});

end
```

F• L = remove clauses from F that contain literal L, and shorten clauses in F that contain ~L

Pure Literal Rule

 Suppose a literal L appears in F, but the negation of L never appears. What should you do?

Immediately add the literal to assigned. This will erase some clauses, but not shorten any.

Davis-Putnam-Logemann-Loveland Procedure (DPLL)

DPLL(F, assigned):

- if F is empty then return assigned;
- if F contains [] then return FALSE;
- if F contains a unit clause [L] or a pure literal L then return Search(F • L, assigned U {L})

else

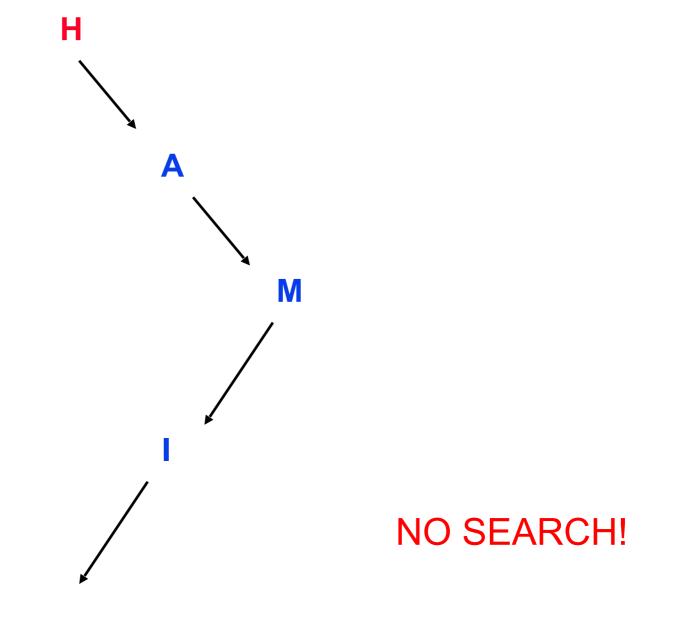
choose an unassigned variable c
return Search(F • c, assigned U {c}) ||
Search(F • ~c, assigned U {~c});

end

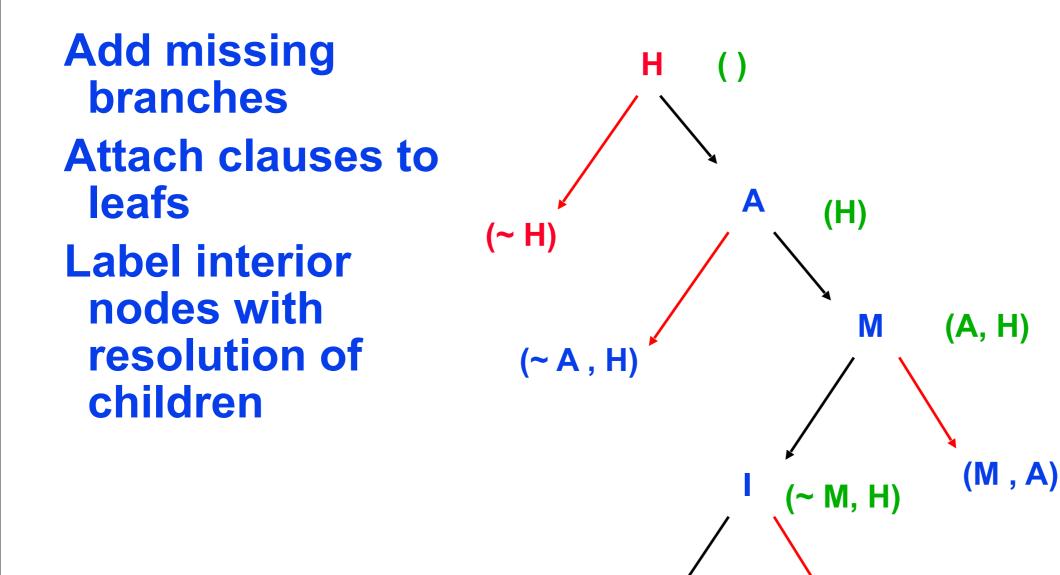
F• L = remove clauses from F that contain literal L, and shorten clauses in F that contain ~L

DPLL on the Unicorn

(~ M, I) (I) (M, A) (M) (~I, H) (~I) () (~ A, H) (~A) (~ H)



Converting DPLL Tree to a Resolution Proof



(~I, H)

(~ M, I)

DPLL and Resolution

DPLL is thus computational equivalent to creating a tree-shaped resolution proof
In theory, since resolution is not restricted to tree-shaped proofs, it should be "better"
In practice, the overhead of resolution makes it much worse

Scaling Up

- For decades, DPLL was considered only useful for "toy" problems
- Starting around 1996, researchers improved DPLL using
 - Good heuristics for choosing variable for branching
 - Caching
 - Clever Data Structures
- Today, modern versions of DPLL are used to solve big industrial problems in hardware and software verification, automated planning and scheduling, cryptography, and many other areas

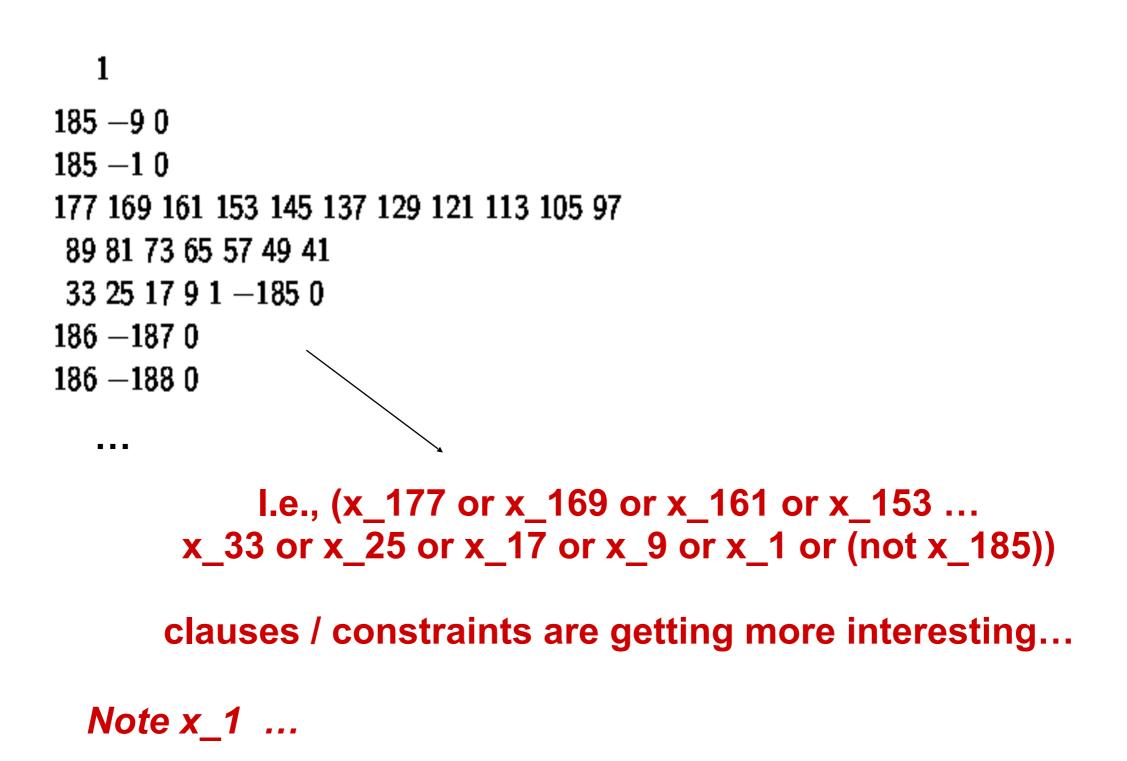
What is **BIG**?

Consider a real world Boolean Satisfiability (SAT) problem

The instance bmc-ibm-6.cnf, IBM LSU 1997:

p cnf 5	
-170	I.e., ((not x 1) or x 7)
-160	((not x_1) or x_6)
-150	etc.
-1 -4 0	CIC.
-1 3 0	
-1 2 0	x_1, x_2, x_3, etc. our Boolean variables
<u> </u>	(set to True or False)
—9 15 0	
-9 14 0	
-9 13 0	
-9 -12 O	Set x_1 to False ??
-9 11 O	
-9 10 0	
-9 -16 O	
-17 23 0	
-17 22 0	

10 pages later:



4000 pages later:

10236 - 10050 010236 -10051 0 10236 -10235 0 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 -55 -54 53 -52 -51 50 10047 10048 10049 10050 10051 10235 -10236 0 10237 -10008 0 10237 -10009 0 10237 -10010 0

. . .

Finally, 15,000 pages later:

 $\begin{array}{c} -7\ 260\ 0\\ 7\ -260\ 0\\ 1072\ 1070\ 0\\ -15\ -14\ -13\ -12\ -11\ -10\ 0\\ -15\ -14\ -13\ -12\ -11\ 10\ 0\\ \end{array}$

185 0

Search space of truth assignments:

HOW?

 $2^{50000} \approx 3.160699437 \cdot 10^{15051}$

-7 - 6 - 5 - 4 3 2 0

Current SAT solvers solve this instance in approx. 1 minute!

Local Search Strategies

Greedy Local Search

```
state = choose_start_state();
while ! GoalTest(state) do
    state := arg min { h(s) | s in Neighbors(state) }
end
return state;
```

- Terminology:
 - "neighbors" instead of "children"
 - heuristic h(s) is the "objective function", no need to be admissible
- No guarantee of finding a solution

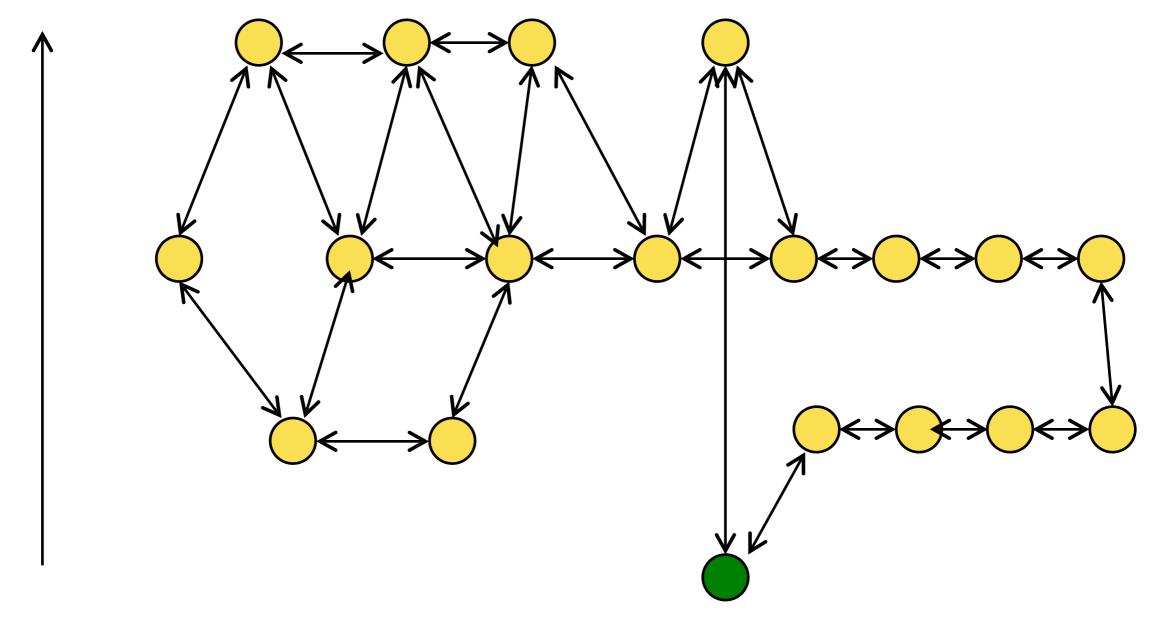
 sometimes: probabilistic guarantee
- Best goal-finding, not path-finding
- Many variations

Greedy Local Search for SAT

```
state = choose_start_state();
while ! GoalTest(state) do
    state := arg min { h(s) | s in Neighbors(state) }
end
return state;
```

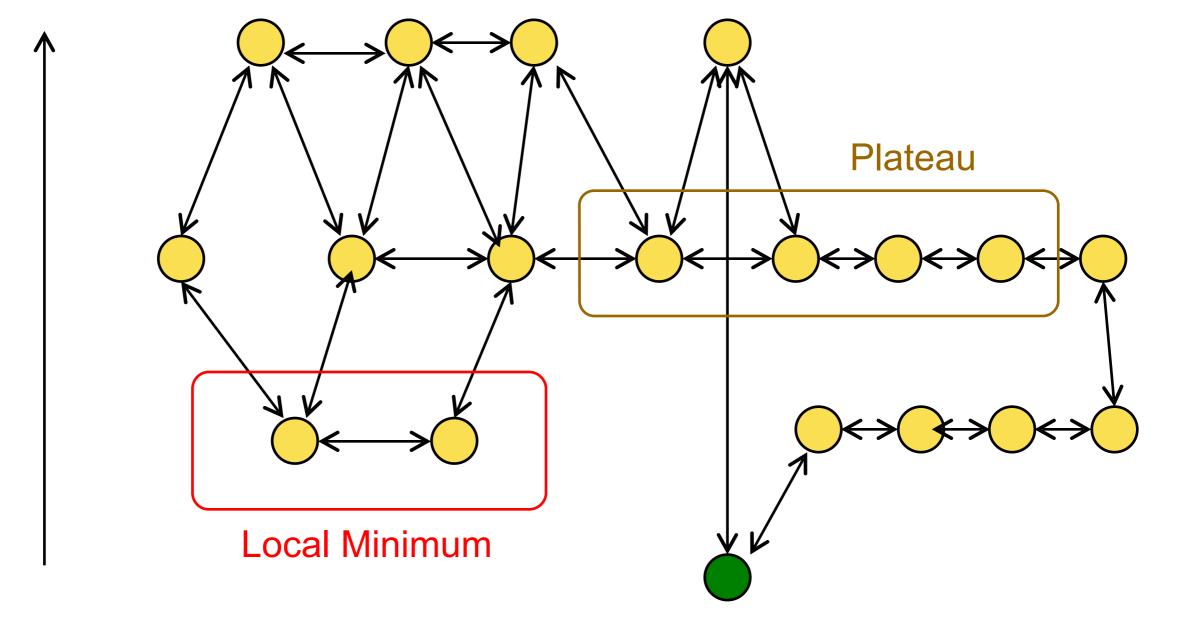
- start = random truth assignment
- GoalTest = formula is satisfied
- h = number of unsatisfied clauses
- neighbors = flip one variable

Local Search Landscape



Local Search Landscape

unsat clauses



Variations of Greedy Search

- Where to start?
 - RANDOM STATE
 PRETTY GOOD STATE
- What to do when a local minimum is reached?
 STOP
 - KEEP GOING
- Which neighbor to move to?
 - (Any) BEST neighbor
 - (Any) BETTER neighbor
- How to make greedy search more robust?

Restarts

```
for run = 1 to max_runs do
   state = choose_start_state();
   flip = 0;
   while ! GoalTest(state) && flip++ < max_flips do
      state := arg min { h(s) | s in Neighbors(state) }
   end
   if GoalTest(state) return state;
end
return FAIL</pre>
```

Uphill Moves: Random Noise

```
state = choose_start_state();
while ! GoalTest(state) do
    with probability noise do
        state = random member Neighbors(state)
    else
        state := arg min { h(s) | s in Neighbors(state) }
    end
end
return state;
```

Random Walk for SAT

 Observation: if a clause is unsatisfied, at least one variable in the clause must be different in any global solution

 $(A v \sim B v C)$

 Suppose you randomly pick a variable from an unsatisfied clause to flip. What is the probability this was a good choice?

Random Walk for SAT

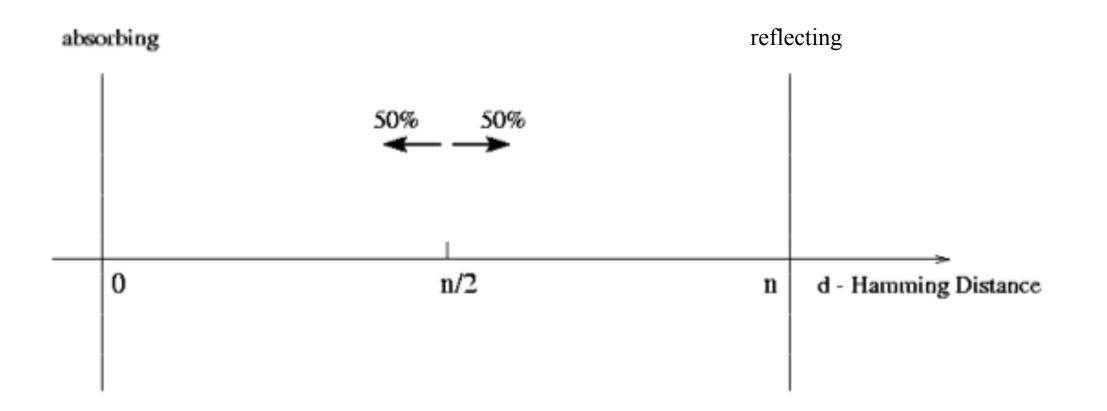
- Observation: if a clause is unsatisfied, at least one variable in the clause must be different in any global solution (A v ~B v C)
- Suppose you randomly pick a variable from an unsatisfied clause to flip. What is the probability this was a good choice?

$$Pr(\text{good choice}) \ge \frac{1}{\text{clause length}}$$

Random Walk Local Search

Properties of Random Walk

- If clause length = 2:
 - 50% chance of moving in the right direction
 - Converges to optimal with high probability in O(n²) time



Greedy Random Walk

```
state = choose start state();
while ! GoalTest(state) do
  clause := random member { C | C is a clause of F and
                               C is false in state };
  with probability noise do
     var := random member { x | x is a variable in clause };
  else
     var := arg min(x) { \#unsat(s) | x is a variable in clause,
                                s and state differ only on x};
  end
  state[var] := 1 - state[var];
end
return state;
```

Coming Up

Pick up solution to Homework 3
Right after break: Exam 2 Logic
based on Homework 3
If you did not get your Exam 1 back

If you did not get your Exam 1 back, pick up a solution sheet

Phase II Othello players due after break!