
Filling the Blanks (hint: plural noun) for Mad Libs R© Humor

Nabil Hossain∗, John Krumm†, Lucy Vanderwende†, Eric Horvitz† and Henry Kautz∗

∗Department of Computer Science †Microsoft Research AI
University of Rochester Redmond, Washington

{nhossain,kautz}@cs.rochester.edu {jckrumm,lucyv,horvitz}@microsoft.com

Abstract

Computerized generation of humor is a
notoriously difficult AI problem. We de-
velop an algorithm called Libitum that
helps humans generate humor in a Mad
Lib R©, which is a popular fill-in-the-blank
game. The algorithm is based on a ma-
chine learned classifier that determines
whether a potential fill-in word is funny
in the context of the Mad Lib story. We
use Amazon Mechanical Turk to create
ground truth data and to judge humor for
our classifier to mimic, and we make this
data freely available. Our testing shows
that Libitum successfully aids humans in
filling in Mad Libs that are usually judged
funnier than those filled in by humans with
no computerized help. We go on to analyze
why some words are better than others at
making a Mad Lib funny.

1 Introduction

As technologists attempt to build more natu-
ral human-computer interfaces, the inclusion of
computer-generated humor becomes more impor-
tant for creating personable interactions. However,
computational humor remains a long-standing
challenge in AI. Despite decades devoted to the-
ories and algorithms for humor, the best comput-
erized humor is still mediocre compared to hu-
mans. Humor requires creativity, sophistication of
language, world knowledge, empathy and cogni-
tive mechanisms, which are extremely difficult to
model theoretically. A more modest goal for com-
putational humor is to build machines that help hu-
mans create humor rather than replace them.

We develop and test an algorithm, called Li-

Figure 1: Example of a Mad Lib sentence. The
original words for the blanks, in order, were
“apartment”, “impatient” and “gallery”.

bitum1, for a computer-aided approach to humor
generation. Its aim is to help a human player fill
in the blanks of a Mad Lib R© story to make it
funny. The algorithm generates candidate words,
and its core component is a machine-trained clas-
sifier that can assess whether a potential fill-in-
the-blank word is funny, based on several fea-
tures, including the blank’s surrounding context.
We trained the classifier on Mad Lib stories that
were filled in and judged by humans. We note
that in our work, we give players, both human and
computer, access to the full Mad Lib story, includ-
ing the sentences surrounding the blanks. In regu-
lar Mad Libs, players do not see the surrounding
sentences. Figure 1 shows a sentence from a typi-
cal Mad Lib, completed by a human player.

The work presented here makes three contri-
butions. The first is the creation of a challenging
benchmark for humor generation, a vital aspect of
human communication which has received rela-
tively little attention in the NLP community. This
benchmark, based on Mad Libs, (i) is challeng-
ing, but doable by both humans and machines, (ii)
provides quantitative results so that progress can
be measured, and (iii) cannot be gamed by triv-
ial strategies, such as filling in random words. The
benchmark dataset is annotated and judged us-

1Libitum is Latin for “pleased”. Mad Lib is a humorous
variation of the Latin ad lib, where lib is short for Libitum.

ing Amazon Mechanical Turk, with several steps
taken to reduce effects of human variation in hu-
mor taste. Our second contribution is that we cre-
ate and demonstrate a computer-aided humor algo-
rithm that, in most cases, allows humans to gen-
erate funnier Mad Lib stories than they can on
their own without computer assistance. The third
contribution is an analysis of our test data and al-
gorithm that helps to quantitatively explain what
makes our results humorous.

Our work goes beyond the modeling and gen-
eration of language to simply convey information.
Instead, we are trying to create a pleasurable feel-
ing using humor. This is analogous to the Story
Cloze Test (Mostafazadeh et al., 2017), where the
task is to choose a satisfying ending to a story.

We note the previous work called “Visual
Madlibs” (Yu et al., 2015). Although its title im-
plies similarity to our work, it is about an im-
age data set augmented with fill-in-the-blank ques-
tions, such as “This place is a park.”

2 Related Work

Developing a general humor recognizer or genera-
tor is hard, and some researchers consider it an AI-
complete problem (Stock and Strapparava, 2003),
i.e., “solving” computational humor is as difficult
as making computers as intelligent as people.

While our goal is generating humor, there is a
growing literature of projects for recognizing hu-
mor, mostly aimed at specific types of jokes.

Taylor and Mazlack’s (2004) work on knock-
knock jokes is based on Raskin’s (2012) “seman-
tic theory of verbal humor”, which says that hu-
mor comes from script opposition. Here, the joke
posits two different interpretations that oppose
each other, resulting in humor. They analyze the
two key parts of knock-knock jokes to discover the
wordplay that results in the humorous opposition.

Mihalcea and Strapparava (2006) developed a
classifier to recognize one-liner jokes by look-
ing for alliteration, antonymy, and adult slang.
Compared to different classes of non-jokes, they
achieved an accuracy of between 79% and 97%.

Davidov et al. (2010) decompose potential sar-
castic sentences into specialized parts of speech
and match them against sentence patterns that they
discovered in their corpus of sarcasm. Like us,
they used Mechanical Turk to find ground truth.

Kiddon and Brun (2011) present a classifier that
recognizes double entendres that become funny af-

ter adding “That’s what she said” at the end.
Other humor recognition efforts do not start

with constraints on the type of humor they recog-
nize. For instance, Zhang and Liu’s (2014) system
recognized humorous tweets based on 50 linguis-
tic features from humor theory, achieving a classi-
fication accuracy of 82%. Raz (2012) shows how
to classify humorous tweets into one of 12 joke
categories. Betero and Fung (2016) take on the
challenging task of recognizing humor from TV
sitcoms, using a neural network. They use the sit-
com’s laugh track to identify ground truth.

Our work is aimed at generating humor rather
than recognizing it. As with previous work on
humor recognition, humor generation has been
largely limited to specific types of jokes. The three
examples below, along with ours, show that auto-
matically generating humor still relies on special-
izing around a subgenre of jokes with customized
approaches that have yet to yield a general method
for generating humor.

Binsted et al.’s Joke Analysis and Production
Engine (JAPE) produced punning riddles, such as:

Question: What do you call a weird market?
Answer: A bizarre bazaar. (Binsted et al., 1997)

JAPE worked by discovering candidate ambigu-
ities in either spelling (e.g., cereal vs. serial) or
word sense (e.g. river bank vs. savings bank).
Evaluated by children, JAPEs jokes were fun-
nier than non-jokes, but not as funny as human-
generated jokes.

Petrovic and Matthews (2013) created an algo-
rithm to generate jokes such as “I like my coffee
like I like my war, cold,” filling in the three blanks.
They encoded four assumptions about what makes
a joke funny, using discrete probability tables
learned from a large corpus of regular text data
along with part-of-speech tagging and an estimate
of different possible senses of the words. 16% of
their automatically generated jokes were consid-
ered funny, compared to 33% when the same type
of jokes were generated by people.

HAHAcronyn, from Stock and Strappar-
ava (2003) attempted to take existing acronyms
(e.g. DMSO for Defense Modeling and Simula-
tion Office) and make an alternate, funny version
(e.g. Defense Meat-eating and Salivation Office).
Their algorithm keeps part of the acronym and
then looks for what to change in the remain-
der, with goals of different semantics, rhymes,
antonyms, and extreme-sounding adverbs.

Besides the novelty of looking at Mad Libs, our
work is different in that it seeks to generate humor
for longer passages than the acronyms, one-liners,
and short riddles of previous work.

In addition to algorithmic work, there is a long
history of research into general theories of hu-
mor (O’Shannon, 2012; Weems, 2014; Wilkins
and Eisenbraun, 2009). One of the main thrusts is
incongruity theory, which says that a joke is funny
when it has a surprise that violates the conven-
tional expectation. According to the Benign Viola-
tion Theory (Raskin, 2008), the unexpected must
logically follow from the set up and must not be
offensive to the reader, otherwise the reader is left
confused and the joke is not funny. Similarly, the
Sematic Script Theory of Humor (SSTH) says that
a joke emerges when it can be interpreted accord-
ing to two different, generic scripts, one of which
is less obvious (Attardo and Raskin, 1991). Labu-
tov and Lipson make a first step at exploiting the
SSTH theory to automatically generate two-line
jokes (Labutov and Lipson, 2012).

In general, it is difficult to apply these theo-
ries directly to humor recognition and generation,
however, because they require a high degree of
common sense understanding of the world. Be-
cause of this, most successful algorithmic work on
humor is limited to using relatively shallow lin-
guistic rules on specific types of jokes. This is also
true of our work, which concentrates on filling the
blanks in Mad Libs, described next.

3 Mad Libs R©

Invented in 1953 by Roger Price and Leonard
Stern (2008a), Mad Libs is a fill-in-the blank game
intended to be humorous. A Mad Lib consists of a
story of several sentences and a title. Some of the
words are replaced with blanks, each of which has
a hint belonging to a certain hint type, such as
a part of speech. Players fill in each blank with a
word that agrees with the hint. A player can see
only the story’s title and the list of blanks with
hints. The resulting filled-in Mad Lib is usually
funny, because players fill in the blanks with no
knowledge of the story (except for its title). The
humor comes from the nonsensical filled-in words
in the context of a sensible, coherent story. Fig-
ure 1 shows part of a filled-in Mad Lib created
from a story describing the theft of the Mona Lisa.

Filling in Mad Libs is a novel challenge for au-
tomatic humor generation. The title and words sur-

rounding the blanks in a Mad Lib provide a con-
textual scaffolding that an algorithm can exploit to
choose appropriate words for the blanks that make
the resulting story humorous.

In order to incorporate such context, our rules
for playing Mad Libs differ from the original ones:
both our algorithmic and human players are al-
lowed to look at the story as a guide to filling in the
blanks. This makes the problem much richer, be-
cause players can take advantage of the story’s text
in choosing which words to fill in. Without look-
ing at the story, our algorithm would be reduced to
one that chooses only a priori funny words.

3.1 Fun Libs Generation

Mad Libs are copyrighted, and therefore it is diffi-
cult to release a data set by using stories from Mad
Libs books. Instead we studied original Mad Libs
to develop our own dataset, which we call Fun
Libs. This data set, including filled-in words and
funniness assessments from Mechanical Turkers,
is available online.2

Designing Mad Lib-like stories requires skill,
because the Mad Lib context is usually designed
in a way to help generate humor. To create our
own stories, we first examined 50 Mad Libs from
one of the many Mad Libs books (Price and Stern,
2008b). We found that the mean number of blanks,
observed words and sentences per Mad Lib were,
respectively, 16.0 (σ = 2.25), 114.84 (σ = 20.58)
and 9.04 (σ = 2.38). There were 14 unique hint
types.

One of our main goals is to build a system that
can create meaningful, diverse, and funny stories
which apply to a broad audience. However, in pi-
lot tests with human players, we found that six of
the original hint types restricted the variety of hu-
mor that can be generated by filling in their blanks,
by: (i) not affording a variety of possibilities to fill
in (hint types: color, silly word, exclamation) and
subtlety in humor generation (number), and (ii)
generally requiring the audience to have knowl-
edge of cultural references and specifics (person
name, place). Hence, we discarded them, leaving
eight hint types in our Fun Libs dataset, as shown
in Table 1. Some of them have variants such as
plurality for nouns and tenses for verbs.

Next, we created our dataset of 50 Fun Libs us-
ing simple Wikipedia articles because, similar to

2Fun Libs dataset: https://www.microsoft.com/en-
us/download/details.aspx?id=55593

Hint Type Mad Libs Fun Libs
Noun 7.06 7.00
Adjective 4.06 3.12
Verb 1.22 3.10
Part of the Body 0.98 0.46
Adverb 0.44 0.38
Type of Food 0.22 0.20
Animal 0.20 0.36
Type of Liquid 0.18 0.16
All Blanks 16.0* 14.78

Table 1: Mean hint types per story in the two
datasets. ∗The mean number of blanks in the Mad
Libs dataset was computed based on 14 hint types.

Mad Libs, these articles have a title and text. Cre-
ating the stories involved finding a Wikipedia ar-
ticle and picking sentences which have potential
to generate humor (with very minimal edits such
as reducing verbosity), and then replacing some
words with blanks in a way such that the overall
blank, sentence, word and hint type distributions
are similar to their respective distributions in the
50 original Mad Libs. Table 1 shows the means of
the hint type distributions for the two datasets. We
randomly sampled 40 Fun Libs for training and
kept the remaining 10 for evaluation.

4 Data Annotation

With a set of Mad Lib-like stories in place, our
next task was to objectively create filled-in stories
to use as the basis for the remainder of our anal-
ysis. We used Amazon Mechanical Turk work-
ers, bootstrapping from an initial set of filled-
in stories, to then finding qualified turker judges,
and then finding qualified turker players to fill
in the blanks. Our goal was to create a labeled
dataset with filled-in blanks and a funniness
grade for each filled-in word. We selected turk-
ers who are native English speakers (from USA,
Canada, Great Britain and Australia), have a HIT
approval rate above 97%, and have completed at
least 10,000 HITs. We now describe how we fur-
ther selected qualified turkers and the methods we
applied to obtain better quality for the labeled data.

4.1 Judge Selection
To grade how funny a filled-in story is, we needed
turker judges who were unbiased referees of gen-
eral humor. We selected judges before players, be-
cause we used the judges to find qualified play-

ers. Finding good judges is challenging, because
humor is subjective. We launched a qualification
task to select qualified judges, with clear instruc-
tions on what makes a desirable judge. This task
involved giving turkers a set of seven filled-in sto-
ries to be graded for funniness. Out of these seven,
three were direct excerpts from Wikipedia articles
with some words marked as filled-in blanks. Ex-
cept for designating some words as filled-in, these
stories were unaltered from Wikipedia, and there-
fore were not funny. The remaining four stories
were filled in by humans to make them funny.
Turkers were allowed to select, for each story,
a grade from {0,1,2,3} (a scale which we used
throughout our work) described as follows:

0 - Not funny 2 - Moderately funny
1 - Somewhat funny 3 - Funny

We marked the ground-truth grade of the
Wikipedia excerpts as 0, and we used volunteers
from our research group to decide the ground-
truth grade of the other four stories between one
and three. We used 60 candidate turkers to do
this qualification task, out of which 27 success-
fully assigned 0 to all the Wikipedia excerpts and
1-3 to the other four stories. We selected all of
them as qualified judges. 16 others graded all the
Wikipedia excerpts as 0 but considered 1 of the
other four stories to be “Not funny”. We sorted
these turkers using the total Euclidean distance of
their grades from the ground truth, and chose the
top 13 among them to get 40 judges in total. To
make sure that turkers read each story, we also
asked a question that could be answered correctly
only by understanding the story’s context. During
our initial tests, we removed two judges who were
repeatedly failing to answer these questions cor-
rectly and took very little time to grade. Therefore,
our final judge pool included 38 judges. This se-
lection process was designed to find judges that
were careful, consistent, and representative in ob-
jectively judging the funniness of a filled-in story.

4.2 Player Selection

Players are the people who fill in the blanks in
a story. Our goal was to find turker players who
were good at creating funny stories by filling in
blanks. There was no overlap between the qual-
ified judges and the qualified players. To select
qualified players, we created two extra fill-in-the-
blank stories to be used for player selection alone.
We gave both stories to 50 candidate turkers to fill

in. We instructed candidate turkers to avoid using
slang words, sexual references or bathroom humor
as these are crude, easy techniques for generating
humor, and do not require creativity. Further, we
required turkers to fill in each blank with exactly
one word (using alphabetic characters only) that
can be found in a US English dictionary, that is
grammatically correct, and that is not colloquial.

To lessen the impact of story contexts and to
have a variety in the humor generated, another
task was launched with two new stories and 30
new candidate turkers. For each filled-in story, we
graded the funniness of each story on our 0-3 scale
using 10 qualified judges (described above) to mit-
igate the effects of variations in humor taste. We
ranked the potential players and selected the high-
est ranked as qualified players. A total of 25 qual-
ified players were obtained from the two batches.

For both the judge and player selection phase,
we launched several small pilot tests and used
turkers’ feedback to design a better data labeling
phase, which we cover next.

4.3 Labeling Fun Libs
Our goal in labeling filled-in stories was to as-
sess the funniness of the overall filled-in story, the
funniness contribution of each filled-in word, and
other aspects of the humor. For each of the 40 sto-
ries in the training set, we used 5 players to fill the
blanks, giving us a total of 200 filled-in stories.
The players also self-graded the humor in their
completed stories.

Each of these stories was graded by 9 judges to
represent an audience rather than an individual and
to reduce effects of different humor tastes. Judges
answered the following:

• Which of the filled-in words caused humor.
• Funniness of the story (integer scale of 0-3).
• How coherent the story is, with the filled-in

words (integer scale of 0-3).
• To what extent the filled-in words caused the

story to deviate from its original topic as sug-
gested by the title (integer scale of 0-3).
• Whether the humor generation technique of

incongruity3 was applied by the player.
• A verification quiz, which can be answered

using the context of the story, to help ensure
that judges read the filled-in story carefully.

3Incongruity theory of humor says that a joke is funny
when it has a surprise, often at the end, that violates the con-
ventional expectation, often set up at the start (Weems, 2014).

We asked judges about coherence because we
expected incongruity would play a significant role
in the humor of Mad Libs due to their nature.

Judges and players each received 60 U.S. cents
per HIT. We also announced bonuses for the top 10
judges selected based on other judges’ agreements
with them and the top 10 players based on how
funny their filled-in stories were, as graded by the
judges. The total Mechanical Turk cost, including
the bonuses, was approximately US$2000.

5 Computer-aided Humor

In this section, we will discuss our machine
learning approach to generating humorous Fun
Libs. First we trained a random forest classi-
fier (Breiman, 2001) to predict whether a filled-in
word is funny using features from the story and the
title. Then our technique for generating complete,
funny Fun Libs involves, for each blank:

1. Use a language model to generate words

2. Keep the top 20 funny candidate words as
ranked by our classifier

3. Use humans to decide which candidate to fill
in the blank with

5.1 Language Model

To supply reasonable words for each blank,
we used the Microsoft Web Language Models
API (Wang et al., 2010), trained using Web Page
titles and available as a Web service. To gener-
ate candidate words for a blank, we use the API’s
word completion tool to get a list of all possible
candidate words using context windows up to four
previous words. Next, for each word we computed
the joint probability score, using the API’s joint
probability tool to get a probability estimate of
how well each candidate fits into the containing
sentence. Then we ranked candidates using this
score. We expect the words with high scores to be
the more fitting (less humorous) words for the con-
text, while those with low scores are more likely to
be the incongruous words that may generate sur-
prise or humor when used in the sentence.

5.1.1 Candidate Refinement
Since Web page titles for our language model are
not forced to be grammatically correct, the gen-
erated words are not all appropriate. Thus we ap-
plied the following constraints to get a cleaner can-
didate list:

• The candidate must be in WordNet (Fell-
baum, 1998) or a US English dictionary.
• For a blank that is a sub-category of nouns

(e.g., “animal”), the candidate must have the
same sub-category as its WordNet hypernym.
• The candidate must have a part of speech tag

that agrees with the hint.
• The candidate must not be a word with non-

alphabetic characters or a stop word.
• The candidates for nouns and sub-categories

have to fit the context in terms of plurality .
• Candidate must not be a slang, adult or

bathroom-related word (filtered using a list of
4,012 words), because such words would be
too crude, producing shallow, easy humor.

5.2 Features

To predict whether a filled-in word is funny or not,
our classifier uses the following ten features ex-
tracted from the (word, story) pair:

1. Hint type.
2. Length of the word.
3. Language model’s joint probability for the

containing sentence with the word filled-in.
4. The word’s relative position, in terms of joint

probability, in the ranked candidate list gen-
erated by the language model: a value in the
interval [0,1], with 0 implying the candidate
has the highest joint probability in the list.

5. Minimum, maximum and average letter tri-
gram probabilities using letter bigram and
letter trigram counts from the Google Web
Trillion Word Corpus (Brants and Franz,
2006). The purpose of these features is to
capture the phonetic funniness of words (e.g.,
“whacking” instead of “fighting”).

6. The candidate’s similarity to the three con-
texts — title, overall story, and the containing
sentence. This is the cosine similarity of the
candidate’s word embedding vector with the
average word embedding vector for each con-
text. The vectors were computed using GloVe
vectors (Pennington et al., 2014) trained with
840 billion tokens from Web data.

5.3 Classification

The full training dataset includes 40 labeled Fun
Libs, each filled in by 5 different players, each of
which was graded by 9 different judges. We split

Train Validation
Precision (Funny) 0.712 0.715
Recall (Funny) 0.856 0.801
F1 score (Funny) 0.778 0.756
Accuracy 0.727 0.695

Table 2: Filled-in word classification results.

the data randomly by story titles, keeping 30 for
training and 10 in a validation set. This ensures
that the classifier does not see the validation sto-
ries’ contexts during training. Thus, our training
set consisted of features and funniness labels for
filled-in words from 150 stories. Further, we as-
signed labels using a vast majority vote, i.e., a
filled-in word having, out of nine judges’ votes:

- six or more “funny votes” is funny
- three or fewer funny votes is not funny

Otherwise the word was discarded. As a result, the
final dataset includes 1939 instances of filled-in
words: 1449 for training and 490 for validation.

We experimented with several machine learning
models, including linear regression, to predict the
number of positive votes for each word. Among
these, the random forest classifier worked best.
We performed 10-fold cross validation to train this
classifier, optimizing based on the F1 score. The
results are shown in Table 2. On the validation
data, the classifier has an F1 score of 0.756 and
an overall classification accuracy of 69.5%. While
these quality measures leave room for improve-
ment, they show that the classifier is clearly biased
toward choosing funnier words.

We show results from three baseline classifiers
in Table 3. Among these, the “Chance” classifiers
always predict the most frequent class found in
the training set, and “Chance Hint” predicts the
most frequent class for each hint type. The other
baseline is a Linear SVM classifier trained using
the three most important features of the trained
random forest as shown in Figure 2. The SVM’s
learned weights for the similarity features between
the word and the containing sentence, the entire
story, and the title, respectively, were −0.449,

Baseline Train Validation
Chance 0.571 0.543
Chance Hint 0.595 0.591
Linear SVM (3 feat.) 0.606 0.600

Table 3: Baseline classification accuracies.

Figure 2: Feature importance for our classifier.

−0.883 and 1.344, showing that funnier filled-in
words are similar to the title but not to the body of
the story. This suggests that incongruity is playing
a significant role in generating humor.

6 Evaluation and Discussion

In this section, we define three approaches for gen-
erating humor in Mad Libs, and then we com-
pare and analyze the results we obtain from them.
These approaches are:

1. FreeText: players fill in the blanks without
any restrictions.

2. LMC (Language Model + Multiple Choice):
for each blank, players choose a word from
up to 20 candidate words generated by the
language model and sorted by their joint
probability score4.

3. Libitum: Similar to the LMC method, except
here we rank all the words up to the top 500
words generated by the language model us-
ing our classifier, keeping up to the top 20
“humorous” candidates4.

These methods are designed to study the out-
come of humor generated by humans only vs. hu-
mans with machine help. The purpose of the LMC
model is to study whether the language model
alone is a good aid to humans when creating hu-
mor, and the benefit of adding machine learning.

For evaluation, we used our ten test Fun Libs,
and for each of our three approaches, each of the

4In rare cases, for a blank, the language model was only
able to generate less than 20 candidate words that pass the
candidate refinement step. For such cases, the LMC candidate
list was expanded to at least 10 words by adding words ran-
domly from all possible words in WordNet that fit the blank’s
hint type, if necessary. For Libitum, WordNet was used to
randomly add words fitting the blank’s hint type to make a list
of 50 words that pass the candidate refinement phase. These
words were sorted using Libitum and used to ensure the final
candidate list had at least 10 words.

ten stories was completed by three players. Fig-
ure 3 shows the mean grade for these 30 stories. In
the figure, the titles are sorted left to right based on
the maximum mean story grade among the titles in
the Libitum approach. The stories per title are also
sorted left to right in descending mean grade. In
only one story (ID = 21), the Libitum model re-
ceives a lower mean grade than the LMC model,
suggesting that adding the machine learning to the
language model helps generate significantly more
humor than the language model alone. The Free-
Text model is fairly consistent in generating more
humor than the LMC model, which beats the Free-
Text model in only 7 out of 30 instances. However,
the Libitum approach frequently outperforms the
FreeText (human only) approach, and it achieves
significant gain in generating humor in the stories
with the titles “Valentine’s Day” and “Cats”.

Interestingly, the two stories that received the
highest mean grade (“Batman” and “Ducks”) are
from the FreeText format. This suggests that given
more freedom, humans are capable of generating
a stronger degree of humor than when they are re-
stricted to a limited number of choices. Excerpts
from the best “Batman” story are shown in Fig-
ure 4. Here, the strategy employed by the Free-
Text player is to consistently portray Batman as an
obese person obsessed with eating, exploiting the
superiority theory of humor5 (Mulder and Nijholt,
2002). This is remarkable, because it shows how
skilled humans are at finding and relating multi-
ple coherent concepts, achieving meaningful and
steady humor via continuity, something which is
very difficult for machines to do. Much of the hu-
mor generated by the Libitum approach here is via
incongruity — the filled-in words are quite humor-
ous mainly because they fit their contexts but do
not match the expectation of the reader (e.g., Bat-
man is an inefficient superhero). At times, some
of the filled-in words in the Libitum approach co-
herently generate humor, for instance, in the last
sentence when Batman is described as wearing a
veil to fight acne.

Since each human has a bias towards his/her
own understanding of humor, we also studied how
the stories appealed to the judges individually by
counting the total number of judges for each grade
in the three approaches. Table 4 shows the re-
sults, where the difference between the mean fun-

5Superiority humor comes from the misfortunes or short-
comings of others

Figure 3: Mean funniness grade for the 30 test stories and their titles. The maximum mean grade for
a story in the Libitum format was used to order the titles. For each title, the three stories are sorted in
descending mean grade.

Grade FreeText LMC Libitum
0 65 102 37
1 97 100 103
2 84 56 86
3 24 12 44

mean 1.25 0.92 1.51

Table 4: Funniness grades for the 30 stories for the
three humor generation formats.

niness grades for each pair of approaches is statis-
tically significant with p < 0.005 when a 2-sample
t-test was performed. Using Krippendorff’s Al-
pha (Krippendorff, 1970), we also found positive
agreements between judges for these and training
set ratings.

As expected, the LMC model is the poorest
in terms of generating humor. Further, for each
non-zero grade, the Libitum model received more
votes than the FreeText model. A possible reason
is that the judges and players have different per-
ceptions of humor. In the FreeText approach, the
common technique employed by players was to
use words that are coherent, belonging to a specific
topic or domain, and to guide the story towards
one conclusion (e.g., the Batman story in Table 4).
When this technique worked well, the humor gen-
erated was very strong. However, the players have
their own biases towards what is humorous, and
having more freedom in the FreeText format al-
lowed them to explore their own concept of humor,
which could be too narrow to appeal to a broader
audience. The Libitum approach, by restricting the
players, prevented them from inserting words that
they themselves thought were funny, but were not
actually funny to people in general.

Table 5 shows passages from stories containing

filled-in words that received 9 funniness votes (the
maximum possible) from the judges. The story ID
and the algorithm used are also provided. Here,
in the “Ducks” story, the FreeText player chose
to generate humor by developing a steady mock-
ery by satirizing ducks as politicians, whereas
the LMC player chose the incongruity approach.
The “Beauty Contest” story shows the outstanding
skills of humans in generating humor when two
blanks are directly connected to each other (i.e.,
“brawler” and “deadly”). For the same segment,
Libitum was also able to aid the players in gener-
ating a very funny word, however, the coherence
between the blanks does not appear strong. With
the computer aided approaches, it is quite difficult
to suggest candidates for pairs of (or more) blanks
such that the choices are coherent.

6.1 Correlations
Table 6 shows correlations between different rat-
ings by judges (coherence, topic change and in-
congruity) and the stories’ funniness grades. In-
congruity had the strongest positive, and statisti-
cally significant (with p < 0.001), correlation with
the graded humor of a story. Coherence also ap-
pears very important for generating humor in all
the datasets except LMC, where it is difficult to
generate coherent words using a language model
only. Libitum is likely aiding players in achieving
funniness by providing coherent words. In LMC,
most of the words generating humor are probably
random, incongruous words since the change of
topic strongly positively correlates with increas-
ing the humor but coherence does not. Lastly, the
player’s self grade of humor has no significant re-
lationship with the judges’ grade of humor, sug-
gesting that each person has his/her own biases
about what is humorous.

Alg. ID Text

FText 10
Most ducks are republican (adjective) birds, they can be found in both saltwater and fresh vodka
(liquid). Ducks are omnivorous, eating talkative (adjective) plants . . . People commonly feed ducks in
ponds stale jokes (noun), thinking that the ducks will like to have something to ridicule (verb)

LMC 10
Most ducks are evil (adjective) birds, they can be found in both saltwater and fresh coffee (liquid)
. . . Some ducks are not evil (adjective), and they are bred and kept by jesus (noun).

FText
Libtm

14
15

A beauty contest is a/an elaborate (adj) contest to decide which brawler (n) is the most deadly (adj)
A beauty contest is a observational (adjective) to decide wh organism is the most flammable

Libtm 5
Cats are the most barbaric (adjective) pets in the world. They were probably first kept because they ate
humans (animal). Later cats were bullied (verb [past]) because they are corrupt (adjective) . . . Cats
are active carnivores, meaning they hunt online (adjective) prey.

Table 5: Excerpts from test set stories, showing filled-in words receiving 9 (out of 9) funniness votes
(boldfaced) from our judges. The story ID and the approach provided can be used to trace the mean
funniness grade of the story in Figure 3.

Batman is a fictional character and one of the most famous / obese / sexiest / inefficient (adjective) superheroes
. . . Batman began in comic books and he was later used / liposuctioned / arrested / imprisoned (verb [past]) in several
movies, TV programs, and books. Batman lives in the fictional / edible / holy / abyssal (adjective) city of Gotham.
. . . Batman’s origin story is that as a/an young / obnoxious / adult / algebraic (adjective) child, Bruce Wayne saw a
robber murder / eat / play / prank (verb) his parents after the family left a/an theater / sauna / trail / bag (noun). Bruce
decided that he did not want that kind of violence / meal / luck / poem (noun) to happen to anyone else. He dedicated
his life to protect / devouring / pronounce / demolish (verb) Gotham City. Wayne learned many different ways to
fight / nibble / spell / crochet (verb) as he grew up. As an adult, he wore a/an costume / prosthesis / wig / veil (noun)
to protect his identity / belly / head / jaw (noun) while fighting crime / gelatin / poverty / acne (noun) in Gotham.

Figure 4: Portions of the best “Batman” story, with the filled-in words ordered based on their sources as
follows: Original / FreeText / LMC / Libitum. Each boldfaced word was rated “funny” by all 9 judges.

Assessment Train FText LMC Libtm
Coherence 0.390 0.345 0.023 0.578
Topic change 0.266 0.281 0.467 0.028
Self-grade 0.001 -0.054 0.024 0.151
Incongruity 0.638 0.620 0.650 0.515

Table 6: Correlation of different assessments of
stories with their funniness grade. The boldfaced
and underlined correlations are statistically signif-
icant, respectively, with p < 0.001 and p < 0.05.

6.2 Fully Automated System

We also tested an automated Mad Lib humor gen-
eration system, where we filled-in each test blank
with the most funny candidate word from Libitum.
The results were poor, with the stories having a
mean funny grade of 0.80. This is expected, be-
cause without human support, Libitum cannot an-
alyze complex word associations in order to come
up with words that preserve meaning and coher-
ence. This is evidenced by the statistically signif-
icant correlation (p < 0.001) of 0.456 between
coherence and mean funniness grade scores from
judges, suggesting that the judges mostly found
those stories funny which were coherent.

7 Conclusion

Our goal was to create and explore a new bench-
mark for computational humor research. We cre-
ated a copyright-free dataset that approximately
matches the statistical characteristics of Mad Libs.
Then we vetted a pool of Mechanical Turk judges
and players to create ground truth data. We devel-
oped an algorithm called Libitum that generates
and classifies potential blank-filling words as ei-
ther funny or not in the context of a Mad Lib. For
each blank, Libitum supplied a list of potentially
funny words from which a human could choose.
As judged by humans, the Libitum-aided words
easily worked better than words from a simple lan-
guage model and were usually better than even
words generated by human players who could fill
in the blanks in whichever way they liked.

Our three contributions, the benchmark, Libi-
tum, and the analysis of what makes it funny, ad-
vance the state of the art in computer humor by
demonstrating a successful computer aided hu-
mor technique and quantitatively analyzing what
makes for funny fill-in-the-blank words for Mad
Libs. These analyses show that coherent stories
have tremendous potential in making a Mad Lib
humorous, a promising direction for future work.

References
Salvatore Attardo and Victor Raskin. 1991. Script the-

ory revis (it) ed: Joke similarity and joke representa-
tion model. Humor-International Journal of Humor
Research, 4(3-4):293–348.

Dario Bertero and Pascale Fung. 2016. A long short-
term memory framework for predicting humor in
dialogues. In Proceedings of NAACL-HLT, pages
130–135.

Kim Binsted, Helen Pain, and Graeme D Ritchie. 1997.
Children’s evaluation of computer-generated pun-
ning riddles. Pragmatics & Cognition, 5(2):305–
354.

Thorsten Brants and Alex Franz. 2006. Web 1t 5-gram
version 1. Linguistic Data Consortium, Philadel-
phia.

Leo Breiman. 2001. Random forests. Machine learn-
ing, 45(1):5–32.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the four-
teenth conference on computational natural lan-
guage learning, pages 107–116. Association for
Computational Linguistics.

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

Chloe Kiddon and Yuriy Brun. 2011. That’s what she
said: double entendre identification. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies: short papers-Volume 2, pages 89–94. As-
sociation for Computational Linguistics.

Klaus Krippendorff. 1970. Estimating the reliabil-
ity, systematic error and random error of interval
data. Educational and Psychological Measurement,
30(1):61–70.

Igor Labutov and Hod Lipson. 2012. Humor as cir-
cuits in semantic networks. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics: Short Papers-Volume 2, pages
150–155. Association for Computational Linguis-
tics.

Rada Mihalcea and Carlo Strapparava. 2006. Learn-
ing to laugh (automatically): Computational models
for humor recognition. Computational Intelligence,
22(2):126–142.

Nasrin Mostafazadeh, Michael Roth, Annie Louis,
Nathanael Chambers, and James F Allen. 2017. Ls-
dsem 2017 shared task: The story cloze test. LSD-
Sem 2017, page 46.

Matthijs P Mulder and Antinus Nijholt. 2002. Humour
research: State of art. Technical report, University
of Twente, Centre for Telematics and Information
Technology.

Dan O’Shannon. 2012. What are You Laughing At?: A
Comprehensive Guide to the Comedic Event. A&C
Black.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, volume 14, pages 1532–
1543.

Sasa Petrovic and David Matthews. 2013. Unsuper-
vised joke generation from big data. In ACL (2),
pages 228–232.

Roger Price and Leonard Stern. 2008a. 50 Years of
Mad Libs. Penguin Group.

Roger Price and Leonard Stern. 2008b. Best of Mad
Libs. Penguin Group.

Victor Raskin. 2008. The primer of humor research,
volume 8. Walter de Gruyter.

Victor Raskin. 2012. Semantic mechanisms of humor,
volume 24. Springer Science & Business Media.

Yishay Raz. 2012. Automatic humor classification on
twitter. In Proceedings of the 2012 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Student Research Workshop, pages 66–70.
Association for Computational Linguistics.

Oliviero Stock and Carlo Strapparava. 2003. Ha-
hacronym: Humorous agents for humorous
acronyms. Humor, 16(3):297–314.

Julia M Taylor and Lawrence J Mazlack. 2004. Com-
putationally recognizing wordplay in jokes. In
Proceedings of the Cognitive Science Society, vol-
ume 26.

Kuansan Wang, Christopher Thrasher, Evelyne Vie-
gas, Xiaolong Li, and Bo-june Paul Hsu. 2010. An
overview of microsoft web n-gram corpus and ap-
plications. In Proceedings of the NAACL HLT 2010
Demonstration Session, pages 45–48. Association
for Computational Linguistics.

Scott Weems. 2014. Ha!: The science of when we
laugh and why. Basic Books.

Julia Wilkins and Amy Janel Eisenbraun. 2009. Humor
theories and the physiological benefits of laughter.
Holistic nursing practice, 23(6):349–354.

Licheng Yu, Eunbyung Park, Alexander C Berg, and
Tamara L Berg. 2015. Visual madlibs: Fill in the
blank description generation and question answer-
ing. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2461–2469.

Renxian Zhang and Naishi Liu. 2014. Recognizing hu-
mor on twitter. In Proceedings of the 23rd ACM In-
ternational Conference on Conference on Informa-
tion and Knowledge Management, pages 889–898.
ACM.

