
62 1541-1672/05/$20.00 © 2005 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

C o n s t r a i n t P r o g r a m m i n g

Constraints and
AI Planning
Alexander Nareyek and Eugene C. Freuder, University College Cork

Robert Fourer, Northwestern University

Enrico Giunchiglia, University of Genova

Robert P. Goldman, Smart Information Flow Technologies

Henry Kautz, University of Washington

Jussi Rintanen, Albert-Ludwigs-University Freiburg

Austin Tate, University of Edinburgh

Interest in constraint techniques for AI planning
problems has grown considerably in recent years.
Using constraints and related techniques as an under-
lying framework for problem-solving tasks—such as
planning—has proven successful for many domains.
The basic modeling units of constraint-based frame-
works are constraints and variables; a constraint is an
entity that restricts the values of variables. Such frame-
works can easily express not only simple orderings in
partial-order planning systems but also complex prob-
lem features, such as scheduling and reasoning about
numerical resources. The exclusion relations of
Graphplan-based planners can also be interpreted in
this context, and recently researchers have even devel-
oped planning systems that can fully cast planning
problems as a constraint satisfaction problem.

However, to remain efficient, most constraint-based
search frameworks use only a restricted scenario. SAT,
for example, restricts constraints to propositional for-

mulas and constrains variables to a Boolean domain.
Similarly, integer linear programming applies linear
inequalities to restrict numerical variables. CP, on the
other hand, is more general; it doesn’t restrict the types
of constraints (although usually only variables with
finite domains are considered).

The basic planning problem
A basic planning problem usually comprises an

initial world description, a partial description of the
goal world, and a set of actions (sometimes also
called operators) that map a partial world descrip-
tion to another. The problem can be enriched by
including additional aspects, such as temporal or
uncertainty issues, or by requiring the optimization
of certain properties. A solution is a sequence of
actions leading from the initial world description to
the goal world description, referred to as a plan.

We assume readers are familiar with basic plan-

Tackling real-world

planning problems

often requires

considering various

types of constraints,

which can range from

simple numerical

comparators to complex

resources. This article

provides an overview of

techniques to deal with

such constraints by

expressing planning

within general

constraint-solving

frameworks.

Our goal here is to explore the interplay of constraints and planning, highlighting

the differences between propositional satisfiability (SAT), integer programming

(IP), and constraint programming (CP), and to discuss their potential in expressing and

solving AI planning problems.

ning techniques and terminology (for more
information, see Readings in Planning1).
(Also, note that we don’t cover specialized
reasoning schemes, such as the management
of temporal constraint networks.2)

Planning as propositional
satisfiability

SAT determines whether a propositional for-
mula is satisfiable. Such a formula consists of
two-valued variables (true and false), related
through the operators ¬ (“not”),� (“or” or dis-
junction), and � (“and” or conjunction). Most
solvers require that we state the problem as a
conjunctive normal form (a conjunction of dis-
junctions), and SAT-solving techniques include
refinement approaches such as Satz-Rand3 and
Chaff4 (which are based mostly on the Davis-
Putnam procedure5) and local-search methods
such as GSAT6 and SDF.7

Planning as satisfiability is a paradigm that
Henry Kautz and Bart Selman originally pro-
posed.8 The idea is simple. Suppose we have
a finite description of the planning problem;
more specifically, assume a STRIPS descrip-
tion D9 with finitely many objects and time
steps. Because the domain is finite, we can
write a propositional formula TRi whose
models are one-to-one with the possible tran-
sitions in D. There are several ways to write
such a TRi.10 For our goals, it suffices to say
that TRi has a propositional variable Ai for
each ground action A and two propositional
variables Fi and Fi+1 for each ground fluent
F in D (fluent is equivalent to a state vari-
able). Intuitively, Fi represents the value of
F at time i (and similarly for Ai and Fi+1).

If D is deterministic and we’re given a sin-
gle initial state represented by a formula I,
we can find a valid plan that reaches a goal
state represented by a formula G in n steps if
we can satisfy

(1)

where I0 is the formula obtained from I by
replacing each state variable F with F0, and
Gn is obtained from G by replacing each state
variable F with Fn. This idea has led to
impressive results and has thus greatly influ-
enced the planning community.10

For very large values of n (say, exponential
in the size of D), Equation 1’s size becomes
problematic, and planning as satisfiability
might not be feasible. However, if we look for
short plans, it can be a winning approach.
Researchers have obtained similar considera-
tions and results for formal verification, where

TRi encodes the transition relation of the sys-
tem under analysis, ¬G is the property need-
ing verification, and I represents the set of pos-
sible initial states. It’s possible to violate the
property in the first n ticks if Equation 1 is sat-
isfiable, and systems based on this idea are far
more effective than the others (if n is small).11

Given this, the planning-as-satisfiability
approach clearly isn’t restricted to work with
STRIPS domain descriptions. We can start with
a domain description written in any language
for specifying domains. Then we can deter-
mine the plans of length n by satisfying
Equation 1 as long as the domain is deter-
ministic, a single initial state exists, and
propositional formula TRi encodes all the
possible transitions.

Operations research approaches
to AI planning

The concept of an operations research
approach has long been influential in AI plan-
ning. In fact, OR methods inspired much of
the early work on heuristic search. For exam-
ple, the Nonlin hierarchical partial-order plan-
ner12 was developed within a project entitled
“Planning: A Joint AI/OR Approach,” and it
incorporated OR methods for temporal-con-
straint satisfaction. The ZENO temporal plan-
ner adopted OR data structures and algorithms
for handling linear-inequality constraints.13 If
we broadly interpret “operations research” as
the study of operations, then it can encompass
almost any AI planning method.

Nevertheless, for highly combinatorial
problems such as AI planning, a distinctive IP
approach exists that’s arguably the one most
widely associated with OR. This approach
involves first casting the problem as the min-
imization or maximization of a linear function
of integer-valued decision variables, subject
to linear equality and inequality constraints in

the variables. We can then find a solution using
a general-purpose branch-and-bound proce-
dure, based on the idea of a search tree.14 The
branching of the tree corresponds to dividing
the original problem into progressively more
constrained subproblems, with leaf nodes rep-
resenting individual solutions. A full tree
search would thus involve a complete enu-
meration. However, in practice, an optimum
is often determined after examining only a
minuscule fraction of the nodes—through the
use of bounds derived from relaxations of the
node subproblems, in conjunction with a vari-
ety of ingenious heuristic procedures.

Classical AI planning problems don’t
require minimization or maximization, and we
can instead use the branch-and-bound proce-
dure to seek a feasible solution to the con-
straints. Still, the search for a solution might
be guided by constructing an objective such as
minimization of the number of actions taken.

An example of an IP approach for
planning

Thomas Vossen and his colleagues report
on AI planning experiments that are repre-
sentative of using the IP approach for combi-
natorial optimization.15 They consider first a
straightforward formulation, based on the SAT
representation that Blackbox16 employs, in
terms of integer variables that take the value of
1 or 0, depending on whether a certain condi-
tion holds:

• Do[a,t] = 1 if and only if action a is taken in
time step t

• True[f,t] = 1 if and only if fluent (assertion)
f is true in time step t

Linear constraints on these variables ensure
that state transitions are consistent with
actions. Because the variables take 0 or 1 val-
ues rather than SAT’s true or false values, the
IP’s operators are arithmetic rather than log-
ical. However, the assertions that the IP’s
constraints express correspond directly to the
logical conditions in the SAT representation.

As a concrete example, consider a case of
a blocks world having an arm that can pick
up, hold, or put down at least two blocks, A
and B. There must be a constraint to imple-
ment the rule that the arm may not put down
block B at time step 3 unless it holds that
block at that time:

Do[‘put_down_B’,3] � True[‘hold_B’,3]

Another kind of constraint ensures that the

I TR G
i n

i n0
0

∧ ∧
≤ <
∧()

MARCH/APRIL 2005 www.computer.org/intelligent 63

Using constraints and related

techniques as an underlying

framework for problem-solving

tasks—such as planning—

has proven successful for many

domains.

arm may not hold block B at time step 3 unless
it has performed one of the three actions com-
patible with holding it at time step 2:

True[‘hold_B’,3]
� Do[‘pick_up_B’,2] + Do[‘unstack_B_A’,2]
+ Do[‘noop_hold_B’,2]

Further constraints rule out the performance
of incompatible actions in the same time step,
such as both putting down and picking up
block B:

Do[‘put_down_B’,3] + Do[‘pick_up_B’,3] � 1

Finally, a few constraints specify the initial
state and the final state’s requirements. We
can mechanically derive all the necessary
constraints of these types from the contents
of the problem’s STRIPS representation.

We need to enforce only the Do variables’
integrality. This is because the True variables
might simply be constrained to lie in the
interval [0, 1], in which case the constraints
will force them to take only the values of 0 or
1 at an optimal solution. Even so, a highly
respected branch-and-bound implementation
failed to prune the search tree sufficiently to
avoid prohibitive increases in execution time
and memory requirements for over half of
the test problems considered.15

Using a tighter representation
As is often the case in IP, we can produce

much better results using a “tighter” repre-
sentation that’s less intuitive but yields bet-
ter bounds for pruning the search tree. One
such representation replaced the True variables
with five collections of variables similarly
indexed over fluents and time steps:15

• Do[a,t] = 1 if and only if action a is taken in
time step t

• Keep[f,t] = 1 if and only if f is kept true in
time step t

• Add[f,t] = 1 if and only if f isn’t a precondi-
tion but is added in time step t

• PreAdd[f,t] = 1 if and only if f is a precondi-
tion but isn’t deleted in time step t

• PreDel[f,t] = 1 if and only if f is a precondi-
tion and is deleted in time step t

For each fluent and time step, three con-
straints define the relations between the new
variables. So, for example, at most one of
Keep, Add, PreDel and one of Keep, PreAdd, PreDel
can apply to the fluent that represents hold-
ing block B at time step 3:

Keep[‘hold_B’,3]
+ Add[‘hold_B’,3]
+ PreDel[‘hold_B’,3] � 1

Keep[‘hold_B’,3]
+ PreAdd[‘hold_B’,3]
+ PreDel[‘hold_B’,3] � 1

Moreover, Keep, PreAdd, or PreDel apply only
if one of Keep, PreAdd, or Add applied at the pre-
vious time step:

Keep[‘hold_B’,3]
+ PreAdd[‘hold_B’,3]
+ PreDel[‘hold_B’,3]
� Keep[‘hold_B’,2]
+ PreAdd[‘hold_B’,2]
+ Add[‘hold_B’,2]

Additional constraints relate these new vari-
ables to the Do variables, which again are the
only ones that must be explicitly constrained
to be integer. For instance, the constraints
must ensure that “holds block B” can become
true at time step 3 if and only if the arm either
picks up or unstacks block B at time step 3:

Add[‘hold_B’,3] � Do[‘pick_up_B’,3]
Add[‘hold_B’,3] � Do[‘unstack_B_A’,3]
Add[‘hold_B’,3] � Do[‘pick_up_B’,3]

+ Do[‘unstack_B_A’,3]

The branch-and-bound solver performed
much more strongly on such a formulation,
solving all the problems considered (though
with computation times over 1,000 seconds
and search trees of over 80,000 nodes for the
two hardest cases). Even so, Blackbox,
which combines more specialized process-
ing of AI planning problems with SAT
solvers, solved conventional test problems
even more efficiently.

General-purpose IP software’s effective-

ness has improved considerably in the few
years since the tests just described were run.
IP might also be more suitable for temporal
or resource-oriented planning problems,
because these involve larger numerical vari-
able domains that are hard to encode using
SAT approaches. Another alternative is to
combine solvers of both types for those tasks.
Steven Wolfman and Daniel Weld developed
a system that uses a SAT solver to solve the
core planning problem and uses IP to address
possible numerical relations.17

Modeling languages
IP’s flexibility has been further strength-

ened by the development of several modeling
languages18–20 that let us write general for-
mulations in a way that’s concise and natural
for modelers yet can be efficiently processed
by computer. For example, we can write the
collection of all the constraints in the previ-
ous subsection, enforcing the relationship
between the Add and the Do variables for all
combinations of fluents and time steps, in
AMPL21 as

subj to DefnAddOnlyIf
{f in FLU, a in ADD[f] diff PRE[f],t in 1..T}:

Add[f,t] >= Do[a,t];

subj to DefnAddIf
{f in FLU, t in 1..T}

Add[f,t] <= sum {a in ADD[f] diff PRE[f]} Do[a,t];

This is a direct transcription of mathemati-
cal statements that appear in a conventional
formulation of the integer program. For
example, the sum operator denotes the math-
ematical �, character pairs >= and <= repre-
sent the inequality relations � and �, and
expressions of the form {...} stand for index-
ing sets. By providing high-level, symbolic
expressions for indexed collections of con-
straints, modeling languages and their sup-
porting environments encourage experimen-
tation with a variety of formulations.

Applying constraint
programming to planning

The CP approach is characterized by more
natural (or convenient) formulations than
SAT or IP. Problems are described as con-
straint satisfaction problems (CSPs), which
consist of a set of variables x = {x1, …, xn},
where each variable is associated with a
domain d1, ..., dn and a set of constraints c =
{c1, ..., cm} over these variables.

In a CSP, the domains can be symbols as

C o n s t r a i n t P r o g r a m m i n g

By providing high-level, symbolic

expressions for indexed collections

of constraints, modeling languages

and their supporting environments

encourage experimentation with a

variety of formulations.

64 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

well as numbers and can be continuous or dis-
crete (such as “block A,” “13,” or “6.5”). Con-
straints are relations between variables (for
example, “xa is on top of xb” or “xa < xb � xc”)
that restrict the possible value assignments.
Constraint satisfaction is the search for a vari-
able assignment that satisfies the given con-
straints. Constraint optimization requires an
additional function that assigns a quality value
to a solution and tries to find a solution that
maximizes this value (see the “Constraint Pro-
gramming Search Techniques” sidebar).

We can represent the CSP structure of
variables and constraints as a graph, with
variables and constraints as nodes. A vari-
able node is linked by an edge to a constraint
node if the corresponding constraint relation
includes the variable. (We will often refer to
this as a constraint graph instead of a CSP
in the following.)

A comparison with SAT and IP
The CP framework’s advantages become

apparent in slightly more complex settings,
such as when incorporating resources and time.

Consider, for example, a scenario in which
some tasks with specific durations share a
resource, and the goal is to prevent overlap.
IP’s mathematical framework and SAT’s
propositional formulas are highly restricted,
so a problem must be translated into a very spe-
cific form, which often requires an expert.

For the SAT approach, representing the
numerical aspects of the task durations of the
nonoverlap example is hardly possible be-
cause the propositional SAT variables can
represent only qualitative differences. This
differs from CP and IP, which can also rep-
resent quantitative information. Of course,
we can also model discrete numbers in SAT
using a propositional variable for each value
of the discrete domain. But this is a highly
unsuitable approach, not only because of its
immense costs but also because it destroys
the information about the values’ ordering
relation, which should be exploited during
search. For an IP approach, the inherent dis-
junction in the nonoverlap problem (task A
may precede task B, or task B may precede
task A) blows up the size of a “representa-

tion by inequalities” enormously.
CP, on the other hand, lets us use higher-

level (global) constraints. A formulation could
simply look like nonoverlap(taskA_begin, taskA_
duration, taskB_begin, taskB_duration). Add-on lan-
guages such as AMPL for IP relax this state-
ment only slightly because many problem
aspects can’t be adequately translated to IP’s
linear inequalities. Furthermore, global con-
straints don’t just simplify modeling—they
can also capture domain-specific dependen-
cies. The IP and SAT approaches can break
down problems into their specific frameworks
and then scan the resulting specifications for
structures on which to apply specific solution
strategies. However, even though researchers
have developed many efficient methods—
SAT’s propositional clauses and IP’s linear
inequalities can scarcely exploit the higher-
level domain knowledge to support search.22

CP’s global constraints and corresponding
solution techniques have been an important
factor in its success.

Another advantage of using CP for plan-
ning is that numerous planning decisions with

MARCH/APRIL 2005 www.computer.org/intelligent 65

Once we model a problem, we can employ different search
techniques to extract a solution. The most common is a tree-
based refinement search, which, unlike branch-and-bound (see
the main article), doesn’t apply continuous relaxations. Instead,
it applies at all decision nodes a variety of branch selection, do-
main tightening, and simplification procedures to reduce the
extent of the tree that must be searched.

The first central component of refinement search is variable/
value selection techniques, which select a variable to which a
specific value is assigned and then determine the value itself.
This assignment process is called labeling and iterates until it
has assigned values to all variables. Researchers have proposed
numerous variable and value-ordering heuristics, such as small-
est-domain-first or smallest-value-first.1 Inconsistencies (that is,
when a constraint is violated) trigger backtracking.2

The second central component is propagation or consistency
techniques. After each labeling step, reductions of the other
variables’ domains can be deduced, which might in turn lead
to further domain reductions. For example, we have two vari-
ables A and B with domains of {1 ... 10} and a constraint B > A.
In the case of a labeling of A to 5, the propagation will entail a
domain reduction of B to {6 ... 10}. Generic propagation tech-
niques vary in which detail consequences are considered, trad-
ing off deduction costs against search costs. Examples of prop-
agation techniques are AC-73 and PC-4.4

A special type of constraint is the global constraint. These
higher-level constraints usually provide functionality to perform
highly specialized and very efficient propagations.

A different paradigm to search for solutions is that of local
search, which doesn’t stepwise reduce the variables’ domains
but changes concrete assignments for the variables iteratively.
However, for constraint programming, search techniques based
on local search aren’t popular so far. This might be due to the

traditional logic-programming framework for constraint pro-
gramming. Nevertheless, researchers have proposed many
methods, including the min-conflicts heuristic,5 GENET,6 and
an approach based on global constraints.7

References

1. N. Sadeh and M. Fox, “Variable and Value Ordering Heuristics for
the Job Shop Scheduling Constraint Satisfaction Problem,” Artifi-
cial Intelligence, vol. 86, no.1, 1996, pp. 1–41.

2. G. Kondrak and P. van Beek, “A Theoretical Evaluation of Selected
Backtracking Algorithms,” Artificial Intelligence, vol. 89, nos. 1–2,
1997, pp. 365–387.

3. C. Bessière, E.C. Freuder, and J.-C. Régin, “Using Inference to Reduce
Arc Consistency Computation,” Proc. 14th Int’l Joint Conf. Artificial
Intelligence (IJCAI 95), 1995, pp. 592–598.

4. C. Han and C. Lee, “Comments on Mohr and Henderson’s Path Con-
sistency Algorithm,” Artificial Intelligence, vol. 36, no. 1, 1988, pp.
125–130.

5. S. Minton et al., “Minimizing Conflicts: a Heuristic Repair Method
for Constraint Satisfaction and Scheduling Problems,” Artificial
Intelligence, vol. 58, no. 1–3, 1992, pp. 161–205.

6. A. Davenport et al., “GENET: A Connectionist Architecture for Solv-
ing Constraint Satisfaction Problems by Iterative Improvement,”
Proc. 12th Nat’l Conf. Artificial Intelligence (AAAI 94), AAAI Press,
1994.

7. A. Nareyek, “Using Global Constraints for Local Search,” Constraint
Programming and Large Scale Discrete Optimization, E.C. Freuder and
R.J. Wallace, eds., Amer. Mathematical Soc. Publications, DIMACS, vol.
57, 2001, pp. 9–28.

Constraint Programming Search Techniques

C o n s t r a i n t P r o g r a m m i n g

66 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

discrete alternatives exist, and OR methods’
performance declines sharply as the number
of integer variables in the problem increases.
However, efforts to combine CP with IP are
ongoing.22–24

Constraint-based planners
We adopt a model-based viewpoint here,

defining constraint-based planners by the way
the planning problem is cast—using explicit
constraints. These constraint types aren’t bound
to propositional clauses or linear inequalities.

By contrast, a widely used solution method
for CSPs—propagation techniques—are
sometimes seen as CP’s essential ingredient,
and planners applying this technique in one
form or another are called constraint-based.
From this viewpoint, however, nearly all plan-
ning systems would fall into this category,
because even the procedure of conventional
total-order planners can be interpreted as
excluding infeasible refinements by “propa-
gating” state information.

The first appearance of a system involv-
ing constraints was the MOLGEN planner.25

More recent planners based on this idea
include Descartes,26 parcPLAN,27,28 CPlan,29

the approach of Jussi Rintanen and Hartmut
Jungholt,30 GP-CSP,31 the approach of Eric
Jacopin and Jacques Penon,32 MACBeth,33

the EXCALIBUR agent’s planning system,34

EUROPA,35 CPplan,36 and CSP-PLAN.37

We group constraint-based planners into
three categories. The first one, planning with
constraint posting,

• uses CP for subproblems of planning and
• exhibits limited interaction between CSP

solving and the actual planning process.

The second, planning with maximal graphs,

• constructs a large CSP, involving all pos-
sible planning options up to a specific plan
size,

• exhibits full interaction between value-
and structure-based problem aspects, and

• doesn’t scale well.

The last category, completely capturing
planning within CP,

• expresses the complete planning problem
with the CP framework,

• requires an extended CP framework to cover
different possible graph structures, and

• exhibits full interaction between value-
and structure-based problem aspects.

Planning with constraint posting. This
approach uses CP for planning by posting or
adding (or retracting, in the case of back-
tracking) constraints during a conventional
planning process. It uses constraint satisfac-
tion as an add-on for planning to check the sat-
isfaction of restrictions such as numerical rela-
tions. For example, MOLGEN, MACBeth, and
Eric Jacopin and Jacques Penon’s planning
procedure apply this scheme. A more inte-
grated approach is implemented in the
Descartes and parcPLAN systems, which use
constraint postings not only for numerical val-
ues but also for postponing some action-
choice decisions. In a wider context, systems
such as I-Plan/O-Plan,38–40 IxTeT,41 and
HSTS42 also fall into this category.

Integrating constraint posting into hierar-
chical task network planning43 (sometimes
called decomposition planning) often provides
an alternative to the more conventional means-
and-ends or “first principles” planning. In par-
ticular, HTN planning is useful when planning
problems apply standard operating procedures
(or other well-established process fragments)
rather than the “puzzle mode” planning that
characterizes domains such as the blocks
world. Besides plan generation, HTN systems
also address the problem of modeling domains
in which planning occurs. They make it easy to
understand, control, and communicate tasks,
plans, intentions, and effects between agents.44

They also let users and computer systems
cooperate using a mixed-initiative style.33,40

Finally, HTNs provide a natural way to stipu-
late global constraints on plans, meshing well
with the needs of systems that combine plan-
ning and constraint satisfaction.45

Military small-unit operations, emergency
medical treatment, civilian aviation under
free flight, and some team robotics applica-

tions fit this model. For lack of a better term,
these problems are called tactical planning
problems, and although they apply previ-
ously known procedures, they’re not easy to
solve. Typically, these problems include a
rich and diverse set of constraints from the
application domain, which can strongly
restrict the solution space. These constraints
might be available only through ancillary
black-box problem solvers.

Researchers have used an HTN least-com-
mitment planning approach for many years in
practical planning systems such as NOAH
(Nets of Action Hierarchies),46 Nonlin,12 and
SIPE.47 Two existing planners that combine
HTN planning and constraint satisfaction
techniques are the Artificial Intelligence
Applications Institute’s I-Plan/O-Plan and
Honeywell Laboratories’ MACBeth system.
When HTN planning is joined with a strong
underlying constraint-based ontology of plans,
it can provide a framework for employing
powerful problem solvers based on search and
constraint-reasoning methods while still re-
taining human intelligibility of the overall
planning process and products.

A tactical planner’s main job is to select and
map appropriate procedures or processes onto
different situations. In the process, the planner
must explore and compare multiple options
and let users do the same (see Figure 1). It must
also check ancillary constraints involved and,
where possible, use the information to restrict
the solution space. The human user must be
able to intervene freely during planning, both
to provide heuristic guidance (“I suggest first
trying to fly in formation during the mission’s
ingress phase”) and constraints (“You must fly
over this point”).

HTN planners differ from conventional
first-principles planners in how they generate
subgoals. First-principles planners generate
subgoals to satisfy the preconditions of the
operators they want to execute. For example,
in the blocks world, the desire to stack block A
on block B might cause a first-principles plan-
ner to generate a subgoal to clear block B. Sub-
goaling continues until all the subgoals have
been satisfied by adding operators or by the
initial conditions (in our example, if block B
is already clear in the starting state). On the
other hand, an HTN planner decomposes com-
plex goals into simpler goals, building a tree
(or graph, if we can use operators for more than
one purpose) from the initial complex goals
down to leaves that are all executable primi-
tives. At each level, we can post or add new
constraints to refine the feasibility testing.

Hierarchical task networks provide

a natural way to stipulate global

constraints on plans, meshing well

with the needs of systems that

combine planning and constraint

satisfaction.

For example, an HTN planner for military
air missions might start with a “perform recon-
naissance” top-level goal, whose parameters
indicate which location to survey. Matching this
goal would be a task network (or method) that
would decompose the top-level goal into three
subgoals: “perform ingress,” “overfly objec-
tive,” and “perform egress.” Additional con-
straints would indicate that we need to achieve
the three subgoals in the order listed and that

• the ingress phase should bring the aircraft
to an appropriate staging location,

• the overflying phase should carry the air-
craft from the staging location to over the
target, and

• the egress phase should carry the aircraft
back to the base from the target area.

We could also add constraints for resource use,
perhaps to ensure that the aircraft doesn’t
exceed its fuel allowance or fail to complete its
mission by a given deadline.

HTN planning is particularly suited to
planning with constraints because it makes
it convenient to specify constraints that cover
a plan’s subspaces. For example, it’s trivial
to create a plan for air travel that specifies
that the same airport must be used for depar-
ture and return. This is nontrivial for a con-
ventional STRIPS-style planner, particularly if
the agent’s initial position and desired ending
points aren’t at the airport. Indeed, it’s diffi-
cult to use a conventional STRIPS planner to
create plans where an agent starts in an ini-
tial position (or state), achieves some goal,
and then returns to the initial position (or
state). Again, this is trivial in an HTN plan-
ner. To build such plans, a STRIPS planner
would have to state-encode the constraint in
some way—for example, adding a takeoff_air-
port fluent. This is feasible, of course, but
imagine what happens if you want to take
two flights, or four, or eight, possibly with
multiple agents whose plans are interleaved.

It’s also easy for an HTN planner to rep-

resent resource use over a plan’s sections. For
example, a flight plan operator might have
three sections of the plan, each of which
would have an associated variable for its fuel
use. Overall fuel use would be stipulated to
be the sum of these variables—for example,
FuelUse = IngressFuelUse + OverDestFuel
Use + EgressFuelUse. In turn, the operators
for the flight’s three phases would provide
further fuel use equations. This would make
for efficient constraint propagation even
when planning occurs at arbitrary points in
the chronological sequence. For example, if
a reconnaissance aircraft had to loiter over a
particular destination for a certain amount of
time, the planner might be able to determine
OverDestFuelUse early in the planning
process. The equations specified in the HTN
would make it easy to propagate that con-
straint’s effects over the entire plan. In con-
trast, conventional STRIPS-style planners have
difficulty reasoning about such resources
except from plan prefixes or suffixes. The

MARCH/APRIL 2005 www.computer.org/intelligent 67

Figure 1. Interaction with the O-Plan system. A Web interface allows for the generation of multiple options for a plan. Other
screens show the domain model in use and graphical and text-based tree views of a plan.

HTN planner’s expressive advantage could
translate into greater search efficiency by
allowing planning and constraint solving
more freedom to apply most-constrained-
first sorts of heuristics.

HTN planning is a promising domain for
the application of constraint-posting tech-
niques because its expressive power makes
it easy to specify global constraints and make
them available to constraint solvers.

Planning with maximal graphs. In contrast
to the approach discussed in the previous sec-
tion—in which constraints were stepwise
posted or added depending on the current plan
refinement state—the techniques described
here require posting all the domain’s con-
straints at once. Similar to SAT and IP
approaches, a restricted planning problem is
encoded as conditional CSP (formerly called
“dynamic” CSP,48 but since what many peo-
ple understand as a dynamic CSP is different,
we use the term “conditional” here). The CSP
is constructed such that it includes all possi-
ble plans up to a certain number of actions.
The solving process can activate or deactivate
the CSP’s actions and related subparts, which
can be interpreted as SAT’s true and false val-
ues for the ground actions or fluents (0 or 1
values for IP). More compact representations
are also possible. We say such approaches are
based on maximal graphs and structures,
because they require constructing a represen-
tation that encompasses all possible options.

Planning systems such as Jussi Rintanen
and Hartmut Jungholt’s system, CPlan, GP-
CSP, CPplan, and CSP-PLAN follow this
line. The advantage of constructing a struc-
ture with all possibilities is that we can easily
propagate decisions throughout the whole
CSP and can eliminate future decision options
that become infeasible. For planning prob-
lems, we don’t know the optimal size (for
example, the number of actions) in advance,
so the solving process must perform a step-
wise extension of the CSP structures if we
can’t find a solution. Similar to SAT and IP
formulations, which we can also classify as
approaches based on maximal graphs, maxi-
mal structures can soon result in an unman-
ageable CSP size if the planning problem is
slightly larger than simple toy problems.

Following the approach of maximal
graphs, a CP variation on the formulations
discussed earlier (in the IP section) could
define fewer Do variables but with larger
domains, taking members of the set of
actions (rather than 0 or 1) as their values:

Do[t] = the action performed at time step t

Also, a CP model can directly express log-
ical conditions, such as set membership and
equivalence, that would have to be translated
to numerical inequalities for IP. For exam-
ple, suppose we write ADD[f] and PRE[f] for the
subsets of actions that add fluent f and that
have fluent f as a prerequisite, respectively.
Then, the three IP constraints that relate the
Add and Do variables for holding block B at
time step 3 can be subsumed by one more
straightforward and general constraint:

Add[‘holding_B’,3]
<=> Do[3] in ADD[‘holding_B’]
& Do[3] not in PRE[‘holding_B’]

Many modeling languages for CP, such
as OPL (Optimization Programming Lan-
guage),49 can conveniently express these
constraints. Consider again the relation-
ship between the Add and Do variables. We
can write the entire collection of con-
straints that enforce this relationship, for
all combinations of fluents and time steps,
in OPL as

forall (f in FLU, t in 1..T)
Add[f,t] <=> Do[t] in ADD[f]
& Do[t] not in PRE[f];

For the best results when actually solving
this CSP, the search should focus on the Do
variables, because they effectively define all
the others. However, someone familiar with
the model might have to explicitly convey
this information to the solver.

Completely capturing planning within
constraint programming. Approaches that use
maximal graphs might be suitable if the prob-

lem is small and only requires a finite number
of variables (having NP complexity). As the
complexity of planning problems increases,
representation becomes difficult or impossible
(this is also true for SAT and IP approaches).
Such computational limitations arise, for
example, in the simplest forms of planning
with uncertainty and incomplete information,
conformant and conditional planning. These
are complete problems for the complexity
class , even when restricted to plans of
polynomial size, and there appears to be no
natural way of restricting these problems to
force them to NP. For example, probabilistic
planning with the same plan size restriction is
complete for NPPP. This means we can’t gen-
erate CSP representations for these problems
in polynomial time.

For many simple cases, if the maximal-
graph approach applies, the CSP graph size,
even when polynomial, might not be practi-
cal. This is because even a linear increase in
the number of variables in the representation
might translate to an exponential increase in
the time needed to solve the problem. Even
more frustrating, the stepwise necessary
graph-structure extension phases (if no plan
was found for the current CSP structure)
imply a given exploration path of the prob-
lem space. This doesn’t fit with the general
idea of CP, which is that we shouldn’t mix a
problem specification with search control
(which is one reason why CP approaches are
so easily adapted and widely applicable).

The main problem for approaches that try
to completely capture planning within CP is
that the CP paradigm must somehow be
extended such that the CSP graph can change
dynamically instead of being built a priori.
Earlier, we presented an approach that built
the CSP graph stepwise through external
planning. However, only a subproblem of
planning is covered within CP, separating
value- and structure-based problem aspects.
In another approach,34 an extended CP
framework is used to seamlessly integrate the
satisfaction and optimization of both aspects.

This approach doesn’t create the CSP
structure in advance to cover all possible
plans. Structural constraints, which represent
restrictions on the possible constraint graphs,
are defined, and the search then includes the
search for a correct constraint graph as part
of optimization. The search can seamlessly
interleave the satisfaction or optimization of
variables’ values and graph structure, and
search can freely move around in the full
planning problem’s search space. In addition,

Σ2
p

C o n s t r a i n t P r o g r a m m i n g

HTN planning is a promising domain

for the application of constraint-

posting techniques because its

expressive power makes it easy to

specify global constraints and make

them available to constraint solvers.

68 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

the approach lets us drop the closed-world
assumption (that is, we’re no longer restricted
to handle only a predefined number of objects
in the world). The approach was developed
for the EXCALIBUR agent’s planning system,
which uses a local-search approach to solve
such problems.

A structural constraint can, for example,
test the relation that a state-change task, which
is a collection of variables representing an
event to change a specific property’s state, is
always connected to exactly one action con-
straint. An action constraint ensures that con-
nected precondition, operation, and state-
change tasks form a valid action. If this
structural constraint holds for all state-change
tasks in a constraint graph (and potential other
structural constraints hold as well), the graph
is structurally consistent (see Figure 2a). Fig-
ure 2b shows a part of a constraint graph that’s
structurally inconsistent because the state-
change task of adding 100 units of money at
time 692 isn’t part of an action—that is, it isn’t
connected to an action constraint as required
by the structural constraint.

The inconsistency resolution (and opti-
mization) of the EXCALIBUR planning system’s
local-search-based approach changes not only
variable values but also the constraint graph.
For example, a state resource constraint,
which projects a specific property’s state over
time and checks if related precondition tasks
are fulfilled, might add a new state-change
task to the constraint graph to resolve an
unsatisfied precondition. The previously
described structural constraint will conse-
quently be unsatisfied because the new state-
change task isn’t connected to any action con-
straint (as in Figure 2b). The search might
then add a new action constraint to regain
structural consistency.

Jeremy Frank and Ari Jónsson have pre-
sented a similar approach in the direction of
completely capturing planning within CP.35

Their approach is less general and focuses more
on specific interval elements than general struc-
tural constraints. They define compatibilities,
which represent implicative relations among
interval elements and make it possible to re-
quire further intervals and constraints in spe-
cific situations.

Future directions
Constraint techniques have great potential

for AI planning. One of the reasons is that
using more general modeling techniques for
planning makes integrating additional prob-
lem aspects easier.

Feature integration
Constraint-based methods’ principal ad-

vantage lies in their generality—but this is
also their principal disadvantage. We can
introduce many kinds of additional require-
ments into the AI planning problem, such as
in the case of IP, by simply adding linear
inequalities to an integer program and reap-
plying the general branch-and-bound solver.
Comparable additions to specialized plan-
ning systems tend to necessitate more sub-
stantial changes.

An example of incorporating additional
problem aspects is the area of integrating
planning with resource and scheduling fea-
tures. Complex numerical and logical rela-
tions make adding such features in conven-
tional planning systems difficult. In contrast,
many of the previously mentioned planning
systems based on constraint handling already
offer it. They often profit from the enormous
body of scheduling and resource research that
has already been done in the IP and CP com-
munities, and solvers’ open nature enables
easy integration. An overview of related solv-
ing techniques appears elsewhere.50

Another interesting direction is the syn-
thesis of constraint-based and first-order
planning technology. Researchers have
developed a large body of research based on
turning first-order logic into a practical pro-
gramming tool. GOLOG and its successors

pushed the expressive power of logic-based
planning and control languages.51 While
retaining the formal semantics of the situa-
tion calculus, GOLOG has come to include
partial knowledge, sensing actions, condi-
tionals, iteration, interrupts, and other con-
structs. Recently, researchers have added
the ability to handle quantitative proba-
bilistic information and decision-theoretic
control.52

GOLOG’s greater expressive power comes
at a computational cost: although it includes
nondeterministic choice operators, it must
use those operators with great care to avoid
a combinatorial explosion. GOLOG’s infer-
ence engine is simple Prolog-style chrono-
logical backtracking, but in practice the
GOLOG user must write a nearly determinis-
tic logic program. In short, GOLOG excels at
representing open-ended domains and ex-
pressing explicit control knowledge about
planning, while many constraint-based ap-
proaches excel at combinatorial search in
large state spaces.

A promising future research direction is
therefore to develop a synthesis of constraint-
based and first-order planning. One approach
might build upon the insight that at a high-
enough level of abstraction, many planning
domains are essentially propositional. We
could use algorithms based on Graphplan53

and satisfiability testing to search candidate

MARCH/APRIL 2005 www.computer.org/intelligent 69

Action Constraint

:1:1State-Change Task

692

+100

Action Constraint

Contribution

Temporal reference

State Resource Constraint

State-Change Task

Money

Resource type

Resource type

(b)

(a)

State-Change Task

Figure 2. Extending the constraint-programming framework by structural constraints:
(a) A structural constraint. The constraint applies at any part of the graph where the
left side matches and is fulfilled if the right side matches then as well (the right side’s
dark area describes a “negative” match—that is, exactly one action constraint is
required to be connected to the state-change task). (b) A partial view of a structurally
inconsistent constraint graph. The structural constraint in (a) matches the state-
change task but doesn’t find a connected action constraint.

abstract plans’ large state spaces. We could
then use first-order-logic programming and
decision-theoretic techniques to expand the
abstract plans to executable specifications.

A complementary approach to synthesiz-
ing the two would be to build on Matthew
Ginsberg’s suggestion that the role of “com-
monsense knowledge” is to transform a real-
world problem instance into a small propo-
sitional core that a brute-force search could
solve.54 The planner would use a rich set of
first-order problem reformulation rules to
identify relevant objects and operators and
abstract away irrelevant parts of the problem
statement. The instantiation of the relevant
pieces creates the propositional core.

In either case, the goal is the same: to har-
ness the raw computational power of con-
straint-based-reasoning engines with the
expressive power of first-order-logic pro-
gramming, thus expanding the range and size
of planning problems that we can efficiently
solve.

Moving back to the application level,
dozens of features exist that are worth inte-
grating into planning, ranging from resource
handling to configuration and design. Using
general constraint technology makes such
integration easy—and not just for major
extensions such as resource reasoning. As
planning moves into applications, many peo-
ple will realize that every real-world prob-
lem is slightly different and will almost
always require changing the engine and mak-
ing additions. This in turn will promote the
use of planning approaches that are based on
general solvers rather than highly specialized
planning systems.

Extending constraints research
Motivated by planning needs, constraints

research will explore many new areas. One
new technique for advanced planning features
is interactivity—planning customers might
want to work interactively with their planning
systems. Work on dynamic constraint satis-
faction,55 which addresses changing problems,
can support the corresponding evolving envi-
ronment. Work on generating explanations of
constraint reasoning,56 illuminating its success
and failure, can support iterative evolution
toward an acceptable alternative. Work on con-
straint-solving advice can help the user
respond to opportunities and difficulties.

Another area is impreciseness. Many plan-
ning problems involve unknown or impre-
cise information. Work on partial, soft, and
overconstrained constraint satisfaction,57–59

which expresses preferences and uncertainty,
can provide a richer language to express
these planning needs. Important starting
points might include stochastic constraint
satisfaction,60 which lets us handle variables
that follow some probability distributions,
and approaches such as structural constraint
satisfaction34 that let us drop the closed-
world assumption.

Distribution is also important. Planning
customers might want to cooperate with other
customers in joint planning operations. Plan-
ning can proceed in groups and through soft-
ware agent representatives. The planning
problems or the solution process can be dis-
tributed. Increasingly, customers will want to
plan over the Internet and through wireless

communication. Work on distributed con-
straint satisfaction61 and on constraints and
agents can support cooperative planning.

Finally, ease of use will be important because
planning customers will want software that
nonspecialists can use. Work on automating
constraint modeling and synthesizing constraint
solving will be useful here. Ease of use is desir-
able on a large scale, where the broader rele-
vance of constraint satisfaction methods can
assist in enterprise integration, from design
through manufacturing, marketing, distribu-
tion, and maintenance. Ease of use is also desir-
able on a small scale, where personal planners
can embody an understanding of their users in
the form of constraints.

We hope we were able to shed some
light on the interplay of constraints

and planning. We also hope we’ve increased
awareness of constraint-based methods in the
planning community and of the action-plan-

ning domain in the communities of con-
straint-based search. Bringing both together
has great potential, scientifically as well as
from an applications viewpoint, and we
encourage increased interaction between the
two communities.

Acknowledgments
We thank the reviewers, editors, and Kate Larson

and Vincent Conitzer for their many suggestions.
Many research sponsors and organizations sup-

port the work described in this article. The authors
and their sponsors are authorized to reproduce and
distribute reprints for their purposes notwith-
standing any copyright annotation hereon. The
views and conclusions contained in this article
should not be interpreted as views of the research
sponsors or organizations involved.

References

1. J. Allen, J. Hendler, and A. Tate, eds., Read-
ings in Planning, Morgan Kaufmann, 1990.

2. R. Dechter, I. Meiri, and J. Pearl, “Temporal
Constraint Networks,” Artificial Intelligence,
vol. 49, nos. 1–3, 1991, pp. 61–95.

3. C. Gomes, B. Selman, and H. Kautz, “Boost-
ing Combinatorial Search through Random-
ization,” Proc. 15th Nat’l Conf. Artificial
Intelligence (AAAI 98), AAAI Press, 1998,
pp. 431–437.

4. M. Moskewicz et al., “Chaff: Engineering an
Efficient SAT Solver,” Proc. 38th Design
Automation Conf. (DAC 01), IEEE CS Press,
2001, pp. 667–672.

5. M. Davis and H. Putnam, “A Computation
Procedure for Quantification Theory,” J.
ACM, vol. 7, no. 3, 1960, pp. 201–215.

6. B. Selman, H. Levesque, and D. Mitchell, “A
New Method for Solving Hard Satisfiability
Problems,” Proc. 10th Nat’l Conf. Artificial
Intelligence (AAAI 92), AAAI Press, 1992,
pp. 440–446.

7. D. Schuurmans and F. Southey, “Local Search
Characteristics of Incomplete SAT Proce-
dures,” Proc. 17th Nat’l Conf. Artificial Intel-
ligence (AAAI 00), AAAI Press, 2000, pp.
297–302.

8. H. Kautz and B. Selman, “Planning as Satis-
fiability,” Proc. 19th European Conf. Artifi-
cial Intelligence (ECAI 92), Wiley, 1992, pp.
359–363.

C o n s t r a i n t P r o g r a m m i n g

As planning moves into

applications, many people will

realize that every real-world

problem is slightly different and will

almost always require changing the

engine and making additions.

70 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

9. R.E. Fikes and N. Nilsson, “STRIPS: A New
Approach to the Application of Theorem
Proving to Problem Solving,” Artificial Intel-
ligence, vol. 5, no. 2, 1971, pp. 189–208.

10. H. Kautz and B. Selman, “Pushing the Enve-
lope: Planning, Propositional Logic, and Sto-
chastic Search,” Proc. 13th Nat’l Conf. Arti-
ficial Intelligence (AAAI 96), AAAI Press,
1996, pp. 1194–1201.

11. A. Biere et al., “Symbolic Model Checking
without BDDs,” Proc. 5th Int’l Conf. Tools
and Algorithms for the Analysis and Con-
struction of Systems (TACAS 99), LNCS
1579, Springer-Verlag,1999, pp. 193–207.

12. A. Tate, “Generating Project Networks,” Proc.
5th Int’l Joint Conf. Artificial Intelligence
(IJCAI 77), Morgan Kaufmann, 1977, pp.
888–893.

13. J.S. Penberthy and D.S. Weld, “Temporal
Planning with Continuous Change,” Proc.
12th Nat’l Conf. Artificial Intelligence (AAAI
94), AAAI Press, 1994, pp. 1010–1015.

14. L.A. Wolsey, Integer Programming, John
Wiley, 1998.

15. T. Vossen et al., “Applying Integer Program-
ming to AI Planning,” Knowledge Eng. Rev.,
vol. 16, no. 1, 2001, pp. 85–100.

16. H. Kautz and B. Selman, “Blackbox: A New
Approach to the Application of Theorem
Proving to Problem Solving,” Working Notes
of the AIPS-98 Workshop on Planning as
Combinatorial Search, 1998, pp. 58–60.

17. S.A. Wolfman and D.S. Weld, “The LPSAT
Engine & Its Application to Resource Plan-
ning,” Proc. 16th Int’l Joint Conf. Artificial
Intelligence (IJCAI 99), 1999, pp. 310–316.

18. J. Bisschop and A. Meeraus, “On the Devel-
opment of a General Algebraic Modeling Sys-
tem in a Strategic Planning Environment,”
Mathematical Programming Study, no. 20,
1982, pp. 1–29.

19. R. Fourer, “Modeling Languages versus
Matrix Generators for Linear Programming,”
ACM Trans. Mathematical Software, no. 9,
1983, pp. 143–183.

20. C.A.C. Kuip, “Algebraic Languages for Math-
ematical Programming,” European J. Opera-
tional Research, vol. 67, no. 1, 1993, pp. 25–51.

21. R. Fourer, D.M. Gay, and B.W. Kernighan,
AMPL: A Modeling Language for Mathe-
matical Programming, 2nd ed., Thomson
Brooks/Cole, 2003.

22. M. Milano et al., “The Benefits of Global
Constraints for the Integration of Constraint
Programming and Integer Programming,”
Working Notes AAAI-2000 Workshop Inte-
gration of AI and OR Techniques for Combi-
natorial Optimization, 2000.

23. J. Hooker et al., “A Scheme for Unifying
Optimization and Constraint Satisfaction
Methods,” Knowledge Eng. Rev., vol. 15, no.
1, 2000, pp. 11–30.

24. P. Refalo, “Tight Cooperation and Its Appli-
cation in Piecewise Linear Optimization,”
Proc. 5th Int’l Conf. Principles and Practice
of Constraint Programming (CP 99), 1999,
pp. 375–389.

25. M.J. Stefik, “Planning with Constraints
(MOLGEN: Part 1),” Artificial Intelligence,
vol. 16, no. 2, 1981, pp. 111–140.

26. D. Joslin, Passive and Active Decision Post-
ponement in Plan Generation, doctoral dis-
sertation, Univ. of Pittsburgh, 1996.

27. J.M. Lever and B. Richards, “parcPLAN: A
Planning Architecture with Parallel Action,
Resources and Constraints,” Proc. 9th Int’l
Symp. Methodologies for Intelligent Systems
(ISMIS 94), 1994, pp. 213–222.

28. V. Liatsos, Scaleability in Planning with Lim-
ited Resources, doctoral dissertation, IC-Parc,
Imperial College, 2000.

29. P. Van Beek and X. Chen, “CPlan: A Con-
straint Programming Approach to Planning,”
Proc. 16th Nat’l Conf. Artificial Intelligence
(AAAI 99), AAAI Press, 1999, pp. 585–590.

30. J. Rintanen and H. Jungholt, “Numeric State
Variables in Constraint-Based Planning,”
Proc. 5th European Conf. Planning (ECP
99), 1999, pp. 109–121.

31. B. Do and S. Kambhampati, “Solving Plan-
ning Graph by Compiling it into a CSP,” Proc.
5th Int’l Conf. Artificial Intelligence Planning
and Scheduling (AIPS 2000), 2000, pp. 82–91.

32. É. Jacopin and J. Penon, “On the Path from
Classical Planning to Arithmetic Constraint
Satisfaction,” Papers from the AAAI-2000
Workshop on Constraints and AI Planning,
tech. report WS-00-02,AAAI Press, 2000, pp.
18–24.

33. R.P. Goldman et al., “MACBeth: A Multi-
Agent Constraint-Based Planner,” Papers
from the AAAI-2000 Workshop on Constraints
and AI Planning, tech. report WS-00-02,
AAAI Press, 2000, pp. 11–17.

34. A. Nareyek, Constraint-Based Agents—An
Architecture for Constraint-Based Modeling
and Local-Search-Based Reasoning for Plan-
ning and Scheduling in Open and Dynamic
Worlds, LNAI 2062, Springer-Verlag, 2001.

35. J. Frank and A. Jónsson, “Constraint-Based
Attribute and Interval Planning,” Constraints,
vol. 8, no. 4, 2003, pp. 339–364.

36. N. Hyafil and F. Bacchus, “Conformant Prob-
abilistic Planning via CSPs,” Proc. 13th Int’l
Conf. Automated Planning and Scheduling
(ICAPS 03), 2003, pp. 205–214.

37. A. Lopez and F. Bacchus, “Generalizing
GraphPlan by Formulating Planning as a
CSP,” Proc. 18th Int’l Joint Conf. Artificial
Intelligence (IJCAI 03), 2003, pp. 954–960.

38. K. Currie and A. Tate, “O-Plan: The Open
Planning Architecture,” Artificial Intelligence,
vol. 52, no. 1, 1991, pp. 49–86.

39. A. Tate, B. Drabble, and R. Kirby, “O-Plan2:
An Open Architecture for Command, Plan-
ning, and Control,” Intelligent Scheduling, M.
Zweben and M.S. Fox, eds., Morgan Kauf-
mann, 1994, pp. 213–239.

40. A. Tate et al., “Using AI Planning Technol-
ogy for Army Small Unit Operations,” Poster
Paper in Proc. 5th Int’l Conf. Artificial Intel-
ligence Planning and Scheduling (AIPS
2000), 2000, pp. 379–386.

41. P. Laborie and M. Ghallab, “Planning with
Sharable Resource Constraints,” Proc. 14th
Int’l Joint Conf. Artificial Intelligence (IJCAI
95), 1995, pp. 1643–1649.

42. N. Muscettola, “HSTS: Integrating Planning
and Scheduling,” Intelligent Scheduling, M.
Zweben and M.S. Fox, eds., Morgan Kauf-
mann, 1994, pp. 169–212.

43. K. Erol, J. Hendler, and D.S. Nau, “UMCP: A
Sound and Complete Procedure for Hierar-
chical Task Network Planning,” Proc. 2nd
Int’l Conf. AI Planning Systems (AIPS 94),
1994, pp. 249–254.

44. M. Paolucci, O. Shehory, and K. Sycara,
“Interleaving Planning and Execution in a
Multiagent Team Planning Environment,”
Electronic Trans. Artificial Intelligence, sec-
tion A, no. 4, 2000, pp. 23–43; www.ep.liu.
se/ej/etai/2000/003.

45. K. Erol, J. Hendler, and D.S. Nau, “HTN Plan-
ning: Complexity and Expressivity,” Proc.
12th Nat’l Conf. Artificial Intelligence (AAAI
94), AAAI Press, 1994, pp. 1123–1128.

46. E.D. Sacerdoti, “The Nonlinear Nature of
Plans,” Proc. 4th Int’l Joint Conf. Artificial
Intelligence (IJCAI 75), Morgan Kaufmann,
1975, pp. 206–214.

47. D. Wilkins, Practical Planning: Extending
the Classical AI Planning Paradigm, Morgan
Kaufmann, 1988.

48. S. Mittal and B. Falkenhainer, “Dynamic
Constraint Satisfaction Problems,” Proc. 8th
Nat’l Conf. Artificial Intelligence (AAAI 90),
AAAI Press, 1990, pp. 25–32.

49. P. Van Hentenryck, The OPL Optimization
Programming Language, MIT Press, 1999.

50. P. Laborie, “Algorithms for Propagating
Resource Constraints in AI Planning and
Scheduling: Existing Approaches and New
Results,” Proc. 6th European Conf. Planning
(ECP 01), 2001.

MARCH/APRIL 2005 www.computer.org/intelligent 71

51. H.J. Levesque etl al, “GOLOG: A Logic Pro-
gramming Language for Dynamic Domains,”
J. Logic Programming, vol. 31, nos. 1–3,
1997, pp. 59–83.

52. C. Boutilier et al., “Decision-Theoretic, High-
Level Agent Programming in the Situation
Calculus,” Proc. 17th Nat’l Conf. Artificial
Intelligence (AAAI 00), AAAI Press, 2000,
pp. 355–362.

53. A.L. Blum and M.L. Furst, “Fast Planning
Through Planning Graph Analysis,” Artificial
Intelligence, vol. 90, nos. 1–2, 1997, pp.
281–300.

54. M.L. Ginsberg, “Do Computers Need Com-
mon Sense?” Proc. 5th Int’l Conf. Principles
of Knowledge Representation and Reasoning
(KR 96), 1996, pp. 620–626.

55. G. Verfaillie and T. Schiex, “Solution Reuse
in Dynamic Constraint Satisfaction Prob-
lems,” Proc. 12th Nat’l Conf. Artificial Intel-
ligence (AAAI 94), AAAI Press, 1994, pp.
307–312.

56. M.H. Sqalli and E.C. Freuder, “Inference-
Based Constraint Satisfaction Supports
Explanation,” Proc. 13th Nat’l Conf. Artifi-
cial Intelligence (AAAI 96), AAAI Press,
1996, pp. 318–325.

57. E.C. Freuder and R.J. Wallace, “Partial Con-
straint Satisfaction,” Artificial Intelligence,
vol. 58, nos. 1–3, 1992, pp. 21–70.

58. Z. Ruttkay, “Fuzzy Constraint Satisfaction,”
Proc. 3rd IEEE Int’l Conf. Fuzzy Systems,
1994, pp. 1263–1268.

59. S. Bistarelli et al., “Semiring-Based CSPs and
Valued CSPs: Frameworks, Properties, and
Comparison,” Constraints, vol. 4, no. 3, 1999,
pp. 199–240.

60. T. Walsh, “Stochastic Constraint Program-
ming,” Proc. 15th European Conf. Artificial
Intelligence (ECAI 02), 2002, pp. 111–115.

61. M. Yokoo, Distributed Constraint Satisfac-
tion—Foundations of Cooperation in Multi-
agent Systems, Springer-Verlag, 2001.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

C o n s t r a i n t P r o g r a m m i n g

72 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e A u t h o r s
Alexander Nareyek is responsible for matters regarding artificial intelligence
for the International Game Developers Association. He’s also chairperson of the
IGDA’s Artificial Intelligence Interface Standards Committee. His main
research interests include the enhancement of planning and constraint pro-
gramming techniques with real-world features such as real time and dynamics.
His primary application area is computer games. He received his PhD from the
Technical University of Berlin. Contact him at alex@ai-center.com; www.
ai-center.com/home/alex.

Robert Fourer is a professor of industrial engineering and management sci-
ences at Northwestern University and is codirector of the Northwestern/Argonne
Optimization Technology Center. His research focuses on large-scale opti-
mization and the design of software tools for optimization, including the mod-
eling language AMPL and the NEOS Server. Contact him at the Dept. of Indus-
trial Eng. and Management Sciences, Northwestern Univ., 2145 Sheridan Rd.,
Room C210, Evanston, IL 60208-3119; 4er@iems.northwestern.edu.

Eugene C. Freuder is a research professor and a Science Foundation Ireland
Fellow at University College Cork, where he’s the director of the Cork Con-
straint Computation Centre. His research interests include constraint-based
reasoning and its applications. He received his PhD in computer science from
MIT. He’s a fellow of the AAAI and of the European Coordinating Com-
mittee for Artificial Intelligence. Contact him at the Cork Constraint Com-
putation Centre, Univ. College Cork, Cork, Ireland; e.freuder@4c.ucc.ie.

Enrico Giunchiglia is an associate professor in the Department of Com-
munication, Computer and System Sciences of the University of Genova. His
main research interests are knowledge representation, planning, formal ver-
ification, and automated reasoning. He received his PhD in computer engi-
neering from the University of Genova. He’s a member of the AAAI and Arti-
ficial Intelligence Applications Institute. Contact him at DIST, Università di
Genova, viale Causa 13, 16145 Genova (GE), Italy; giunchiglia@unige.it.

Robert P. Goldman is a senior scientist at Smart Information Flow Technolo-
gies, LLC. His research focuses on planning, particularly the boundary between
planning and control theory, and on reasoning and action under uncertainty. He
has worked on the constraint-based planner Macbeth and the CIRCA system for
real-time controller synthesis. He received his PhD in computer science from
Brown University. He’s a member of the IEEE and AAAI. Contact him at Smart
Information Flow Technologies, 211 N. First St., Suite 300, Minneapolis, MN
55401; rpgoldman@sift.info.

Henry Kautz is an associate professor in the Department of Computer Sci-
ence and Engineering at the University of Washington. He’s a fellow of the
AAAI. Contact him at the Dept. of Computer Science & Eng., Sieg Hall,
Room 417, Box 352350, Univ. of Washington, Seattle, WA 98195-2350;
kautz@cs.washington.edu.

Jussi Rintanen is a research assistant and assistant professor at the Albert-Lud-
wigs-University Freiburg. His research interests include automated reasoning and
planning, especially reasoning in propositional logics and logic-based approaches
to different forms of planning, ranging from the classical deterministic planning
problem to planning under partial observability. He received his PhD from the
Helsinki University of Technology. Contact him at Albert-Ludwigs-Universität
Freiburg, Institut für Informatik,AG KI, Georges-Köhler-Allee, 79110, Freiburg
im Breisgau, Germany; rintanen@informatik.uni-freiburg.de.

Austin Tate is the technical director of the Artificial Intelligence Applications
Institute and holds the Personal Chair of Knowledge-Based Systems at the
University of Edinburgh. Contact him at AIAI, University of Edinburgh,
Appleton Tower, Crichton St., Edinburgh EH8 9LE, UK; a.tate@ed.ac.uk.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

