Formal Languages: Review

Alphabet: a finite set of symbols S={a,b}
String: a finite sequence of symbols ababbaab
Language: a set of strings L={a,aa,aaa,...}
String length: number of symbols in it |abal=3
String concatenation: w,w, ab-ba=abba
Empty string: € or A VW W.g = gW =W
Language concatenation: {1,2}{a,aa,...}

L,L={w,w, |w,eL,, w,eL,}  ={la2a laa2aa,. . .}
String exponentiation: wk = ww...w (k times) a’=aaa

Language exponentiation: Lk=LL...L (k times) {0,1}*
LL=1L2  LksLLkl L0={g}



Formal Languages: Review

e String reversal: wR (aabc)R=cbaa
 Language reversal: LR={wR | wel} {ab,cd}*={ba,dc}
« Kleeneclosure: L" =LV LU Ll?2ulLduU.. {a}"
L*=Llul?cul3uU L. {a}"
Theorem: L*=LL"
» Trivial language: {c} {e}-L=L{e}=L
. Empty language: @ @"={e}
. All finite strings: & LcX* VL {a,aa,aaa,...}
Theorem: X* is countable, |Z¥] = |Z| dovetailing
Theorem: 2% is uncountable. diagonalization

neorem: X" contains no infinite strings.  finite strings in >
neorem: (L¥)" =L~ L"c(L")" & (L*)"cL”




Finite Automata: Review

Basic idea: a FA is a “machine” that changes states
while processing symbols, one at a time.

Finite set of states: Q =409, Ay, 3, «-r Ui}

Transition function:  6: OxX — O
 Initial state: Qo € Q
- Final states: FcQ

- Finite automaton is M=(Q, Z, 5, q,, F)

Ex: an FA that accepts all odd-length strings of zeros:

@ M=({0d,.01}, {0}, {((90.0).,q,), ((91,0),00)}, o, {011)



Finite Automata: Review

FA operation: consume a string weX” one symbol at a time
while changing states

Acceptance: end up In a final state
Rejection: anything else (including hang-up / crash)
Ex: FA that accepts all strings of form abababab...= (ab)”

But M “crashes” on input string “abba”!
| Solution: add dead-end state to fully specify M

M =({0 1.0}, {a.b}, {((00:2).00). ((Gub).q0)
((00,0),92), ((ay,b).0,). ((92.2),9,), ((d2,0).9) } do, {A0})



Finite Automata: Review
Transition function 6 extends from symbols to strings:
0:0xE*F—0) 6(0g,Wx) = 6(6(0,W),X)

where 6(0;,€) = ¢,
Language of M is L(M)={weX*| 6(q,,w) F}
Definition: language Is regular Iff it is accepted by some FA.
Theorem: Complementation preserves regularity.

Proof: Invert final and non-final states in fully specified FA.
L(M)=(ab)" - o
L(M’)= b(a+b)" + (a+b)'a” e, "

+ (a+b)*(aa+bb)(a+h)” ““’

M’ “simulates” M and
does the opposite!



Problem: design a DFA that accepts all strings over
{a,b} where any a’s precede any b’s.

ldea: skip over any contiguous a’s, then skip over
any b’s, and then accept iff the end 1s reached.

a b a,b

Q: What is the complement of L?

L = a*b*




Problem: what i1s the complement of L = a*b™* ?
. write a regular expression and then simplify.

L’ = (a+b)*b*(a+b)*a*(a+b)*
= (atb)*b(a+b)*a(atb)*
= (atb)*b*a(a+b)*
= (atb)*ba(a+b)*
= a*b*a(a+b)*

a b a,b
oG




Finite Automata: Review

Theorem: Intersection perserves regularity.
Proof: (“parallel” simulation):

« Construct all super-states, one per each state pair.

New super-transition function jumps amon 3\‘{\3’

W

super-states, simulating old transition {U@@t' n

« Initial super state contains both @J@‘ﬁ%ti

* Final super states contairbc.ﬁﬁﬂg of old fi

* Resulting DFA acceb"tg’game language

states.
al states.

original

NFA (but size can be the product of twq old sizes).

GivenM,=(Q, %, 6,, q’, F;) and M,=(0Q,,
construct M=(Q, %, 6,q,F) Q
F=FyxF, 0=(q9’,9")

0:0x% —> 0 6((9;,0;),X) = (64(;,X),0,(7;,X))

2, 0,,97 F)




Finite Automata: Review
Theorem: Union preserves regularity.
Proof: De Morgan's law: Ly uL,=L; "L,
Or cross-product construction, I.e.,
parallel simulation with F = (F,xQ,) U (Q,xF,)

Theorem: Set difference preserves regularity.
Proof: Set identity L,— L, =L, "L,

Or cross-product construction, i.e.,

parallel simulation with F = (F,x(Q,-F,))

Theorem: XOR preserves regularity.
Proof: Set identity L;® L, = (L, w L,) - (L L))

Or cross-product construction, i.e.,
parallel simulation with F = (F,x(Q—F,)) u ((Q,—F,)xF,)

Meta-Theorem: Identity-based proofs are easier!




Finite Automata: Review

Non-determinism: generalizes determinism, where
many “next moves” are allowed at each step:

Old 0:0xX —> 0
New 0:29%x> — 29

Computation becomes a “tree”. O
Acceptance: 3 a path from root (start state) O
to some leaf (a final state) oo

Ex: non-deterministically accept all strings
where the 7% symbol before the end is a “b”:

@ OO O @@ @
Input: 2babbaaa — Accept!



Finite Automata: Review

Theorem: Non-determinism In FAs doesn’t Increase power.
Proof: by simulation:

Construct all super-states,
one per each state subset.

New super-transition function

Jjumps among super-states,
simulating old transition function

Initial super state are those "“QO
containing old initial state.

Final super states are those
containing old final states.

Resulting DFA accepts the same

language as original NFA, but can
have exponentially more states.

@

]

N

QL: Why doesn’tltflis

work for PDAS?



Finite Automata: Review
Note: Powerset construction generalizes the cross-product

construction. More general constructions are possible.
EC: Let HALF(L)={v|d vyw € X" 5> |v|=|w| and vw ¢ L}
Show that HALF preserves regularity.

-
238

A two way FA can move Iits head backwards
on the input: 0:QxX — Qx{left,right}

EC: Show that two-way FA are not
more powerful than ordinary one-way FA.

e-transitions: [] ---------- One super-state!

Theorem: e-transitions don’t increase FA recognition power.

Proof: Simulate e-transitions FA without using e-transitions.
l.e., consider e-transitions to be a form of non-determinism.

<+—O O O<4+O




NICOLAS CAGE JULIANNE MOORE JESSICA BIEL The movie “Next” (2007)

| - Based on the science fiction
story “The Golden Man”
by Philip Dick

> Premise: a man with
the super power of
non-determinism!

At any given moment his

e R - reality branches into multiple

directions, and he can choose
= e | " the branch that he prefers!

———Transition function!



Top-10 Reasons to Study Non-determinism

1. Helps us understand the ubiquitous
concept of parallelism / concurrency;

2. llluminates the structure of problems;

3. Can help save time & effort by solving
Intractable problems more efficiently;

4. Enables vast, deep, and general studies of
“completeness” theories;

5. Helps explain why verifying proofs & solutions
seems to be easier than constructing them;



10.

Why Study Non-determinism?

Gave rise to new and novel mathematical
approaches, proofs, and analyses;

Robustly decouples / abstracts complexity from
underlying computational models;

Gives disciplined technigues for identifying
“hardest” problems / languages;

Forged new unifications between
computer science, math & logic;

[ el S es Tos To% S Ser =

Non-determinism Is Interesting
fun, and cool!



Regular Expressions
Regular expressions are defined recursively as follows:

%) {c} X}V XeX
empty set trivial language singleton language

(%) (%)@

Inductively, If R and S are regular expressions, then so are:

(R+S) RS R”
union concatenation Kleene closure

A
Composmons' O &
Examples: aa(a+b) bb (a+b)"b(atb) a(a+b)”

Theorem: Any regular expression is accepted by some FA.



Regular Expressions
A FA for a regular expressions can be built by composition:

Ex: all strings over S={a,b} where 3 a “b” preceding an “a”

(a+b)"b(at+b) a(a+b)”
WhY?——. = (a+b)ba(a+b)"




FA Minimization
Idea: “Equivalent™ states can be merged:




FA Minimization

Theorem [Hopcroft 1971]: the number N of states in a FA
can be minimized within time O(N log N).

Based on earlier work [Huffman 1954] & [Moore 1956].

Conjecture: Minimizing the number of states in a
nondeterministic FA can not be done in polynomial time.

Theorem: Minimizing the number of states in a pushdown
automaton (or TM) Is undecidable.

Project idea: implement a finite automaton minimization tool.
Try to design it to run reasonably efficiently.
Consider also including:

« Aregular-expression-to-FA transformer,

« Anon-deterministic-to-deterministic FA converter.



FAs and Regular Expressions

Theorem: Any FA accepts a language denoted by some RE.

Proof: Use “generalized finite automata” where a transition
can be a regular expression (not just a symbol), and:

Only 1 super start state and 1 (separate) super final state.

Each state has transitions to all other states (including itself),
except the super start state, with no incoming transitions,
and the super final state, which has no outgoing transitions.

Original FA M Generalized FA (GFA) M’



FAs and Regular Expressions

Now reduce the size of the GFA by one stale at each step.
A transformation step Is as follows
P @ P+RST @

Such a transformatlon step Is always possible, until the GFA
has only two states, the super-start and super-final states:

of last remaining transition is
the regular expression corresponding
to the language of the original FA!

Corollary: FAs and REs denote the same class of languages.



Regular Expressions ldentities
» R+S=S+R
« R(ST)=(RS)T

L Q(S'l'T) — RS'I'R-- OH NO! THE KILLER || BUT TD FInD THEM WE'D HAVE TO SEARCH

 (R+S)T =RT+S

-:N ! (T i{ /xi _E ‘i&h IT5 HOPELESS!
s @ =g =¢ i)

- R+@=@+R =R TR
e Re=¢R=R R+g#R
nfd

o (R*)* = R” RO #R
e e+R)=R" " <Z/*
¢« (R'SY)" = (R+S)” i ﬁ ) ;?%V




Decidable Finite Automata Problems

Def: A problem Is decidable if 3 an algorithm which can
determine (in finite time) the correct answer for any instance.

Given a finite automata M, and M,:

Qu: IsL(M)=@7
Hint: graph reachability

Q,: Is L(M,) infinite ?
Hint: cycle detection

Qs IsL(My) =L(M,)?

Hint: consider L,-L, and L,-L,
2 @



Regular Experssion Minimization

Problem: find smallest equivalent regular expression
 Decidable (why?)
« Hard: PSPACE-complete

Turing Machine Minimization

Problem: find smallest equivalent Turing machine
* Not decidable (why?)
* Not even recognizable (why?)
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Context-Free Grammars: Review
Basic idea: set of production rules induces a language
 Finite set of variables:  V={V,, V,, ..., V\.}

- Finite set of terminals: T ={t;, t,, ..., t}

* Finite set of productions: P
- Start symbol: S

» Productions: V,—> A where V,eVV and A e(VUT)*
Applying  V—>A  to aV]p
yields: aAf

Note: productions do not depend on “context”
- hence the name “context free”!



Context-Free Grammars: Review

Def: A language Is context-free If it Is accepted by
some context-free grammar.

Theorem: All regular languages are context-free.

Theorem: Some context-free languages are not regular.
Ex: {0"1"|n>0}
Proof by “pumping” argument: long strings in a
regular language contain a pumpable substring.
dNeN>Vzel, |z|>N 3 u,v,weX* 5> Z=uvw,

luv|<N, |v|>1, uv'wel V¥ i>0.

Theorem: Some languages are not context-free .
Ex: {0"1"2"| n> 0}
Proof by “pumping” argument for CFL’s.




Ambiguity: Review

Def: A grammar is ambiguous If some string in Its
language has two non-isomorphic derivations.

Theorem: Some context-free grammars are ambiguous.

Ex: Gy S—SSlale Ll
Derivation 1: S —» SS — aa f”?e o

Derivation 2: S — SS — SSS — aa iy,

Def: A context-free language Is inherently ambiguous If
every context-free grammar for it Is ambiguous.

Theorem: Some context-free Ianguf@ée/zag%inherently
ambiguous (1.e., no non-ambiguous C@@%ists).

Ex: {a"bn cmdm | m>0, n>0} L {amh™ cnd™ | m>0, idEe



Example: design a context-free grammar for strings
representing all well-balanced parenthesis.
|dea: create rules for generating nesting & juxtaposition.

G,:S—SS|(S)]e

EX:S—>SS— (5)(S) > ()
S—(5) = ((5) = (0)
S—(S) > (S8) = ... > (0((0)D))

Q: Is G; ambiguous?

Another grammar:
G, S—>(S)S|e

Q:IsL(G,) =L(G,) ?

Q: Is G, ambiguous?



Example : design a context-free grammar that generates
all valid regular expressions.
: embedd the RE rules in a grammar.

G: S —a foreachaeXz,
S—(S)|SS|S*|S+S

S—>S5* > (5* > (S+9)* > (atb)*
S — SS — SSSS — abS*b — aba*a

Q: Is G ambiguous?



Pushdown Automata: Review

Basic idea: a pushdown automaton is a finite automaton
that can optionally write to an unbounded stack.

Finite set of states: Q ={dy 9y A3y ---» i}
Input alphabet: >

« Stack alphabet: I

« Transition function:  &; Ox(ZU{e})xT’ —>2er*
» Initial state: o € Q (%)

« Final states: Fc O

Pushdown automaton is M=(Q, £, T, 8, qq, F)
Note: pushdown automata are non-deterministic!



Pushdown Automata: Review

A pushdown automaton can use Its stack as an unbounded
but access-controlled (last-in/first-out or LIFO) storage.

* A PDA accesses its stack using “push” and “pop”

Stack & input alphabets may differ.

* [nput read head only goes 1-way:.

» Acceptance can be by final state
or by empty-stack.

Input
1101111{0|1{0}|
Note: a PDA can be made deterministic by restricting

Its transition function to unigque next moves:




Pushdown Automata: Review

Theorem: If a language Is accepted by some context-free
grammar, then it is also accepted by some PDA.

Theorem: If a language Is accepted by some PDA, then it is
also accepted by some context-free grammar.

Corrolary: A language Is context-free Iff it is also accepted by
some pushdown automaton.

|.E., context-free grammars and PDAs have equivalent
“computation power” or “expressiveness’’ capability.

Finite set of variables: V= {V,, V5, ..., Vi } A

Finite set of terminals:  T'= {t,. t;. ... §}

Finite set of productions: P

Start symbol: S
Productions: V;— A where V.eV and A e(VUT)* Input

Applying V> A to  aVh
yields: a AP l 0 l l 0 l 0

o oo |-

w
2}
f=*]
o)
>




Closure Properties of CFLs

Theorem: The context-free languages are closed under union.
Hint: Derive a new grammar for the union.

Theorem: The CFLs are closed under Kleene closure.
Hint: Derive a new grammar for the Kleene closure.

Theorem: The CFLs are closed under m with regular langs.
Hint: Simulate PDA and FA in parallel.

Theorem: The CFLs are not closed under intersection.

Hint: Find a counter example.
Theorem: The CFLs are not closed under complementation.

Hint: Use De Morgan’s law.



Decidable PDA / CFG Problems

Given an arbitrary pushdown automata M (or CFG G)
the following problems are decidable (i.e., have algorithms):

Q. IsL(M)=07? é\
Q: IsL(G)=@7? %&
Q

Q,: IsL(M) finite ? ‘Q Lo[1T1To[i]o] i
Q. Is L(G) finite ? .
Z2ull
Q. Is L(M) infinite ? - @w A
Q. Is L(G) infinite ? ii bé
4 Wy (o
Qs IswelL(M)? s c?%
Qg Iswe L(G)? /



Undecidable PDA / CFG Problems

Theorem: the following are undecidable (i.e., there
exist no algorithms to answer these questions):

Q: IsPDA M minimal ? Q[»/
Q: Are PDAs M, and M equ?rgdent ?
Q: Is CFG G minimal ?

Q: Is CFG G ambiguous ?
Q:IsL(G,) =L(G,) ?
Q:IsL(G) NL(G,) =@ 7?

V/
Q: Is CFL L inherently ambiguous ?



PDA Enhancements

Theorem: 2-way PDAs are more powerful than 1-way PDAs.
Hint: Find an exampl%non-CFL accepted by a 2-way PDA.

Theorem: 2-stack PDAS a@qore powerful than 1-stack PDAs.
Hint: Find an example non- CE}‘ accepted by a 2-stack PDA.

Theorem: 1-queue PDAS are more @erful than 1-stack PDAs.
Hint: Find an example non-CFL acce@d by a 1-queue PDA.

Theorem: 2-head PDASs are more powerfultﬁaan 1-head PDAs.
Hint: Find an example non-CFL accepted b%cz head PDA.

Theorem: Non-determinism increases the power g‘éﬂsDAs
Hint: Find a CFL not accepted by any deterministic PDA.



Turing Machines: Review

Basic idea: a Turing machine Is a finite automaton
that can optionally write to an unbounded tape.

» Finite set of states: Q =49, 9y, U3y ---» Ui}

 Tape alphabet: I

 Blank symbol: Bel

« Input alphabet: > c I'{B}

 Transition function:  o: (Q-F)xI" > Qxe{L,R}
* |nitial state: 0y € Q

* Final states: FcO

Turing machine is M=(Q, T, B, =, 8, 0, F)



Turing Machines: Review

A Turing machine can use Its tape as an unbounded
storage but reads / writes only at head position.

Initially the entire tape Is blank, except the input portion

* Read / write head goes left / right with each transition
« A Turing machine is usually deterministic

* |nput string acceptance Iis by final state(s)




Turing Machine “Enhancements”

Larger alphabet:

old: 2={0,1}

new: X’ ={a,b,c,d}

ldea: Encode larger alphabet using smaller one.
Encoding example: a=00, b=01, ¢=10, d=11

d

C

d

Y

A4 A4 Y4

b
A
0

a
110

0

1

1

1

0

0

0

old: o QLQ
new: &' (2L



Turing Machine “Enhancements”

Double-sided infinite tape:

— 1Tol1l1ToToTiT [ .
Idea: Fold into a normal single-sided infinite tape
— 1Tol1l1ToToTiT [ - .
H()()()ti ...... >
old: o QL/—R»Q new: &' (R LR
Q@g QR/L@R/L=O



Turing Machine “Enhancements”

Multiple heads:

v

v

b

b

d

b

d

}
blbla

d

Idea: Mark heads locations on tape and simulate

\ 4

v

¥

B

A

b|b

A

Modified o' processes each “virtual” head independently:
« Each move of o 1s simulated by a long scan & update

* O'updates & marks all “virtual” head positions



Turing Machine “Enhancements”

Multiple tapes:

‘1‘10101 ...... >
011‘0‘0 ...... >
111111110101 | | | - >

ldea: Interlace multi

nle tapes into a single tape

Modified o' processes each “virtual” tape independently:
« Each move of o 1s simulated by a long scan & update

* o' updates R/W head positions on all “virtual tapes”



Turing Machine “Enhancements”

Two-dimensional tape:

L4 44 s

1

1

0

1

0

1

0

1

1

0

1

1

0

1

1

0

0

ldea: Flatten 2-D tape into a 1-D tape

$

4 )

This 1s how
compilers
Implement

$

2D arrays!

:

Modified 1-D &' simulates the original 2-D o:

 Left/right 0 moves: 0' moves horizontally

« Up/down 6 moves: &' jJumps between tape sections



Turing Machine “Enhancements”
Non-determinism:

¥
- 1:1_0‘1‘01 ...... >
\ 1‘1‘1101 ...... >

Idea: Parallel-simulate non-deterministic threads
$ $ $ ...... >

Modified deterministic o' simulates the original ND o:

v
1/1{111]0]1

« Each ND move by ¢ spawns another independent “thread”

 All current threads are simulated “in parallel”



Turing Machine “Enhancements”
Combinations:

: s & ND 3|.11/4/1/5/9]
canl

F B He+llo] | | >
= olrlidl 1] |- >

PR ]7'1‘0(1’

vl |

ldea: “Enhancements” are independent (and commutative
with respect to preserving the language recognized).

Theorem: Combinations of “enhancements” do not increase
the power of Turing machines.




Turlng -Recognizable vs. -Decidable

@ —> \/ X Never

Accept Reject runs
& halt & halt forever

Def: A language Is Turing-decidable Iff it is exactly the
set of strings accepted by some always-halting TM.

WeZ*_§ a - b aa ab ba bb aaa aab aba abb baa bab bbabbbaaaa

...................................................................................................................................................................................

..........................................................................................................................................................................................

Note: M must always halt on every input.



Turing -Recognizable vs. -Decidable

<ﬁg=>\/ X =

Accept Reject Run
& halt & halt forever

Def: A language Is Turing-recognizable Iff it is exactly
the set of strings accepted by some Turing machine.

WeZ*—§ a - b aa ab ba bb aaa aab aba abb baa bab bbabbbaaaa

...................................................................................................................................................................................

..........................................................................................................................................................................................

Note: M can run forever on an input, which is implicitly
a reject (since It Is not an accept).



Recognition vs. Enumeration

Def: “Decidable” means “Turing-decidable”
“Recognizable’” means “Turing-recognizable”

Theorem: Every decidable language Is also recognizable.
Theorem: Some recognizable languages are not decidable.

Ex: The halting problem is recognizable but not decidable.

Note: Decidability Is a special case of recognizability.

Note: It Is easier to recognize than to decide.
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Recognition and Enumeration

Def: An “enumerator” Turing machine for a language L
prints out precisely all strings of L on its output tape.

’5_5%—%,=> a|$la|b|$|blbla|$] - >

Note: The order of enumeration may be arbitrary.

Theorem: If a language Is decidable, 1t can be enumerated
In lexicographic order by some Turing machine.

Theorem: If a language can be enumerated In
lexicographic order by some TM, it Is decidable.



Recognition and Enumeration

Def: An “enumerator” Turing machine for a language L
prints out precisely all strings of L on its output tape

al$lalb|$|b|b

a$ ...... >

Note: The order of enumeration may be arbitrary

Theorem: If a language Is recognizable, then it can be
enumerated by some Turing machine

Theorem: If a language can be enumerated by some TM
then it is recognizable.



THe ALPHABET

IN ALPHARETICAL ORDER
Aillch Ex
Ace Eﬁe
Ay (ree
Pee Ja‘j |
Cue Kay
Vee Ol
Doube U fBa
Ee See
EC Tee
El \ee
En Wy
En Y \%
Fss Zee h
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Decidability

@ —> \/ X Never

Accept Reject runs
& halt & halt forever

Def: A language Is Turing-decidable Iff it is exactly the
set of strings accepted by some always-halting TM.

Theorem: The finite languages are decidable.
Theorem: The regular languages are decidable.

Theorem: The context-free languages are decidable.



A “Simple” Example
LetS={x3+y3+23|X,y,ze€ Z}
Q: Is S Infinite?
A: Yes, since S contains all cubes.

Q: Is S Turing-recognizable?
A Yes, since dovetailing TM can enumerate S. ISESEEEE

Q: Is S Turing-decidable?
A: Unknown! |

Q: 1s29e5?
A:Yes, since 3°+1°3+1°=29

Q:1s30e5?
A: Yes, since (2220422932)3+(-2218888517)3+(-283059965)3=30

Q:1s33e5?
A: Unknown!

Theorem [Matiyasevich, 1970]: Hilbert’s 10" problem (1900), namely
of determining whether a given Diophantine (i.e., multi-variable
polynomial) equation has any integer solutions, is not decidable.




Closure Properties of Decidable Languages

Theorem: The decidable languages are closed under union.
Hint: use simulation.

Theorem: The decidable languages are closed under .
Hint: use simulation.

Theorem: The decidable langs are closed under complement.
Hint: simulate and negate.

Theorem: The decidable langs are closed under concatenation.
Hint: guess-factor string and simulate.

Theorem: The decidable langs are closed under Kleene star.
Hint: guess-factor string and simulate.



Closure Properties of Recognizable Languages

Theorem: The recognizable languages are closed under union.
Hint: use simulation.

Theorem: The recognizable languages are closed under M.
Hint: use simulation.

Theorem: The recognizable langs are not closed under compl.
Hint: reduction from halting problem.

Theorem: The recognizable langs are closed under concat.
Hint: guess-factor string and simulate.

Theorem: The recognizable langs are closed under Kleene star.
Hint: guess-factor string and simulate.



Reducibilities

Def: A language A is reducible to a language B if
31 computable function/map f:2.*—2.* where
Vw weA< f(w)eB

Note: f 1s called a “reduction” of A to B
Denotation: A < B

Intuitively, A 1s “no harder” than B



Reducibilities

Def: A language A is reducible to a language B if
31 computable function/map f:2.*—2.* where
Vw weA< f(w)eB

Theorem: If A< B and B 1s decidable then A Is decidable.

Theorem: If A< B and A i1s undecidable then B i1s undecidable.

Note: be very careful about the mapping direction!



Reduction Example 1
Def: Let H_be the halting problem for TMs running on w=e.
“Does TM M halt on ¢?” H_ = { <M>e2*| M(¢) halts }
Theorem: H_ Is not decidable.
Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’
that If It ran on input x, itwould: x—.[. grorex M’

1. Overwrite x with the fixed w on tape; | *>'Mulate Monw

_ _ _ I'f M(w) halts then——halt
2. Simulate M on the fixed input w;
3. Accept < M accepts w. Note: M’ 1s not run!

Note: M’ halts on € (and on any xe>.*) < M halts on w.
A decider (oracle) for H, can thus be used to decide H!
Since H is undecidable, H_ must be undecidable also. |l



Reduction Example 2
Def: Let L, be the emptyness problem for TMs.
“Is L(M) empty?” L,={ <M>eX*| L(M) =@ }
Theorem: L, IS not decidable.
Proof: Reduction from the Halting Problem H:

Given an arbitrary TM M and input w, construct new TM M’
that If It ran on input x, itwould: x—.[. grorex M’

1. Overwrite x with the fixed w on tape; | *>'Mulate Monw

_ _ _ I'f M(w) halts then——halt
2. Simulate M on the fixed input w;
3. Accept < M accepts w. Note: M’ 1s not run!

Note: M’ halts on every xe2.* < M halts on w.
A decider (oracle) for L, can thus be used to decide H!
Since H is undecidable, L must be undecidable also. B



Reduction Example 3
Def: Let L, be the regularity problem for TMs.
“Is L(M) regular?” L, ={ <M>e2.*| L(M) is regular }
Theorem: L, IS not decidable.
Proof: Reduction from the Halting Problem H:
Given an arbitrary TM M and input w, construct new TM M’

that IT It ran on input X, it would: x . x .o it xcomr

1.  Acceptif xeQn1n »Ignorex M’
2. Overwrite x with the fixed w on tape; ‘fS'mU'athe :V' Or? Y hat
3. Simulate M on the fixed input w; [T M(w) halts then

Note: L(M")=2* < M halts on w

L(M*)=0"1" < M does not halt on w
A decider (oracle) for L, can thus be used to decide H!




Rice’s Theorem
Def: Let a “property” P be a set of recognizable languages.

Ex: P,={L | L is a decidable language}
P,={L | L is a context-free language}
P.={L|L=L"}

?,={{e}}

o .
Pl Lisa euighe lngiags)
P.={L|L |s&‘@9@\g 1za I? language}
L is said to “have property P iff LeP
Ex: (a+b)” has property Py, P,, P; & P but not P, or P
{wwR} has property Py, P,, & Pg but not P4, P, or P

Def: A property is “trivial” iff it is empty or
It contains all recognizable languages.



Rice’s Theorem
Theorem: The two trivial properties are decidable.

Proof:

Pnone - Q X_>

 lgnore X
e Say “no”

«Stop M

none

— N0

M, ... decides P ..

P.,={L | L Is a recognizable language}

X—>

 lgnore X
° Say “yes”
« Stop

M

all

— YEs

M., decides P,

Q: What other properties (other than P, and P_;)

are decidable?
A: Nonel



Rice’s Theorem

Theorem [Rice, 1951]: All non-trivial properties of the
Turing-recognizable languages are not decidable.

Proof: Let P be a non-trivial property.

Without loss of generality assume @ ¢ P, otherwise substitute
P’s complement for P in the remainder of this proof.

Select LeP (note that L = @ since @¢P),
and let M, recognize L (i.e., L(M,)=L= Q).

Assume (towards contradiction) that 3 some TM M,
which decides property P:

X—| Does the language  |— yes
Note: x can be e.g.,/ denoted by <x> M
a TM description. have property P? Wip [~ MO




Rice’s Theorem

Reduction strategy: use M, to “solve” the halting problem.
Recall that LeP, and let M, recognize L (i.e., L(M,)=L = @).
Given an arbitrary TM M & string w, construct M’:

f Ma A/TOte. ]\l{’ . \
W—| M start, I8 not 1y
halt M. [Ves n
X— J VI > YES
N Y,
What is the language of M’? \
Does the language —YES

L(M’) is either @ or L(M, )=L denoted by <x>

If M halts on w then L(M’)=L(M, )= L | have property P2 Mp—no

If VI does not halt on w then L(M’)= @ since M, never starts
=> M halts on w iff L(M’) has property P

“Oracle” M; can determine if L(M’) has property P,

and thereby “solve” the halting problem, a contradiction! M




given a TM, Is its language L.

Rice’s Theorem
Corollary: The following questions are not decidable:

Empty?

Finite?

Infinite?

Co-finite?

Regular?
Context-free?
Inherently ambiguous?

Declidable?

| =2*7?

| contains an odd string?
| contains a palindrome?
_ = {Hello, World} ?

_ IS NP-complete?

_ 1S In PSPACE?

Warning: Rice’s theorem applies to properties (i.e., sets of
languages), not (directly to) TM’s or other object types!




Context-Sensitive Grammars

Problem: design a context-sensitive grammar to
accept the (non-context-free) language {1"$12" | n>1}

Idea: generate n 1’s to the left & to the right of $;
then double n times the # of 1’s on the right.

S — IND1E  /* Base case; E marks end-of-string */
N—1IND|$ /*Loop:n1’sandn D’s; end with $ */
D1 — 11D /* Each D doubles the 1°s on right */
DE —- E [* The E “cancels” out the D’s */

E—c¢ [* Process ends when the E vanishes */



Example: Generating strings in {1"$12" | n=1}

S — 1IND1E D1 — 11D E— ¢
N—1IND|$ DE - E

S — INDI1E — 111$1111DD1E
— 1INDD1E — 111$1111D11DE
— 11IND11DE — 111$111111D1DE
— 11INDDI11DE — 111$11111111DDE
— 11IND11D1DE — 111$11111111DE
— 111IN11D1D1DE — 111$11111111E
— 111N11D1D1E — 1113$11111111¢

~, 111$11D1D1E = 13¢18 = 13$12°



“But this is the simplified version for the general public.”



