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Abstract

We present an activity recognition feature inspired by
human psychophysical performance. This feature is based
on the velocity history of tracked keypoints. We present a
generative mixture model for video sequences using this
feature, and show that it performs comparably to local
spatio-temporal features on the KTH activity recognition
dataset. In addition, we contribute a new activity recog-
nition dataset, focusing on activities of daily living, with
high resolution video sequences of complex actions. We
demonstrate the superiority of our velocity history feature
on high resolution video sequences of complicated activi-
ties. Further, we show how the velocity history feature can
be extended, both with a more sophisticated latent veloc-
ity model, and by combining the velocity history feature
with other useful information, like appearance, position,
and high level semantic information. Our approach per-
forms comparably to established and state of the art meth-
ods on the KTH dataset, and significantly outperforms all
other methods on our challenging new dataset.

1. Introduction
Activity recognition is an important area of active com-

puter vision research. Recent work has focused on bag-of-
spatio-temporal-features approaches that have proven effec-
tive on established datasets. These features have very strong
limits on the amount of space and time that they can de-
scribe. Human performance suggests that more global spa-
tial and temporal information could be necessary and suf-
ficient for activity recognition. Some recent work has at-
tempted to get at this global information by modeling the
relationships between local space-time features. We instead
propose a feature, directly inspired by studies of human per-
formance, with a much less limited spatio-temporal range.

Our work is motivated an important application of ac-
tivity recognition, assisted cognition health monitoring sys-
tems designed to unobtrusively monitor patients. These sys-
tems are intended to ensure the mental and physical health
of patients either at home or in an extended care facility.

Additionally, they provide critical, otherwise unavailable
information to concerned family members or physicians
making diagnoses. With an aging population, and with-
out a concurrent increase in healthcare workers, techniques
that could both lessen the burden on caregivers and increase
quality of life for patients by unobtrusive monitoring are
very important. We introduce a high resolution dataset of
complicated actions designed to reflect the challenges faced
by assisted cognition activity recognition systems, as well
as other systems dealing with activities of daily living.

2. Background
Initial work on activity recognition involved extracting

a monolithic description of a video sequence. This could
have been a table of motion magnitude, frequency, and po-
sition within a segmented figure [16] or a table of the pres-
ence or recency of motion at each location [6]. Both of these
techniques were able to distinguish some range of activities,
but because they were individually the full descriptions of
a video sequence, rather than features extracted from a se-
quence, it was difficult to use them as the building blocks of
a more complicated system.

Another approach to activity recognition is the use of ex-
plicit models of the activities to be recognized. Domains
where this approach has been applied include face and fa-
cial expression recognition [4] and human pose modeling
[17]. These techniques can be very effective, but by their
nature, they cannot offer general models of the information
in video in the way that less domain-specific features can.

Recent work in activity recognition has been largely
based on local spatio-temporal features. Many of these fea-
tures seem to be inspired by the success of statistical mod-
els of local features in object recognition. In both domains,
features are first detected by some interest point detector
running over all locations at multiple scales. Local maxima
of the detector are taken to be the center of a local spatial or
spatio-temporal patch, which is extracted and summarized
by some descriptor. Most of the time, these features are
then clustered and assigned to words in a codebook, allow-
ing the use of bag-of-words models from statistical natural
language processing.
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While local spatio-temporal features were initially in-
troduced in bag-of-features approaches ignoring non-local
spatio-temporal relationships between the local features,
more recent work has attempted to weaken these spatio-
temporal independence assumptions [10, 12, 15, 19]. While
these techniques weaken either or both of the spatial and
temporal independence assumptions, they are fundamen-
tally limited by the locality of the features underlying their
models, and the kinds of complicated motion they can dis-
ambiguate. Junejo et al.’s temporal self-similarity features
sacrifice all spatial information for extraordinary viewpoint
invariance[10]. Laptev et al.’s system caputres spatio-
temporal relationships between a set of very coarse spatial
and temporal grid regions[12]. Niebles and Fei-Fei’s sys-
tem creates a spatial constellation model of feature loca-
tion within each frame, but does not consider relationships
across frames[15]. Savarese et al. add a new type of fea-
ture to their bag of words that captures the spatio-temporal
correlation of different types of features[19]. This describes
broad relationships of the over space and time, but fails to
capture the motion of any individual feature, or even type
of feature.

Local features have proven successful with existing ac-
tivity recognition datasets. However, most datasets contain
low resolution video of simple actions. Since the expres-
siveness of a local feature decreases with the volume of
space and time it can describe, as high resolution video be-
comes more commonplace, local features must lose infor-
mation by operating on scaled-down videos, become larger,
dramatically expanding the amount of computation they re-
quire, or represent a smaller and smaller space-time volume
as video resolution increases. Additionally, as actions be-
come more and more complicated, local space-time patches
may not be the most effective primatives to describe them.

In proposing a feature as an alternative to local patch
methods, we see that human subjects can disambiguate ac-
tions using only the motion of tracked points on a body, in
the absence of other information. Johansson [9] showed that
point-light displays of even very complicated, structured
motion were perceived easily by human subjects . Most fa-
mously, Johansson showed that human subjects could cor-
rectly perceive “point-light walkers”, a motion stimulus
generated by a person walking in the dark, with points of
light attached to the walker’s body. In computer vision,
Madabhushi and Aggarwal were able to disambiguate ac-
tivities using only the tracked motion of a single feature,
the subject’s head. While their system had limited success,
it’s ability to use an extremely sparse motion feature to rec-
ognize activities shows just how informative the motion of a
tracked point can be. Inspired by these results, we propose
a new feature, the velocity history of tracked keypoints.

Much of the previous trajectory tracking work has often
been based on object centroid or bounding box trajectories.

In a more sophisticated extension of such approaches, Ros-
ales and Sclaroff [18] used an extended Kalman filter to help
keep track of bounding boxes of segmented moving objects
and then use motion history images and motion energy im-
ages as a way of summarizing the trajectories of tracked
objects. Madabhushi and Aggarwal [14] used the trajecto-
ries of heads tracked in video and built simple but effec-
tive models based on the mean and covariance of velocities.
Jiang and Martin [8] build a graph template of keypoint mo-
tion, and match it to regions. While this technique includes
keypoints with potentially significant spatial and temporal
extent, it lacks a probabilistic formulation, and is expensive
to run exactly. Our approach to analyzing feature trajecto-
ries differs dramatically from these previous methods in that
we use dense clouds of KLT [13] feature tracks. In this way
our underlying feature representation is also much closer to
Johansson’s point lights. Sun et al. [22] recently used simi-
lar techniques to model SIFT-feature trajectories. However,
they find a fixed-dimensional velocity description using the
stationary distribution of a Markov chain velocity model.
The stationary distribution is closer to a velocity histogram
than the more temporally structured representation we pro-
pose in Section 3.

3. Velocity Histories of Tracked Keypoints
We present a system that tracks a set of keypoints in a

video sequence, extracts their velocity histories, and uses
a generative mixture model to learn a velocity-history lan-
guage and classify video sequences.

3.1. Feature Detection and Tracking

Given a video sequence, we extract feature trajectories
using Birchfield’s implementation [3] of the KLT tracker
[13]. This system finds interest points where both eigenval-
ues of the matrix

∇I =
(

g2
x gxgy

gxgy g2
y

)
are greater than a threshold, and tracks them by calculating
frame-to-frame translation with an affine consistency check.
In order to maximize the duration of our feature trajecto-
ries, and thus capitalize on their descriptive power, we did
not use the affine consistency check (which prevents fea-
ture deformation). This made feature trajectories noisier,
but allowed them to capture non-rigid motion. While the de-
tector finds both moving and nonmoving corners, our mix-
ture model ensures that nonmoving features are described
by a small number of mixture components. As described
by Baker and Matthews [1], the tracker finds the match that
minimizes ∑

x

[T (x)− I(W (x; p))]2 (1)



where T is the appearance of the feature to be matched in
the last frame, I is the current frame, x is the position in the
template window, W are the set of transformations consid-
ered (in this case, translation) between the last frame and
the current one, and p are the parameters for the transfor-
mation. To derive the tracking update equations, we first
express Equation 1 as an iterative update problem (replac-
ing p with p + ∆p), and Taylor expand the iterative update:∑

x[T (x)− I(w(x; p + ∆p))]2 ≈∑
x[T (x)− I(w(x; p))−∇I ∂W

∂p ∆p]2 (2)

Now we take the derivative of Equation 2 with respect to
the update parameters:

∂
∂p

∑
x[T (x)− I(w(x; p))−∇I ∂W

∂p ∆p]2 =∑
x

[
∇I ∂W

∂p

]T [
T (x)− I(w(x; p))−∇I ∂W

∂p ∆p
]

(3)

Setting the derivative in Equation 3 to zero and solving for
the parameter update ∆P gives us:

∆p =
[∑

x

SDT (x)SD(x)
]−1

·
∑

x

SDT (x)T (x)− I(W (x; p)) (4)

where SD(x) = ∇I ∂W
∂p is the steepest descents image[1].

By iteratively updating the parameters according to Equa-
tion 4, we can quickly find the best matching for a tracked
feature. Recent GPU-based implementations of this algo-
rithm can run in real time [21].

We tracked 500 features at a time, detecting new fea-
tures to replace lost tracks. We call each feature’s quan-
tized velocity over time its “velocity history”, and use this
as our basic feature. We emphasize that we are unaware of
other work on activity recognition using a motion descrip-
tion with as long a temporal range as the technique pre-
sented here. Uniform quantization is done in log-polar coor-
dinates, with 8 bins for direction, and 5 for magnitude. The
temporal resolution of input video was maintained. We lim-
ited the velocity magnitude to 10 pixels per frame, which in
all of our datasets corresponds almost exclusively to noise.
This limit meant that for an individual feature’s motion from
one frame to the next, any motion above the threshold was
not ignored, but that feature’s motion on that frame was
placed in the bin for the greatest motion magnitude in the
appropriate direction. We also only considered feature tra-
jectories lasting at least ten frames. This heuristic reduces
noise while eliminating little of the extended velocity in-
formation we seek to capture. Examples of the trajectories
being extracted can be seen in Figure 7.

To give an idea of the long temporal range of our feature
flows, in the new dataset we introduce, containing videos
between 10 and 60 seconds (300 and 1800 frames) long, the

Figure 1. Graphical model for our tracked keypoint velocity his-
tory model (Dark circles denote observed variables).

total number of flows extracted per activity sequence varied
between about 700 and 2500, with an average of over 1400
flows per sequence. The mean duration of the flows was
over 150 frames.

3.2. Activity recognition

We model activity classes as a weighted mixture of bags
of augmented trajectory sequences. Each activity model has
a distribution over 100 shared mixture components. These
mixture components can be thought of as velocity history
“words”, with each velocity history feature being generated
by one mixture component, and each activity class having a
distribution over these mixture components. Each mixture
component models a velocity history feature with a Markov
chain. So each velocity history feature is explained by a
mixture of velocity history markov chains, and each activ-
ity class has a distribution over those mixture components.
Our model is similar to a supervised latent Dirichlet allo-
cation [5], where each activity is a document class with a
distribution over mixture components (analogous to topics).
Each mixture component has a distribution over velocity
history features (analogous to words). In this way, each
tracked velocity history feature has a different probability
of being generated by each mixture component. Each docu-
ment is modeled using naive Bayes as a “bag” of these soft-
assigned mixture-component words. This model assumes
that each document class shares a single multinomial distri-
bution over mixture components.

3.2.1 Inference

Our model for action class is shown in Figure 1. Each action
class is a mixture model. Each instance of an action (video
clip) is treated as a bag of velocity history sequences. A is
the action variable, which can take a value for each distinct
action the system recognize. M is the mixture variable, in-
dicating one of the action’s mixture components. We use
the notation M i

f to abbreviate Mf = i, or in words, fea-
ture f is generated by mixture component i. On denotes
a feature’s discretized velocity at time n. Nf denotes the
number of augmented features in the video sequence, and
Nv denotes the number of video sequences.



Our joint probability model for an action is:

P (A, O) =
∑
M

P (A, M, O) =

P (A)
Nf∏
f

Nm∑
i

P (M i
f |A)P (O0,f |M i

f )

Tf∏
t=1

P (Ot,f |Ot−1,f , M i
f ) (5)

where Nm is the number of mixture components, Nf is
the number of features, and Tf is the number of observa-
tions in feature trajectory f . For a feature tracked over 20
frames, t would have 19 disctinct values, since each obser-
vation is given by the difference between the feature’s loca-
tion between two frames. Note that all random variables are
discrete, and all component distributions in the joint distri-
bution are multinomial.

We train the model using Expectation Maximization
(EM) [2], and classify a novel video sequence D by finding
the action A that maximizes P (A|D) ∝ P (D|A)P (A). We
assume a uniform prior on action, so argmaxAP (A|D) ∝
argmaxAP (D|A).

We also give Dirichlet priors to each of the model pa-
rameters in order to smooth over the sparse data. These
priors are equivalent to having seen each next velocity state
(within the same mixture component) once for each velocity
state in each mixture component, and each mixture compo-
nent once in each activity class.

While our velocity history features may seem to be very
sparse compared to spatio-temporal patch features, their
long duration means that they can contain a lot of informa-
tion. Additionally, because of their simplicity, they could
potentially be implemented very efficiently.

4. Feature Evaluation
We evaluated the performance of our model on the KTH

dataset, a popular dataset introduced by Schuldt et al. [20].
This dataset consists of low-resolution (160 × 120 pixels)
monochrome video clips taken by a fixed camera of 25 sub-
jects performing each of 6 actions (walking, clapping, box-
ing, waving, jogging and running) in several size and back-
ground conditions. While our velocity history features are
intended to perform well on high resolution video of com-
plicated actions, it is important to evaluate the baseline per-
formance of our feature on an established dataset. We use
one of the popular testing paradigms for this dataset, where
a system is trained on 8 randomly selected subjects, and
tested on 9 randomly selected remaining subjects.

For comparison, we use Dollar et al.’s spatio-temporal
cuboids [7], and Laptev et al.’s space-time interest points
[12]. In order to ensure that the comparison is of the fea-
tures, rather than the model, we use the same codebook size,

100 elements, and the same higher level model, naive bayes,
for all systems.

Table 1. Performance results of different features using a train on
8, test on 9 testing paradigm on the KTH dataset. All features used
100 codewords and were combined using naive Bayes.

Method Percent Correct
Spatio-Temporal Cuboids [7] 66

Velocity Histories (Sec. 3) 74
Space-Time Interest Points [12] 80

Results are shown in table 1. Clearly, our velocity his-
tory features are competitive with state-of-the-art local fea-
tures on established datasets. We note that both Dollar et
al.’s cuboids and Laptev et al.’s interest points have pre-
viously achieved much greater performance on this dataset
using larger codebooks and more sophisticated discrimina-
tive models (like SVMs). We held the codebook size and
feature combination model fixed in order to evaluate the fea-
tures themselves.

5. High Resolution Videos of Complex Activi-
ties

Existing activity recognition datasets involve low-
resolution videos of relatively simple actions. The KTH
dataset [20], probably the single most popular one, is a
case in point. This dataset consists of low-resolution (160
× 120 pixels) video clips taken by a non-moving camera
at 25 frames per second of 25 subjects performing each of
6 actions (walking, clapping, boxing, waving, jogging and
running) in several conditions varying scale, background,
and clothing. Subjects repeated the actions several times,
in clips ranging from just under 10 seconds, to just under
a minute. The KTH dataset’s relatively low resolution re-
wards techniques that focus on coarse, rather than fine spa-
tial information. It doesn’t include object interaction, an
important part of many real-world activities. Lastly, its sim-
ple activities, while still a challenge to existing systems,
may not reflect the complexity of the real activities a sys-
tem might want to recognize.

We contribute a high resolution video dataset of activ-
ities of daily living1. These activities were selected to be
useful for an assisted cognition task, and to be difficult to
separate on the basis of any single source of information.
For example, motion information might distinguish eating a
banana from peeling a banana, but might have difficulty dis-
tinguishing eating a banana from eating snack chips, while
appearance information would conversely be more useful in
the latter than the former task.

1The dataset is available at http://www.cs.rochester.edu/∼rmessing/uradl



The full list of activities is: answering a phone, dialing a
phone, looking up a phone number in a telephone directory,
writing a phone number on a whiteboard, drinking a glass of
water, eating snack chips, peeling a banana, eating a banana,
chopping a banana, and eating food with silverware.

These activities were each performed three times by five
different people. These people were all members a depart-
ment of computer science, and were naive to the details of
our model when the data was collected. By using people of
different shapes, sizes, genders, and ethnicities, we hoped to
ensure sufficient appearance variation to make the individ-
ual appearance features generated by each person different.
We also hoped to ensure that activity models were robust to
individual variation.

The scene was shot from about two meters away by a
tripod-mounted camera. Video was taken at 1280 × 720
pixel resolution, at 30 frames per second. An example back-
ground image is shown in Figure 3.

The total number of features extracted per activity se-
quence varied between about 700 and 2500, averaging over
1400 features per sequence. The mean duration of the tra-
jectories exceeded 150 frames. Video sequences lasted be-
tween 10 and 60 seconds, ending when the activity was
completed.

Our evaluation consisted of training on all repetitions of
activities by four of the five subjects, and testing on all rep-
etitions of the fifth subject’s activities. This leave-one-out
testing was averaged over the performance with each left-
out subject.

In addition to our tracked keypoint velocity history fea-
tures, and the local spatio-temporal patch features of Dol-
lar et al. [7] and Laptev et al. [12], we use Bobick and
Davis’s temporal templates [6], an approach based on the
shape of tables of the presence or recency of motion at each
location. Temporal templates, which offer a single-feature
description of a video sequence, are not amenable to the
same models as feature-based approaches. We used a stan-
dard technique with temporal templates, the Mahalanobis
distance between the concatenated Hu moment representa-
tions of the motion energy and motion history images of a
test video and the members of each activity class.

Due to limitations of the distributed implementation of
Laptev et al.’s space-time interest point features, we were
forced to reduce the video resolution to 640 × 480 pixels.
However, we found almost no performance difference run-
ning Dollar et al.’s spatio-temporal cuboids at both this re-
duced resolution, and the full video resolution, suggesting
that Laptev et al.’s features would also perform similarly
on the full resolution video. Additionally, we found almost
no performance difference running Laptev et al.’s space-
time interest point features at a greatly reduced video reso-
lution (160× 120 pixels, as in the KTH dataset), suggesting
that the extra fine spatial detail provided by high resolution

Figure 2. Confusion matrix using only feature trajectory informa-
tion without augmentations. Overall accuracy is 63%. Zeros are
omitted for clarity

video is unhelpful for space-time interest points.

Table 2. Performance results of different methods using a leave-
one-out testing paradigm on our high resolution activities of daily
living dataset

Method Percent Correct
Temporal Templates [6] 33

Spatio-Temporal Cuboids [7] 36
Space-Time Interest Points [12] 59

Velocity Histories (Sec. 3) 63
Latent Velocity Histories (Sec. 7) 67

Augmented Velocity Histories (Sec. 6) 89

The performance of all systems on this dataset are shown
in Table 2. A confusion matrix illustrating the performance
of our velocity history features is shown in Figure 2. These
results show several things. First, we see that feature-based
methods, even when combined using the simplest models,
outperform older whole-video methods. Given that the field
has almost exclusively moved to feature-based methods,
this is not surprising. Second, we see that while there is a
range of performance among the local spatio-temporal fea-
tures, velocity history features outperform them on this high
resolution, high complexity dataset.

6. Augmenting our features with additional in-
formation

While the velocity history of tracked keypoints seems to
be an effective feature by itself, it lacks any information
about absolute position, appearance, color, or the position
of important, nonmoving objects. By augmenting each of



Figure 3. A background image
from the activities of daily liv-
ing data set

Figure 4. Codebook-generated
pixel map of birth-death loca-
tions

our velocity history features with this information, we can
significantly improve performance.

6.1. Feature Augmentations

Features were augmented by location information in-
dicating their initial and final positions (their “birth” and
“death” positions). To obtain a given feature trajectory’s
birth and death, we use k-means clustering (k = 24) to form
a codebook for both birth and death (independently), and as-
sign a feature’s birth and death to be it’s nearest neighbor in
the codebook. An example of this codebook can be seen in
Figure 4, which was generated from activities in the scene
shown in Figure 3.

In addition to this absolute position information, features
are also augmented by relative position information. We use
birth and death positions of the feature relative to the posi-
tion of an unambiguously detected face, if present. Faces
were detected by the OpenCV implementation of the Viola-
Jones face detector [23], run independently on each frame
of every video. Like birth and death, these positions are
clustered by k-means (k = 100) into a codebook, and a fea-
ture position relative to the face is assigned to it’s nearest
neighbor in the codebook.

We augment features with local appearance information.
We extract a 21× 21 pixel patch around the initial position
of the feature, normalized to the dominant orientation of
the patch, calculate the horizontal and vertical gradients of
the oriented patch, and use PCA-SIFT [11] to obtain a 40-
dimensional descriptor. These descriptors are clustered by
k-means into a codebook (k = 400), and each feature’s
patch is assigned to it’s nearest neighbor in the codebook.

Lastly, we augment features with color information.
From the same 21 × 21 pixel patch that we use for the ap-
pearance augmentation, we compute a color histogram in
CIELAB space, with 10 bins in each color dimension. We
use PCA to reduce the dimensionality of the histograms to
40 dimensions, and as with appearance, cluster these his-
tograms using k-means into a 400 element codebook. Each
feature flow patch’s color histogram is assigned to its near-
est neighbor in the codebook.

The codebooks for all augmentations were formed only
using samples from the training data.

We note that only our absolute birth and death position

Figure 5. Graphical model for our augmented tracked keypoint ve-
locity history model (Dark circles denote observed variables).

augmentations lack a significant degree of view invariance.
The other augmentations, and the feature trajectory model
itself, should maintain the same view invariance as other
feature-based approaches to activity recognition which usu-
ally lack the scale and orientation invariance that character-
ize successful object recognition features.

We emphasize that our velocity history features are par-
ticularly appropriate recipients of these augmentations. By
contrast, it is much less straightforward to augment local
space-time features with these kinds of information, par-
ticularly because notions like “birth” and “death” position
are not as well-defined for features based on local spatio-
temporal patches.

6.2. Modeling Augmented Features

Our graphical model for our augmented velocity history
model is shown in Figure 5. All symbols have the same
meaning as in Figure 1, with the addition of L0 and LT

as the birth and death location variables respectively, R0

and RT as the positions relative to the face at birth and
death, X as the feature’s appearance, and C as the feature’s
color. Augmentation information is combined using a naive
Bayes assumption at the mixture component level, so the
additional computational cost of each augmentation during
inference is just another table lookup per feature.

Our new joint probability model for an action is:

P (A, L0, LT , R0, RT , X,O) =∑
M

P (A, M, L0, LT , R0, RT , X,O) =

P (A)
Nf∏
f

Nm∑
i

P (M i
f |A)P (L0,f |M i

f )P (LT,f |M i
f )

P (R0,f |M i
f )P (RT,f |M i

f )P (Xf |M i
f )P (Cf |M i

f )

P (O0,f |M i
f )

T∏
t=1

P (Ot,f |Ot−1,f , M i
f ) (6)

As before, all random variables are discrete, and all compo-
nent distributions in the joint distribution are multinomial.



Figure 6. Confusion matrix for the augmented feature trajectory
activity recognition system. Overall accuracy is 89%. Zeros are
omitted for clarity

Figure 7. Labeled example flows from “Lookup in Phonebook”
and “Eat Banana”, with different colors denoting different mixture
components. Note that complex semantic features like feature flow
position relative to face are used in our framework.

6.3. Results

The performance of this augmented model using exper-
imental conditions identical to those used for the unaug-
mented model is shown in Figure 6. Augmentations yield
significant performance improvements on our high resolu-
tion activities of daily living dataset.

7. Adding uncertainty to the velocity history

While tracked keypoint velocity history has proven a
powerful feature for activity recognition, particularly when
augmented as in Section 6, it is dependent on the presence
of sufficient data to learn a rich velocity transition matrix for
all mixture components. One way to limit this dependence
is to introduce uncertainty into each velocity observation.
By modeling observed velocity as a true latent velocity plus
fixed Gaussian noise, we can spread the probability mass
from each observation over nearby, similar observations.
As can be seen in Figure 8, this transforms our mixture of

Figure 8. Graphical model for our latent tracked keypoint velocity
history model (Dark circles denote observed variables).

velocity Markov chains into a mixture of velocity hidden
Markov models, or a factorial hidden Markov model.

7.1. Modeling Latent Veloicty

Our graphical model for our latent velocity history model
is shown in Figure 8. All symbols have the same meaning as
in Figure 1, and we introduce the variable Si

t to indicate the
latent velocity at time t as explained by mixture component
i. By breaking up the latent velocities by mixture compo-
nent, we avoid a cyclic dependence of each latent velocity
state on the others, and so can use the forward-backward
algorithm to compute latent state marginal distributions.

The joint PDF for an action with these new latent veloc-
ity states is:

P (A, S,O) =
∑
M

P (A, M, S, O) =

P (A)
Nf∏
f

Nm∑
i

P (M i
f |A)P (Si

0,f |M i
f )P (O0,f |Si

0,f )

T∏
t=1

P (Si
t,f |Si

t−1,f , M i
f )P (Ot,f |Si

t,f ) (7)

As in the previous models, all variables are discrete, and all
distributions are multinomial, aside from the P (O|S) term,
which is the sum of two fixed zero-mean Gaussian distri-
butions. One Gaussian is broad, to approximate uniform
noise, with a diagonal covariance matrix whose entries are
10 pixels per frame, and the other is narrow, with entries
one quarter the value of the broad one.

While this model is more powerful than the mixture of
velocity Markov chains, it is much more expensive to per-
form inference in it. Each velocity transition table lookup
in the mixture of velocity Markov chains becomes a matrix
multiplication. In order to test this model, it was neces-
sary to break apart the mixture components during training.
Instead of 100 mixture components shared over all action
classes, 10 mixture components were assigned to each ac-
tion class, and trained only on data from that class. Test-
ing used a naive Bayes model sharing mixture components
across all action classes, as in the previous versions of the
model.



Figure 9. Confusion matrix for the latent feature trajectory activity
recognition system. Overall accuracy is 67%. Zeros are omitted
for clarity

7.2. Results

The performance of the latent velocity model is shown
in Figure 9. Clearly, there is some improvement in perfor-
mance over the model without latent states shown in Figure
2. This suggests that incorporating uncertainty in our ve-
locity states, can offer moderately improved results. On the
one hand, it is encouraging to see that even without adding
more data, a more sophisticated model has the potential to
improve performance. On the other hand, it is a modest im-
provement compared to that offered by the augmentations
of Section 6, at a much greater computational cost.

8. Conclusions
The velocity history of tracked keypoints is clearly a use-

ful feature for activity recognition particularly when aug-
mented with extra information. By incorporating infor-
mation outside a local spatio-temporal patch at the fea-
ture level, it allows a bag-of-features model to a significant
amount of non-local structure. We anticipate that high reso-
lution video data will become more commonplace, and that
practical activity recognition systems will face more com-
plicated activities. As the complixity of activity recognition
increases, features capable of capturing non-local structure
may prove more valuable than local spatio-temporal meth-
ods.
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