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 The promise of driverless cars and so� ware that 
teaches itself new skills has sparked a revival 

of arti
 cial intelligence—and, with it, fears that 
our machines may one day turn against us 

AI 
SPECIAL 
REPORT 
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CO M PU T E R  SC I E N C E

I N  B R I E F

Aàïifi�cia¨�i´ïy¨¨i�y´cy�started aå a fi eld 
of serious study in the mid-1950s. At 
the time, investigators expected to 
emulate human intelligen`e Āithin the 
span of an academic career. 

�¹Èys�Āyày�mas�ym�Āhen it Ue`ame 
`lear that the algorithmå and `omput�
ing poĀer of that period Āere åimplĂ 
not up to the task. Some skeptics even 
Ārote o�  the endeaÿor aå pure huUriåÎ 

A� àyÿiÿa¨� ï¹¹§� È¨acy during the past 
feĀ Ăearå aå åoftĀare patterned roughlĂ 
after netĀor§å of neuronå in the Urain 
demonåtrated that ��Ýå earlĂ promiåe 
might Ăet Ue realiĆedÎ

�yyÈ�¨yaà´i´�—a technique that uses 
`ompleā neural netĀor§å�haå the 
aUilitĂ to learn aUåtra`t ̀ on`eptå and al�
readĂ approa`heå human�leÿel perfor�
mance on some tasks. 

M ACHINES
W HO  L EARN

 A� er decades of 
disappointment, arti� cial 
intelligence is � nally 
catching up to its early 
promise, thanks to 
a powerful technique 
called deep learning 

By Yoshua Bengio 

OMPUTERS GENERATED A GREAT DEAL 
of excitement in the 1950s when 
they began to beat humans at 
checkers and to prove math theo-
rems. In the 1960s the hope grew 
that scientists might soon be able 
to replicate the human brain in 
hardware and software and that 
“artifi cial intelligence” would soon 
match human performance on any 
task. In 1967 Marvin Minsky of the 

Massachusetts Institute of Technology, who died earlier this year, pro-
claimed that the challenge of AI would be solved within a generation.
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That optimism, of course, turned out to be premature. Soft-
ware designed to help physicians make better diagnoses and 
networks modeled after the human brain for recognizing the 
contents of photographs failed to live up to their initial hype. 
The algorithms of those early years lacked sophistication and 
needed more data than were available at the time. Computer 
processing was also too tepid to power machines that could 
perform the massive calculations needed to approximate some-
thing approaching the intricacies of human thought. 

By the mid-2000s the dream of building machines with hu-
man-level intelligence had almost disappeared in the scientifi c 
community. At the time, even the term “AI” seemed to leave the 
domain of serious science. Scientists and writers describe the 
dashed hopes of the period from the 1970s until the mid-2000s 
as a series of “AI winters.” 

What a di� erence a decade makes. Beginning in 2005, AI’s 
outlook changed spectacularly. That was when deep learning, 
an approach to building intelligent machines that drew inspi-
ration from brain science, began to come into its own. In recent 
years deep learning has become a singular force propelling AI 
research forward. Major information technology companies 
are now pouring billions of dollars into its development.

Deep learning refers to the simulation of networks of neu-
rons that gradually “learn” to recognize images, understand 
speech or even make decisions on their own. The technique re-
lies on so-called artifi cial neural networks—a core element of 
current AI research. Artifi cial neural networks do not mimic 
precisely how actual neurons work. Instead they are based on 
general mathematical principles that allow them to learn from 
examples to recognize people or objects in a photograph or to 
translate the world’s major languages. 

The technology of deep learning has transformed AI re-
search, reviving lost ambitions for computer vision, speech rec-
ognition, natural-language processing and robotics. The fi rst 
products rolled out in 2012 for understanding speech—you may 
be familiar with Google Now. And shortly afterward came ap-
plications for identifying the contents of an image, a feature 
now incorporated into the Google Photos search engine. 

Anyone frustrated by clunky automated telephone menus 
can appreciate the dramatic advantages of using a better per-
sonal assistant on a smartphone. And for those who remember 
how poor object recognition was just a few years ago—software 
that might mistake an inanimate object for an animal—strides 
in computer vision have been incredible: we now have comput-
ers that, under certain conditions, can recognize a cat, a rock 
or faces in images almost as well as humans. AI software, in 
fact, has now become a familiar fi xture in the lives of millions 
of smartphone users. Personally, I rarely type messages any-
more. I often just speak to my phone, and sometimes it even 
answers back. 

These advances have suddenly opened the door to further 
commercialization of the technology, and the excitement only 
continues to grow. Companies compete fi ercely for talent, and 
Ph.D.s specializing in deep learning are a rare commodity that is 
in extremely high demand. Many university professors with ex-
pertise in this area—by some counts, the majority—have been 
pulled from academia to industry and furnished with well-ap-
pointed research facilities and ample compensation packages. 

Working through the challenges of deep learning has led to 

stunning successes. The triumph of a neural network over 
top-ranked player Lee Se-dol at the game of Go received prom-
inent headlines. Applications are already expanding to encom-
pass other fi elds of human expertise—and it is not all games. 
A newly developed deep-learning algorithm is purported to di-
agnose heart failure from magnetic resonance imaging as well 
as a cardiologist. 

INTELLIGENCE, KNOWLEDGE AND LEARNING
WHY DID AI HIT  so many roadblocks in previous decades? The 
reason is that most of the knowledge we have of the world 
around us is not formalized in written language as a set of ex-
plicit tasks—a necessity for writing any computer program. 
That is why we have not been able to directly program a com-
puter to do many of the things that we humans do so easily—be 
it understanding speech, images or language or driving a car. 
Attempts to do so—organizing sets of facts in elaborate data-
bases to imbue computers with a facsimile of intelligence—
have met with scant success.

That is where deep learning comes in. It is part of the broader 
AI discipline known as machine learning, which is based on prin-
ciples used to train intelligent computing systems—and to ulti-
mately let machines teach themselves. One of these tenets relates 
to what a human or machine considers a “good” decision. For an-
imals, evolutionary principles dictate decisions should be made 
that lead to behaviors that optimize chances of survival and re-
production. In human societies, a good decision might include 
social interactions that bring status or a sense of well-being. For a 
machine, such as a self-driving car, though, the quality of decision 
making depends on how closely the autonomous vehicle imitates 
the behaviors of competent human drivers. 

The knowledge needed to make a good decision in a particu-
lar context is not necessarily obvious in a way that can be trans-
lated into computer code. A mouse, for instance, has knowl-
edge of its surroundings and an innate sense of where to sni�  
and how to move its legs, fi nd food or mates, and avoid preda-
tors. No programmer would be capable of specifying a step-by-
step set of instructions to produce these behaviors. Yet that 
knowledge is encoded in the rodent’s brain. 

Before creating computers that can train themselves, com-
puter scientists needed to answer such fundamental questions 
as how humans acquire knowledge. Some knowledge is innate, 
but most is learned from experience. What we know intuitively 
cannot be turned into a clear sequence of steps for a computer 
to execute but can often be learned from examples and prac-
tice. Since the 1950s researchers have looked for and tried to re-
fi ne general principles that allow animals or humans—or even 
machines, for that matter—to acquire knowledge through ex-
perience. Machine learning aims to establish procedures, called 
learning algorithms, that allow a machine to learn from exam-
ples presented to it. 

Yoshua Bengio  is a professor of computer science at the 
University of Montreal and one of the pioneers in developing 
the deep-learning methods that have sparked the current 
reèièal of artifi cial intelligence»  

University of Montreal and one of the pioneers in developing 
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The science of machine learning is largely experimental be-
cause no universal learning algorithm exists—none can enable 
the computer to learn every task it is given well. Any knowl-
edge-acquisition algorithm needs to be tested on learning tasks 
and data specifi c to the situation at hand, whether it is recog-
nizing a sunset or translating English into Urdu. There is no 
way to prove that it will be consistently better across the board 
for any given situation than all other algorithms. 

AI researchers have fashioned a formal mathematical de-
scription of this principle—the “no free lunch” theorem—that 
demonstrates that no algorithm exists to address every real-
world learning situation. Yet human behavior apparently con-
tradicts this theorem. We appear to hold in our head fairly gen-
eral learning abilities that allow us to master a multitude of 
tasks for which evolution did not prepare our ancestors: play-
ing chess, building bridges or doing research in AI. 

These capabilities suggest that human intelligence exploits 

general assumptions about the world that might serve as inspi-
ration for creating machines with a form of general intelli-
gence. For just this reason, developers of artifi cial neural net-
works have adopted the brain as a rough model for designing 
intelligent systems. 

The brain’s main units of computation are cells called neu-
rons. Each neuron sends a signal to other neurons through 
tiny gaps between the cells known as synaptic clefts. The 
propensity of a neuron to send a signal across the gap —and the 
amplitude of that signal—is referred to as synaptic strength. As 
a neuron “learns,” its synaptic strength grows, and it is more 
likely, when stimulated by an electrical impulse, to send mes-
sages along to its neighbors.

Brain science infl uenced the emergence of artifi cial neural 
networks that used software or hardware to create virtual neu-
rons. Early researchers in this subfi eld of AI, known as connec-
tionism, postulated that neural networks would be able to learn 
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Brainy Networks That Only Get Smarter
 Connections from one neuron  to the next in the brain’s cortex 
have inspired the creation of algorithms that mimic these intri-
cate links. A neural network can be trained to recognize a face 
by fi rst tra�n�n� on `ountless �­a�esÍ 'n`e �t has ÙlearnedÚ to 
categorize a face (versus a hand, for instance) and to detect indi-
vidual faces, the network uses that knowledge to identify 
faces it has seen before, even if the image of the person is slightly 
d�� erent �ro­ the one �t was tra�ned onÍ 

To recognize a face, the network sets about the task of analyz-
ing the individual pixels of an image presented to it at the input 
layer. Then, at the next layer, it chooses geometric shapes distinc-
tive to a particular face. Moving up the hierarchy, a middle layer 
detects eyes, a mouth and other features before a composite full-
face image is discerned at a higher layer. At the output layer, the 
networ¦ ­a¦es a Ù�uessÚ about whether the �a`e �s that o�  oe  or 
rather that of Chris or Lee.    

M AC H I N E  L E A R N I N G

A neural network 
getting to know faces 
( above ) trains itself on 
perhaps millions of 
examples before it can 
pick out an individual face 
from a crowd or a 
cluttered landscape.

Input of a face into the 
network is analyzed at 
each layer before the 
network guesses correctly 
about its identity. 

Learning

Recognition
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complex tasks by gradually altering the connections among 
neurons, so that patterns of neural activity would capture the 
content of its input, such as an image or a snippet of dialogue. 
As these networks would receive more examples, the learning 
process would continue by changing synaptic strengths among 
the connected neurons to achieve more accurate representa-
tions of, say, images of a sunset. 

LESSONS ABOUT SUNSETS
THE CURRENT GENERATION  of neural networks extends the pioneer-
ing work of connectionism. The networks gradually change 
numerical values for each synaptic connection, values rep-
resenting the strength of that connection and thus how likely a 
neuron is to transmit a signal along to another neuron. An al -
gorithm used by deep-learning networks changes these values 
ever so slightly each time it observes a new image. The values 
inch steadily closer toward ones that allow 
the neural network to make better predic-
tions about the image’s content. 

For best results, current learning algo-
rithms require close involvement by a human. 
Most of these algorithms use supervised 
learning in which each training example is 
accompanied by a human-crafted label about 
what is being learned—a picture of a sunset, 
say, is associated with a caption that says 
“sun  set.” In this instance, the goal of the 
supervised learning algorithm is to take a 
photograph as the input and produce, as an 
output, the name of a key object in the image. 
The mathematical process of transforming an 
input to an output is called a  function. The 
numerical values, such as synaptic strengths, 
that produce this function correspond to a 
solution to the learning task. 

Learning by rote to produce correct answers would be easy 
but somewhat useless. We want to teach the algorithm what a 
sunset is but then to have it recognize an image of any sunset, 
even one it has not been trained on. The ability to discern any 
sunset—in other words, to generalize learning beyond specific 
examples—is the main goal of any machine-learning algorithm. 
In fact, the quality of training of any network is evaluated by 
testing it using examples not previously seen. The di�culty of 
generalizing correctly to a new example arises because there is 
an almost infinite set of possible variations that still corre-
spond to any category, such as a sunset. 

To succeed in generalizing from having observed a multi-
tude of examples, the learning algorithm used in deep-learn-
ing networks needs more than just the examples themselves.  
It also relies on hypotheses about the data and assumptions 
about what a possible solution to a particular problem might 
be. A typical hypothesis built into the software might postu-
late that if data inputs for a particular function are similar, 
the outputs should not radically change—altering a few pixels  
in an image of a cat should not usually transform the animal 
into a dog. 

One type of neural network that incorporates hypotheses 
about images is called a convolutional neural network; it has be-
come a key technology that has fueled the revival of AI. Convolu-

tional neural networks used in deep learning have many layers 
of neurons organized in such a way as to make the output less 
sensitive to the main object in an image changing, such as when  
its position is moved slightly—a well-trained network may be 
able to recognize a face from di�erent angles in separate photo-
graphs. The design of a convolutional network draws its inspira-
tion from the multilayered structure of the visual cortex—the 
part of our brain that receives input from the eyes. The many 
layers of virtual neurons in a convolutional neural network are 
what makes a network “deep” and thus better able to learn about 
the world around it. 

GOING DEEP
ON A PRACTICAL LEVEL , the advances that enabled deep learning 
came from specific innovations that emerged about 10 years 
ago, when interest in AI and neural networks had reached its 

lowest point in decades. A Canadian organization funded by 
the government and private donors, the Canadian Institute for 
Advanced Research (CIFAR), helped to rekindle the flame by 
sponsoring a program led by Geo�rey Hinton of the University 
of Toronto. The program also included Yann LeCun of New 
York University, Andrew Ng of Stanford University, Bruno Ol-
shausen of the University of California, Berkeley, me and sever-
al others. Back then, negative attitudes toward this line of re-
search made it di�cult to publish and even to convince gradu-
ate students to work in this area, but a few of us had the strong 
sense that it was important to move ahead.

Skepticism about neural networks at that time stemmed, in 
part, from the belief that training them was hopeless because 
of the challenges involved in optimizing how they behave. 
 Optimization is a branch of mathematics that tries to find the 
configuration of a set of parameters to reach a mathematical 
objective. The parameters, in this case, are called synaptic weights 
and represent how strong a signal is being sent from one neu-
ron to another.

The objective is to make predictions with the minimum 
number of errors. When the relation between parameters and 
an objective is simple enough—more precisely when the objec-
tive is a convex function of the parameters—the parameters can 
be gradually adjusted. This continues until they get as close as 

Watch a video of Bengio talking about deep learning at  3cientific�mericanÎcomë¦un÷ĈÀêëaiSCIENTIFIC AMERICAN ONLINE  

The strong comeback for AI 
after a long and extended 
hiatus provides a lesson  
in the sociology of science, 
underscoring the need to put 
forward ideas that challenge 
the technological status quo.
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possible to the values that produce the best possible choice, 
known as a global minimum—which corresponds to the lowest 
possible average prediction error made by the network.

In general, however, training a neural network is not so sim-
ple—and requires what is called a nonconvex optimization. This 
type of optimization poses a much greater challenge—and many 
researchers believed that the hurdle was insurmountable. The 
learning algorithm can get stuck in what is called a local mini-
mum, in which it is unable to reduce the prediction error of the 
neural network by adjusting parameters slightly. 

Only in the past year was the myth dispelled that neural net-
works were hard to train because of local minima. We found in 
our research that when a neural network is su�ciently large, 
the local minima problem is greatly reduced. Most local mini-
ma actually correspond to having learned knowledge at a level 
that almost matches the optimal value of the global minimum.

Although the theoretical problems of optimization could, in 
theory, be solved, building large networks with more than two 
or three layers had often failed. Beginning in 2005, CIFAR-sup-
ported e�orts achieved breakthroughs that overcame these 
barriers. In 2006 we managed to train deeper neural networks, 
using a technique that proceeded layer by layer. 

Later, in 2011, we found a better way to train even deeper 
networks—ones with more layers of virtual neurons—by alter-
ing the computations performed by each of these processing 
units, making them more like what biological neurons actually 
compute. We also discovered that injecting random noise into 
the signals transmitted among neurons during training, simi-
lar to what happens in the brain, made them better able to 
learn to correctly identify an image or sound. 

Two crucial factors aided the success of deep-learning tech-
niques. An immediate 10-fold increase in computing speed, 
thanks to the graphics-processing units initially designed for 
video games, al  lowed larger networks to be trained in a reason-
able amount of time. Also fueling deep learning’s growth was 
the availability of huge labeled data sets for which a learning al-
gorithm can identify the correct answer—“cat,” for ex  ample, 
when inspecting an image in which a cat is just one element. 

Another reason for deep learning’s recent success is its abil-
ity to learn to perform a sequence of computations that con-
struct or analyze, step by step, an image, a sound or other data. 
The depth of the network is the number of such steps. Many 
visual- or auditory-recognition tasks in which AI excels require 
the many layers of a deep network. In recent theoretical and 
experimental studies, in fact, we have shown that carrying out 
some of these mathematical operations cannot be accom-
plished e�ciently without su�ciently deep networks. 

Each layer in a deep neural network transforms its input 
and produces an output that is sent to the next layer. The net-
work represents more abstract concepts at its deeper layers 
[ see box on page 49 ], which are more remote from the initial 
raw sensory input. Experiments show that artificial neurons in 
deeper layers in the network tend to correspond to more ab-
stract semantic concepts: a visual object such as a desk, for in-
stance. Recognition of the image of the desk might emerge 
from the processing of neurons at a deeper layer even though 
the concept of “desk” was not among the category labels on 
which the network was trained. And the concept of a desk 
might itself only be an intermediate step toward creating a still 

more abstract concept at a still higher layer that might be cate-
gorized by the network as an “o�ce scene.” 

BEYOND PATTERN RECOGNITION
UNTIL RECENTLY,  artificial neural networks distinguished them-
selves in large part for their ability to carry out tasks such as 
recognizing patterns in static images. But another type of neu-
ral network is also making its mark—specifically, for events 
that unfold over time. Recurrent neural networks have demon-
strated the capacity to correctly perform a sequence of compu-
tations, typically for speech, video and other data. Sequential 
data are made up of units—whether a phoneme or a whole 
word—that follow one another sequentially. The way recurrent 
neural networks process their inputs bears a  resemblance to 
how the brain works. Signals that course among neurons 
change constantly as inputs from the senses are processed. 
This internal neural state changes in a way that depends on the 
current input to the brain from its surroundings before issuing 
a sequence of commands that result in body movements direct-
ed at achieving a specific goal. 

Recurrent networks can predict what the next word in a sen-
tence will be, and this can be used to generate new sequences of 
words, one at a time. They can also take on more sophisticated 
tasks. After “reading” all the words in a sentence, the network 
can guess at the meaning of the entire sentence. A separate re-
current network can then use the semantic processing of the 
first network to translate the sentence into another language. 

Research on recurrent neural networks had its own lull in 
the late 1990s and early 2000s. My theoretical work suggested 
that they would run into di�culty learning to retrieve informa-
tion from the far past—the earliest elements in the sequence 
being processed. Think of trying to recite the words from the 
first sentences of a book verbatim when you have just reached 
the last page. But several advances have lessened some of these 
problems by enabling such networks to learn to store informa-
tion so that it persists for an extended time. The neural net-
works can use a computer’s temporary memory to process mul-
tiple, dispersed pieces of information, such as ideas contained 
in di�erent sentences spread across a document.

The strong comeback for deep neural networks after the 
long AI winter is not just a technological triumph. It also pro-
vides a lesson in the sociology of science. In particular, it un-
derscores the need to support ideas that challenge the techno-
logical status quo and to encourage a diverse research portfolio 
that backs disciplines that temporarily fall out of favor. 

M O R E  T O  E X P L O RE

�®a�y%yï��¨assificaïi¹´�Āiï���yyÈ��¹´ÿ¹¨ùïi¹´a¨�%yùàa¨�%yïĀ¹à§sÎ��Alex 
Krizhevsky et al. Presented at the 26th Annual Conference on Neural Information 
Processing Systems (NIPS 2012), Stateline, Nev., December 3-8, 2012. 

2yÈàysy´ïaïi¹´�"yaà´i´�i�A�2yÿiyĀ�a´m�%yĀ�PyàsÈycïiÿysÎ��Y. Bengio et al. in  
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 8, pages 
1798–1828; August 2013. 

�yyÈ�"yaà´i´�Î��Yann LeCun et al.  in Nature,  Vol. 521, pages 436–444; May 28, 2015.

F R O M  O U R  ARCHI V ES

=�y´��¹®Èùïyàs�3ùàÈass�7sÎ��Christof Koch; Consciousness Redux,  Scientific Ameri-
can Mind,  September/October 2015.
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They are coming, but not the way 
you may have been led to think 

By Steven E. Shladover
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All these simple, everyday encounters for human drivers pose 
enormous problems for computers that will take time, money 
and e� ort to solve. Yet much of the public is becoming convinced 
that fully automated vehicles are just around the corner. 

What created this disconnect? Part of the problem is termi-
nology. The popular media applies the descriptors “autono-
mous,” “driverless” and “self-driving” indiscriminately to tech-
nologies that are very di� erent from one another, blurring 
im  portant distinctions. And the automotive industry has not 
helped clarify matters. Marketers working for vehicle manufac-
turers, equipment suppliers and technology companies careful-
ly compose publicity materials to support a wide range of inter-
pretations about the amount of driving their products auto-
mate. Journalists who cover the fi eld have an incentive to adopt 
the most optimistic forecasts—they are simply more exciting. 
The result of this feedback loop is a spiral of increasingly unre-
alistic expectations. 

This confusion is unfortunate because automated driving is 

coming, and it could save lives, reduce pollution and conserve 
fuel. But it will not happen in quite the way you have been told.  

DEFINING AUTOMATED DRIVING
DRIVING IS A MUCH MORE COMPLEX ACTIVITY  than most people ap -
preciate. It involves a broad range of skills and actions, some of 
which are easier to automate than others. Maintaining speed on 
an open road is simple, which is why conventional cruise-con-
trol systems have been doing it automatically for decades. As 
technology has advanced, engineers have been able to automate 
additional driving subtasks. Widely available adaptive cruise-
control systems now maintain proper speed and spacing behind 
other vehicles. Lane-keeping systems, such as those in new 
models from Mercedes-Benz and Infi niti, use cameras, sensors 
and steering control to keep a vehicle centered in its lane. Cars 
are pretty smart these days. Yet it is an enormous leap from such 
systems to fully automated driving.

A fi ve-level taxonomy defi ned by SAE International (formerly 

OON ELECTRONIC CHAUFFEURS WILL TAKE US WHEREVER WE WANT 
to go, whenever we want, in complete safety—as long as 
we do not need to make any left turns across tra«  c. Chang-
ing road surfaces are a problem, too. So are snow and ice. 
It will be crucial to avoid tra«  c cops, crossing guards and 
emergency vehicles. And in an urban environment where 
pedestrians are likely to run out in front of the car, we 
should probably just walk or take the subway. 

I N  B R I E F

The auto industry  and the press have oversold the 
automated car. Simple road encounters pose huge 
`hallengeå for `omputerå, and roUoti` `hau� eurå re�
main decades away . 

Automated driving systems  that rely on humans for 
backup are particularly problematic. Yet in the next 
de`ade Āe Āill åee automati`�driÿing åĂåtemå that are 
limited to åpe`ifi ` ̀ onditionå and appli`ationåÎ 

Automatic parking valets,  loĀ�åpeed `ampuå åhut�
tleå, ̀ loåelĂ åpa`ed platoonå of heaÿĂ tru`§å and auto�
mati` freeĀaĂ�`ontrol åĂåtemå for uåe in dedi`ated 
lanes are all feasible and perhaps inevitable.

Steven E. Shladover  helped to create the California Partners 
for Advanced Transportation Technology (PATH) program at the 
Institute of Transportation Studies at the University of California, 
Berkeley, in the 1980s. He is a mechanical engineer by training, 
with bachelor’s, master’s and doctoral degrees from the 
Massachusetts Institute of Technology. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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the Society of Automotive Engineers) is useful for clarifying our 
thinking about automated driving. The fi rst three rungs on this 
ladder of increasing automation (excluding level zero, for no auto-
mation) are occupied by technologies that rely on humans for 
emergency backup. Adaptive cruise control, lane-keeping systems, 
and the like belong to level one. Level-two systems combine the 
functions of level-one technologies—the lateral and longitudinal 

controls of lane-keeping and adaptive cruise-control systems, for 
example—to automate more complex driving tasks. This is as far 
as commercially available vehicle automation goes today. Level-
three systems would allow drivers to turn on autopilot in specifi c 
scenarios, such as freeway tra�  c jams.

The next two levels are profoundly di� erent in that they op -
erate entirely without human assistance. Level-four (high-auto-

0
No 

Automation

1
Driver 

Assistance

2
Partial 

Automation

3
Conditional 
Automation

4
High 

Automation

5
Full 

Automation

 Illustrations by Nigel Holmes (icons)
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The Ladder of Automation
The automotive industry and the media  have made a mess of the 
terminology used to talk about automated driverless systems. The 
terms “autonomous,” “driverless” and “self-driving” obscure more 
than they illuminate. To clear things up, SAE International wrote 
defi n�t�onsj ÇaraÇhrased herej �or d�� erent leþels o� auto­at�on and 

arranged them on a ladder of decreasing reliance on the driver. 
The hierarchy reveals some surprises. For example, level-four auto-
­at�on �s Çotent�ally ­ore tra`table than leþel threeÍ "eþel�fi þe 
auto­ated syste­s�ele`tron�` `hau� eurs that `an handle any 
driving condition with no human input—are decades away. 

TA XO N O M Y 

Human Driver Monitors Environment System Monitors Environment

The absence of any 
assistive features 
such as adaptive 
cruise control. 

Systems that help 
drivers maintain 
speed or stay in 
lane but leave the 
driver in control. 

The combination 
of automatic speed 
and steering con-
trol—for example, 
cruise control and 
lane keeping.

Automated sys-
tems that drive and 
monitor the envi-
ronment but rely 
on a human driver 
for backup. 

Automated systems 
that do every-
thing—  no human 
backup required—
but only in limited 
circumstances. 

The true electronic 
chau� euri retains 
full vehicle control, 
needs no human 
backup and drives 
in all conditions. 

Who steers, 
accelerates 
and 
decelerates

Who monitors 
the driving 
environment

Who takes 
control when 
something 
goes wrong

How much 
driving, 
overall, is 
assisted or 
automated

Human driver 
and system

System

Some driving 
modes

Some driving 
modes

System

System

System System

System System

Some driving 
modes

Some driving 
modes

System System

All driving modes

Human driver

Human driver Human driver Human driver

Human driver Human driver Human driver Human driver

None
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mation) systems would handle all driving subtasks, 
but they would operate only in strictly defined sce-
narios—in en  closed parking garages, for example, 
or in dedicated lanes on the freeway. At the top of 
the ladder is level five—the fully automated car. Pre-
sumably, this is what many people have in mind 
when they hear someone such as Nissan CEO Carlos 
Ghosn confidently proclaim that automated cars 
will be on the road by 2020. 

The truth is that no one expects level-five automa-
tion systems to be on the market by then. In all likeli-
hood, they are a long way o�. Level-three systems 
might be just as remote. But level four? Look for it 
within the next decade. To understand this confusing 
state of a�airs, we have to talk about software. 

SOFTWARE NIGHTMARE
DESPITE THE POPULAR PERCEPTION,  human drivers are re -
markably capable of avoiding serious crashes. Based 
on the total U.S. tra�c safety statistics for 2011, fatal crashes 
occurred about once for every 3.3 million hours of driving; crash-
es that resulted in injury happened approximately once for every 
64,000 hours of driving. These numbers set an important safety 
target for automated driving systems, which should, at mini-
mum, be no less safe than human drivers. Reaching this level of 
reliability will require vastly more development than automation 
enthusiasts want to admit.

Think about how often your laptop freezes up. If that software 
were responsible for driving a car, the “blue screen of death” 
would become more than a figure of speech. A delayed software 
response of as little as one tenth of a second is likely to be hazard-
ous in tra�c. Software for automated driving must therefore be 
designed and developed to dramatically di�erent standards from 
anything currently found in consumer devices.

Achieving these standards will be profoundly di�cult and re -
quire basic breakthroughs in software engineering and signal pro-
cessing. Engineers need new methods for de  signing software that 
can be proved correct and safe even in complex and rapidly chang-
ing conditions. Formal methods for analyzing every possible fail-
ure mode for a piece of code before it is written exist—think of 
them as mathematical proofs for computer programs—but only 
for very simple applications. Scientists are only beginning to think 
about how to scale up these kinds of tests to validate the incredi-
bly complex code required to control a fully automated vehicle. 

Once that code has been written, software engineers will need 
new methods for debugging and verifying it. Existing methods 
are too cumbersome and costly for the job. To put this in perspec-
tive, consider that half of the cost of a new commercial or military 
aircraft goes toward software verification and validation. The 
software on aircraft is actually much  less  complex than what will 
be needed for automated road vehicles. An engineer can design 
an aircraft autopilot system knowing that it will rarely, if ever, 
have to deal with more than one or two other aircraft in its vicini-
ty. It does not need to know the velocity and location of those air-
craft with incredible precision, because they are far enough apart 
that they have time to act. Decisions must be made on the order 
of tens of seconds. An automated road vehicle will have to track 
dozens of other vehicles and obstacles and make decisions with-
in fractions of a second. The code required will be orders of 

magnitude more complex than what it takes to fly an airplane. 
Once the code is validated, manufacturers will need ways to 

“prove” the safety of a complete automated driving system to 
the satisfaction of company risk-management o�cers, insur-
ance firms, safety advocates, regulators and, of course, potential 
customers. The kind of formal “acceptance tests” used today are 
completely impractical for this purpose. Testers would have to 
put hundreds of millions, if not billions, of miles on a vehicle to 
ensure that they have subjected it in a statistically significant 
way to the dangerous scenarios it will encounter when it is regu-
larly used by thousands of customers. People have started to 
think about solutions to this problem—the German government 
and industry have launched a multimillion-dollar project with 
that goal—but those e�orts have just begun.

The code that will control the vehicle—the brain, so to speak—
is not the only thing that must be subjected to scrutiny. The sen-
sors that provide that brain with the data it will use to make de -
cisions must be subjected to equal scrutiny. Engineers must de -
velop new sensor-signal processing and data-fusion algorithms 
that can discriminate between benign and hazardous ob  jects in a 
vehicle’s path with nearly zero false negatives (hazardous objects 

 To watch a talk by Shladover, go to  3cientific�mericanÎcomë¦un÷ĈÀêëcarsSCIENTIFIC AMERICAN ONLINE  

NEXT YEAR  <̧ §v¸ �ars ÿi§§ fie§d�test ¿ćć ve�i`§es eÔøipped ÿit� 
syste­s t�at aøt¸­ate driving ̧ n spe`ia§ stret`�es ̧ f freeÿay É 1 and 
2 ÊÍ <̧ §v¸s �ave a§s¸ been øsed in �øŗ pean ŗ ad�train tests É 3).
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that were not identified) and extremely low false positives (be -
nign objects that were misclassified, leading to in  ap propriate re -
sponses from vehicles, such as swerving or hard braking).

Engineers cannot resort to the kind of brute-force redundan-
cy used in commercial aircraft systems to achieve these goals be  -
cause an automated car is a consumer product: it must be af -
fordable for the general public. Turning to artificial intelligence 
is not an obvious solution, either. Some people have suggested 
that machine-learning systems could enable automated driving 
systems to study millions of hours of driving data and then learn 
throughout the course of their life cycle. But ma chine learning 
introduces its own problems because it is nondeterministic. 
Two identical vehicles can roll o� the assembly line, but after a 
year of encountering di�erent tra�c situations, their automa-
tion systems will behave very di�erently.

LEVEL-FOUR FUTURE
I USED TO TELL PEOPLE  that level-five fully automated driving sys-
tems would not become feasible until after 2040. Somewhere 
along the way people started quoting me as saying level five 
would arrive  in  2040. Now I say that fully automated vehicles 
capable of driving in every situation will not be here until 2075. 
Could it happen sooner than that? Certainly. But not by much. 

The prospects for level-three automation are clouded, too, 
because of the very real problem of recapturing the attention, in 
an emergency, of a driver who has zoned out while watching the 
scenery go by or, worse, who has fallen asleep. I have heard repre-
sentatives from some automakers say that this is such a hard prob-
lem that they simply will not attempt level three. Outside of tra�c-
jam assistants that take over in stop-and-go tra�c, where speeds 
are so low that a worst-case collision would be a fender bender, it 
is conceivable that level-three automation will never happen. 

And yet we will see highly automated cars soon, probably 
within the coming decade. Nearly every big automaker and many 
information technology companies are devoting serious resourc-
es to level-four automation: fully automated driving, restricted to 
specific environments, that does not rely on a fallible human for 
backup. When you limit the situations in which automated vehi-
cle systems must operate, you greatly increase their feasibility. 
(Automated people movers have been operating in big airports 
for years—but they are on totally segregated tracks.) 

In all probability, the next 10 years will bring automated 
valet-parking systems that will allow drivers to drop their cars at 

the entrance of a suitably equipped garage that excludes pedes-
trians and nonautomated vehicles. An onboard automation sys-
tem will communicate with sensors placed throughout the 
garage to find out which parking spots are available and navigate 
to them. Because there will be no need to open the doors, park-
ing spaces can be narrower than they are today, so more cars will 
be able to fit in garages in areas where space is expensive. 

In urban pedestrian zones, business parks, university cam-
puses and other places where high-speed vehicles can be ex-
cluded, low-speed passenger shuttles will operate without driv-
ers. In such environments, limited-capability sensors should be 
adequate to detect pedestrians and bicyclists, and if a sensor 
detects a false positive and brakes unnecessarily, it will not 
harm anyone (although it will annoy the people in the vehicle). 
The CityMobil2 project of the European Commission has been 
demonstrating such technologies for several years, and its final 
demonstration is scheduled for this summer.

Segregated bus ways and truck-only lanes will soon enable com-
mercial vehicles to operate at higher levels of automation. Physical-
ly segregating these vehicles from other users will greatly simplify 
threat detection and response systems. Eventually driverless trucks 
and buses will be able to follow a human-driven lead vehicle in fuel-
saving platoons. Researchers worldwide, including the California 
Partners for Advanced Transportation Technology (PATH) pro-
gram at the University of California, Berkeley, Japan’s Energy ITS 
project, and the KONVOI and SARTRE projects in Europe, have 
already tested prototype bus- and truck-platoon systems. 

Yet the most widespread implementation of level-four automa-
tion within the next decade will probably be automated freeway 
systems for personal passenger vehicles. These systems will per-
mit automobiles to drive themselves under certain conditions on 
designated sections of freeway. The vehicles will have redundant 
components and subsystems so that if something goes wrong, 
they can “limp home” without human guidance. They will proba-
bly be restricted to fair weather on stretches of freeway that have 
been mapped in detail, down to the signage and lane markings. 
These sections of road might even have “safe harbor” locations 
where vehicles can go when they have problems. Most major vehi-
cle manufacturers are hard at work developing these systems, and 
next year Volvo Cars plans to conduct a public field test of such 
capabilities with 100 prototype vehicles in Gothenburg, Sweden.

These scenarios might not sound as futuristic as having your 
own personal electronic chau�eur, but they have the benefit of 
being possible—even inevitable—and soon. 

M O R E  T O  E X P L O RE

Technical Challenges for Fully Automated Driving Systems.  Steven Shladover.  
Presented at the 21st World Congress on Intelligent Transport Systems, Detroit, 
Mich., September 7–11, 2014.

Towards Road Transport Automation: Opportunities in Public-Private Collaboration. 
 Summary of the Third EU-U.S. Transportation Research Symposium, Washington, D.C., 
April 14–15, 2015. National Academies of Sciences, Engineering, and Medicine, 2015.

3ummarĂ of definitionå for 3�� �nternationalÝå ÷ĈÀ� report  Taxonomy and Definitions 
for Terms Related to On-Road Motor Vehicle Automated Driving Systems:   
 www.sae.org/misc/pdfs/automated_driving.pdf
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T IS HARD TO ESCAPE THE NAGGING SUSPICION THAT CREATING MACHINES 
smarter than ourselves  might  be a problem. After all, if gorillas had 
accidentally created humans way back when, the now endangered 
primates probably would be wishing they had not done so. But  why, 
 specifi cally, is advanced artifi cial intelligence a problem? 

Hollywood’s theory that spontaneously evil machine con-
sciousness will drive armies of killer robots is just silly. The real 
problem relates to the possibility that AI may become incredibly 
good at achieving something other than what we really want. In 
1960 legendary mathematician Norbert Wiener, who founded 
the fi eld of cybernetics, put it this way: “If we use, to achieve our 
purposes, a mechanical agency with whose operation we cannot 
e�  ciently interfere. . . , we had better be quite sure that the pur-
pose put into the machine is the purpose which we really desire.” 

A machine with a specifi c purpose has another property, one 
that we usually associate with living things: a wish to preserve its 
own existence. For the machine, this trait is not innate, nor is it 
something introduced by humans; it is a logical consequence of 
the simple fact that the machine cannot achieve its original pur-
pose if it is dead. So if we send out a robot with the sole directive 

of fetching co¢ ee, it will have a strong incentive to ensure success 
by disabling its own o¢  switch or even exterminating anyone 
who might interfere with its mission. If we are not careful, then, 
we could face a kind of global chess match against very deter-
mined, superintelligent machines whose objectives confl ict with 
our own, with the real world as the chessboard.

The prospect of entering into and losing such a match should 
concentrate the minds of computer scientists. Some researchers 
argue that we can seal the machines inside a kind of fi rewall, us-
ing them to answer di�  cult questions but never allowing them 
to a¢ ect the real world. (Of course, this means giving up on su-
perintelligent robots!) Unfortunately, that plan seems unlikely to 
work: we have yet to invent a fi rewall that is secure against ordi-
nary humans, let alone superintelligent machines.

Can we instead tackle Wiener’s warning head-on? Can we de-

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Stuart Russell  is a professor of computer 
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and an eāpert on artifi `ial intelligen`eÎ
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If we’re not careful, we could � nd ourselves 
at odds with determined, intelligent machines 
whose objectives con� ict with our own 

By Stuart Russell
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sign AI systems whose goals do not confl ict with ours so that we 
are sure to be happy with the way they behave? This is far from 
easy—after all, stories with a genie and three wishes often end 
with a third wish to undo the fi rst two—but I believe it is possible if 
we follow three core principles in designing intelligent systems:

 The machine’s purpose must be to maximize the realiza-
tion of human values.  In particular, the machine has no 
purpose of its own and no innate desire to protect itself.

The machine must be initially uncertain about what those 
human values are.  This turns out to be crucial, and in a 
way it sidesteps Wiener’s problem. The machine may learn 
more about human values as it goes along, of course, but it 
may never achieve complete certainty.

 The machine must be able to learn about human values by 
observing the choices that we humans make. 

The fi rst two principles may seem counterintuitive, but to-
gether they avoid the problem of a robot having a strong incen-
tive to disable its own o�  switch. The robot is sure it wants to 

maximize human values, but it also does not 
know exactly what those are. Now the robot 
actually  benefi ts  from being switched o�  be-
cause it understands that the human will 
press the o�  switch to prevent the robot 
from doing something counter to human 
values. Thus, the robot has a positive incen-
tive to keep the o�  switch intact—and this 
incentive derives directly from its uncer-
tainty about human values.

The third principle borrows from a sub-
discipline of AI called inverse reinforcement 
learning (IRL), which is specifi cally con-
cerned with learning the values of some enti-
ty—whether a human, canine or cockroach—
by observing its behavior. By watching a typi-
cal human’s morning routine, the robot 
learns about the value of co� ee to humans. 
The fi eld is in its infancy, but already some 
practical algorithms exist that demonstrate 
its potential in designing smart machines.

As IRL evolves, it must fi nd ways to cope 
with the fact that humans are irrational, in-
consistent and weak-willed and have limited 
computational powers, so their actions do 
not always refl ect their values. Also, humans 
exhibit diverse sets of values, which means 
that robots must be sensitive to potential 
confl icts and trade-o� s among people. And 
some humans are just plain evil and should 
be neither helped nor emulated.

Despite these di�  culties, I believe it will be 
possible for machines to learn enough about 
human values that they will not pose a threat 
to our species. Besides directly observing hu-
man behavior, machines will be aided by hav-
ing access to vast amounts of written and 
fi lmed information about people doing things 

(and others reacting). Designing algorithms that can understand 
this information is much easier than designing superintelligent 
machines. Also, there are strong economic incentives for robots—
and their makers—to understand and acknowledge human val-
ues: if one poorly designed domestic robot cooks the cat for dinner, 
not realizing that its sentimental value outweighs its nutritional 
value, the domestic robot industry will be out of business.

Solving the safety problem well enough to move forward in AI 
seems to be feasible but not easy. There are probably decades in 
which to plan for the arrival of superintelligent machines. But the 
problem should not be dismissed out of hand, as it has been by 
some AI researchers. Some argue that humans and machines can 
coexist as long as they work in teams—yet that is not feasible un-
less machines share the goals of humans. Others say we can just 
“switch them o� ” as if superintelligent machines are too stupid to 
think of that possibility. Still others think that superintelligent AI 
will never happen. On September 11, 1933, renowned physicist 
Ernest Rutherford stated, with utter confi dence, “Anyone who 
expects a source of power in the transformation of these atoms is 
talking moonshine.” On September 12, 1933, physicist Leo Szilard 
invented the neutron-induced nuclear chain reaction.  
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