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Abstract

We identify the social relationships between individuals
in consumer photos. Consumer photos generally do not
contain a random gathering of strangers but rather groups
of friends and families. Detecting and identifying these re-
lationships are important steps towards understanding con-
sumer image collections. Similar to the approach that a hu-
man might use, we use a rule-based system to quantify the
domain knowledge (e.g. children tend to be photographed
more often than adults; parents tend to appear with their
kids). The weight of each rule reflects its importance in the
overall prediction model. Learning and inference are based
on a sound mathematical formulation using the theory de-
veloped in the area of statistical relational models. In par-
ticular, we use the language called Markov Logic [14]. We
evaluate our model using cross validation on a set of about
4500 photos collected from 13 different users. Our experi-
ments show the potential of our approach by improving the
accuracy (as well as other statistical measures) over a set of
two different relationship prediction tasks when compared
with different baselines. We conclude with directions for
future work.

1. Introduction

Consumer photo collections are pervasive. Mining se-
mantically meaningful information from such collections
has been an area of active research in machine learning and
vision communities. There is a large body of work focus-
ing on problems of face detection and recognition, detecting
objects of certain types such as grass, water, and sky. Most
of this work relies on using low level features (such as color
or texture.) available in the image. In recent years, there has
been an increased focus on extracting semantically more

complex information such as scene detection and activity
recognition [9, 8]. For example, one might want to cluster
pictures based on whether they were taken outdoors or in-
doors or cluster work pictures from leisure pictures. This
work relies primarily on using the derived features such as
people present in the image, the presence or absence of cer-
tain kinds of objects in the image, and so on. Typically, the
power of collective inference [16, 11] is used in such sce-
narios. For example, it may be hard to tell for a particular
picture if it is work or leisure, but by looking at other pic-
tures that are similar in a spatio-temporal sense it becomes
easier to arrive at the correct conclusion. This line of re-
search aims to revolutionize the way we perceive the digital
photo collection - from a bunch of pixel values to highly
complex and meaningful objects that can be queried and or-
ganized in meaniungful ways.

Our goal is to automatically detect social relationships in
consumer photo collections. For example, given two faces
appearing in an image, we would like to infer if the two peo-
ple are spouses or merely friends. Even when information
about age, gender, and identity of various faces is known,
this task seems extremely difficult. In related work [12, 3],
the intention is to learn the likelihood that particular groups
will appear together in images to facilitate recognition. In
[17], movies are analyzed to find groups of characters that
are associated. In all of these works, the relationships within
the groups are left undefined.

Given a single image of two people, it is difficult to
determine whether the two are friends or spouses. How-
ever, when a group of pictures are considered collectively,
the task becomes more tractable. An observer unfamiliar
with the photos’ subjects might guess based on the rules of
thumb such as (a) couples often tend to be photographed
just by themselves as opposed to friends who typically ap-
pear in groups, and (b) couples with young children often
appear with their children in the photos. The beauty of this



approach is that one can even infer meaningful things about
relationships between people who never (or very rarely) are
photographed together. For example, if A (male) appears
with a child in a group of images and B (female) appears
with the same child in other images, and A and B appear
together in a few other images, then is it likely they share a
spousal relationship and are the child’s parents.

We would somehow like to capture these rules of thumb
in a meaningful way. There are several issues that need to
be taken into account while doing this: (a) after all, these are
“rules of thumb” and may not always be correct; (b) many
rules may need to be simultaneously considered; so a mech-
anism for combining rules must be defined; and (c) in cer-
tain scenarios, multiple rules may conflict with each other.
To address these issues, we turn to Markov Logic [14],
which provides a framework for combining first order logic
rules in a mathematically sound way. Each rule is seen as
a soft constraint (as opposed to a hard constraint in logic)
whose importance is determined by the real-valued weight
associated with it; the higher the weight, more important the
rule is. In other words, given two conflicting rules, the rule
with higher weight should be more strongly believed, other
things being equal. The weights can be learned from train-
ing data. Further, Markov logic also provides the ability to
learn new rules using the data, in addition to the rules sup-
plied by the domain experts, thereby enhancing the back-
ground knowledge. These learned rules (and their weights)
are then used to perform a collective inference over the set
of possible relationships. As we will show, we can also
build a model for predicting relationships, age and gender,
using noisy predictors (for age, and gender) as inputs to the
system. Inference is performed over all images, age, and
gender simultaneously to allow each component to influ-
ence the others in the context of our model, thereby im-
proving the accuracy of the prediction.

The remainder of the paper is organized as follows. We
first present the background on Markov logic. This is fol-
lowed a detailed description of our model for the problem.
We then describe out datasets and experiments. We con-
clude with the directions for future work.

2. Markov Logic

Statistical relational models [4] combine the power of re-
lational languages such as first order logic and probabilistic
models such as Markov networks. These models are capa-
ble of explicitly modeling the relations in the domain (for
example, various social relationship in our case) and also
explicitly take uncertainty (for example, rules of thumb may
not always be correct) into account. There has been a large
body of research in this area in recent years.

One of the most powerful such models is Markov
Logic [14]. It combines the power of first-order logic with
Markov networks to define a distribution over the properties

of underlying objects (e.g. age, gender, facial features in
our domain) and relations (e.g. various social relationships
in our domain) among them. This is achieved by attaching
a real valued weight to each formula in a first-order theory,
where the weight (roughly) represents the importance of the
formula. Formally, a Markov Logic Network L is defined as
a set of pairs (Fi, wi), Fi being a formula in first-order logic
and wi a real number. Given a set of constants C, the prob-
ability of a particular configuration x of the set of ground
predicates X is given as

P (X = x) =
1
Z

exp

(
m∑

i=1

wini(x)

)
(1)

where the sum is over all the formulas appearing in L, wi is
the weight of the ith formula and ni(x) is the number of its
true groundings under the assignment x. Z is the normal-
ization constant. For further details, see [14].

Inference corresponds to finding the marginal proba-
bility of each ground predicate. Exact inference is in-
tractable in such models and sampling is often used. Poon
and Domingos[13] propose a novel MCMC-based sampling
method called MC-SAT, which uses slice-sampling to effi-
ciently jump between two different regions (possibly dis-
connected) of the probability space. The results are better
than plain Gibbs sampling, especially when deterministic
dependencies (rules that are always true) are present. In
this case, Gibbs sampling is stuck in one region of the so-
lution space but MC-SAT has no problem in exploring dis-
connected regions.

Parameter learning in the model corresponds to finding
the weights (maximum likelihood or MAP) for each for-
mula. Weights can be learned generatively as detailed by
Richardson and Domingos[14]. Since likelihood is diffcult
to optimize, they optimize another measure called pseudo-
likelihood [1], which is simply the product of the likeli-
hoods of each variable given its Markov blanket. Pseu-
dolikelihood ignores the long-range dependencies among
variables and hence gives sub-optimal results when such
dependencies are present. A better approach is to opti-
mize the likelihood itself and learn the weights discrimina-
tively as proposed by Singla and Domingos[15], which uses
a voting perceptron algorithm for gradient descent or the
recently proposed algorithm of Lowd and Domingos[10],
which uses scaled conjugate gradient as the optimization
scheme. Note that in discriminative learning, we typically
optimize a much simpler function as there is no need to
model the dependencies between evidence variables (unlike
in generative learning). Further, discriminative learning di-
rectly optimizes the function to be used at inference time
and hence tends to give better results in practice.

Kok and Domingos[5] propose an algorithm for doing
structure learning of Markov logic networks, i.e., discover-
ing new rules in the domain. This is similar to learning ILP



style rules for first order logic. Rather than first learning
structure and then the weights, Kok and Domingos[5] op-
timize both the structure and weights together, which gives
better results for obvious reasons.

Domingos et al. [2] is a comprehensive source that de-
tails the various algorithms described above. Finally, all
the above algorithms are implemented in a software pack-
age called “alchemy” [6] which is publicly available on the
web. We use this software (with minor changes in the struc-
ture learning algorithm) to perform our experiments.

3. Model

In this section, we will describe our model for predicting
the social relationships in consumer image collections. Our
model is expressed in Markov logic. We will describe our
objects of interest, predicates (properties of objects and the
relationships among them), and the rules that impose certain
constraints over those predicates. We will then pose our
learning and inference tasks.

3.1. Objects and Predicates

3.1.1 Objects

We have three kinds of objects in our domain:

• Person: A real person in the world.

• Face: A specific appearance of a face in an image.

• Image: An image in the collection.

We model two kinds of predicates defined over the objects
of interest.

3.1.2 Evidence Predicates

The value of these predicates is known at the time of the
inference through the data. An example evidence predicate
is OccursIn(face,img), which describes the truth value of
whether a particular face appears in a given image or not.
We use the evidence predicates for the following proper-
ties/relations:

• Number of people in an image: HasCount(img,cnt)

• The age of a face appearing in an image :
HasAge(face,age)

• The gender of a face appearing in an image :
HasGender(face, gender)

• Whether a particular face appears in an image :
OccursIn(face, img)

• Correspondence between a person and his/her face :
HasFace(person, face)

The age (gender) of a face is the estimated age (gender)
value estimated from the face from an image. Note that this
is distinct from the actual age (gender) of a person, which is
modeled as a query predicate. The age (gender) associated
with a face is inferred from a classification model trained
separately on a collection of faces using various facial fea-
tures. We implemented age and gender classifiers follow-
ing the examples of [7] and [18]. Note that different faces
associated with the same person will likely have different
estimated age and gender values. We model the age using
five discrete bins: child, teen, youth, adult, and senior adult.

For this application, we assume the presence of face
detection and recognition and therefore we know exactly
which face corresponds to which person. Relaxing this as-
sumption and folding face detection and recognition into the
model is an important piece of future work.

3.1.3 Query Predicates

The value of these predicates is not known at the time of
the inference and needs to be inferred. An example of this
kind of predicates is HasRelation(person1, person2, rela-
tion), which describes the truth value of whether two per-
sons share a given relationship. We use the following query
predicates:

• The relationship between two persons: HasRela-
tion(person1, person2, relation)

• Age of a person: PersonHasAge(person, age)

• Gender of a person: PersonHasGender(person, gen-
der)

We model two different kinds of settings.
Two-Class: In this basic setting, we model only two rela-
tionships in the domain: friend or relative. All the relations
are mapped onto one of these two relationships. Relative
follows the intuitive definition of being a relative. Anyone
who is not a relative is considered as a friend.
Multi-Class: In the second setting, we model seven differ-
ent kinds of social relationships: relative, friend, acquain-
tance, child, parent, spouse, and childfriend. Relative in-
cludes any relative (by blood or marriage) not including
child, parent, or spouse. Friends are people who are not
relatives and satisfy the intuitive definition of the friendship
relation. Childfriend models the friends of children. It is
important to model the childfriend relationship, as children
are pervasive in consumer photo collections and often ap-
pear with their friends. In such scenarios, it becomes impor-
tant to distinguish between children and their friends. Any
non-relatives, non-friends are acquaintances. For our pur-
poses and in our data, spouses always have opposite gender.



3.2. Rules

We formulate two kinds of rules for our problem. All the
rules are expressed as formulas in first order logic.

3.2.1 Hard Rules

These describe the hard constraints in the domain, i.e., they
should always hold true. An example of a hard rule is Oc-
cursIn(face, img1) and OccursIn(face, img2) ⇒ (img1 =
img2), which simply states that each face occurs in at most
one image in the collection (for brevity, we mention only
the hard rules that contain at least one query predicate.)

• Parents are older than their children.

• Spouses have opposite gender.

• Two people share a unique relationship among them.

Note that we model that there is a unique relationship be-
tween two people. Relaxing this assumption (e.g. two peo-
ple can be both relatives as well as friends) is a part of the
future work.

3.2.2 Soft Rules

These rules describe the interesting set of constraints that
we expect to usually, but not always, be true. An ex-
ample of a soft rule is OccursIn(person1, img) and Oc-
cursIn(person2, img) ⇒ !HasRelation(person1, person2,
acquaintance). This rule states that two people who oc-
cur together in a picture are less likely to be mere acquain-
tances. Each additional instance of their occurring together
(in different pictures) further decreases this likelihood. Here
are some of the other soft rules that we use:

• Children and their friends are of similar age.

• A young adult occurring solely with a child shares the
parent/child relationship.

• Two people of similar age and opposite gender appear-
ing together (by themselves) share spouse relationship.

• Friends and relatives are clustered across photos: if
two friends appear together in a photo, then a third per-
son occurring in the same photo is more likely to be a
friend. The same holds true for relatives.

Proper handling of the combination of hard and soft con-
straints together provides the power of our approach. We
seek a solution that satisfies all the hard constraints (pre-
sumably such a solution always exists) and at the same time
satisfies the maximal number (weighted) of soft constraints.

3.2.3 Singleton Rule

Finally, we have a rule consisting of a singleton predi-
cate HasRelation(person1,person2, +relation) (+ indicates
a unique weight is learned for each relation), that essen-
tially represents the prior probability of a particular rela-
tionship holding between any two random people in the
collection. For example, the “friends” relationship is more
common than the “parent-child” relationship. Similarly, we
have the singleton rules HasAge(person, +age and Has-
Gender(person, +gender). These represent (intuitively) the
prior probabilities of having a particular age and gender, re-
spectively. For example, it is easy to capture the fact that
children tend to be photographed more often by giving a
high weight to the rule HasAge(person, child).

3.3. Learning and Inference

Given the model (the rules and their weights), inference
includes finding the marginal probability of query predi-
cates HasRelation, HasGender and HasAge given all the
evidence predicates. Since we have to handle a combina-
tion of hard (deterministic) and soft constraints, we use the
MC-SAT algorithm of Poon and Domingos [13] as imple-
mented in alchemy.

Given the hard and soft constraints, learning corresponds
to finding the optimal weights for each of the soft con-
straints. We find the MAP weights with a Gaussian prior
centered at zero. We use an off-the-shelf learner [10] as
implemented in alchemy [6]. We use the structure learn-
ing algorithm of Kok and Domingos[5] to refine (and learn
new instances) of the rules that help us predict the target
relationships. The original algorithm as described by them
(and as implemented in alchemy) does not allow the dis-
covery of partially grounded clauses. This is important for
us as we need to learn the different rules for different rela-
tionships. The rules may also differ for specific age groups
and/or gender (for example, one might imagine that males
and females differ in terms of with whom they tend to be
photographed). The change needed in the algorithm to have
this feature is straightforward. We allow the addition of all
possible partial groundings of a predicate as we search for
the extensions of a clause. (Only certain variables (i.e. re-
lationship, age, and gender) are allowed to be grounded in
these predicates to avoid blowing up the search space.) Af-
ter learning, the inference proceeds as previously described.

4. Experiments

4.1. Dataset

We experimented on a dataset consisting of personal
photo collections of 13 different owners. The collectors
came from diverse demographics in terms of age, gender,
and ethnicity. There are about a couple hundred photos for



each collector and the total number of images is 1926 (we
account only for photos in which at least one person ap-
pears). The faces are detected and recognized, i.e. there is a
one-to-one mapping between a face and a person in the real
world. Each collection owner labeled their relationship to
each person appearing in their photo collection. The rela-
tionship label domain is a set of 30 different relationships
such as mother, father, son, daughter, friend, son-in-law,
and so on. Each collection owner also labeled the current
age of each person appearing in the collection. The gender
of each person was labeled by looking at their name and
appearance.

4.2. Models

We compared five different models as explained below.

• Random: This is the simplest of all models. We ran-
domly select, with a uniform distribution, one of the
all possible relationships as the detected relationship.

• Prior: Using the prior distribution from the training
data, one of the all possible relationships is selected as
the detected relationship.

• Hard: This model picks uniformly at random one
of the possible relationships while enforcing the
common-sense hard constraints. For example, if two
people are of same gender, then the spouse relationship
is ruled out and we can pick only among the remain-
ing relationships. Number of hard constraints used
depended upon the setting (multi-class/two-class) and
will be detailed in the respective sections.

• Hard-Prior: This model is a combination of hard and
prior models. The true relationships are selected using
the prior probability of the relationships while ensur-
ing hard constraints.

• MLN: This is the full blown model which uses a com-
bination of soft and hard constraints, with weights
learned for the soft rules using the training data. The
prior information is incorporated into the model using
singleton (soft) constraints which state that a particular
kind of relationship holds. The number of rules used
for multi-class/two-class cases will be detailed in the
respective sections.

4.3. Methodology

We performed two sets of experiments: two-class and
multi-class as detailed in the model section. For the two-
class setting, no age or gender information was used in the
constraints. In the multi-class experiment, we assume the
gender and age of each person is known. In this case, ev-
erything except the HasRelation predicate is treated as evi-
dence (at learning as well as inference time).

For all our experiments, the age attribute was divided
into five bands: child (<13), teen (13-20), young-adult (20-
40), adult (40-60) and senior adult (>60). Since we had la-
beled data for only relationships between the collectors and
the people appearing in their collections, we restricted our-
selves to working with the relationships of various people
with the corresponding photo collectors (instead of predict-
ing all possible pairs of relationships). We assumed that we
know the identity of the photo collector during learning as
well as inference. The rules described in our model can eas-
ily (and in obvious manner) be adapted to this setting. Note
that we fixed the above formulation to evaluate our model(s)
in a fair manner.

We performed leave-one-out cross validation, learning
on 12 photo collectors’ data and predicting on the remain-
ing one. Each experiment predicts the relationship between
the collection owner and each person in the image collec-
tion, for a total of 286 predictions across the 13 collections.
For each model on each test set, we measure the accuracy
(ACR), conditional log-likelihood (CLL), and area under
the precision-recall curve (AUC) for the query predicates.
ACR is a basic and intuitive measure of how well the model
is doing. CLL directly measures the quality of the probabil-
ity estimates produced. AUC gives a measure of how well
the model works overall in the precision recall space. AUC
is especially useful when the distribution of positives and
negatives is skewed (like in our case - out of n possible rela-
tionships, only one holds). The CLL of a query predicate is
the average over all its groundings of the ground atom’s log-
probability given the evidence. The precision-recall curve
for a predicate is computed by varying the threshold CLL
above which a ground atom is predicted to be true. We com-
puted the standard deviations of the AUCs using the method
of Richardson and Domingos[14].

4.4. Results

4.4.1 Two-Class:

In the two-class setting, four soft constraints were used.
No hard constraints were used. The soft constraints sim-
ply state the following regularities: acquaintances appear in
few photos, friends occur in large groups, friends and rel-
atives are clustered across photos. Note that none of these
soft constraints uses age or gender information. The goal
of this experiment is to show our approach leverages infor-
mation from the soft constraints in a very simple setting.
Table 1 details the results 1. Clearly, the MLN model has
the best performance followed by the prior model. Figure 1
shows the precision-recall curves that compare all the mod-
els. These results establish the benefit of our approach in a
very basic setting. Next, we move on to the more involved,

1The models “hard” and “hard-prior” are absent as no hard constraints
are used in this setting



Table 1. Results comparing the different models for the two-class
setting.

Model ACR CLL AUC
Random 48.8±3.1 -0.693±0.000 49.6±0.0
Prior 50.4±3.1 -0.693±0.001 54.4±0.3
MLN 64.7±3.0 -0.709±0.031 66.7±0.4
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Figure 1. Precision-recall curves for the two-class setting.

multi-class setting.

4.4.2 Multi-Class:

For the case of full observability, we used 5 hard constraints
and 14 soft constraints (see the model section for examples).

Table 2 details the results. As expected, there is a gradual
increase in performance as we move from the most basic
model (random) to the most sophisticated model (MLN).
Figure 2 shows the precision-recall curves for multi-class
setting. The MLN model dominates over other models at
all points of precision-recall space, clearly demonstrating
the benefit of our soft rules.

It is interesting to examine the weights that are learned
for the soft rules. As seen in (1), more importance is placed
on rules with higher weights. The following three rules
received the highest weights (in descreasing order) in our
Markov Logic Network:

• For an image with one child and one non-child, then
the child shares the ”child” relationship with the col-
lection owner.

• Same rule as above, except the image has exactly two
people.

• If a person is friends with a child, then the child and
the person have the same age.

Our Morkov Logic Network actually learns these intuitive
rules from the training data.

Table 2. Results comparing the different models for the multi-class
setting.

Model ACR CLL AUC
Random 12.4±2.1 -0.410±0.015 9.4±0.2
Prior 26.4±2.7 -0.404±0.015 21.0±0.2
Hard 14.3±2.2 -0.372±0.013 21.0±0.2
Hard-Prior 26.4±2.7 -0.370±0.013 23.3±0.2
MLN 29.9±2.9 -0.352±0.013 29.7±1.0
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Figure 2. Precision-recall curves for the multi-class setting.
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Figure 3. For four of five people from this collection, the relation-
ship predictions are correct using the Markov Logic Network.

Figure 3 shows the predicted social relationships from
the Markov Logic Network for five people from an image
collection.

5. Future Work

There are a number of directions for future work. Per-
haps the most obvious is to apply our model to a more di-



verse and larger set of photo collections. We would also
like to integrate face recognition as part of our experiment.
The input to the system will be various features relevant
for face recognition and the system will perform a collec-
tive inference over recognizing faces, predicting relation-
ships, and other personal characteristics such as age and
gender. It would also be interesting to leverage the infor-
mation available in social relationships to better solve other
problems being tackled by the vision community such as
detecting the setting in which a set of photos was taken
(indoor/outdoor, home/office), various activities being per-
formed by the users, and so on.

6. Conclusion

Automatically predicting social relationships in con-
sumer photo collections is an important problem for the se-
mantic understanding of consumer images and has a wide
range of applications. Humans typically use ”rules of
thumb” to detect these social relationships. Our contri-
bution in this paper is to use the power of Markov logic
to formulate these rules of thumb as soft constraints in a
mathematically sound and meaningful way. A combina-
tion of hard and soft constraints is used. To the best of our
knowledge, out approach is unique in the literature. Our
approach performs better than a combination of various ba-
sic approaches and suggests further investigation into the
problem, leading to a much better understanding of social
relationships that can be extracted from consumer photos.
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