Historical Perspectives

Kurt Godel (1906-1978)

« Logician, mathematician, and philosopher

* Proved completeness of predicate logic
and Godel’s incompleteness theorem

* Proved consistency of axiom of choice

and the continuum hypothesis

* Invented “Godel numbering”

and “Godel fuzzy logic”

* Developed “Godel metric” and
paradoxical relativity solutions:
“G0del spacetime / universe”

» Made enormous impact on logic,
mathematics, and science

The Consistency
of the
Continuum Hypothesis

by Kurt Gidel

'y

With a Foreword by
Dr. Richard Laver

Kurt Godel
ON FORMALLY
UNDECIDABLE
PROPOSITIONS
OF PRINCIPIA
MATHEMATICA

AND RELATED
SYSTEMS

]
»)] =

THERE S
WO, PROOF oF P

DLKVWT gt;d&(

\

e GODEL Mes Reflections on \

KurtGodel | gl | EINSTEIN Kurt Gadel
: COLLECTED | cort Godel TTYSE ' & | Hao Wang

WORKS Unpublished !

Philosophical Essays

>

Ve I

Publications 1929-1936 -
Francisco A. Rodriguez-Consuegra
oo

SOLOMON FEFERMAN
JOHN W DAWSON, JR. + STEPHEN C. KLEENI 3 ‘ g o e
GREGORY H. MOORE - ROBERT M. SOLOVAY B |

JEAN VAN HEIJENOORT : REBECCA W |

: \ GOLDSTEIN A LIFE OF 1LOGIC
Birkhauser L=

Thinking on _the

C

[a philosophy of faith]

JHE FORGOTTEN LEGACY OF L

GODEL anp EINSTEIN With'a Foreword by
Paul Davies

PALLE YOURGRAU

[
The Godel Programy

LECTURE NOTES IN LOGIC Karl Sigmund

John Dawson
Kurt Miihiberger

HAO WANG

GODEL 96

e 2| Kurt Gode

Das Album
The Album

A LOGICAL JOURNEY

From Gadel to Philosoplry

Patricia Hill
John Lioyd

Palle
Yourgrau GODEL'S INCOMPLETENESS = Ve Gédel, Putnam, and

TRECSEMS .w;; ;f:dstw =d g G O D E L,S Functionalism
Kurt G
ettt THEOREM A Y
NVl

' — ~ | SIMPLIFIED k‘k"ﬂo
o e A £H5
L]

Freundschaft

T 4 ; : ‘ 1EFF BUETHNER
’ 5 1 Harry). Gensler
ERNEST NAGEL AND s A | : S ngs SRA BRR nﬂ:
| JAMES R. NEWMAN CH.Beck » : i
8

CAMBRIDGE INTRODUGTIONS.TOPHILOSOPHY

Logical Dilemmas 112 MERCER STREET

forever i THE LIFE An Introduction to

AND WORK OF A ’,
H [\| DGE C|0[G)o E D - b ptoat Godel’s Theorems

Lo EINSTEIN, RUSSELL, GODEL, PAULI,

and the End of Innocence in Science

TO IS USE AND ABUSE JOHN W, DAWSON, JR.
P

~ = TORKEL FRANZEN

BURTON FELDMAN

AUTHOR OF THE NOBEL PRIZE

R Frege and Godel

2 Fundamental Texts in Mathematical Logic

f uosmeq M uyor

HIOM PUN USGEY IPRD NN

TEU) X1
TEUSNER-TEXT

TEUBNER-TRXT
TEUBNER-7EXT

STEUBNER-TRXT

Jean van Heijenoort, Ed.

TEURNER-TERT

Godel’s Incompleteness Theorem

Frege & Russell:
« Mechanically verifying proofs
« Automatic theorem proving

A set of axioms Is:
« Sound: Iff only true statements can be proved

« Complete: Iff any statement or its negation can be proved
« Consistent: iff no statement and Its negation can be proved

Hilbert’s program: find an axiom set for all of mathematics
l.e., find a axiom set that Is consistent and complete

GOdel: any consistent axiomatic system Is incomplete!
(as long as It subsume elementary arithmetic)

l.e., any consistent axiomatic system must contain true but
unprovable statements

Mathematical surprise: truth and provability are not the samel

Godel’s Incompleteness Theorem

That some axiomatic systems are incomplete

IS not surprising, since an important axiom may
be missing (e.g., Euclidean geometry without
the parallel postulate)

However, that every consistent axiomatic system must be
Incomplete was an unexpected shock to mathematics!

This undermined not only a particular system (e.g., logic),
but axiomatic reasoning and human thinking itself!

Truth = Provability
Justice # Legality

Godel’s Incompleteness Theorem
GOdel: consistency or completeness - pick one! :

Which is more important?

Incomplete: not all true statements can be proved.
But if useful theorems arise, the system is still useful.

Inconsistent: some false statement can be proved.
This can be catastrophic to the theory:

ds

E.g., supposed in an axiomatic system we proved that “1=2".
Then we can use this to prove that, e.g., all things are equal!
Consider the set: {Bush, Pope}

| {Bush, Pope} | =2

— | {Bush, Pope} | =1 (since 1=2)

— Bush =Pope QED
— All things become true: system is “complete” but useless!

Godel’s Incompleteness Theoremﬁ‘

L ——

Moral: it Is better to be consistent than complete,
If you can not be both.

“It 1s better to be feared than loved, if you cannot be both.” ds
- Niccolo Machiavelli (1469-1527), “The Prince”

“You can have it good, cheap, or fast — pick any two.”
- Popular business adage

Godel’s Incompleteness Theorem
Thm: any consistent axiomatic system is incomplete! | £

Proof idea: \
« Every formula is encoded uniquely as an\ Q;m‘@%er
« Extend “Godel numbering” to forn@b?sequences (pt%‘ofs)

* Construct a “proof checking” formula P(n,m %}ﬁ that
P(n,m) iff n encodes a proof of the form i@b‘é coded by m

 Construct a se{b?eferentlal formula that asserts Its own
non-prov y: “l am not provable”

O
. Showﬁﬁls formula Is neither provable |EEiHE
ndPd Isprovable urt Godel

ON FORMALLY
UNDECIDABLE

George Boolos (1989) gave shorter proof B S =

based on formalizing Berry’s paradox N REVATED |

] SYSTEMS
The set of true statements i1s not R.E.!

i A
(Hemony Scioor)

——

"“YOU SIMPLY ASSOCIATE EACH NUMBER WITH A
WorRD, SUCA AS 'TABLE AND 3,476,019, "

Godel’s Incompleteness Theorem

Systems known to be complete and consistent:
 Propositional logic (Boolean algebra)

Predicate calculus (first-order logic) [Godel, 1930]
Sentential calculus [Bernays,1918; Post, 1921]) ;
Presburger arithmetic (also decidable) o

Systems known to be either inconsistent or incomplete:
« Peano arithmetic

 Primitive recursive arithmetic

« Zermelo—Frankel set theory

» Second-order logic

Q: Is our mathematics both consistent and complete?
A: No [GOdel, 1931]

Q: Is our mathematics at least consistent?
A:We don’t know! But we sure hope so.

Godel’s “Ontological Proof” that God exists!
Formalized Saint Anselm's ontological
argument using modal logic:

Ax. 1. Plp)AUOVz[p(z) — ¢ (z)] — P(v)

Ax. 2. P(-yp) « —=P(yp)

Th. 1. P(p) — ¢z [p(z)] ok

Df. 1. G(z) «= Vyp[P(p) — p(z)] —

Ax. 3. P(G)

Th. 2. ¢ 3z G(z) ,

Df. 2. pessz <= p(z) AV{¥(z) — OVzlp(z) — ()]} \

Ax. 4. P(p) — 0O P(p)

Th. 3. G(z) — Gessx | &

Df. 3. E(a) < Vylpessa — O3z p(z)] \i;—'l ‘

Ax. 5. P(E) | (/\ 3\\

Th. 4. O3z G(z)

_ ¥
For more details, see: -
.y = . .y = . GQODELS GONE WILD" WAS

http://en.wikipedia.org/wiki/Godel _ontological proof e

N
£
7 %
k3 3
5

9002-906 -

THERE
IS MO PROOF

OF P

=lox
Fle Edt Yew Hstory Bookmarks Iooks Help

@ - o | O [rtipeihas.oic.at - |G| cougte F:
[2] Most visited 4 Getting Started Latest Headines | | Custorize Links | | Fres Hotmall | | hetp:fjvwm.scientific-. | | Suggested Stes || Web Slice Gallery || Windows Marketplace | | Windows Media | | Windows

Google | godel socisty 7| |G search - @ o - DM - ¥F Bookmarkss 7239 -y aukolink | autoril (e Sendtor A [El godel [E] society (D settings-

Wolfram # -

.Welcome
.News and Activities

Lecture Series

R]

Welcome

The Kurt Gédel Society was founded in 1987 and is chartered in Vienna. It is an international

s organization for the promotion of research in the areas of Logic, Philosophy, History of
Publications Mathematics, above all in connection with the biography of Kurt Gédel, and in other areas to which
B e Godel made contributions, especially mathematics, physics, theology, philosophy and Leibniz
L studies.
.Organlzatlon
Our presidents Top News

.Useful links
.Membership

Application Form

09-06-08 12:00

Fourth Vienna Tbilisi Summer School in Logic and Language
For the third time students and teachers meet in Thilisi, Georgia, for a summer school. Please see

B Grants the conference page http://www.logic.at/tbilisi08/ fo... [more...]
.Gc'idel Fellowship
) 05-12-07 23:22
B kurt Godel . : .
Collegium Logicum Lecture Series
.Contact

6 December 2007, 16:00 Peter Schuster (LMU Miinchen) - Finite methods in commutative algebra
[more...]

15-11-07 12:27

Workshop Two and beyond
The KGS is organizing a workshop on truth-functional logics. [more...]

© 2004 Kurt Godel Society, Arnold Beckmann, Norbert Preining

X Find: Mext Previous & Highlight all [~ Match case

Done

¥JHorizons of Truth Goedel Centenary 2006 - Mozilla Firefox

Fle Edt ¥isw History Bookmarks Tools Help

=101x]

P—

‘"“"”"7’" C' X 72t ‘http:waw.\og\c.atﬂgoede\zﬂosﬂ

ﬁ M I" Google

2] ost visited % Getting Started . Latest Headlines | | Customize Links | | Free Hotmail | | httpijfwesy.scientific-.. | | Suggested Sites | | Web Slice Gallery | | Windows Marketplace | | Windows Media | | Windows

Google |

=] Glsearch - & b - M - §% Boskmarkss TR -y autolink] AutcRil [s Sendter

() Settings~

Wolfram |2 -

IEEEETE:

Horizons of Truth

Godel (eydendary 2006

Horizons of Truth
Logics, Foundations of Mathematics, and the Quest for Understanding the Nature of Knowledge

Godel Centenary 2006
An International Symposium Celebrating the 100th Birthday of Kurt Godel

27.-29. April 2006
Festsaal of the University of Vienna

Organized by:

The Kurt Gadel Society

Co-organized by:

University of Vienna, Institute for
Experimental Physics, Kurt Godel
Research Center, Institute Vienna Circle,
Vienna University of Technology,
Sponsored by:

The John Templeton Foundation

The Federation of Austrian Industry
The Federal Ministery of Infrastructure
The Federal Ministery of Education,
Sdence and Culture

The Government of the Ciry of Vienna
The Austrian Mathematical Society
Microsoft Corporation

DPrint this page

Horizons of Truth
Logics, Foundations of Mathematics, and the Quest for Understanding the Nature of Knowledge
Godel Centenary 2006
An International Symposium Celebrating the 100th Birthday of Kurt Godel

27.-29. April 2006
Festsaal of the University of Vienna

Organized by the Kurt Godel Society with the support of the John Templeton Foundation. Co-organized by the University of e
Vienna, the Institute for Experimental Physics, the Kurt Gédel Research Center, the Institute Vienna Circle, and the Vienna
University of Technology.

The purpose of the Symposium is to commemorate the life, work, and foundational views of Kurt Gédel, perhaps the greatest
logician of the twentieth century. In the spirit of Gédel's work, the Symposium will also explore current research advances and
ideas for future possibilities in the fields of the foundations of mathematics and logic. The symposium intends to put Gédel's ideas
and works into a more general context in the light of current understanding and perception. The symposium will also present
various implications of his work for other areas of intellectual endeavor such as artificial intelligence, cosmology, philosophy, and
theology.

The Symposium will take place 27-29 April in the Celebration Hall of the University of Vienna, famous for its architectural beauty
and the murals of Klimt. More than 20 lectures by eminent scientists in the fields of logics, mathematics, philosophy, physics, and
theology will provide new insights into the life and work of Kurt Gddel and their implications for future generations.

Contributions
The program will contain

Talks by the invited speakers

... P o - B R R RE R EE Ere d e f

© 2005 KGS

Opening
Ceremony

Home Program Godel Registration Exhibition Venue

| bone

Historical Perspectives .
Alonzo Church (1903-1995) &

 Founder of theoretical computer science

» Made major contributions to logic

e Invented Lambda-calculus, Church-Turing Thesis

* Originated Church-Frege Ontology, Church’s the
Church encoding, Church-Kleene ordinal,

e Inspired LISP and functional programming imnoues

* Was Turing’s Ph.D. advisor! Other students:
Davis, Kleene, Rabin, Rogers, Scott, Smullyan

 Founded / edited Journal of Symbolic Logic

e Taught at UCLA until 1990; published “A Theory
of the Meaning of Names™ in 1995, at age 92!

Introduction to
Mathematical
Logic

Adam Olszewski
Jan Wolenski
Robert Janusz (Eds.)

Church's Thesis
After 70 Years

ontos mathematical logic
Ediled by

Wolltzm Pohlets Thomes Scanion Erest Schimmerling Ralf Schincler Haimut Schwichienberg

ontos
U verlag

LAST NIGHT I DRIFTED OFF AT ONCE, JUST LIKE THEY SAID, T FELTA || TRULY, THIS WAS
WHILE READING A LisP Book. [l | GREAT ENUGHTENMENT. T SAW THE NAKED || THE LANGUAGE
4 STRUCTURE orUsP CODE UNFOLD &ron:m.

T MEAN, OSTENSIBLY, YES.
HONESTLY, WE HACKED MOsT
OF IT TOGETHER WITH PERL.

SUDDENLY I wAS BATHED SYNTAY FADED, AND I SWAM IN THE mmwor
IN A SUFFUSION OF BLUE. : :

http://fp.bakarika.net/

LISP 15 QVER HALT A
CENTURY QLD AND IT
STILL HAS THIS PERFECT,

IMELESS AIR ABOUT IT.

=]

T WONDER IF THE CYCLES THESE ARE YOUR
WILL CONTINUE FOREVER. FATHER'S PARENTHESES

Nttt I BRECTN
— l o
> 0

ELEGANT

-
-
e

—
=
=
—
=
—
=
—
—
-

—
—
—J

)

A FEW CODERS FROM EACH WEAPONS
NEW GENERATION RE-
DISCOVERING THE. LISP ARTS. FOR A MORE... CIVIUZED AGE.

A GODS LAMENT

SOME SAID THE \WORLD SHOULD BE IN PERL;

SOME SAID IN LISP

NOW, HAVING GIVEN BCTH A WHIRL,

I HELD WITH THOSE WHO FAVORED PERL.

BUT T FEAR WE pf@ﬁwm MEN

A DISAPPOINTING FOUNDING MYTH v :

. ' | AS oL KNOW, WEIRE [N 3o
Q%DSSS%D&}EHWTE IT ALL AGAIN, THE CIGHTH YEAR OF _ f‘f“\
A CLOSE -PAREN. OUR NORTHERN WARS RePUBLIC

: Bl AGAINGT THE HASKE(LERS |\ OF HASKELL
THERE ARE RUMORS THAT

MORE OF OUR TROOPS 1|
ARE DEFECTING TO THE) |

OTHER SIDC EVERY
DAY...

e

Historical Perspectives
Alan Turing (1912-1954)

» Mathematician, logician, cryptanalyst,
and founder of computer science
* First to formally define computation / algorithm
* Invented the Turing machine model
- theoretical basis of all modern computers
* Investigated computational “universality”
e Introduced “definable” real numbers
 Proved undecidability of halting problem
 Originated oracles and the “Turing test”
* Pioneered artificial intelligence
 Anticipated neural networks
» Designed the Manchester Mark 1 (1948)
» Helped break the German Enigma cypher
 Turing Award was created in his honor

1912-1954 ﬂ&;
Founder of computer science

and cryptographer, whoge work
L waskey to breaking the

-
3
2
2
2
a

b
<
<

~

8

&
e
3
g
2
&
&
3
a
Q

e
: B e (RO
e
/
—

Bletchley Park (“Staton X”), Bletchley, Buckinghamshire, England

England’s code-breaking and cryptanalysis center during WWI|I

iz

i)

> D
C =
= !
=L
(&)
Mm
(q0)

- D
< 'E
30
(@
S &
c £
2 o
)

EG
S D
Hm
= N
5 ©
=
E 5
S
Ct
c N
S ®
(=

S 3
hl
O O
et
2 e
Sl
=
)

(@ (o
v um
o =
_r
£
(@b

S 2
=t
o
TR D)

m Enigma - E User Manual

1918 First Enigma Patent

The official history of the Enigma starts in 1918, when the German Arthur Scherbius filed his first patent
for the Enigma coding machine. It is listed as patent number 416219 in the archives of the German Reicks-
patentamt (patent office). Please note the time at which the Enigma was invented: 1918, just after the First
World War, more then 20 years before WWII! The image below clearly shows the coding wheels (rotors) in
the centre part of the drawing. Below it is the keyboard and to the right is the lamp panel. At the top left is
a counter, used to count the number of letters entered on the keyboard. This counter can still be found on
certain Enigma models.

Arthur Scherbius' company Securitas was based in Berlin (Germany) and had an office in Amsterdam (The
Netherlands). As he wanted to protect his invention outside Germany, he also registered his patent in the
USA (1922), Great Britain (1923) and France {1923)

b
=T

1=

i
| SPECIAL EDITION

DOUGRAY KATE JEREMY SAFFRON
SCOTT WINSLET NORTHAM BURROWS

S

q

Y
(O0000000)
00000000

This irage is taken from patent number 193,035 that was registered in Great Britain in 1923, long before
WWIL It was also registered in a number of other countries, such as France and the USA.

During the 1920s the Enigma was available as a commercial device, available for use by companies and
embassies for their confidential messages. Remernber that in those days, most companies had to use
morse code and radio links for long distance communication. The devices were advertised having over
200.000 possibilities.

In the following years, additional patents
with improvemnents of the coding machine
were applied. E.g. in GB Patent 267,482,
dated 17 Jan 1927, the Umkehrwalze was
added and a later patent of 14 Nov 1929
[GB 343,146) claims the addition of the
Ringstellung, multiple notches, etc. One of
the drawings of that patent shows a coding
device, that we now know as The Enigma,
in great detail.

I3

(S T RO
23 30 SR D

Irereetel KARI@ O

52 httpefwww xat nlfenigma-e/ Ropger then

hwall sz 4 i
x rivebing, fefelipent;

Provocatice plax

THE CODE &

by hugh whitemore

based on the book
Alan Turing, The Enigma

1~ «| The Garden Suburb Theatre

A~ www.gardensuburbtheatre.org.uk
C; L 17 Upstairs at the Gatehouse A
Sz HEbEwe Villago N0 4BD AR

www upstal rasitbhegutehouse com oo s - 44 e bus Lt

—

4-7 Decembs};&zoos

by andrew hodges
..
directed by
phil rayner
e
\ - .‘. y
29w

it's not breaking the code
that matters - it's vhere
you g0 frum there

\

© 2002 hitp:/’mww.jinwicked.com -

JMANCHESTER UNIVERSITY COMPUTING MACHINE LABORATORY |

/ } ‘ L34 | [| : J’ro&nmn!\o Sheet 2} (b) !a-lw' | b 1
[3 Vo || B adlPSEN B ERovAU
1“‘,”?"{ f}é‘_)r.‘ ._;Y; : :‘;“qu‘;‘,’,,g{:lu‘ \:;Pk/.' ke &y
N e B e A 7 - 72272 o 2 I R e
DL T e s e
0 Y o O S50 1 P71 4 I
Lol tael L L]]] Ivieiylelals s i&ls]
! | f : !? i D 5] L:,f‘v.fﬂ AS&JT;“
¥ B N) A O A 38 °2 2 4 51 O3 2 i
L Pl lgst Ll L] L viklwinlsivitlsle
| I A O D O 2 6 oL AR
0 L [1 [Ju] | VK 2.8 l."i‘;“ﬁk’ﬂ
ST T E S R R
M B | I { I D 1 v. 7/ L olDlg T Vs
I R) P] | /s enlRluik T R |
L | BIK I U 9 e &z lmf)|Gik T A |
’ ' | | [N y Dis T T NGk/l.‘ {
| } e “e wnlFliL sy |
‘_ ‘ | | cl | | i smlclge el edsr
I S 0 0 G 4| B RN LY s = sand K2 2RV
T K I . “i.uic TEe 9 2h v
‘Z I A ¢ ! 3 Lo alZlanN T s
: I S [P L el e s fLfge TR
| | WH/‘/ : | IXINL . TW| v e &lo
| || [H[E=Pwlo I AR] RN
| I | |Y|£E 7P| /N /T | @AY V< @ B
; ' P By :::‘wv‘a, @-P on ‘V;/
(] |« e /T | EmnmmR Qv T A
‘ | | |oer|vn I K v nPlolg a 7|7 |
B / 5 Ble|cle =zl | | Bt o ‘
| G Kol Gxi/ 3-:‘7 G@ 2./ |G|lv MT|Z
€ DI T e B O e e Il
"““‘?7’" [| Mk’!b!/? L2 WM:F//
/'\..‘,{!_“ “ | Xleis s e Dwnvs WTI Xlgw 7 s
)+ [| V:iR wig el |VElT ey
ag e || | £l | "¢ voolczlelg T,

|

Program for ACE computer
hand-written by Alan Turing

-
f’\

CHARLES PETZOLD

ol

THE ANNOTATED

3

a ; *
c223% 6
TURING Exuns
R
A Guided Tour through-Alan Turing's | “l' Gl' tl' A

Historic Paper on Comptiability
and the Turing Maghine

ste =@ ® ‘")‘0 s.l'.'u
tans

s
oo
(]

ke A
¢ 2= EDITED BY = |
Al e e s

o

THE ESSENTIAL

TURING

A MADMAN DREAMS OF
Turing Machines

Christof Teuscher (€d.)

Alan Turing:
Life and Legacy
of a Great Thinker

6 Speinger - Janna Levin

DAVID

LEAVITT

o
N O
— =
- 2 = E5 L . Alan Turing and
the Invention
. l"lll'l' of the Computer
- >]
2 “"Jl‘ .
B =
L LN Z THE MAN WHO KNEW T0O MUCH
= I :
4 :,‘:’" : _
4 5
A.K.DEWDNEY e

‘ WUNIVERSAL .
1 l-COMPUTER

LU

Alan Turing

ALAN TURING’S
AUTOMATIC COMPUTING ENGINE

*« ONI¥NL O1L ZINSI3M HO¥d AVOY I HIL

: e OXFORD.
MARTIN DAVIS
5
RS OF MODER
A A
The Turing Test
and the R
-
Frame Problem omp W
anda a odebDreake f
Al's Mistaken Understanding
of Intelligence o -
3
TURING ?
Andrew Hodges
i .
(A Novel about Computation) Larry J. Crockett . /
Christos H. Papadimitrion) :
o A)
o\ ¥
\ WV £ B
BUR DIA o B

Turing and the
Universal Machine

Jon Agar

v Ry K P33

Asnins Aimuad-JjeH v

auIYERN Bunny [esIaAIUn YL
~

Springer-verlag

Wien New York The Making of the. Madern Computer

ST. VINCENT
& THE GRENADINES ys

>
p—
'
~

acscccscann
. A ™

AUANIMATHISONTURINGI1 9123195418

PM apologizes for treatment of gay code-breaker - CNN.com - Mozill (0] x|

Ble Edt Wew Hagtory Bookmarks ook Help

@ - H Icm‘httD1J'/www‘:nn‘cumJ'ZUUQ#WORLD/EWUDE/UB/1l/alarv‘turlng‘DEtltmn.apu\ugyflndex‘htm\ - I“_'"GDUQ\E 5
5] Mast wisted P Getting Started 5| Latest Headlines | | USurges cautionon ... | | Customize Links | | Free Hotmail | | hita:/fumws.scientific-... | | Suggested Sites |] Web Slice Gallery | | Windows Marketplace | | Windows Media |] Windows
Coogle [peHaviland & ~| Gl search - <\w‘.j G - M - ¥ Bockmarkss PR -y arolink T Autoril (e Sendter & [E] De [E] Havilend (Bl 5 & () settings-
Wolfram|# - H LR
| on British PM apologizes for treatment ... | = -
=
@\WN.com /euro pe Googl [searcr
HOME QRylei{iel US. POLITICS CRIME ENTERTAINMENT HEALTH TECH TRAVEL LIVING BUSINESS SPORTS TIME.COM =1 VIDEO IREPORT & IMPACT
Hot Topics » Barack Obama - Afghanistan - The Beatles + U.S. Open tennis - Connect The World « more topics » Weather Forecast International Edition

Live Now p BTN Blogger Bunch have today’s showbiz buzz; Join the chat!
" ||

Watch Now:

sssmy

D MI1He SHARE EMAIL SAVE PRINT

_gm = STORY HIGHLIGHTS
BrltISh PM ap0| oglzes for Online petition calling for apology for Alan Turing elicits response from UK PM i

L]
t t t f d b k e Gordon Brown issues statement apologizing for his "appalling” treatment
rea men 0 gay co e- rea er ¢ Turing committed suicide two years after undergoing chemical castration
* Best known for decoding messages from German Enigma machines in WWII
updated 6:17 a.m. EDT, Fri September 11,]2009 Next Article in World »

By Hilary Whitsman
CHNM

LONDON, England (CNN) -- British Prime Minister Gordon
"appalling” treatment of Alan Turing, the British code-breaker

own has issued a posthumous apology for the
o was chemically castrated for being gay.

Turing was just 41 years old when he committed 082 e it i
suicide, two years after urdergoing a court- New development builds
ordered chemical castratiom\He had been found ripped muscles legally

guilty of gross indecency for Hving a homosexual
relationship. The punishment in was either a
prison sentence or chemical castration. Turing
chose the latter.

In a statement on the British Government Web

£ portrait of Aan Turing is currently on display at the National site, Prime Minister Gordon Brown acknowledged
Portrait Gallery's "Gay lcons" exhibition Turing's "outstanding” contribution during World
War Il
1of3 L b HGH trumns adina brocess |
X Find: | ext A Previous &0 Hohigheal [Match case

Done 4

) British PM apologizes for treatment of gay code-breaker - CNM.com - Mozilla Firefox

=1D1x|

Eile Edit Yiew Higtory Bookmarks Tools Help

@ N (s | on | http:umy. e, com{ 2008/ ORLD europei08/1 1 /alan.turing. petition. apologyfindes: At v - I-'_I"Gougle P

£ Most Yisited ’ Getting Started . Latest Headlines J S urges cautionon ... J Customnize Links I_] Free Hotmail J hikkp:f fvmsw, scientific- . ,J Suggested Sites J ‘\Web Slice Gallery ,_] Windows Marketplace ,J Windows Media ,J Windows

Google [peravilends =] |G search - & G + [- £% Bookmarkss Pk -y auotink] uioril (@ Sendtor A4 [, pe (2 Haviland (2 8 & () settings-

Wolfram % - H B4 @ & 3

J o# British PM apologizes for treatment ... m F
=l

"He truly was one of those individuals we can point to whose unique contribution helped to turn
the tide of war," he wrote, adding, "The debt of gratitude he is owed makes it all the more
horrifying, therefore, that he was treated so inhumanely."

Turing is considered one of Britain's greatest mathematicians, a genius who is credited with
inventing the Bombe, a code-breaking machine that deciphered messages encoded by German
Enigma machines during World War Il.

He went on to develop the Turing machine, a theory that automatic computation cannot solve all
mathematical problems, which is considered the basis of modern computing.

Don't Miss Last month, the curious lack of public recognition for Turing's

. Petition seeks apology for contribution to the war effort and computing in general
Enigma code-breaker motivated computer programmer John Graham-Cumming to
Turing campaign on his behalf.

. Leaders mark 70th
anniversary of WWII The author of the "Geek Atlas," a travel guide for technology

enthusiasts, started an online petition, and soon attracted
high-profile signatories including scientist Richard Dawkins, actor Stephen Fry, author lan
McEwan and philosopher A.C. Grayling.

"| was surprised by both the number of people who signed and the fast response from the
government,” Graham-Cumming told CNN. He said the Prime Minister had called him personally
to relay news of the apology.

Stories about calls for a British apology were carried in newspapers in France, Switzerland,
Spain, Austria, Portugal Poland and the Czech Republic. Supporters set up an international

petition which attracted more than 10,000 signatures. E-mailtoafriend '~# | {] Mixxit | Share
Ads by Google

% Find: | Hext W Previous & Hahlght [Matgh case

Another famous belated apology

) For The First Time (or the last time}): 1992: Catholic Church apologizes to Galileo, who died in 1642 - Mozilla I [=[P3} il %) For The First Time (or the last time): 1992: Catholic Church apologizes ko Galileo, who died in 1642 - Mozilla =]
File Edit ¥iew History Bookmarks Tooks Help File Edit ‘Wew History Bookmarks Tools Help
C % st i i . - ™
C X o IB ‘ hitp:/dthefirsttime. blogspot..com| 20070911952 cathalic church-apolagizes-to.t [77 I | |Gnngla Fa - c x o, IB ‘ http:fjthefirsttime. blogspot, com/2007j09/1992-catholic-church-apologizes-ta.h [3 W I"."| Google e
@ IMost Visited ’ iagtting Started o Latest Headlines US urges caution on ... Customize Links Free Hatrnail hitkp: /e, scientific-.... 3
= | Ij Ij Ij ﬁ @ Mozt Yisited ’ zetting Starked |5 | Latest Headlines |j US urges caution on .. \j Customize Links \j Free Hotmail |j hikkp:f e, scientific-. .. »
(;DOSIE catholic church apology ¢ | |G| Search - 4 @ l& - M - ﬂ? Bookmarks~ Fﬂ‘ - % Autolink ‘U Autafl 2 @ Settings™
= GO(JSIE I(athulit church apology ¢ 'l C search ~ <|' @ E? A IR * Bookmarks~ E’Lﬂ': - % Autolink ﬁ Autofil G Send tor > @ Settings~
Wolfram)|£ - H| [~ WO IR 4 =
— — Wolfram|# « || % 3 © 2 & %
J B For The First Time {or the last time); ...| F
:l J B For The First Time {or the last time): | - F
~ -
Monday, September 10, 2007 2l

1992: Catholic Church apologizes to Galileo, who
died in 1642

In 1610, Century Italian
astronomer/mathematician
/inventor Galileo Galilei used

a a telescope he built to

observe the solar system, and —
deduced that the planets

orbit the sun, not the earth.

This contradicted Church
teachings, and some of the
clergy accused Galileo of
heresy. One friar went to the
Inquisition, the Church court
that investigated charges of
heresy, and formally accused
Galileo. (In 1600, a man
named Giordano Bruno was
convicted of being a heretic for believing that the earth moved around
the Sun, and that there were many planets throughout the universe
where life existed.[Bruno was burnt to death.)

Galileo moved on to other projects. He started writing about ocean
tides, but instead of writing a scientific paper, he found it much more
interesting to have an imaginary conversation among three fictional
characters. One character, who would support Galileo's side of the
argument, was brilliant. Another character would be open to either side
of the argument. The final character, named Simplicio, was dogmatic
and foolish, representing all of Galileo's enemies who ignored any
evidence that Galileo was right. Soon, Galileo wrote up a similar
dialogue called "Dialogue on the Two Great Systems of the World."
This book talked about the Copernican system.

1 |

X Find: ¥ next @ Previous & Highlightall [Match case

@) Phrase not found

‘ Done A

"Dialogue" was an immediate hit with the public, but not, of course,
with the Church. The pope suspected that he was the model for
Simplicio. He ordered the book banned, and also ordered Galileo to
appear before the Inquisition in Rome for the crime of teaching the
Copernican theory after being ordered not to do so.

Galileo was 68 years old and sick. Threatened with torture, he publicly
confessed that he had been wrong to have said that the Earth moves
around the Sun. Legend then has it that after his confession, Galileo
quietly whispered "And yet, it moves."

Unlike many less famous prisoners, Galileo was allowed to live under
house arrest. Until his death in 1642, he continued to investigate
science, and even published a book on force and motion after he had
become blind.

The Church eventually lifted the ban on Galileo's Dialogue in 1822,
when it was common knowledge that the Earth was not the center of
the Universe. Still later, there were statements by the Vatican Council
in the early 1960's and in 1979 that implied that Galileo was pardoned,
and that he had suffered at the hands of the Church. Finally, in 1992,
three years after Galileo Galilei's namesake spacecraft had been
launched on its way to Jupiter, the Vatican formally and publicly
cleared Galileo of any wrongdoing.

(info from NASA and the

* Find: & next @ Previous & Highlight all [~ Match case

) Phrase not found

| Done

Turing’s Seminal Paper

“On Computable Numbers, with an Application to the

Entscheidungsproblem”, Proceedings of the London
Mathematical Society, 1937, pp. 230-265.

 One of the most influential & significant papers ever!

e
Nia,

* First formal model of “computation”

* First ever definition of “algorithm?
 Invented “Turing machines”

* Introduced “computational universality”
1.e., “programmable’!

* Proved the undecidability of halting problem
 Explicates the Church-Turing Thesis

230 A. M. Torive [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Turixsc.

1936.] ON COMPUTABLE NUMBERS. 231

have valuable applications. In particular, it is shown (§11) that the
Hilbertian Entscheidungsproblem can have no solution.

In a recent paper Alonzo Churcht has introduced an idea of *effective
calculability ”, which is equivalent to my ‘computability ", but is very
differently defined. Church also reaches similar conclusions about the
Entscheidungsproblem}. The proof of equivalence between *“computa-
bility ” and ‘“‘effective calculability * is outlined in an appendix to the
present paper.

[Received 28 May, 1936.—Read 12 November, 1936.]

The “computable’” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.

Although the subject of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral vaviable or a real or computable variable, computahle
predicates, and so ferth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will in¢lude a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§9. 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally he
regarded as computable. In particular, I show that certain large classes

of numbers are computable. They include, for instance, the real parts ot
all algebmic numbers, the real parts of the zeros of the Bessel functions.

/" the numbers w, ¢, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which s not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.

_ In § 8 I examine certain arguments which would seem to prove the contrary.

»

=p-| 1. Computing machines.

We have said that the computable numbers are those whose decimals
are calculable by finite means. This requires rather more explicit
definition. No real attempt will be made to justify the definitions given
until we reach §9. For the present I shall only say that the justification

lies in the fact that the human memory is necessarily Limited.

f We may compare a man in the process of computing a real number to N

machine which is only capable of a finite number of conditions ¢,, ¢, g,
which will be called ““m-configurations”. The machine is supplied with
“tape” (the analogue of paper) running through it, and divided into
sections (called ‘““squares’) each capable of bearing a “symbol”. At
any moment there is just one square, say the r-th, bearing the symbol &(»)

which is “in the machine”. We may call this square the “scanned
square’”. The symbol on the scanned square may be called the * scanned
symbol”. The ““scanned symbol” is the only one of which the machine
is, so to speak, “directly aware”. However, by altering its m-configu-

ration the machine can effectively remember some of the symbols which
it has ‘““seen’ (scanned) previously. The possible behaviour of the
machine at any mement is determined by the m-configuration ¢, and the
scanned symbol &(r). This pair ¢,, €(r) will be called the ** configuration ’ :

Qhus the configuration determines the possible behaviour of the machine—J

By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelf. These results

In some of the configurations in which the scanned square 1s blank (i.e.
bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it cne place to right or left. In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down

t Gadel, “Uber formal unentscheidbare Sitze der Principia Mathematica und ver-
wandter Systeme, 17, Monetshefte Math. Phys., 38 (1931), 173-193.

t Alonzo Church, *“ An unsolvable problem of elementary number theory ™, American
J. of Math., 58 (1936), 345-363.

{ Alonzo Church, “ A note on the Entscheidungsproblem™, J. of Symbolic Logic, 1
(1936}, 40-41.

232 A. M. Torive [Nov. 12,
will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to ““assist the
memory . It will only be these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used
in the computation of a number. The defence of this contention will be
easier when the theory of the machines is familiar to the reader. In the
next section I therefore proceed with the development of the theory and
assume that it is understood what is meant by “machine”, *tape”,
“seanned ”’, ete.

2. Definitions.

Turing
_Autewnmtic machines.
If at each stage the moticn of a machine (in the sense of §1)is completely

determined by the configuration, we shall call the machine an ““auto-
matic machine” (or g-maching).

For some purposes we might use machines {choice machines or
¢-machines) whose motion is only partially determined by the configuration
(hence the use of the word “possible”” in §1). When such a machine
reaches one of these ambiguous configurations, it cannot go on until some
arbitrary choice has been made by an external operator. This would be the
case if we were using machines to deal with axiomatic systems. In this
paper I deal only with autematic machines, and will therefore often omit
the prefix a-,

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind
(called figures) consists entirely of 0 and 1 (the others being called symbols of
the second kind), then the machine will be called a computing machine.
If the machine is supplied with a blank tape and set in motion, starting
from the correct initial m-configuration, the subsequence of the symbols
printed by it which are of the first kind will be called the sequence computed
by the machine. The real number whose expression as a binary decimal is
obtained by prefacing this sequence by a dectmal point is called the
number computed by the machine.

At any stage of the motion of the machine, the number of the scanned
square, the complete sequence of all symbols on the tape, and the
m-configuration will be said to describe the complete configuration at that
stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.

1936.] ON COMPUTABLE NUMBERS. 233

Circular and circle-free machines.

If a computing machine never writes down more than a finite number
of symbols of the first kind, it will be called circular. Otherwise it is said to
be circle-free.

A machine will be cireular if it reaches a configuration from which there
is no possible move, or if it goes on moving, and possibly printing symbols
of the second kind, but cannot print any more symbols of the first kind.
The significance of the term “circular™ will be explained in §8.

Compultable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free
machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable
sequences than of computable numbers.

3. Kxamples of computing machines.

I. A machine can be constructed to compute the sequence 010101
The machine is to have the four m-configurations <57, «¢”, <%, =¢?
and is capable of printing 0" and <“1”. The behaviour of the machine is
deseribed in the following table in which ¢ B’ means ©“ the machine moves
so that it scans the square immediately on the right of the one it was
scanning previously ”’. Similarly for = L”. “E’ means *the scanncd
symbol is erased” and “P’’ stands for “prints”. This table (and all
succeeding tables of the same kind) is to be understood to mean that for
a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over
into the m-configuration described in the last column. When the sccond
column is left blank, it is understood that the behaviour of the third and
fourth columns applies for any symbol and for no symbol. The machine
starts in the m-configuration b with a blank tape.

Configuration Behaviour
wm-config. symbol operations final mi-config.
b None Po, R ¢
¢ None R ¢
¢ None Pl R £

£ None B b

234 A, M. Turing [Nov. 12,

If (contrary to the description in § 1) we allow the letters I, R to appear
more than once in the operations column we can simplify the table
considerably.

m-confiy. symbol operations final m-config.
None PO b
b 0 R, R, P1 b
1 E, Rk, PO b

I1. As a slightly more difficult example we can construct a machine to
compute the sequence 001011011101111011111.... The machine is to
be capable of five m-configurations, viz. “o”, “q%, “p”, “f”, “b” and of
printing “9”’, <, <0’ *“1”. The first three symbols on the tape will
he “990”"; the other figures follow on alternate squares. On the inter-

mediate squares we never print anything but “z”". These letters serve to
*“keen the place” for us and are erased when we have finished with them.

We also arrange that in the sequence of figures on alternate squares there
shall be no blanks.

Configuratron Behaviour
m-config. symbol operations Jinal
m-config.

b Po, R, Po, R, PO, R, R, PO, L, L 0
(1 R, Px, L L L 0
0 1 o .
Any (0orl) R R q
) {None Pl, L P
% £ R q
» { @ R f
None L, L v
Any R,R f
f { None PO, L, L 0

To illustrate the working of this machine a table is given below of the
first few complete configurations. These complete configurations are
described by writing down the sequence of symbols which are on the tape,

1936.] OX COMPUTABLE NUMBERS. 235

with the m-configuration written below the scanned symbol. The
successive complete configurations are separated by colons.

19920 0:9020 0:990 0:900 0 tea0 O 1:
b 0 q 9 q - p
990 0 1l:290 © 1:290 O 1l:980 0 1:

p » f f
220 0 l:080 0 1 o0 0 1 0

f f v
saf 0 1z0: ...
o
This table could also be written in the form
b:oao0 O:as8g0 0O: ..., (

in which a space has been made on the left of the scanued symbal and the
m-configuration written in this space. This form is less easy to follow, but
we shall make use of it later for theoretical purposes.

The convention of writing the figures only on alternate squares is very
useful : Ishall always make use of it. I shail call the one sequence of alter-
nate squares F-squares and the other sequence £-squares. The symbols on
E-squares will be liable to erasure. The symbols on F-squares form &
continuous sequence. There are no blanks until the end isreached. There
is no need to have more than one F-square between each pair of f-squares:
an apparent need of more E-squares can be satisfled by having a sufficiently
rich variety of symbols capable of being printed on F-squares. If a
symbol 8 is on an F-square 8 and a symbol a is on the E-square next on the
right of S, then S and 8 will be said to be marked with a. The
process of printing this « will be called marking 8 (or §) with a.

4. Abbreviated tubles.

There are certain types of process used by nearly all machines, and
these, in some machines, are used in many connections. These processes
include copying down sequences of symbols, comparing sequences, erasing
all symbols of a given form, ete. Where such processes are concerned we
can abbreviate the tables for the m-configurations considerably by the use
of “skeleton tables”. In skeleton tables there appear capital German
letters and small Greek letters. These are of the nature of “*variables'
By replacing each capital German letter throughout by an m-configuration

236 A. M, Turva [Nov. 12,

and each small Greek letter by a symbol, we obtain the table for an
m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations :
they are not essential. So long as the reader understands how to obtain
the complete tables from the skeleton tables, there is no need to give any
exact definitions in this connection.

Let us consider an example:

If there is no «
the m-configuration be-
g comes B.

f1(C, D, a)
None R B

If we were to replace € throughout by q (say), B by r, and o by =, we
should have « complete table for the m-configuration f(q, v,). fis called
an “m-confignration function” or ¢ m-function”.

The only expressions which are admissible for substitution in an
m-tunction are the m-configurations and symbols of the machine. These
have to be enumerated more or less explicitly : they may include expressions
such as p(v, x); indeed they must if there are any m-functions used at all.
1f we did not insist on this explicit emumeration, hut simply stated that
the machine had certain m-configurations (enumerated) and all m-configu-
rations obtainable by substitution of m-configurations in certain m-func-
tions, we zhould usually get an infinity of m-configurations; e.g., we might
say that the machine was to have the m-configuration q and all m-configu-
rations obtainable by substituting an m-configuration for €in p(€). Then

it would have g, p(q), p(p(q)), p(p(p(q))),

Our interpretation rule then is this. We are given the names of the
m-configurations of the machine, mostly expressed in terms of m-functions.
\We are also given skeleton tables. All we want is the complete table for
the m-configurations of the machine. This is obtained by repeated
substitution in the skeleton tables.

becomes €.
None B (6,8, a) then

m-config. Symbol Behoviour Final
-confiy.
Ia L (€ B, a) From the m-configuration
HE,®,a) o I icwa T(ED e the machine finds the
(moto L flE3.q) symbol of form a which is far-
[a ¢ thest to the left (the ““first a”)
(G, B,) {not « R §(G 5,4 and the wm-configuration then

f2(C, 0. a) Jlnot a R

as m-configurations.

1936.] OX COMPUTABLE NUMBERS. 237

Further examples.

(In the explanations the symbol “— " is used to signify * the machine
goes into the m-configuration. . . .")

e(6,D,a) fex(€, B, a), B, a)
¢{€,®B,0) E G

From ¢(€, ¥, «) the first o is
erased and — €. If there is no

a5,

e(B, o) c(e(?B, a), B, a) From ¢(B, o) all letters a arc

erased and — 9.

The last example seems somewhat more difficult to interpret than
most. Let us suppose that in the list of sm-confignrations of some machine
there appears c{b, x) (==gq, say). The table is

c(b, z) c(c(b, x), b, 1:)
or q efq, b, 2)

Or, in greater detail:

q C(‘]: [‘: 1’)
C(\L E‘J :C) f(%("{: [’: :U): [!: :’J\)
¢ (\1: b: 1’) E q.

In this we could replace ¢y(g, b,) by o and then give the table for f (with
the right substitutions} and eventually reach a table in which no
m-functions appeared.

pe(€, B) f(pc,_(@,ﬁ), @,a) From pc (€, B) the machine

Any R R 5,(C, B) prints 8 at the end of the

pe, (€, B) { ' sequence of symbols and - €.
None Pf ¢

(&) L ¢ From §'(C. B, a) it does the

¢ (@) R G same as for f{€, B, a) but

moves to the left before — C.

(€, 3B, a) £1(€), B, a)

(€, B, a) F{r(€), B, o}

(€, B, a)
c1(€) B

f(cn(€), B, a) ¢(€, B, a). The machine
pe(G, B) writes at the end the first sym-
bol marked « and - G.

238 A. M. Turmve [Nov. 12,

The last line stands for the totality of lines obtainable from it by
replacing 8 by any symbol which may occur on the tape of the machine
eoncerned.

(€, B, a) c(c(@, B,a), B, a) ce{B, a). The machine
copies down in order at the
(B, a) € (CE(‘I‘J, a), B, a) end all symbols marked «

and erases the letters ¢ ; - B.

(G, %, a, B) f(rel(ﬁ, B, a, 8), B, a) The ma-

)
chi X ales the first a by
dg}b €— B if there i no «a.
:). The machine re-
r(®, a, f) rc v, a, f), ¢
a@ places al lettersa by 8; —%9.

(€5, a) '3(1'0 ‘,@@h%,a) (W, o} differs from
° (B, «) only in that the

(T, a) C%N >“)’rc(9‘5’“:a)"l> letters o are not erased. The
m-configuration (B, a) is

taken up when no letters

«Q&‘Z&
“@’ are on the tape.

' {0(C 2, B). (2, € B). a)

YCI(GJ“D:U-:B) E:Pﬁ ¢

2 Ea, B

(S, X, B) ¥ P {ewa(€, 9, 9), %, 8)
&

opa (G, 2, J’

Pl v) | not y o,

The first symbol marked « and the first marked f are compared. If
iheve is neither @ nor 8, = €. If theve are both and the symbols are alike,
— €. Otherwise — 9.

pe(G, 9, €, a, 8) e <c(c(@:, €8, Ca) ¥ Eap)
ape(€, U, €, o, B) differs from ep{Q, U, €, a, B) in that in the case when
there is similarity the first « and B are erased.

ope(Y, €, a, 8) pe (cpe(ﬁ[, e f),Y Ea B)

cpe(¥, €, a,8). The sequence of symbols marked a is compared with
the sequence marked 8. — € if they ave similar. Otherwize —+ 2. Some
of the symbols « and B are erased.

1936.] ON COMPUTABLE NUMBERS. 239
{Any R q(€) q{€, a). The machine
() finds the last symbol of
None £ %(€) form «. - €.
Any R q(€)
€
fal None €
1€ a) 9 (au(&)]
a €
g,
(&) not a L 91(C, a)
e(€, a, B) pe(pe(§, B), o) p¢o{€, &, B). The machine
prints o 8 at the end.
¢, (B, a, B) ce(cc(‘li, B, a) cey(%B, e, 8,7). The mach-
ine copies down at the end
(B, a, B, 7) ce (“2(%: B.v), ‘1) first the symbols marked a,
then those marked B, and
finally those marked y; it
erases the symbols a, B, ».
a R e (&) From ¢(€} the marks are
e(€) Noto L e(6) erased from all marked sym-
bols. — €.
fAny R, E R e, (€)
e (€)
None €

5. Enumeration of compuiable sequences.

A computable sequence y is determined by a description of a machine
which computes . Thus the sequence 001011011101111... is determined
by the table on p. 234, and, in fact, any computable sequence is capable of
being described in terms of such a table.

always to be called q,. We also give numbers to the symbols 8,,...., 8|

It will be useful to put these tables into a kind of standard form. In the
first place let us suppose that the table is given in the same form as the first
table, forexample, I on p. 233. Thatis to say, that the entry in the operations
columnisalwaysofoneoftheforms £: B, B: E, L: Pa: Po,R: Pa,L: R: L:
or no entry at all. The table can always be put into this form by intro-
ducing more m-configurations. Now let us give numbers to the m-configu-
rations, calling them ¢, ..., g, as in §1. The initial m-configuration is

™

240 A. M. Turmve [Nov. 12,

and, in particular, blank = 8,, 0 = §,, 1==8,. The lines of the table are
now of form

FPinal
m-config. Symbol Operations m-config.
% 8, PS8, L I (¥))
4 8, P8, B Im (V)
g 8; P8, T (N3)
Lines such as
'l S; E, B T
are to be written as
% Sy P8y, B I
and lines such as
% 8, R @
to be written as
9 SJ' P Si’ R Qm

In this way we reduce each line of the table to a line of one of the forms
(N1)3 (ATZ): (Na)

From each line of form (N,) let us form an expression ¢;8; 8, L¢,.;
from each line of form (&,) we form an expression g;8;8,Rq,;
and from each line of form (&) we form an expression ¢; 8, 8, N g,,.

Let us write down all expressions so formed from the table for the
machine and separate them by semi-colons. In this way we obtain a
complete description of the machine. In this description we shall replace
g; by the letter «<“ D’ followed by the letter “* 4 ” repeated ¢ times, and §; by
« D followed by “C" repeated j times. This new deseription of the
machine may be called the standard description (8. D). It is made up
entirely from the letters «“ A4, < C», «D”, «L” «E” <N and from

If finally we replace “4 ™ by <1, “C” by 27, “D” by “37, «“L>
by 4, “R” by “5”, “N” by “6”, and «“3” by “7” we shall have a
description of the machine in the form of an arabic numeral. The integer
represented by this numeral may be calied a description number (D.N) of
the machine., The D.N determine the 8. and the structure of the

1636.] ON COMPUTABLE NUMBERS. 241

machine uniquely. The machine whose DN is #n may be described as
M)

To each computable sequence there corresponds at least one description
number, while to no description number does there correspond more than
one computable sequence. The computable sequences and numbers are
therefore enumerable.

Let us find a description number for the machine I of §3. When we
rename the m-configurations its table becomes:

4 8, P8, R s
g, 8, P8, R s
qs S, PS,, B s
3 8, PS,, R ¢

Other tables could be obtained by adding irrelevant lines such as
q A PS, R s
Our first standard form would be
0188, Reyy 928,58, Rqs; 438,58 Rqy; 948,85, Byyse
The standard description is
DADDCRDAADAADDRDAAA;
DAAADDCCRDAAAA ;DAAAADDRDA ;
A description number is
31332531173113353111731113322531111731111335317
and so is
3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be
called a satisfactory number. In §8itis shown that there can be no general
process for determining whether a given number is satisfactory or not.

| 8. The universal computing machine. |

It is possible to invent a single machine which can be used to compute
any computable sequence. If this machine 40 is supplied with a tape on

the beginning of which 1s written the S.D of some computing machine M,
8ER. 2. voL. 42. No, 2144. R

242 A. M. TvriNG [Nov. 12,
then U will compute the same sequence as AL, In this section I explain
in outline the behaviour of the machine. The next section is devoted to
giving the complete table for L.

Let us first suppose that we have a machine AL’ which will write down on
the F-squares the successive complete configurations of AL. These might
be expressed in the same form as on p. 235, using the second description,
(C), with all symbols on one line. Or, better, we could transform this
description (as in §5) by replacing each m-configuration by “.D”’ followed
by ‘4" repeated the appropriate number of times, and by replacing each
symbol by <D followed by “C’ repeated the appropriate number of
times. The numbers ofletters .47 and ¢« €'’ are to agree with the numbers
chosen in §5, so that, in particular, <0’ is replaced by “DC”, “1” by
«“DCC”, and the blanks by “D”. These substitutions are to be made
after the complete configurations have been put together, as in (C). Diffi-
culties arise if we do the substitution first. In each complete configura-
tion the blanks would all have to be replaced by *“ D , so that the complete
configuration would not be expressed as a finite sequence of symbols.

If in the description of the machine IT of § 3 we replace ““ o by “ DAA4 ”,
“9” by “DCCC”, “q” by “DAAA", then the sequence (C) becomes :

DA:DCCCDCCCDAADCDDC:DCCCDCCCDAAADCDDC ... (Cy)

{This is the sequence of symbols on F-squares.)

It is not difficult to see that if .ii. can be constructed, then so can Al.
The manner of operation of .4\’ could be made to depend on having the rules
of operation (i.e., the 8.D) of .\\. written somewhere within itself (z.e. within
AV); each step could be carried out by referring to these rules. We have
only to regard the rules as being capable of being taken out and ex-
changed for others and we have something very akin to the universal
machine.

One thing is lacking : at present the machine A\’ prints no figures. We
may cotrect this by printing between each suecessive pair of complete
cunfigurations the figures which appear in the new configuration but not
in the old. Then (C,} becomes

DDA:0:0:DCCCDCCCDAADCDDC: DCCC. ... (C,)

It is not altogether obvious that the E-squares leave enough room for
the necessary * rough work ", but this is, in fact, the case.

The sequences of letters between the colons in expressions such as
(C,) may be used as standard descriptions of the complete configurations.
‘When the letters are replaced by figures, as in §5, we shall have a numerical

1936.] ON COMPUTABLE NUMBERS. ' 243

description of the complete configuration, which may be called its descrip-
tion number.

[7. Detarled description of the wniversal machine.

A table is given below of the behaviour of this universal machine. The

m-configurations of which the machine 1s capable are all those oceurring
the first and last columns of the table, together with all those which cccur
when we write out the unabbreviated tables of those which appear in the
table in the form of m-functions. E.g., e(anf) appears in the table and is an
m-function. Its unabbreviated table is (see p. 239)

) R ¢, (anf)
¢(anf) ‘

not o L efanf)

Any R, E, R ¢, (anf)
es(anf) { None anf

Consequently e;{anf) is an m-configuration of L.

When 11 is ready to start work the tape running through it bears on it
the symbol @ on an F-square and again s on the next E-square; after this,
on F-squares only, comes the 8.D of the machine followed by a double
colon ¢::" (a single symbol, on an F-square). The S.D consists of a
number of instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

(i) =D followed by a sequence of letters *A”. This describes the
relevant m-configuration,

(ii) «“D” followed by a sequence of letters “C*’. This describes the
scanned symbol,

(iiiy “D” followed by another sequence of letters «“(C’’. This
describes the symbol into which the scanned symbol is to be changed.

(iv) L7, «“R"”, or “N”, describing whether the machine is to move
to left, right, or not at all.

(v) “D” followed by a sequence of letters <A, This describes the
final m-configuration.

The machine 4l is to be capable of printing «“ 47, < C”, “D”, «“0”,
L1V g e g g oy 2 The 8.D is formed from *;”,
.uA”, (rC”, HD”, NL”, t;R!’, “N”.

R2

244 A. M. Turing [Nov. 12,

Subsidiary skeleton table.

Not4 R, R con(Q, a) con(€,). Starting from

con(€, a) { an F-square, S say, the se-

4 L Po, B com(€a) uence ¢ of symbols describ-

A R Pa,R con(€, a) ing a configuration closest on

con, (G, a) { the right of § is marked out
D R, Pa, B cony{€,a) with letters a. —€.

(9 R, Po, R
con, (G, a)
NotC R.R

cony(€, a) con(€,). In the final con-
figuration the is
scanning the square which is
four squares to the right of the
last square of €. C is left

unmarked.

machine

¢

The table for 1.

0 f(by, by, :2)
b, R, R P, R R PD R, R PA

5. The machine prints

¢ :D4 on the F-squares after
an

11— anf.
anf glanfy, 1) anf. The machine ¥
the conﬁguratlon ast;
anf, con(fom,) complete n with
Y. —>fo
; R, Pz, L con(bmp, x) QﬁThe machine ﬁndg‘o
-gol
fom . L fom the™ last . gemi-colon
marked with z. ks
not z nor ; L fom this semi-colon w’&l}
the conﬁ% followmg
it wmh & @
Barp cpc((fom, , ¥), $im, Z, The machine com-
%res the sequences marked
z and y. It erases all letters
xz and y. — ¢im if they are
alike. Otherwise — Fom.
anf. Taking the long view, the last instruction relevant to the last

configuration is found. It can be recognised afterwards as the instruction

following the last semi-colon marked z. — dim.

&\?fs {not :

SO

1936.] ON COMPUTABLE NUMBERS.
gim f'(sim,, 8imy, 2)
dim, con (simy,,)
A $img
$im,
not4 R,Pu,R, R, B gim,
not A L, Py e(mt, z)
$im, _
A L,Py,R,E,E sim,
mf (mf, Z) ITIE.
not 4 mt;
mé, four sectio

| &}Q@ mk,
% @ L L L mt,

D R, Pz, L, L, mi,

R, Py, mé,
N
me, Q& on (I(I(mf5)))
,{p@ R, Pw, R mi,
Nonse P: 8h
f(80,, inst, u)
o6, L L L 85,
D R R R R 86y
86, .
not D ngdt
C R, R 80,
8
bs not ¢ inst
c R, R 865
88, ,
not € pe(inst, 0, 1)
C ingt
8y .
not C peg(inst, 1, 1)

ﬂmfco

245

sim. The machine marks out
the instructions. That part of
the instruetions which refers to
operations to be carried out is
marked with %, and the final m-
configuration with y. The let-
ters z are erased.

The last complete con-
figuration isqmarked out into

\. The configura-
unmarked. The

Sy1, ctly preceding it is
é d with . The remainder
the complete configuration

is divided into two parts, of
which the first is marked with
» and the last with w. A colonis
printed after the whole. — ¢b.

8. Theinstructions (marked
») are examined. If it is found
that they involve ““Print 0™ or
“Print 17, then 0: or 1: is
printed at the end.

246 A. M. TurixNg [Nov. 12,

ingt g(I(inétl), u) ingt. The next complete
configuration is written down,

ingt, a« R E insta) carrying out the marked instruc-

inst, (L) cey (09, ¥, y, T, %, W) tions. The letters u, v, w, z, ¥
. are erased. —anf.

inst, (R) ces(00, v, T, u, Y, W)

inst, (V) ecs(on, v, 2, Y, o, W)

oo c(anf)

8. Application of the diagonal process.

It may be thought that arguments which prove that the real numbers
are not enumerable would also prove that the computable numbers and
sequences cannot be enumerable®. It might, for instance, be thought
that the limit of a sequence of computable numbers must be computable.
This is clearly only true if the sequence of computable numbers is defined
by some rule.

Or we might apply the diagonal process. ¢ If the computable sequences
are enumerable, let a, be the n-th computable sequence, and let ¢, (m) be
the m-th figure in o,. Let B be the sequence with 1—¢,(n) as its n-th
figure. Since f is computable, there exists a number K such that
l—~¢,(n)=¢y(n) all n. Putting n =K, we have 1= 2¢(K), te. 1 is
even. This is impossible. The computable sequences are therefore not
enumerable .

\ The fallacy in this argument fies in the assumption that 8is computableJ

It would be true if we could enumerate the computable sequences by finite
means, but the problem of enumerating computable sequences is equivalent
to the problem of finding out whether a given number is the D.N of a
circle-free machine, and we have no general process for doing this in a finite
number of steps. In fact, by applying the diagonal process argument
correctly, we can show that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this
general process exists, then there is a machine which computes 8. This
proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that *there must be something wrong”. The
proof which I shall give has not this disadvantage, and gives a certain
insight into the significance of the idea “circle-free”’. It depends not on
constructing 8, but on constructing 8’, whose n-th figure is ¢, (n}.

* Cf. Hobson, Theory of functions of a real variable (2ud ed., 1921), 87, 88,

1936.] ON COMPUTABLE NUMBERS. 247

Let us suppose that there is such a process; that is to say, that we can
invent a machine © which, when supplied with the 8.D of any computing
machine A\ will test this S.D and if AL is circular will mark the $.D with the
symbol “u«”’ and if it is circle-free will mark it with <“s”. By combining
the machines ©. and & we could construct a machine 11 to compute the
sequence . The machine © may require a tape. We may suppose that
it uses the E-squares beyond all symhbols on F-squares, and that when it
has reached its verdict all the rough work done by . is erased.

The machine /1 has its motion divided into sections. In the first N —1
sections, among other things, the integers 1, 2, ..., N—1 have been written
down and tested by the machine ©.. A certain number, say R(N--1), of
them have been found to be the D.N’s of circle-free machines. Inthe N-th
section the machine L. tests the number N. TIf NV is satisfactory, ¢.e., if it
is the D.N of & circle-free machine, then R(N)= 1+ R{N¥N—1) and ihe first
R(N) figures of the sequence of which a TN is N are calculated. The
R(N)-th figure of this sequence is written down as one of the figures of the
sequence A’ computed by Jl. If ¥ isnot satisfactory, then B(N)= R(N-—-1)
and the machine goes on to the {¥-+1)-th section of its motion.

From the construction of JI. we can see that il i circle-free. Each
section of the motion of i comes to an end after a finite number of steps.
For, by our assumption about ©, the decision as to whether N is satisfactory
is reached in a finite number of steps. If N is not satisfactory, then the
N-th section is finished. If N issatisfactory, this means that the machine
AL(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can be
caleulated in a finite number of steps. When this figure has been calculated
and written down as the R{¥)-th figure of 8, the N-th section is finished.
Hence 1l is circle-free.

Now let K be the D.N of Ji. What does il do in the K-th section of
its motion? Tt must test whether K is satisfactory, giving a verdict s’
or “u4”, Since K is the D.N of 1\ and since J. is circle-free, the verdict
cannot be “#”. On the other hand the verdict cannot be **s”. For if it
were, then in the K-th section of its motion | would be bound to compute
the first R(K—1)+1= R(K) figures of the sequence computed by the
machine with K as its)N and to write down the R(K)-th as a figure of the
sequence computed by #1. The computation of the first R(K)~—1 figures
would be carried out all right, but the instructions for calculating the
R(K)-th would amount to “calculate the first. R{K) figures computed by
H and write down the B(K)-th”. This R(K)-th figure would never be
found. I.e.,)} is circular, contrary both to what we have found in the last
paragraph and te the verdict “s’’. Thus both verdicts are impossible
and we conclude that there can be no machine 1.

248 A. M. Turixe [Nov. 12,

We can show further that there can be no machine & which, when
supplied with the 8.D of an arbilrary machine \\, will determine whether .\
ever prinis a giwen symbol (0 suy).

We will first show that, if there is a machine £, then there is a general
process for determining whether a given machine .\l prints 0 infinitely
often. Let .\l; be a machine which prints the same sequence as i, except
that in the position where the first 0 printed by .|l stands, Al, prints 0.
Alyi5 to have the first two symbols 0 replaced by 0, and so on. Thus, if . |l
were to print

ABA0144B00104B...,

then i, wonld print
AB4014A4AB00104B...
and .1, would print
ABAVIAABO0O104B....

Now let 7% be a machine which, when supplied with the 8.D of .11, will
write down suceessively the 8.1 of Ui, of .1y, of .11, ... (there is such a
machine). We combine I with { and obtain a new machine, . In the
motion of & first O is used to write down the S.I) of -, and then { tests
it.:0: iy written if it is found that . U never prints 0; then writes the S.D
of .11, and this is tested, : 0 : being printed if and only if . l; never prints 0,
and so on. Now let us test ¢, with ¢, Ifitis found that {§ never prints 0,
then . It prints 0 infinitely often; if prints 0 sometimes, then Al does not
print O infinitely often.

Similarly there is a general process for determining w prints 1
infinitely often. By a combination of these processes &
for determining whether . W prints an infinity of
for determining whether .U
machine {,

a process
e have a process

is circle-free. can thelefore be no

"The expression ‘“there is a ge s for determining ...”" has
been used throughout this @qmvalent to ““there is a machine
which will determine ... ” ge can be justified if and only if we

can]ustlty our dan computable Faor each of these ““ general
process ” problem ru expressed as a problem concerning a general
process f01 deb? ng whether a given integer » has a property G'(n) [e.g.
(n n is satisfactory’’ or “= is the Godel representation of
a p1 ovaple/formula], and this is equivalent to computing a number
whose n-th figure is 1 if & (n) is true and 0 if it is false.

1936.] ON COMPUTABLE NUMBERS. 249

9. The extent of the computable numbers.

No attempt has yet been made to show that the “ computable’” numbers
include all numbers which would naturally be regarded as computable. All
argnments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is “ What are the possible processes which ean he
carried out in computing a number?”’

The arguments which I shall use are of three kinds.

(@) A direct appeal to intwition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(¢) Giving examples of large classes of numbers which ave
computable.

Once it is granted that computable numbers are all *“computable ™
several other propositions of the same character follow. In particular, it
follows that, if there is a general processfor determining whether a formula
of the Hilbert function calculus is provable, then the determination can be
carried out by a machine.

I. [Type (@¢)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbols on paper. e
may suppose this paper is divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, ¢.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extentt. The effect of this restriction of the number
of symbols is not very serious. [t is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

t If we regard & symbol as literally printed on & square we may suppose that the square
0Lz, 0<y<1. The symbol is defined as a set of points in this square, viz. the
set occupied by printer’s ink. If these sets are restricted to be measurable, we can detine
tho “distance ' between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit ares of printer’s ink unit distance is unity, and there is an
infinite supply of ink at = 2, y = 0. 'With this topology the symbols fonin a condition-
ally compact space.

250 A. M. TuriNeg [Nov. 12,

17 or 999999999999999 is normally treated as a single symbol, Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is cbserving, and his “ state of mind’’ at that moment.

We may suppose that there is a hound B to the number of symbols or
squares which the computer can observe at one moment. If ke wishes to
(" observe more, he must use successive ohservations. We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be " arbitrarily elose ”’ and will be confused. Again, the restriction
is not one which seriously affects computation, since the use of more compli-

\ cated states of mind can be avoided by writing more symbols on the tape.)

Let us imagine the operations performed by the computer to be split up
into “simple operations > which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes
ean be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in
regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
“observed”” squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. Ithinkitis reasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previcusly observed square.

In connection with “immediate recognisability ”’, it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-

1936.] ON COMPUTABLE NUMBERS. 251
diately recognisable. Now if these squares are marked only by single
symbols there can be only & finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares. If,
on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. 1t is, thevefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find * ... hence (applying Theorem 157767733443477) we have ... ",
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. If in spite of this
it is still thought that there are other ““immediately recognisable’ squares,
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in III below.

[The simple operations must therefore include: \

{a} Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another squarc
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(A} A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a

possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p. 250, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

We may now construet a machine to do the work of this computer. To
each state of mind of the computer corresponds an *“m-configuration™ of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. Inanymove the machine canchange a symbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned

252 A. M. TurmNG [Nov. 12.

squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

II. [Type (b)].

If the notation of the Hilbert functional calculust is modified so as to
be systematic, and so as to involve only a finite number of symbols, it
becomes possible to construct an automaticl machine ¥, which will find
all the provable formulae of the calculus§.

Now let ¢ be a sequence, and let us denote by ,(z) the proposition
“The z-th figure of a is 1 7, so that” — (¢ {x) means *“ The z-th figure of a
is 0. Suppose further that we can find a set of properties which define
the sequence a« and which can be expressed in terms of G (x) and of the
propositional functions N{z) meaning “z is a non-negative integer” and
F(z, y) meaning “y =ax+1", When we join all these formulae together
conjunctively, we shall have a formula, ¥ say, which defines a. The terms
of % must include the necessary parts of the Peano axioms, viz.,

(5%) ¥ (u) & (2) (¥ (2) > (39) Flo, 9)) & (Flo, 9) > N (),

which we will abbreviate to P.

When we say “% defines e”’, we mean that —% is not a provable
formula, and also that, for each %, one of the following formulae (A,) or
(B,) is provable.

H]

A & F - G (wt), (A

¢ PO (= (), (B,

where F stands for F(w, ') & Flu', «'") & ... Pu®=, wt™),

1936.] ON COMPUTABLE NUMBERS. 253

I say that « is then a computable sequence: a machine I, to compute
a can be obtained by a fairly simple modification of I.

We divide the motion of 3, into sections. The n-th section is devoted
to finding the n-th figure of «. After the (n—1)-th section is finished a double
colon ::is printed after all the symbols, and the succeeding work is done
wholly on the gquares to the right of this double colon. The first step is to
write the letter *“ 4 " followed by the formula (A,) and then ©“ B* followed
by (B,). The machine ¥, then starts to do the work of J¢, but whenever
a provable formula is found, this formula is compared with {A,} and with
(B,). Ifitisthesameformulaas(A,), then the figure *“1° is printed, and
the n-th section is finished. Ifitis (B,), then *“ 0’ is printed and the section
is finished. If it is different from both, then the work of ¥ is continued
from the point at which it had been abandoned. Sooner or later one of
the formulae (A,) or (B,) is reached; this follows from our hypotheses
about @ and U, and the known nature of J¢, Hence the n-th section will
eventually be finished. 3¢, is circle-free; a is computable.

It can also be shown that the numbers a definable in this way by the use
of axioms include all the computable numbers. This is done by describing
computing machines in terms of the function calculus,

(" to the phrase < ¥ defines a”’. The computable numbers do not include all
{in the ordinary sense) definable numbers. Let § be a sequence whose
n-th figure is 1 or 0 according as # is or is not satisfactory. It is an imme-
diate consequence of the theorem of § 8 that 3 is not computable. Tt is (so
far as we know at present) possible that any assigned number of figures of 8
can be caleulated, but not by a uniform process. When sufficiently many
figures of 8 have been calculated, an essentially new method is nevessary in

t The expression *the functional caleulus’ is used throughout to mean the restricted
Hilhert functional caleulus.

3 It is most natural to construct first a choice machine (§2) to do this. But it is
then easy to construet the required automatic machine. We can suppose that the choices
are always choices between twao possibilities 0 and 1. Each proof will then be determined
by a sequence of choiees 7, 45, .., 4, ({,=00r 1, {,=0 or 1, ..., %, =0 or 1), and hence
the number 2744, 2¢-7 44, 20=24 14, completely determines the proof. The automatic
maching carries out successively proof 1, proof 2, proof 3, ...

§ The author has found & description of such a machine.

Il The negation sign is written before an expression and not over it.

% A sequence of r primes is denoted by .

\ order to obtain more figures.

It must be remembered that we have attached rather a special meaning

J

IIT. This may be regarded as a modification of I or ag a corollary of I1.

We suppose, asin I, that the computation is carried out ona tape ; but we
avoid introducing the *state of mind” by considering a more physical
and definite counterpart of it. Tt is always possible for the computer to
break off from his work, to go away and forget all about it, and later to come
back and go on with it. If he does this he must leave a note of instructions
{written in some standard form) explaining how the work is to be con-
tinued. This note is the counterpart of the ““state of mind”. We will
suppose that the computer works in such a desultory manner that he never
does more than one step at a sitting. The note of instructions must enable
him to carry out one step and write thenext note. Thus the state of progress
of the computation at any stage is completely determined by the note of

254 A, M. Turineg [Nov. 12,

instructions and the symbols on the tape. That is, the state of the system
may be described by a single expression (sequence of symbols), consisting
of the symbols on the tape followed by A (which we suppose not to appear
slsewhere) and then by the note of instructions. This expression may be
called the “state formula”, We know that the state formula at any
given stage is determined by the state formula before the last step was
made, and we assume that the relation of these two formulae is expressible
in the functional calculus. In other words, we assume that there is an
axiom 2% which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the
state formula at the preceding stage. If this is so, we can construct a
machine to write down the successive state formulae, and hence to
compute the required number.

1936.] ON COMPUTABLE NUMBERS. 255

unless v, =0 or y, =1, in either of which cases a,=0. Then, as 2
runs through the satisfactory numbers, o, runs through the computable
numberst. Now let ${n) be a computable function which can be
shown to be such that for any satisfactory argument its value is satis-
factory}. Then the function f, defined by f(a,) = oy, i3 a computable
function and all computable functions of a computable variable are
expressible in this form.

Similar definitions may be given of computable funetions of several
variables, computable-valued functions of an integral variable, ete.

I shall enunciate a number of theorems about computabilit%Mt I

10. Examples of large closses of numbers which are computable.

shall prove only (ii) and a theorem similar to (iii). . g’

(i) A computable function of a computable func%@a integral or
computable variable is computable. Q
Al

Tt will be useful to begin with definitions of a computable function of
an integral variable and of a computable variable, etc. There are many
equivalent ways of defining a computable function of an integral
variable. The simplest is, possibly, as follows. If v is a computable
sequence in which 0 appears infinitely t often, and # is an integer, then let
us define £(y, n) to be the number of figures 1 between the n-th and the
(r+1)-th figure 0 in y. Then ¢(n) is computable if, for all # and some 1,
$(n) = E(y, n). An equivalent definition is this. Let H(z, y) mean
@{x)=y. Then, if we can find a contradiction-free axiom 2, such that
%, — P, and if for each integer n there exists an integer N, such that

9[¢, & F(N)——)H(u(n), u(¢(?t)))’
and such that, if m % ¢{n), then, for some N,
Ay & FE (—H{um, u(m)),

then ¢ may be said to be a computable function.

We cannot define general computable functions of a real variable, since
there is no general method of describing a real number, but we can define
a computable function of a computable variable. If n is satisfactory,
let y, be the number computed by .1i(n), and let

Gn = tan (77(7’?;_%)):

t If Al computes v, then the problem whether .\l prints 0 infinitely often is of the
same character s the problem whether i\ is circle.free.

of computable functions is computab %/if $(m, n) is computable, and
7 is some integer, then n(n) is computable; where

o) =r,

n(n)=(n, nin—1)).

{ii) Any function of an integral Wked recursively in terms

({ii) If ¢ {m, n)is a computable function of two integral variables, then
$(n, n) is a computable function of ».

(iv) If ¢(n) is & computable function whose value is always 0 or 1, then
the sequence whose n-th figure is ¢(n) is computable.

Dedekind’s theorem does not hold in the ovdinary form if we replace
“real "’ throughout by **computable”. But it holds in the following form :

(v) If G(a) is a propositional function of the computable numbers and
(@) (3a)(3P) 0 & (—G(@)}].
(0) Gla) & (~6(B)>(a<h)

and there is a general process for determining the truth value of G(a), then

1t A function «, may be defined in many other ways so as to run through the
computable humbers.

i Although it is not possible to find a general process for determining whether a given
number is satisfactory, it is often possible to show that certain classes of numbers are
satisfactory.

256 A. M. Turmvg [Nov. 12,

there is a computable number ¢ such that
Gla)=>a <4,

—Fla)>a = ¢

In other words, the theorem holds for any section of the computables.

such that there is a general process for determining to which class a given
number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a
computable bounded increasing sequence of computable numbers has a
computable limit. This may possibly be understood by considering a
sequence such. as

1 1 1 1
—‘]; _E],:‘, T Er T 8 T I6r T ocee

On the other hand, (v) enables us to prove

(vi) If « and B are computable and ¢ < 8 and ¢(a) < ¢ << $(8), where
$(a) Is a computable increasing continuous function, then there is a unigue
computable number v, satisfying e <<y << fand ¢({y)=0.

Computable convergence.

We shall say that a sequence B, of computable numbers converges
computably if there is a computable integral valued function N(e) of the
computable variable ¢, such that we can show that, if € > 0 and n > N(¢)
and m > N(e), then [B,—B,.| < e

We can then show that

(vit) A power series whose coefficients form a computable sequence of
computable numbers is computably convergent at all computable points
in the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.
And with the obvious definition of ¢ uniformly computably convergent :

(ix) The limit of a uniformly computably convergent computable
sequence of computable functions is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable
sequence is a computable function in the interior of its interval of
convergence.

From (viii) and 7= 4(1—%4-%—...) we deduce that = is computable.

Frome=1+414 %Jr % +... we deduce that e is computable.

1936.] ON COMPUTABLE NUMBERS. 237

From (vi) we deduce that all real algebraic numbers are computable.
From (vi) and (x) we deduce that the real zeros of the Bessel functions
are computable.

Proof of (ii).

Let H(z, y) mean “yn{z)=y", and let K(», ¥, z) mean “d(z, y) =z".
U4 is the axiom for ¢(z, y). We take ¥, to be

W& P& (Flz,y)»Gzy) & (Gl y) & Gly,) > Gz, 2))
& (B0 H{u, u)) & { Plo, w) & H(v, z) & E(w, 2, 2) > H(w, 2))

& [.H(w, 2) & Gz,) v G(t, 2)> | —Hw, t))].

I shall not give the proof of consistency of %,. Such a proof may be
constructed by the metheds used in Hilbert and Bernays, Grundlagen der
Mathematik (Berlin, 1934), p. 209 ef seg. The consistency is also clear
from the meaning.

Suppose that, for some =, ¥, we have shown

U, & F®) o H (qln 1), qplale=-D)y
then, for some M,
Ay & FOD s I (), qo(ota1) | qylatmd)y,
U, & FOD— F (w0, 4fm) & H (=D, glde-D)y

& K (ut™, glnn=n} gylntnd}y,
and
A, & FOD > [F (=, u)) & H (u=2), yina=1))

& K (uf, a1 o)y H (gm0 glatmny],

Hence A, & FO > H (a4, o)),
Also U, & PO H(u, ut®)),
Hence for each n some formula of the form

U, & FOD > H (g, ltm))
is provable. Also, if M’ =M and M’ >=m and m £ 9(u), then

QI“ & F(M')_> G(u‘?((ﬂ)), u(m}) v G(u(m), u(’l(n)))
8ER. 2. voL, 42, No, 2145, 5

258 A. M. Turmva [Nov. 12,

and
Y, & FOO—> [{G(u(ﬂ(n))’ w™) p G (), gl)
& H (o, uoo) > (—Hum, wm) .

Hence A, & FO > (_ H (™,))

The conditions of our second definition of a computable function are
therefore satisfied. Consequently % is a computable function.

Proof of a medified form of (iii).

Suppose that we are given a machine 9\, which, starting with a tape
bearing on it oo followed by a sequence of any number of letters “F’’ on
F-squares and in the m-configuration b, will compute a sequence v,
depending on the number » of letters «“ F . If ¢, (m) is the m-th figure of
¥, then the sequence 8 whose n-th figure is ¢, (1) is computable.

We suppose that the table for 9\ has heen written out in such a way
that in each line only one operation appears in the operations column. We
also suppose that E, 0, 0, and 1 do not occur in the table, and we replace
a throughout by @, 0 by 0, and 1 by 1. Further substitutions are then

made. Any line of form
o a P B
we replace by
pi a Po we(®B, u, b, k)
and any line of the form
s a P1 B
by %A a P1 ve(8, 0,4, k)
and we add to the table the following lines:
u pe(uy, 0)
1 R, Pk, R, PO, R, PO Uy
Uiy re{us, Uy, &,)
Us pe(u,, F)
and similar lines with » for v and 1 for 0 together with the following line
¢ R, PE, R, Ph b.

We then have the table for the machine 9\" which computes 8. The
initial m-configuration is ¢, and the initial scanned symbol is the second s.

1936.]

OX COMPUTABLE NUMBERS. 259

11. Application to the Enischeidungsproblem.

The results of §8 have some important applications. In particular, they
can be used to show that the Hilbert Entscheidungsproblem can have no

solution. For the present I shall confine myself to proving this particular

theorem. For the formulation of this problem I must refer the reader to
Hilbert and Ackermann’s Grundziige der Theoretischen Logik (Berlin,
1931), chapter 3.

I propose, therefore, to show that there can be no general process for
determining whether a given formula % of the functional calculus K is
provable, ¢.e. that there can be no machine which, supplied with any one
A of these formulae, will eventually say whether U is provable.

It should perhaps be remarked that what I shall prove is quite different
from the well-known results of Godel . Godel has shown that (in the forma-
lism of Principia Mathematica) there are propositions ¥ such that neither
U nor Y ig prowfable‘ As a consequence of this, it is shown that no proof
of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula ¥ is provable in K, or, what comes to
the same, whether the system consisting of K with
extra axiom is consistent.

—% adjoined as an

(" If the negation of what Gadel has shown had been proved, i.e. if, for each

A, either ¥ or — U is provable, then we should have an immediate solution
of the Entscheidungsproblem. Tor we can invent a machine ¢ which will
prove consecutively all provable formulae. Sooner or later J¢ will reach
cither % or — . If it reaches ¥, then we know that U is provable. Ifit
reaches — U, then, since K is consistent (Hilbert and Ackermann, p. 03), we

_ know that ¥ is not provable.

\

J

Owing to the absence of integers in K the proofs appear somewhat
lengthy. The underlying ideas are quite straightforward.

Corresponding to each computing machine .\l we construct a formula
Un (M) and we show that, if there is a general method for determining
whetber Un (Al) is provable, then there is a general method for deter-
mining whether Al ever prints 0.

The interpretations of the propositional functions involved are as
follows :

Ry (x, y) is to be interpreted as ““in the complete configuration x (of
M) the symbol on the square y is 8.

t Looc. cit.

260 A. M, ToriNG [Nov. 12,

Iz, y} is to be interpreted as “in the complete configuration z the
square g is scanned’.

K, (z)is to be interpreted as “in the complete configuration z the
m-configuration is g,,.

F(z,y)is to be interpreted as “*y is the immediate successor of z 7.

Inst {q, 8,8, Lq} is to be an abbreviation for

r r r -y o, r ’
(2,9, 2, y') | Bs (2 9) & Iz,) & K, (2) & Pl 2) & Py, 9)
> (16, 9) & Re (@', 1) $ K, @)

& (2) [F(y’, z)v (st(x, z)— By (@, z))]) I— .
Inst {¢, 8,8, Rq} and Inst{gS,S,.Nq}

v

are to be abbreviations for other similarly constructed expressions.

Let us put the deseription of .1l into the first standard form of §6. This
description consists of a number of expressions such as “¢; 8; S, Lg,” {or
with R or N substituted for L). Let us form ail the corresponding expres-
sions such as Inst {g;S; 8, Lg} and take their logical sum. This we call
Des (. L}.

The formula Un (1) is to be

() [N(u) & (=) (N(rc)—%(i:c’) Fz, x'))
&y, 2) [Ply,) >Ny & N@) & () B, (x, y)
& I(w, w) & Ky, (w) & Des () |
—(38) (3t) [N(s) & N(t) & Rs (s, 1)]-

[AM{u) & ... & Des (11)] may be abbreviated to A(11).

When we substitute the meanings suggested on p. 259-60 we find that
Un (-it) has the interpretation ““in some complete configuration of Al, §;
(i.e. 0) appears on the tape”. Corresponding to this I prove that

(@) If 8, appears on the tape in some complete configuration of . li, then
Un (.} is provable.

(6) If Un (.11) is provable, then S, appears on the tape in some complete
configuration of .Ii.

When this has been done, the remainder of the theorem is trivial.

1936.] ON COMPUTABLE NUMBERS. 261

Lemma 1. If 8, appears on the tape in some complete configuration of
M, then Un(Al) 43 provable.

We have to show how to prove Un (.lL). Let us suppose that in the
n-th complete configuration the sequence of symbols on the tape is
Srtr, 01 Srin, 13 1105 Oot, nys followed by nothing but blanks, and that the
gcanned symbol is the ¢{n)-th, and that the m-configuration is ¢(,;. Then
we may form the proposition

RSI{”‘O)(u("), u) & RS,(,.,,,(N("): u)&.. & RSI_("W(u(ﬂ),)
& T (um, wlo)) & K, - (ult)
b N F (g, @)V Flu, y) vE@, 3)v ...V Fu"D, g)v R, (u®,),

which we may abbreviate to CC,.

As before, F(u, w)& Flu', ') & ... & F{ur2,) is abbreviated
to FO.

I shall show that all formulae of the form A(\) & F™— CC,, (abbre-
viated to CF,) are provable. The meaning of €'F,, is ** The n-th complete
configuration of Al is so and so**, where “so and so’’ stands for the actual
n-th complete configuration of .ll. That CF, should be provable is
therefore to be expected.

CF, is certainly provable, for in the complete configuration the symbols
are all blanks, the m-configuration is g;, and the scanned square is «, .e.
00, is

(¥) Bs,(u, ¥) & I(u, u) & K ().
A(A)-> CCy is then trivial.

We next show that CF, — CF,, is provable for each n. There are
three cases to consider, according as in the move from the n-th to the
(n+1)-th configuration the machine moves to left or to right or remains
stationary. We suppose that the first case applies, ¢.e. the machine
moves to the left. A similar argument applies in the other cases. If

r(m i) =a, r(n+1itn+1)) =c, k(i(n))=b, and k(i(n+1)) =4,
then Des (Al) must include Inst {g, S, 8; L g} as one of its terms, .e.

Des (M) —Inst {g, 8, 8; Lg.}.
Hence A(A) & Fl— Tnst {g, 8,8, L g} & Fn+D,
But Inst{g, 8, 84 Lq.} & FtV»(CC, - CC,)
is provable, and sc therefore is

A(\) & FO+D 5 (0C, > OC,sy)

262 A. M. TuriNg {Nov. 12,
and (A(A) & P> 00,) > (A(M) & Fotd > 00,,,),
i.e. CF,~CF,,,.

CF, is provable for each n. Now it is the assumption of this lemma
that S, appears somewhere, in some complete configuration, in the sequence
of symbols printed by .Al; that is, for some integers N, K, CCy has
R (u™, wH) as one of its terms, and therefore OCy— Rg (a®, wlK) is
provable., We have then

CCy— Bg (u™),)
and AW & F® - CCF,
We also have
(30) () > (30) (3w ... (3u) {A () & FW),
where N’ =max (¥, K). And so
(3u) A W)= (3u) (3u') ... (3u?)) R (ut), wF),
(Fu) AN~ () (Fu) R, (uk, s8),
(Fu) A= (Fs) (3t) Ry (s, t),
¢.e. Un(1l) is provable.
This completes the proof of Lemma 1.
Levma 2. If Un(L) s provable, then S| appeais on the tape in some
complete configuration of .1\

If we substitute any propositional functions for function variables in
& provable formula, we obtain a true preoposition. In particular, if we
substitute the meanings tabulated on pp. 2569-260 in Un(.ll), we obtain a
true proposition with the meaning *“ 8, appears somewhere on the tape in
some complete configuration of .1\,

We are now in a position to show that the Entscheidungsproblem cannot
be solved. Let us suppose the contrary. Then there is a general
(mechanical) process for determining whether Un(.\l} is provable. By
Lemmas 1 and 2, this implies that there is a process for determining whether
Al ever prints 0, and this is impossible, by §8. Hence the Entscheidungs-
problem cannot be solved.

In view of the large number of particular cases of solutions of the
Entscheidungsproblem for formulae with restricted systems of quantors, it

1936.] ON COMPUTABLE NUMBERS. 263
is interesting to express Un(Al) in a form in which all quantors are at the
beginning. Un(M) is, in fact, expressible in the form

(1) (3} (w) (3%y) ... (3} B, I
where B contains no uantors, and » = 6. By unimportant modifications
we can obtain a formula, with all essential properties of Un(Al), which is of
form (I) with »=5.

Added 28 August, 1936.

APPENDIX.

Computability and effective calculability

The theorem that all effectively calculable (A-definable) sequences are
computable and its converse are proved below in outline. It is assumed

that the terms ** well-formed formula ™ (W.F.¥.) and ““conversion’’ as uscd
by Church and Kleene are understood. In the second of these proofs the
existence of several formulae is assumed without proof; these formulac
may be constructed straightforwardly with the help of, eg., the
results of Kleene in ‘A theory of positive integers in formal logic ™,
American Jouwrnal of Math., 57 (1935}, 153-173, 219-244,

The W.F.F. representing an integer # will be denoted by &¥,. 'We shall
say that a sequence y whose n-th figure is ¢ (n) is A-definable or effectively
caleulable if 14-¢,(u) is a A-definable function of n, 1.e. if there is a W.F.I.
M, such that, for all integers =,

{M‘f} (N‘ii.) conv Nqb,(nH—l’

1.e. {M } (N,) is convertible into Axy .cc(x(y)) or into Azy.2{y} according as

the n-th figure of A is 1 or 0.

To show that every A-definable sequence y is computable, we have to
show how to construct a machine to compute y. For use with machines it
is convenient to make a trivial modification in the caleulus of conversion.
This alteration consists in using =z, 2/, &'/, ... as variables instead of
a,b,¢,.... Wenow construet a machine £ which, when supplied with the
formula M, writes down the sequence v, The construction of £ is some-
what similar to that of the machine ¢ which proves all provable formulae
of the functional calculus, We first construct a choice machine £,, which,
if supplied with a W.F.F., M say, and suitably manipulated, obtains any
formula into which M is convertible. £, can then be modified so as to
yield an automatic machine £, which obtains successively all the formulae

264 A. M. TurivGg [Nov. 12,

into which M is convertible (cf. foot-note p. 252). The machine £
ineludes .f, as a part. The motion of the machine £ when supplied
with the formula M, is divided into sections of which the n-th is
devoted to finding the n-th figure of y. The first stage in this n-th section
is the formation of {M,}(¥,). This formula is then supplied to the
machine £, which converts it successively into various other formulae.
Each formula into which it is convertible eventually appears, and each, as
it is found, is compared with

pr [:}\a:’[{m} ({@}(x’)”:l, i.e. Ny,

Az [Ax' [{:u}(:c')]], v.e. N

If it is identical with the first of these, then the mashine prints the figure 1
and the n-th section is finished. If it is identical with the second, then 0
is printed and the section is finished. Ifit is different from both, then the
work of .L, is resumed. By hypothesis, {M }(N,) is convertible into one of
the formulae N, or N, ; consequently the n-th section will eventually be
finished, 7.e. the n-th figure of y will eventually be written down.

and with

To prove that every computable sequence y is A-definable, we must
show how to find a formula 3/, such that, for all integers »,

{ﬂ[y}(zvn) conv N1+¢,(n)'

Let .l be a machine which computes ¢ and let us take some description
of the comyplete configurations of .il by means of numbers, e.g. we may take
the D.N of the compiete configuration as described in §6. Let ¢(n) be
the DN of the n-th complete configuration of Al. The table for the
machine .1l gives us a relation between £(n+1) and £(n) of the form

1) =p, (£m))

where p, is a function of very restricted, although not usually very simple,
forra: itis determined by the table for .\l. p, is A-definable (I omit the proof
of this}, s.¢, there is a W.F.I. 4, such that, for all integers »,

{AV} (Nﬁ(n)) convlv&(n-)—l)'
Iet U stand for
o[{fula,)} ()],
where #=£(0); then, for all integers =,

{UV} (N,) conv N&(n)'

1936.] ON COMPUTABLE NUMBERS. 265

It may be proved that there is a formula V such that

[conv N, if in going from the n-th to the (n4-1)-th
complete configuration, the figure 0 is

inted.
VYV) i) L
conv I, if the figure 1 is printed.

conv N, otherwise.

Let W, stand for

[L () () Himde)]

g0 that, for each integer n,

{V (Vs |) cony {1 (),
and let @ be a formula such that
{ {Q} (Wy) } (Na) cony Nr(s):

where r(s) is the s-th integer g for which {W,} (V) is convertible into either
N, or N, Then, if M, stands for

xo[(W3 (1@ (Wl)],
it will have the required propertyt.
The Graduate College,

Princeton University,
New Jersey, U.S.A.

t In a complete proof of the A-definability of computable sequences it would be best to
modify this method by replacing the numerical description of the complete configurations
by a description which can be handled more easily with cur apparatus. Let us choose
certain integers to represent the symbols and the m-configurations of the machine.
Suppose that in a certain complete configuration the numbers representing the successive
symbols on the tape are §,5, ... s,, that the m-th symbo! is scanned, and that the m-configur-
ation has the number ¢; then we may represent this complete configurgtion by the formula

[[Nm N.w R] Nlm_-J» £Nb N!,u]ﬁ [Nl.u+]l ey Nt,.]]v

‘where [, b] stands for Au [{ {u}{a) } (b)],

[a, b, ¢] stands for m[{{{u} (a)}(b)}(c)],

etc.

Current Current Current
state A: state 8: state C:
TABLE Write Move Next | Write Move Next | Write Move Next
. symbol: tape: state: | symbol: tape: state: [symbol: tape: ate:
" || tape symboiis 0ff 1 R B 1 L A
L tape symbel is 1: 1 L c 1 R B 1 N HALT

il - L
=)

Wt

(e *ep)

&oTo oo olo]lo o[o]i oTeToToloo o o o oo}

=

Write 1 = PRINT= P
Write 0 = ERASE = E

Tape left one square = L
Tape right one square = R

Offset print raised for a mark”

Eraser
Offset. printing + eraser roller

eraser
electric eye looking
.attape squdre

Tractor roller

!0\0 OO0 O

S — —

[repp—

\—b&ank square

-mark on tape
mark in process of erasure
HEAD . 5 -]
Turing’s insight:
:;ﬂl;loeld Qmet: Omereu Ourrercu . .
Sate A Sate state
o Kol A R o simple local actions
e R ETT UR|T R R can lead to arbitraril
Gontrolunit tapesymbalis 1: 1 L C 1 R B8 1 N HALT v

A fanciful mechanical Turing machine's TAPE and HEAD. The TABLE instructions might be on another
“read only" tape, or perhaps on punch-cards. Usually a "finite state machine" is the model for the TABLE.

complex computations!

Lego Turing Machines

See: http://www.youtube.com/watch?v=cYw2ewo06c4

http://www.youtube.com/watch?v=cYw2ewoO6c4

Lego Turing Machines

>

“Mechano” Computers

3,]

i < ! - S s
“L!"E"' '.‘It‘" I :

Babbage’s difference engine

Wl\ll""' 5~

1 {adi e ¢
W P
o\ 3

“»

ST

OUTPUT DUCK

-~ © - » - “ - o -~ L © - " - - o -~ © o

|

;

I S R "

“Au - - - - - -~ o

L s
b
i

S
!

et
~e
»

-

I T R R R e e L L .

e e et

| BLANK

0 | BLANK | BLANK
| |

1
| BLANK |

BLANK

' BLANK

|

I

R
x '

| |
CORE PIECE

Mechanical Computers

12 THE PATTERN ON THE STONE

_—
OUTPURT

FIGURE 5

Mechanical inverter

o
Voo
@qm:c’ﬁ:@ r o e"‘?

FIGURE 6
An And block constructed by connecting an Or block ta inverters

NUTS AND 30L1TS

<@

et
INFPUT A
———
ouTPUT
—
INFuTr B

FIGURE 4
Mechanical implementation of the OR function

Sclenceriasters

W. DANIEL HILLIS

. A e | N

THE SIMPLE IDEAS THAT MAKE
COMPUTERS WORK

sd' New Scientist

L

i

| Paositive

Pressure
Megative
t Pressure

\oltage source
or inductor

Resistor

2!

f

o)

Pressure

drap

Simple circuit

Hydraulic Computers

.

{‘ % 5}
Diod) (

Diode

-

Collector
I
r_
|
Transistor

14 THE PATTERN CN THE STONE

NAUT A
HYPRAWLIZ
s~ VALvE
Hiamn
oy o
SUREPLY —‘]
e/
JTRRING NETES vALVE
SHUT UINLESS OFFNED
BY INPL PRESS K
NP 8

FIGURE 7
An Cr block built with hydraulic valves

Hydraulic Computers

Wire E

Resistor E

PN -scown OX

SO+ —NO0T LN

(Wind-up motor
or similar)

Theorem: fluid-based “circuits”
are Turing-complete / universal!

ﬁ& Transistor

http://upload.wikimedia.org/wikipedia/commons/f/f2/Electrionics_Analogy_-_Pipe_%28Wire%29.svg
http://upload.wikimedia.org/wikipedia/commons/5/5d/Electrionics_Analogy_-_Valve_%28Diode%2C_conducting%29.svg
http://upload.wikimedia.org/wikipedia/commons/0/0c/Electrionics_Analogy_-_Reduced_Pipe_%28Resistor%29.svg
http://upload.wikimedia.org/wikipedia/commons/c/cd/Electrionics_Analogy_-_Flexible_Tank_%28Capacitor%29.svg
http://upload.wikimedia.org/wikipedia/commons/d/d3/Electrionics_Analogy_-_Pressure-activated_valve_%28Transistor%29.svg
http://upload.wikimedia.org/wikipedia/commons/0/04/Electrionics_Analogy_-_Example_Circuit.svg
http://upload.wikimedia.org/wikipedia/commons/3/38/Electrionics_Analogy_-_Valve_%28Diodes_comparison%29.svg

ing, at age 35, about the time
heawrote “Intelligent Machinery”

Alan Turing's

Computer Science

Well known for the machine,
test and thesis that bear his name,
the British genius also anticipated

neural-network computers
and “hypercomputation”

by B. Jack Copeland and Diane Proudfoot

Alan Turing's Forgotten Ideas in Computer Science

lan Mathison Turing conceived of the modern
computer in 1935, Today all digital comput-
ers are, in essence, “Turing machines.” The
British mathematician also pioneered the field of
arrtificial intelligence, or Al, proposing the famous
and widely debared Turing test as a way of determin-
ing whether a suitably programmed computer can
think. During World War II, Turing was instrumental
in breaking the German Enigma code in part of a
top-secret British operation that historians say short-
ened the war in Europe by two years. When he died
at the age of 41, Turing was doing the earliest work
on what would now be called artificial life, simulat-
ing the chemistry of biological growth.

Throughout his remarkable career, Turing had no
great interest in publicizing his ideas, Consequently,
important aspects of his work have been neglected or
forgotten over the years. In particular, few people—
even those knowledgeable about computer science—
are familiar with Turing’s fascinating anticipation of
connectionism, or neuronlike compuring. Also ne-
glected are his groundbreaking theoretical conceprs
in the exciting area of “hypercomputation.™ Accord-
ing to some experts, hypercomputers might one day
solve problems heretofore deemed intracrable.

The Turing Connection

igital computers are superb number crunchers.

Aslk them to predict a rocket’s trajectory or calcu-
late the financial figures for a large multinational cor-
poration, and they can churn out the answers in sec-
onds. But seemingly simple actions that people routine-
ly perform, such as recognizing a face or reading
handwriting, have been devilishy tricky to program.
Perhaps the networks of neurons that make up the
brain have a natural facility for such rasks that standard
computers lack. Scientists have thus been investigating
computers modeled more closely on the human brain.

Connectionism is the emerging science of computing
with networks of artificial neurons. Currently research-
ers usually simulate the neurons and their interconnec-
tions within an ordinary digital computer (just as engi-
neers create virtual models of aircraft wings and
skyscrapers). A training algorithm thar runs on the
computer adjusts the connections between the neurons,
honing the network into a special-purpose machine
dedicated to some particular function, such as forecast-
ing international currency markets.

Modern connectionists look back to Frank Rosen-
blatt, who published the first of many papers on the
topic in 1957, as the founder of their approach. Few re-
alize that Turing had already investigated connectionist
networks as early as 1948, in a lirtle-known paper enti-
ted “Intelligent Machinery.™

Written while Turing was working for the National
Physical Laboratory in London, the manuscript did not
meet with his employers approval. Sir Charles Darwin,
the rather headmasterly director of the laboratory and
grandson of the great English naturalist, dismissed it as
a “schoolboy essay.” In reality, this farsighted paper
was the first manifesto of the field of artificial intelli-

SCIENTIFIC AMERICAN April 1999 99

gence. In the work—which remained un-
published unil 1968, 14 years after Tur-
ing’s death—the British mathemartician
not only set out the fundamentals of con-
nectionism but also brilliantly introduced
many of the concepts that were later to
become central to Al in some cases after
reinvention by others.

In the paper, Turing invented a kind of
neural network that he called a “B-type

be accomplished by groups of NAND
neurons. Furthermore, he showed that
even the connection modifiers themselves
can be built our of NAND neurons.
Thus, Turing specified a network made
up of nothing more than NAND neu-
rons and their connecting fibers—abourt
the simplest possible model of the cortex.
In 1958 Rosenblatt defined the theo-
retical basis of connectionism in one suc-
cinct statement: “Stored

information takes the

Few realize that Turing \
had already investigated
connectionist networks
as early as 1948.)

form of new connections,
or transmission channels
in the nervous system (or
the creation of conditions
which are functionally
equivalent to new connec-
tions).” Because the de-
struction of existing con-

unorganized machine,” which consists of
artificial neurons and devices that modify
the connections between them. B-type
machines may contain any number of
neurons connected in any pattern but are
always subject to the restriction that each
NEUron-fo-Neuron Connection must pass
through a modifier device.

All connection modifiers have two
training fibers. Applying a pulse to one
of them sets the modifier to “pass
maode,” in which an input—either 0 or
1—passes through unchanged and be-
comes the output. A pulse on the other
fiber places the modifier in “interrupt
mode,” in which the outpurt is always
1, no matter what the input is. In this
state the modifier destroys all informa-
tion attempting to pass along the con-
nection to which it is attached.

Once set, a modifier will maintain its
function (either “pass™ or “interrupt”)
unless it receives a pulse on the other
training fiber. The presence of these inge-
nious connection modifiers enables the
training of a B-type unorganized ma-
chine by means of what Turing called
“appropriate interference, mimicking
education.” Actually, Turing theorized
that “the cortex of an infant is an unor-
ganized machine, which can be orga-
nized by suitable interfering training,™

Each of Turing’s model neurons has
two input fibers, and the outpur of a
neuron is a simple logical function of its
two inputs. Every neuron in the net-
work executes the same logical opera-
tion of “not and” (or NAND): the out-
put is 1 if either of the inpurts is 0. If
both inputs are 1, then the output is 0.

Turing selected NAND because every
other logical (or Boolean) operation can

100 SCIENTIFIC AMERICAN April 1999

nections can be func-
tionally equivalent to the creation of new
anes, researchers can build a nerwork
for accomplishing a specific task by tak-
ing one with an excess of connections
and selectively destroying some of them.
Both actions—destruction and creation—
are employed in the training of Turing’s
B-types.

At the outset, B-types contain random
interneural connections whose modifiers
have been set by chance to either pass or
interrupt. During training, unwanted
connections are destroyed by switching
their attached modifiers to interrupt
mode. Conversely, changing a modifier
from interrupt to pass in effect creates a
connection. This selective culling and en-
livening of connections hones the initially
random network into one organized for
agiven job.

Turing wished to investigate other
kinds of unorganized machines, and he
longed to simulate a neural network and
its training regimen using an ordinary
digital computer. He would, he said, “al-
low the whole system to run for an ap-
preciable period, and then break in as a
kind of ‘inspector of schools’ and see
whar progress had been made.” Bur his
own work on neural networks was car-
ried our shortly before the first general-
purpose ¢lectronic computers became
available. (It was not until 1954, the year
of Turing’s death, that Belmone G. Farley
and Wesley A. Clark succeeded at the
Massachusetts Institute of Technology in
running the first computer simulation of
a small neural network.)

Paper and pencil were enough, though,
for Turing to show that a sufficiently
large B-type neural network can be
configured (via its connection modifiers)

in such a way that it becomes a general-
purpose computer. This discovery illumi-
nates one of the most fundamental prob-
lems concetning human cognition.

From a top-down perspective, cogni-
tion includes complex sequential process-
es, often involving language or other
forms of symbolic representation, as in
mathematical calculation. Yet from a
bottom-up view, cognition is nothing but
the simple firings of neurons. Cognitive
scientists face the problem of how to rec-
oncile these very different perspectives.

Turing’s discovery offers a possible so-
lution: the cortex, by virtue of being a
neural network acting as a general-pur-
pose compurer, is able to carry out the se-
quential, symbol-rich processing dis-
cerned in the view from the top. In 1948
this hypothesis was well ahead of its
time, and today it remains among the
best guesses concerning one of cognitive
science’s hardest problems.

Computing the Uncomputable

In 1935 Turing thought up the ab-
stract device that has since become
known as the “universal Turing ma-
chine.” It consists of a limitless memory

Turing’s Anticipation
of Connectionism

that stores both program and data and
a scanner that moves back and forth
through the memory, symbol by sym-
bol, reading the information and writ-
ing additional symbols. Each of the ma-
chine’s basic actions is very simple—
such as “identify the symbol on which
the scanner is positioned,” “write ‘1>
and “move one position to the left.”
Complexity is achieved by chaining to-
gether large numbers of these basic ac-
tions. Despite its simplicity, a universal
Turing machine can execute any task
that can be done by the most powerful
of today’s computers. In fact, all mod-
ern digital computers are in essence
universal Turing machines [see “Turing
Machines,” by John E. Hopcroft; Sci-
ENTIFIC AMERICAN, May 1984].
Turing’s aim in 1935 was to devise a
machine—one as simple as possible—
capable of any calculation that a human
mathematician working in accordance
with some algorithmic method could
perform, given unlimited time, energy,
paper and pencils, and perfect concen-
tration. Calling a machine “universal”
merely signifies that it is capable of all
such calculations. As Turing himself
wrote, “Electronic computers are in-

tended to carry out any definite rule-of-
thumb process which could have been
done by a human operator working in a
disciplined but unintelligent manner.”

Such powerful computing devices
notwithstanding, an intriguing question
arises: Can machines be devised that are
capable of accomplishing even more?
The answer is that these “hyperma-
chines” can be described on paper, but
no one as yet knows whether it will be
possible to build one. The field of hyper-
computation is currently attracting a
growing number of scientists. Some
speculate that the human brain itself—
the most complex information proces-
sor known—is actually a naturally oc-
curring example of a hypercompurter.

Before the recent surge of interest in
hypercomputation, any information-
processing job that was known to be
too difficult for universal Turing ma-
chines was written off as “uncom-
putable.” In this sense, a hypermachine
computes the uncomputable.

Examples of such tasks can be found
in even the most straightforward areas
of mathemarics. For instance, given
arithmetical statements picked at ran-
dom, a universal Turing machine may

not always be able to tell which are the-
orems (such as “7 + 5 = 12”) and which
are nontheorems (such as “every num-
ber is the sum of two even numbers™).
Another type of uncomputable problem
comes from geometry. A set of tiles—
variously sized squares with different
colored edges—*“tiles the plane™ if the
Euclidean plane can be covered by
copies of the tiles with no gaps or over-
laps and with adjacent edges always the
same color. Logicians William Hanf and
Dale Myers of the University of Hawaii
have discovered a tile set that tiles the
plane only in patterns too complicated
for a universal Turing machine to calcu-
late. In the field of computer science, a
universal Turing machine cannot always
predict whether a given program will
terminate or continue running forever.
This is sometimes expressed by saying
that no general-purpose programming
language (Pascal, BASIC, Prolog, C and
so on) can have a foolproof crash de-
bugger: a tool that detects all bugs that
could lead to crashes, including errors
that result in infinite processing loops.
Turing himself was the first to investi-
gate the idea of machines that can per-
form mathemartical tasks too difficult

In a paper that went unpublished
until 14 years after his death (top),
Alan Turing described a network of

@ reg Taeq BE one nen &8

A typienl exermle of en unor: nlsed mephine would he sa follswa,

The meehine ls mede up from » rether lrrge n“-wb:’ N of sivilsr

orreinised ene

snother

unite, Hach #nit hes two inout terminels, efid l» 5 en outmut

(0 Lmare
terninsl wheih cen be oonnected to the innut terminels offother

unoroanised,

artificial neurons connected in a ran- wnit, e mey lmecine thet $x far ench integer v, § & ve W
dom manner. In this “B-type unorga- “aia S .
nized machine” (bottom left), each
connection passes through a modifi- &
er that is set either to allow data to e 3,
pass unchanged (green fiber) or to de- 42-—-‘_\1'\ b J ‘\\ 3\ < /,J ";—4:_1{:
stroy the transmitted information (red W J \\l’_’ J!" L
fiber). Switching the modifiers from H — e . -
one mode to the other enables the = o [
network to be trained. Note that each " I M
neuron has two inputs (bottom left, in- T >) "_'_';') P —
set) and executes the simple logical u) ~ & 2] .\/
operation of "not and,” or NAND: if i T ‘11 Y 2 P
both inputs are 1, then the outputis | 2 N\ J/;
0; otherwise the outputis 1. o o \
In Turing’s network the neurons in- it \—\—L‘ v/
terconnect freely. In contrast, modern | 2 y "
networks (bottom center) restrict the M 'ﬁ.——' ~\ ll)\lféJ
flow of information from layer to layer = e N\ L‘_) K ’@/ d
of neurons. Connectionists aim to U J i '
simulate the neural networks of the L /
brain (bottom right). l 'Y
Alan Turing’s Forgotten Ideas in Camputer Science Alan Turing'’s Forgotten Ideas in Computer Science SCIENTIFIC AMERICAN April 1999 101

HIVES, CAMERIDGE UNIVERSITY LIERARY (fopl: FETER ARNOLD, INC. boriom rgfe)

NS CoL

Tom

e 5 sxy thet 1t cammot be o mashine. With
sracle w could forz a
iaving =3 ane of 1ts Dopdam

mmber theoretic probiss, lsrse definitaly

Using an Oracle to Compute
the Uncomputable

lan Turing proved that his universal machine—and by ex-
tension, even today’s most powerful computers—could
never solve certain problems. For instance, a universal Turing
machine cannot always determine whether a given software
program will terminate or continue running forever. In some
cases, the best the universal machine can do is execute the
program and wait—maybe eternally—for it to finish. But in his
doctoral thesis (befow), Turing did imagine that a machine
equipped with a special "oracle” could perform this and other
“uncomputable” tasks. Here is one example of how, in princi-
ple, an oracle might work.
Consider a hypothetical machine for solving the formidable

EXCERPT FROM TURING'S THESIS
Lat us saprose that wo are supplisd with some wnspecifisd

mens of salving sosler theoretic probless; m kind of orecle as 11

mre. Te w1l not g amy furthar ints the setuse of t5is ormels

ths halp of the

zev kicd of anchine (eall thew o-aschines),

woixl arooeams of galving & riven

hese rmchines sre b5

PRNCETON ARCHIVES

OF PROGRAM

COMPUTER PROGRAM

“terminating program” problem (above). A computer pro-
gram can be represented as a finite string of 1s and 0s. This
sequence of digits can also be thought of as the binary rep-
resentation of an integer, just as 1011011 is the equivalent
of 91. The oracle’s job can then be restated as, “Given anin-
teger that represents a program (for any computer that can
be simulated by a universal Turing machine), output a ‘1" if
the program will terminate or a ‘0’ otherwise.”

The oracle consists of a perfect measuring device and a
store, or memory, that contains a precise value—call it T for
Turing—of some physical quantity. (The memory might, for
example, resemble a capacitor storing an exact amount of

- —moom...onnn “

BINARY REPRESENTATION

ORACLE'S MEMORY WITH t=0.00000001101...

L EQUIVALENT
4RY NUMBER

electricity.) The value of T is an irrational number; its written representation would
be an infinite string of binary digits, such as 0.00000001101...

The crucial property of 1 is that its individual digits happen to represent accu-
rately which programs terminate and which do not. So, for instance, if the integer
representing a program were 8,735,439, then the oracle could by measurement
obtain the 8,735,439th digit of © (counting from left to right after the decimal
point). If that digit were 0, the oracle would conclude that the program will process

farever.

Obviously, without T the oracle would be useless, and finding some physical vari-
ablein nature that takes this exact value might very well be impossible. Sothe search
is on for some practicable way of implementing an oracle. If such a means were found,
the impact on the field of computer science could be enormous.

ORACLE

chines “fall outside Turing’s concep-
tion” and are “computers of a type nev-
er envisioned by Turing,” as if the
British genius had not conceived of such
devices more than half a century ago.
Sadly, it appears that what has already
occurred with respect to Turing’s ideas
on connectionism is starting to happen

PROGRAM 3
— 0— WILL all over again.
NOT
TERMINATE The Final Years

—B.J.C.and D.P.

for universal Turing machines. In his
1938 doctoral thesis at Princeton Uni-
versity, he described “a new kind of ma-
chine,” the “O-machine.”

An O-machine is the result of aug-
menting a universal Turing machine
with a black box, or “oracle,” that is a
mechanism for carrying out uncom-
putable tasks. In other respects, O-ma-
chines are similar to ordinary com-
puters. A digitally encoded program is

chine—for example, “identify the sym-
bol in the scanner’—might take place.)
But notional mechanisms that fulfill the
specifications of an O-machine’s black
box are not difficult to imagine [see box
above]. In principle, even a suitable B-
type network can compute the uncom-
putable, provided the activity of the neu-
rons is desynchronized. (When a central
clock keeps the neurons in step with one
another, the functioning of the network

can be exactly simulat-

Even among experts, Turing’s

pioneering theoretical
concept of a hypermachine
has largely been forgotten.

ed by a universal Turing
machine.)

In the exotic mathe-
marical theory of hyper-
computation, tasks such
as that of distinguishing
theorems from nonthe-
orems in arithmetic are
no longer uncomput-

fed in, and the machine produces digital
output from the inpur using a step-by-
step procedure of repeated applications
of the machine’s basic operations, one
of which is to pass data to the oracle
and register its response.

Turing gave no indication of how an
oracle might work. (Neither did he ex-
plain in his earlier research how the ba-
sic actions of a universal Turing ma-

102 ScienTiFIC AMERICaN April 1999

able. Even a debugger
that can tell whether any program writ-
ten in C, for example, will enter an
infinite loop is theoretically possible.

It hypercomputers can be built—and
that is a big if —the potential for crack-
ing logical and mathematical problems
hitherto deemed intractable will be
enormous. Indeed, computer science
may be approaching one of its most sig-
nificant advances since researchers

wired together the first electronic em-
bodiment of a universal Turing machine
decades ago. On the other hand, work
on hypercomputers may simply fizzle
out for want of some way of realizing
an oracle.

The search for suitable physical,
chemical or biological phenomena is
getting under way. Perhaps the answer
will be complex molecules or other
structures thar link together in patterns
as complicated as those discovered by
Hanf and Myers. Or, as suggested by
Jon Doyle of M1 T, there may be natu-
rally occurring equilibrating systems
with discrete spectra that can be seen as
carrying out, in principle, an uncom-
putable task, producing appropriate
output (1 or 0, for example) after being
bombarded with inpur.

Outside the confines of mathematical
logic, Turing’s O-machines have largely
been forgotten, and instead a myth has
taken hold. According to this apoc-
ryphal account, Turing demonstrated in
the mid-1930s that hypermachines are
impossible. He and Alonzo Church, the
logician who was Turing’s doctoral ad-
viser at Princeton, are mistakenly credit-
ed with having enunciated a principle to
the effect thar a universal Turing ma-
chine can exactly simulate the behavior

Alan Turing’s Forgotien Ideas in Computer Science

of any other information-processing ma-
chine. This proposition, widely but in-
correctly known as the Church-Turing
thesis, implies that no machine can carry
out an information-processing task that
lies beyond the scope of a universal Tur-
ing machine. In truth, Church and Tur-
ing claimed only that a universal Turing
machine can match the behavior of any
human mathematician working with
paper and pencil in accordance with
an algorithmic method—a considerably

weaker claim that certainly does not rule
out the possibility of hypermachines.
Even among those who are pursuing
the goal of building hypercomputers,
Turing’s pioneering theoretical contribu-
tions have been overlooked. Experts
routinely talk of carrying out informa-
tion processing “beyond the Turing lim-
it” and describe themselves as attempt-
ing to “break the Turing barrier.” A re-
cent review in New Scientist of this
emerging field states that the new ma-

TOM IADORE

In the early 1950s, during the last
years of his life, Turing pioneered the
field of artificial life. He was trying to
simulate a chemical mechanism by
which the genes of a fertilized egg cell
may determine the anatomical structure
of the resulting animal or plant. He de-
scribed this research as “not altogether
unconnected” to his study of neural net-
works, because “brain structure has to
be ... achieved by the genetical embry-
ological mechanism, and this theory
that I am now working on may make
clearer what restrictions this really im-
plies.” During this period, Turing
achieved the distinction of being the first
to engage in the computer-assisted ex-
ploration of nonlinear dynamical sys-
tems. His theory used nonlinear differ-
ential equations to express the chem-
istry of growth.

But in the middle of this groundbreak-
ing investigation, Turing died from
cyanide poisoning, possibly by his own
hand. On June 8, 1954, shortly before
what would have been his 42nd birth-
day, he was found dead in his bedroom.
He had left a large pile of handwritten
notes and some computer programs.
Decades later this fascinating material is
still not fully understood,

The Authors

B. JACK COPELAND and DIANE PROUDFOOT are the di-
rectors of the Turing Project ar the Universiry of Canrterbury, New
Zealand, which aims to develop and apply Turing’s ideas using
modern rechniques. The authors are protessors in the philosophy
department at Canterbury, and Copeland is visiting professor of
computer science at the University of Portsmouth in England.
They have written numerous articles on Turing. Copeland’s Tier-
ing’s Machines and The Essential Turing are forthcoming from
Oxford University Press, and his Artificial Intelligence was pub-
lished by Blackwell in 1993, In addition to the logical study of hy-
permachines and the simulation of B-type neural networks, the
authors are investigating the computer models of biological
growth that Turing was working on at the time of his death. They
are organizing a conference in London in May 2000 to celebrate
the 50th anniversary of the pilor model of the Automaric Compur-
ing Engine, an electronic computer designed primarily by Turing.

Further Reading

X-MACHINES AND THE HALTING PROBLEM: BUILDING A SUPER-TURING
MacHiNg, Mike Stannett in Formal Aspects of Computing, Vol. 2,
pages 331-341; 1990.

INTELLIGENT MaCHINERY. Alan Turing in Collected Works of A. M.
Turing: Mechanical Intelligence. Edited by D. C. Ince. Elsevier Science
Publishers, 1992,

COMPUTATION BEYOND THE TURING LimiT. Hava T. Siegelmann in Sci-
ence, Vol. 268, pages 545-548; April 28, 1995.

ON AraN TURING'S ANTICIPATION OF CONNECTIONISM. B. Jack
Copeland and Diane Proudfoot in Synthese, Vol. 108, No. 3, pages
361-377; March 1996.

TURING'S O-MACHINES, SEARLE, PENROSE aND THE BraiN. B. Jack
Copeland in Analysis, Vol. 58, No. 2, pages 128-138; 1998.

Ture CrurcH-TuriNG Tuesis. B. Jack Copeland in The Stanford Encyclo-
pedia of Philosoplry. Edited by Edward N, Zalea. Stanford University, ISSN
1095-5054. Available at hetp-iplato.stanford.edu on the World Wide Web.

Alan Turing's Forgotten Ideas in Computer Science

SCIENTIFIC AMERICAN April 1999 103

Theorem [Turing]: the set of algorithms Is countable.
Proof: Sort algorithms = programs by length:

1« “main({}” R
9372 < mam%int n; n=13;}”

¢ 7?3544 5
10100 <, &le‘éﬁw [b b s
: ,$. Q 1 2 3 L 8 ...

10999 &‘gg “<W1ndows,©aquta>”

2

101%% “<super intelligent program>"’

oo wow cols coluin oolay ool

8] (9%) F=N N (=2 ~
—_
I
I
<
Ll,"—}“ g =y =
A N n n \

—> set of algorithms is countable!

Theorem [Turing]: the set of functions is not countable.
Theorem: Boolean functions {f|f:N—{0,1}} are uncountable.
Proof: Assume Boolean functions were countable; I.e.,

J table containing all of f;’s and their corresponding values:
1i(7)|/i(8)/i(9)
.................. 00/
................... 1] 1]...
1|0
@@Cﬁl 0 |:on
1 T, 0 ..
(I)— 1 0 1 0 O fN—){OI}

Butf IS missing from our table! /> # f, V keN
—> table is not a 1-1 correspondence between N and f;’s

= contradiction = {f | /:N—>{0,1} } Is not countable!

— There are more Boolean functions than natural numbers!

neorem: the set of algorithms is countable.
neorem: the set of functions iIs uncountable.
neorem; the Boolean functions are uncountable.

1 < “main(){}” S .
: :OU Ji |JiD|f;
0372 <> “main%inl n; n=13;}” fl
: ~.. O en
10100 & &SUNIXDS> |d 3.
SRS T
| 0999 &5 “<Windm-vs?kista?/*” s,
L <
lOlo“QQ—) “<super intelliggnt program>" f’(i): 1 0

Corollary: there are “more” functions than algorithms / programs.
Corollary: some functions are not computable by any algorithm!
Corollary: most functions are not computable by any algorithm!

Corollary: there are “more” Boolean functions than algorithms.
Corollary: some Boolean functions on N are not computable.
Corollary: most Boolean functions on N are not computable.

Theorem: most Boolean functions on N are not computable.
Q: Can we find a concrete example of an uncomputable function?
A [Turing]: Yes, for example, the Halting Problem.

Definition: The Halting problem: given a program P and mput l,
will P halt if we ran it on 1? L o w0

9372 © m-m% at n: =132
Define H:NxN—{0,1} |
H(P,1)=1 if TM P halts on input |

: b
. 10')” %%)i? \\ml %,in'
H(P,1)=0 otherwise s : B

Notes: OTUQ .
* P and | can be encoded as integers, in some canonical order.

« H Is an everywhere-defined Boolean function on natural pairs.

» Alternatively, both P and I can be encoded as strings in X*.

« We can modify H to take only a single input: H’(2P3") or H’(P$I)

T

Why 273! 7+ Godel numbering / encoding

What else will work?

Theorem [Turing]: the halting problem (H) is not computable.

Corollary: we can not algorithmically detect all infinite loops.

Q: Why not? E.g., do the following programs halt?
main() main() E 3
{intk=3; } { while(1) {} } Windon:i/ista"’

Halts! Runs forever! ?
main() main()
{ Find a Fermat { Find a Goldbach
triple a"+b"=c" Integer that is not a
with n>2 } sum of two primes }
Runs forever! ?
Open from 1637-1995! Still open since 1742!

Theorem: solving the halting problem is at least as
hard as solving arbitrary open mathematical problems!

Theorem [Turing]: the halting problem (H) is not computl

Ex: the “3X+1” problem (the Ulam conjecture):

e Start with any integer X>0

o If X Is even, then replace it with X/2

o If X Is odd then replace it with 3X+1

 Repeat until X=1 (i.e., shortcycle 4, 2,1, ...)

EX: 26 terminates after 10 steps
27 terminates after 111 steps

Termination verified for X<1018

Q: Does this terminate for every X>0 ?:-

-
© ®
o °
&
° ° e
o % ®
i °
.] I] 4 oo:". -
I l 4 % e e
] pe n S I Ce = 150] °o°:0°'..0
A
188%2
1 5%

“Mathematics Is not yet ready for such confusing, ™
troubling, and hard problems." - Paul Erdds, who — l&smisnse s
offered a $500 bounty for a solution to this problem EEE=Eareas

T 1 T I T T T T T
1,000 3,000 5,000 7,000 9,000

Observation: termination Is Number of steps to termination
' Iffi for the first 10,000 numb
In general difficult to detect! or the Tirst numbers

Theorem [Turing]: the halting problem (H) is not computable.
Proof: Assume Jalgorithm S that solves the halting problem
H, that always stops with the correct answer for any P & |.

MY NOSE WILL
GROW NOW!
N W
&
g

X

T(T) %ﬁ; = T(T) does not halt N .
T(T) does not halt = T(T) halts} Q <~Q = Contradiction?
—> S cannot exist! (at least as an algorithm / program / TM)

nen do we want to feed a program to itself in practice?
nen we build compilers.

ny?
0 make them more efficient!
To boot-strap the coding in the compiler’s own language!

S £=

20O 2O
_|

| Executable
' code

Program

MY NOSE WILL
GROW NOW!
N\
Yy
U

¥|”'7’\

Theorem: Infinite loop

detection is not computable.

BSR4 8

READY?
READY.

’/ —
ﬁ YRy I

B— —

ROP\R

BDD
7)

Theorem: virus detection
Is.notgpmputable.

P‘REITY ISN'T IT¢
WHaT |s IT?

& @

N 2/

IVE GOT ABUNCH OF VIRTUAL WINDGWS
MACHINES NETWORKED TOGETHER, HOOKED UP
10 AN INCOMING PIPE FROM THE NET. THEY
EXECUTE EMAIL ATTACHMENTS SHARE FILES,
AND HAVE NO SECLRITY PRTCHES,

THERE. ARE MAILTROTANS WARHOL WORMS,
AND ALLSORTS OF EXOTIC POLMORPHICS, NORMAL PEOPLE BLASTER. ARE
A MONITORING SYSTEM. ADPS AND WIPES JUST HAVE YOU AND

MACHNES AT RANDO. THE DISPLAY SHOKS HG”’“'R“’Ts / W32, M'ﬂ
THE VIRUSES AS THEY MOVE THROUGH THE
/ GROWING AND

BENJEEN
— THEM THEY

HAVE PRACTICALLY

EVERY VIRUS,

YOU KNOW, GODD MORMING,

HLG'NG?

STRUGGLING.
WHO'S A GOOD VIRUS?
YDU ARE! YES, YOU ARE!

OFERATION: DUCKLING LCoP

amazenkindle

e eesrced 10 104 and putrefy. Leatirer b0 EV¢
2ooden floorboards and mmm ‘m:ﬁ

& M A2 Az A3 Ag e
B T
B e LT N

- &

Speech Rate shower g

=S

“Kindle DX” wireless reading device
« 1/3 of an inch thin, 4GB memory
 holds 3,500 books / documents

« 532 MHz ARM-11 processor

« 9.7" e-ink auto-rotate 824x1200 display
« Full PDF and text-to-speech

« 3G wireless, < 1 min/ book

« 18.0 0z, battery life 4 days

Generalized Numbers

4 N
?(Flnltely describable numbers H
.
"Hypernumbers S
(o \\
4 © N : ﬁ
o £ é _ (Complex C 7+3|\\
3 ?| i | &|(Reals R A
E ; ._l_- é KE\/ I \
= L E& = ‘Rationals @ 2/9)
2 ;| HEERE | Tntegers Z -4°
= N p N
&2 51928 =82 | Naturals N 6
2 | x|~ ggg 5|8 Primes P 5]
clslZllelelall€ g/ Boolean B
S g % =ik ik=alE= O <_E LS)
O IEIE g BISII=IF]S I
OCl& || O M\ —F—r0—+ >
% \@% L - //j
. N)

Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!

Theorem: Some real numbers are not finitely describable.
Proof: Theniumber of finite descriptions Is countable.
e number of real numbers Is not countable.

:>rea| numbers do not have finite descriptions.

<~ nmn()

1@

9372 <> “mainfgint n; n=13:}"

O
Y
10100 o, SFUNIXDS>

b

Q@ ‘-\WlﬂdO\\S@JSta, ”
) . o
SO

.- e - - - - DY \-.
07> swperinellizentprogam =" py= 10 1 0 0 ... PN (01

. _ Godel numbering / encoding
Theorem: Some finitely describable reals are not’computable.

Proof: Let h=0.H,H,H;H,... where H,=1 if i=2"3! for some
Integers P&I, and TM P halts on inpu 1. aRd H;=0 otherwise.
ClearlyO<h<1lisa real nltely describable.

If h was comput bf could exploit an algorithm that
COﬁ ‘m@& lving the halting problem, a contradiction.

ot computable

Theorem: all computable numbers are finitely describable.
Proof: A computable number can be outputted by a TM.

A TM is a (unique) finite description.
What the unsolvability of the Halting Problem means:

There Is no single algorithm / program / TM that correctly
solves all instances of the halting problem in finite time each.

This result does not necessarily apply if we allow:

* [ncorrectness on some instances

o Infinitely large algorithm / program

o Infinite number of finite algorithms / programs
e Some Instances to not be solved
o Infinite “running time” / steps |
 Powerful enough oracles X

Oracles

Originated in Turing’s Ph.D. thesis
Named after the “Oracle of Apollo”
at Delphi, ancient Greece
Black-box subroutine / language
Can compute arbitrary functions
Instant computations “for free” s N e, R
Can greatly increase computation power of baS|c TMSs

E.g., oracle for halting problem

The “Oracle of Omaha”

Warren
Thinks...

ABOUT THE
CREDIT CRISIS,
THE ECONOMY,
AND MORE

Now! g, My

THE BET STOCK
AND BONDS
TOBUY TODAY ‘

Bob Iger on
Where He's
Taking Disney

The “Oracle” of the Matrix

Turing Machines with Oracles

» A special case of “hyper-computation”

* Allows “what I analysis: assumes certain
undecidable languages can be recognized

« An oracle can profoundly impact the
decidability & tractability of a language

« Any language / problem can be
“relativized” WRT an arbitrary oracle

« Undecidability / intractability exists even
for oracle machines!

Theorem [Turing]: Some problems are still not computable,
even by Turing machines with an oracle for the halting problem!

*

Theorem [Turing]: the halting problem™(H") is not computable:
Proof: Assume 3 algorithm S™that solves the halting problem

H7 that always stops with the correct answer for any P*& I.
Add to P an H-oracle:

<«

P* 1s “relativized” P.
S* 1s “relativized” S.
T* 1s “relativized” T.

The halting problem for

TMs with an H-oracle Is
not computable by TM’s
with an H-oracle!

MY
‘@
»

T(T halts = T(T") does not halt
T(T) does not halt = T(T") halts Qe ~Q = Contradiction!

— S*cannot exist! (at least as an algorithm / program / TM)

Students of
Alonzo Church:

Turing Degrees

« Turing (1937); studied by Post (1944) and Kleene (1954)

« Quantifies the non-computability (i.e., algorithmic
unsolvability) of (decision) problems and languages

* Some problems are “more unsolvable” than others!

___ Alan Turing
- “ 1912-1954
T AR : £
P ES

-= - = N »

L] ==

5 ;@,‘

=

B\

Georg Cantor

1845-1918 | (,//

-« Defines computation O ,

“relative” to an or 1@?0

'« “Relativized con@ation”
.- an infinite hierarchy!

Emil Post
1897-1954

« A “relativity theory
. of computation™!

E\\Turing degree 2

iTuring degree O |

—————————————————————————————

1 Stephen Kleene
% 1909-1994

Turing Degrees ploncs e
Turing degree of a set X is the set of all Turing-equivalent .
(i.e., mutually-reducible) sets: an equivalence class [X]
Turing degrees form a partial order / join-semilattice]
[0]: the unique Turing degree containing all computable sets Alan Turing

For set X, the “Turing jump” operator X’ IS the set of indices |
of oracle TMs which halt when using X as an oracle

[0°]: Turing degree of the halting problem H; [0”’]: Turing

degree of the haltlng problem H* for TMs with oracle H. f / Y
| | | 1%317”1%%84{

Stephen Kleene
1909-1994

The structure of the Turing degrees
semilattice is extremely complex!

Students of

Turing Degrees Aonzs Crh

There are uncountably many (2%¢) Turing degrees
A Turing degree X is strictly smaller than its Turing jump X’ _ @S
Alan Turi

For a Turing degree X, the set of degrees smaller than X'is 1912_192
countable; set of degrees larger than X is uncountable (2%0) | & s

For every Turing degree X there is an incomparable degree

(i.e., neither X =Y nor Y > X holds). / b
There are 2% pairwise incomparable Turing degrees V E//I :
mil KOS

For every degree X, there is a degree D strictly between X 18971954

Stephen Kleene
| 1909-1994

“THe BCAVTY OF THHS 1S THAT 1T 1S OALY OF
THEORETICAL IMPORTANCE, AND THERE. IS NO WAY
T CAN BE OF ANY PRACTCAL USE WHATSOEVER. *

The Extended Chomsky Hierarchy

(AT . N\
. " (Decidable Presburger arithmetic)
e ‘EXPSPACE A
o 4 I
o (O o EXPTII\/IE .
S \degrees S (Context sensitive LBA)
IR IO 1) N
Sl2 | 20| S NP :
e =Bl elZ NHNAN
SISl 25257 o
O \|.=|2]| 3| | 2| . |[Context-free ww
> | S ol elaol L - N
512S|d 0| S||a| |[DetCrab
£18|g5(2|8| 5| |Reqular a
s 212 5| &) |[Finite {20}
S|18|g|8E 2 Es =)
=P)

e 000900 o
c00 @00 o

Kurt Godel

ON FORMALLY

UNDECIDABLE
PROPOSITIONS
OF _PRINCIPIA

MATHEMATICA

AND RELATED
SYSTEMS

J‘J\JJQ J\/\/ JH, ¢

ore regory J. CHAITIN

THE
UNDECIDABLE

Basic Papers on Undecidable Propositions,
Problems and Functions

Edited b! s
Martin Davis

@ /Ze/ d /Q 71)0/

An Essay on the Sources and Meaning,
of Mathematical Unsolyability

o g))
F“ﬁ Buun) pue |9po0) mogbupiuiy |
‘ .

COMPUTABILITY
AND
UNSOLVABILITY

MARTIN DAVIS

London Mathematical Society
Lecture Note Series

RANDOMNESS &
UNDECIDABILITY
IN PHYSICS

Karl Svozil

Robert I. Soare

Sets and Degrees

A of Ci ble Functions
M%emﬂ Sets

& v

NORTH-HOLLAND

MATHEMATICS STUDIES

Degrees of
Unsolvability

JOSEPH R SHOENFIELD

>

RTH-HOLLAND/AMERICAN ELSEVIER

VI-IJ'EVR‘E:: ARE SOME ™
g ovEsTions THA

NgvA;E’EDBEY B

= ANSWER B
GOOGLE_ /|

Ideas on complexity and randomness originally
suggested by Gottfried W. Leibniz in 1686,
combined with modern information theory,

imply that there can never be a “theory of
everything” for all of mathematics

By Gregory Chaitin

> cypiaaly
$L07IILL I9IR0IROT) LB LI

b

143364293 79993 83104

The Limits of Reason

n 1956 Scientific American published an article by Ernest Nagel and James R. Newman entitled
“Godel’s Proof.” Two years later the writers published a book with the same title—a wonderful
work that is still in print. I was a child, not even a teenager, and I was obsessed by this little book.
I remember the thrill of discovering it in the New York Public Library. I used to carry it around
with me and try to explain it to other children.
It fascinated me because Kurt Godel used mathematics to show that mathematics itself
has limitations. Godel refuted the position of David Hilbert, who about a century ago
declared that there was a theory of everything for math, a finite set of principles from
which one could mindlessly deduce all mathematical truths by tediously following
the rules of symbolic logic. But Gédel demonstrated that mathematics contains
true statements that cannot be proved that way. His result is based on two self-
referential paradoxes: “This statement is false” and “This statement is un-
provable.” (For more on Gédel’s incompleteness theorem, see www.sciam.
com/ontheweb)
My attempt to understand Gédel’s proof took over my life, and
now half a century later I have published a little book of my own.
In some respects, it is my own version of Nagel and Newman’s
book, but it does not focus on Gédel’s proof. The only things
the two books have in common are their small size and
their goal of critiquing mathematical methods.
Unlike Godel’s approach, mine is based on mea-
suring information and showing that some math-
X ematical facts cannot be compressed into a the-
NN ory because they are too complicated. This
new approach suggests that what Godel

EXISTENCE OF OMEGA (Q2)—a
specific, well-defined number
that cannot be calculated by
any computer program—

smashes hopes fora
complete, all-encompassing g
mathematicsin whichevery) | ';—”:;-“::;..‘...‘“Aﬁ;’w »-:;4\.‘...._
true factis true forareason. " " TN AR catste e Tt
e
3645 1,

3708 CSTTATET YU TR TH RS SSS195200 S300 M52 DAPHETT) €22 49941309 114972 L TR

T
SBARIA SOSISAPIL I IR SE) SINTTES 1 4O
B Tttt anie

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

™ 18
196631 64834414921 130910 €09

COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC.

sasae
3940234 4306424991 190

discovered was just the tip of the iceberg:
aninfinite number of true mathematical
theorems exist that cannot be proved
from any finite system of axioms.

Complexity and

Scientific Laws

MY STORY BEGINS in 1686 with Gott-
fried W. Leibniz’s philosophical essay
Discours de métaphysique (Discourse
on Metaphysics), in which he discusses
how one can distinguish between facts
that can be described by some law and
those thar are lawless, irregular facts.
Leibniz’s very simple and profound idea
appears in section VI of the Discours, in
which he essentially states that a theory
has to be simpler than the data it ex-
plains, otherwise it does not explain
anything. The concept of a law becomes
vacuous if arbitrarily high mathemari-
cal complexity is permitted, because
then one can always construct a law no
matter how random and patternless the
data really are. Conversely, if the only
law that describes some darta is an ex-
tremely complicated one, then the data
are actually lawless.

Today the notions of complexity and
simplicity are put in precise quantitative
terms by a modern branch of mathemat-
ics called algorithmic information the-
ory. Ordinary information theory quan-
tifies information by asking how many
bits are needed to encode the informa-
tion. For example, it takes one bit to en-
code a single yes/no answer. Algorith-
mic information, in contrast, is defined

by asking what size computer program
is necessary to generate the data. The
minimum number of bits—what size
string of zeros and ones—needed to
store the program is called the algorith-
mic information content of the darta.
Thus, the infinite sequence of numbers
1,2, 3,... has very little algorithmic in-
formation; a very short computer pro-
gram can generate all those numbers. It
does not matter how long the program
must take to do the computation or how
much memory it must use—just the

= Kurt Godel demonstrated that mathematics is necessarily incomplete,
containing true statements that cannotbe formally proved. Aremarkable
number known as omega reveals even greater incompleteness by providing
an infinite number of theorems that cannot be proved by any finite system of
axiomns. A “theory of everything” for mathematics is therefore impossible.

76 SCIENTIFIC AMERICAN

= Omega is perfectly well defined [see box on opposite page] and has a definite
value, yetitcannot be computed by any finite computer program.

= Omega’s properties suggest that mathematicians should be more willing to
postulate new axioms, similar to the way that physicistsmustevaluate
experimentalresults and assertbasic laws that cannot be proved logically.

= The resultsrelated to omega are grounded in the concept of algorithmic
information. Gottfried W. Leibniz anticipated many of the features of
algorithmic information theory more than 300 years ago.

length of the program in bits couns. (I
gloss over the question of what pro-
gramming language is used to write the
program—for a rigorous definition, the
language would have to be specified
precisely. Different programming lan-
guages would result in somewhar differ-
ent values of algorithmic information
content. |

To take another example, the num-
ber pi, 3.14159..., also has only a little
algorithmic information content, be-
cause a relatively short algorithm can be
programmed into a computer to com-
pute digit after digit. In contrast, a ran-
dom number with a mere million digits,
say 1.341285...64, has a much larger
amount of algorithmic information. Be-
cause the number lacks a defining pat-
tern, the shortest program for output-
ting it will be about as long as the num-
ber irself:

Begin
Print “1.341285...64”
End

(All the digits represented by the el-

lipsis are included in the program.) No
smaller program can calculate that se-

MARCH 2006

KENN BROWN: CONC EPT BY DUSAN PETRICIC [preceding pages): DUSAN PETRICIC (above)

quence of digits. In other words, such
digit streams are incompressible, they
have no redundancy; the best that one
can do is transmit them directly. They
are called irreducible or algorithmically
random.

How do such ideas relate to scien-
tific laws and facts? The basic insight
is a software view of science: a scien-
tific theory is like a computer program
that predicts our observations, the ex-
perimental data. Two fundamental
principles inform this viewpoint. First,
as William of Occam noted, given two
theories that explain the data, the sim-
pler theory is to be preferred (Occam’s
razor). That is, the smallest program
that calculates the observations is the
best theory. Second is Leibniz’s insight,
cast in modern terms—if a theory is the
same size in bits as the data it explains,
then it is worthless, because even the
most random of data has a theory of
that size. A useful theory is a compres-
sion of the data; comprehension is
compression. You compress things into
computer programs, into concise algo-
rithmic descriptions. The simpler the
theory, the better you understand
something.

www.sciam.com

ALGORITHMIC INFORMATION
quantifies the size of a computer
program needed to produce a
specific output. The number pi has
little algorithmic information
contentbecause a short program
can produce pi. Arandem number
has a lot of algorithmic information;
the best that can be done is toinput
the number itself. The same is true
of the numberomega.

Sufficient Reason

DESPITE LIVING 250 years before the
invention of the computer program,
Leibniz came very close to the modern
idea of algorithmic informarion. He had
all the key elements. He just never con-
nected them. He knew that everything
can be represented with binary infor-
mation, he built one of the first calculat-

ing machines, he appreciated the power
of computation, and he discussed com-
plexity and randomness.

If Leibniz had put all this together,
he might have questioned one of the key
pillars of his philosophy, namely, the
principle of sufficient reason—that ev-
erything happens for a reason. Further-
more, if something is true, it must be
true for a reason. That may be hard to
believe sometimes, in the confusion and
chaos of daily life, in the contingent ebb
and flow of human history. But even if
we cannot always see a reason (perhaps
because the chain of reasoning is long
and subtle), Leibniz asserted, God can
see the reason. It is there! In that, he
agreed with the ancient Greeks, who
originated the idea.

Mathematicians certainly believe in
reason and in Leibniz’s principle of suf-
ficient reason, because they always try
to prove everything. No martter how
much evidence there is for a theorem,
such as millions of demonstrated exam-
ples, mathematicians demand a proot of
the general case. Nothing less will sat-
isfy them.

And here is where the concept of al-
gorithmic informarion can make its sur-
prising contribution to the philosophi-
cal discussion of the origins and limits
of knowledge. It reveals that certain
mathematical facts are true for no rea-

How Omega Is Defined

To see how the value of the number omega is defined, look at a simplified example.
Suppose that the computer we are dealing with has only three programs that halt, and
they are the bitstrings 110, 11100 and 11110. These programs are, respectively, 3, 5
and 5 bitsin size. If we are choosing programs atrandom by flipping a coin for each
bit, the probability of getting each of them by chance s precisely ¥2%, %2° and %°,
because each particular bit has probability ¥2. So the value of omega [the halting
probability] for this particular computer is given by the equation:

omega =123+ 1%° + %2° = 001 +.00001 +.00001 =.00110

This binary number is the probability of getting one of the three halting programs by
chance. Thus, itis the probability that our computer will halt. Note that because
program 110 halts we do not consider any programs thatstart with 110 and are
larger than three bits—for example, we do not consider 1100 or 1101. Thatis, we do
not add terms of .0001 to the sum for each of those programs. We regard all the
longer programs, 1100 and so on, as being included in the halting of 110. Another
way of saying this is that the programs are self-delimiting; when they halt, they

stop asking for more bits.

—G.C.

SCIENTIFIC AMERICAN 77

PHYSICS: THEOR)y—> — —> FREDICTIONTS FOR

OB JERIATION S

MATHEMATICS: AXIOMS _3’_ —= THIECOREMS

COMPUTING: PRoGRAM ~>_-a ouTPUT

PHYSICS AND MATHEMATICS are in many ways similar to the execution of a program on a computer.

son, a discovery that flies in the face of
the principle of sufficient reason.

Indeed, as [will show later, it turns
out thatan infinite number of mathemart-
ical facts are irreducible, which means
no theory explains why they are true.
These facts are not just computationally
irreducible, they are logically irreducible.
The only way to “prove” such facts is to
assume them directly as new axioms,
without using reasoning at all.

The concept of an “axiom” is closely
related to the idea of logical irreducibil-
ity. Axioms are mathemarical facts that
we take as self-evident and do not try to
prove from simpler principles. All for-
mal mathematical theories start with
axioms and then deduce the consequenc-
es of these axioms, which are called the-
orems. That is how Euclid did things in
Alexandria two millennia ago, and his
treatise on geometry is the classical
maodel for mathemarical exposition.

In ancient Greece, if you wanted to
convince your fellow citizens to vote
with you on some issue, you had to rea-
son with them—which I guess is how
the Greeks came up with the idea that
in mathematics you have to prove things
rather than just discover them experi-
mentally. In contrast, previous cultures
in Mesopotamia and Egypt apparently
relied on experiment. Using reason has
certainly been an extremely fruitful ap-
proach, leading to modern mathematics
and mathematical physics and all that

goes with them, including the technol-
ogy for building that highly logical and
mathematical machine, the computer.

So am I saying that this approach
thar science and mathemarics has been
following for more than two millennia
crashes and burns? Yes, in a sense lam.
My counterexample illustrating the lim-
ited power of logic and reason, my
source of an infinite stream of unprov-
able mathemartical facts, is the number
that [call omega.

The Number Omega
(THE FIRST STEP on the road to ome-)
ga came in a famous paper published
precisely 250 years after Leibniz’s essay.
Ina 1936 issue of the Proceedings of the
London Mathematical Society, Alan M.
Turing began the compurer age by pre-
senting a mathematical model of a sim-
ple, general-purpose, programmable
digital computer. He then asked, Can
we determine whether or not a comput-
er program will ever halt? This is Tur-

\ing’s famous halting problem. Y,
Of course, by running a program
you can eventually discover that it halts,
if it halts. The problem, and it is an ex-
tremely fundamental one, is to decide
when to give up on a program that does
nothalt. A great many special cases can
be solved, but Turing showed that a gen-
eral solution is impossible. No algo-
rithm, no mathematical theory, can ever
tell us which programs will halt and

THE AUTHOR

78 SCIENTIFIC AMERICAN

GREGORY CHAITIN is a researcheratthe IBM Thomas J. Watson Research Center. He is
also honorary professorat the University of Buenos Aires and visiting professor at the
University of Auckland. He is co-founder, with Andrei N. Kolmogorov, of the field of alga-
rithmic infarmation theory. His nine books include the nontechnical works Conversa-
tiens with a Mathematician (2002) and Meta Math! (2005).When he is notthinking about
the foundations of mathematics, he enjoys hiking and snowshoeing in the mountains.

which will not. (For a modern proof of
Turing’s thesis, see www.sciam.com/
ontheweb) By the way, when I say “pro-
gram,” in modern terms I mean the con-
catenation of the computer programand
the darta to be read in by the program.

The next step on the path to the
number omega is to consider the ensem-
ble of all possible programs. Does a pro-
gram chosen at random ever halt? The
probability of having that happen is my
omega number. First, I must specify
how to pick a program at random. A
program is simply a series of bits, so flip
a coin to determine the value of each bit.
How many bits long should the pro-
gram be? Keep flipping the coin so long
as the computer is asking for another bit
of input. Omega is just the probability
that the machine will eventually come
to a halt when supplied with a stream of
random bits in this fashion. (The precise
numerical value of omega depends on
the choice of computer programming
language, but omega’s surprising prop-
erties are not affected by this choice.
And once you have chosen a language,
omega has a definite value, just like pior
the number 3.)

Being a probability, omega has to be
greater than 0 and less than 1, because
some programs halt and some do not.
Imagine writing omega out in binary.
You would get something like
0.1110100.... These bits after the deci-
mal point form an irreducible stream of
bits. They are our irreducible mathe-
matical facts (each fact being whether
the bitisaODora 1).

Omega can be defined as an infinite
sum, and cach N-bit program that halts
contributes precisely 12" to the sum [see
box an preceding page].In other words,

MARCH 2006

. LANGE zefa/Corbis [top); DUSAN PETRICIC (bottom)

each N-bit program that halts adds a 1
to the Nth bit in the binary expansion
of omega. Add up all the bits for all pro-
grams that halt, and you would get the
precise value of omega. This description
may make it sound like you can calcu-
late omega accurately, just as if it were
the square root of 2 or the number pi.
Not so—omega is perfectly well defined
and it is a specific number, but it is im-
possible to compute in its entirety.

We can be sure that omega cannot
be computed because knowing omega
would let us solve Turing’s halting prob-
lem, but we know that this problem is
unsolvable. More specifically, knowing
the first N bits of omega would enable
you to decide whether or not each pro-
gram up to N bits in size ever halts [see
box on page 80]. From this it follows
that you need at least an N-bit program
to calculate N bits of omega.

Note that I am not saying that it is
impossible to compute some digits of
omega. For example, if we knew that
computer programs 0, 10 and 110 all
halt, then we would know thart the first
digits of omega were 0.111. The pointis
that the first N digits of omega cannot
be computed using a program signifi-
cantly shorter than N bits long.

Most important, omega supplies us
with an infinite number of these irre-
ducible bits. Given any finite program,

no matter how many billions of bits
long, we have an infinite number of bits
that the program cannot compute. Giv-
en any finite set of axioms, we have an
infinite number of truths that are un-
provable in that system.

Because omega is irreducible, we
can immediately conclude that a theory
of everything for all of mathematics
cannot exist. An infinite number of bits
of omega constitute mathematical facts
(whether each bitisa 0 or a 1) that can-
not be derived from any principles sim-
pler than the string of bits itself. Math-
ematics therefore has infinite complex-
ity, whereas any individual theory of
everything would have only finite com-
plexity and could not capture all the
richness of the full world of mathemati-
cal truch.

This conclusion does not mean that
proofs are no good, and I am certainly
not against reason. Just because some
things are irreducible does not mean we
should give up using reasoning. Irreduc-
ible principles—axioms—have always
been a part of mathematics. Omega just
shows that a lot more of them are out
there than people suspected.

So perhaps mathematicians should
not try to prove everything. Sometimes
they should just add new axioms. That
is what you have got to do if you are
faced with irreducible facts. The prob-

ASCIENTIFICTHEORY is like a computer program
that predicts our observations of the universe.

Auseful theory is a compression of the data; from

a small number of laws and equations, whole
universes of data can be computed.

www.sciam.com

GOTTFRIED W. LEIBNIZ, commemorated by
astatuein Leipzig, Germany, anticipated many
of the features of modern algorithmic
information theory more than 300 years ago.

lem is realizing that they are irreducible!
In a way, saying something is irreduc-
ible is giving up, saying that it cannot
ever be proved. Mathematicians would
rather die than do thart, in sharp con-
trast with their physicist colleagues,
who are happy to be pragmatic and to
use plausible reasoning instead of rigor-
ous proof. Physicists are willing to add
new principles, new scientific laws, to
understand new domains of experience.
(This raises what I think is an extremely)
interesting question: Is mathematics
like physics?

Mathematics and Physics
THE TRADITIONAL VIEW is that
mathematics and physics are quite dif-
ferent. Physics describes the universe
and depends on experiment and obser-
vation. The particular laws that govern
our universe—whether Newton’s laws
of motion or the Standard Model of
particle physics—must be determined
empirically and then asserted like axi-
oms that cannot be logically proved,
merely verified.

Mathematics, in contrast, is some-
how independent of the universe. Re-
sults and theorems, such as the proper-
ties of the integers and real numbers, do
not depend in any way on the particular
nature of reality in which we find our-
selves. Mathematical truths would be

true in any universe.
\Lue tnany J

SCIENTIFIC AMERICAN 79

Yet both fields are similar. In physics,
and indeed in science generally, scien-
tists compress their experimental obser-
vations into scientific laws. They then
show how their observations can be de-
duced from these laws. In mathemarics,
too, something like this happens—
mathematicians compress their compu-
tational experiments into mathematical
axioms, and they then show how to de-
duce theorems from these axioms.

If Hilbert had been right, mathemat-
ics would be a closed system, withour
room for new ideas. There would be a
static, closed theory of everything for
all of mathematics, and this would be
like a dictatorship. In fact, for mathe-
matics to progress you actually need
new ideas and plenty of room for cre-
ativity. It does not suffice to grind away,
mechanically deducing all the possible
consequences of a fixed number of basic
principles. I much prefer an open sys-
tem. I do not like rigid, authoritarian
ways of thinking.

Another person who thought math-

ematics is like physics was Imre Laka-
tos, who lett Hungary in 1956 and later
worked on philosophy of science in Eng-
land. There Lakatos came up with a
great word, “quasi-empirical,” which
means that even though there are no
true experiments that can be carried out
in mathematics, something similar does
take place. For example, the Goldbach
CO]]j(’C[U]'E states thﬂt any cven number
greater than 2 can be expressed as the
sum of two prime numbers. This con-
jecture was arrived at experimentally,
by noting empirically that it was true for
every even number that anyone cared to
examine. The conjecture has not yet
been proved, but it has been verified up
to 101,

I think that mathematics is quasi-
empirical. In other words, I fecl that
mathematics is different from physics
(which is truly empirical} but perhaps
not as different as most people think.

I have lived in the worlds of both
mathematics and physics, and I never
thought there was such a big difference

Why Is Omega Incompressible?

| wish to demonstrate thatomega isincompressible—that one
cannotuse a program substantially shorterthan N bits long to
compute the first N bits of omega. The demonstration will

between these two fields. It is a matter
of degree, of emphasis, not an absolute
difference. Afrer all, mathematics and
physics coevolved. Mathematicians
should not isolate themselves. They
should not cut themselves off from rich
sources of new ideas,

New Mathematical Axioms
THE IDEA OF CHOOSING to add
more axioms is not an alien one to
mathematics. A well-known example is
the parallel postulate in Euclidean ge-
ometry: given a line and a point not on
the line, there is exactly one line that
can be drawn through the point that
never intersects the original line. For
centuries geometers wondered whether
that result could be proved using the
rest of Euclid’s axioms. It could not. Fi-
nally, mathematicians realized that they
could substitute different axioms in
place of the Euclidean version, thereby
producing the non-Euclidean geome-
tries of curved spaces, such as the sur-
face of a sphere or of a saddle.

Omegak will be less than omega because itis based on only
asubset of all the programs that halt eventually, whereas
omega is based on all such programs.

involve a careful combination of facts about omega and the
Turing halting problem that it is so intimately related to.
Specifically, I willuse the fact that the halting problem for
programs up to length N bits cannot be solved by a program that
isitselfshorterthan N bits [see www.sciam.com/ontheweb].

My strategy for demonstrating that omegais
incompressible is to show that having the first N bits of omega
would tell me how to solve the Turing halting problem for
programs up to length N bits. It follows from that conclusion
that no program shorterthan N bits can compute the first N bits
of omega. (If such a program existed, | could use it to compute
the first N bits of omega and then use those bits tosolve
Turing's problem up to N bits—a task that isimpossible for such
ashort program.)

Now let us see how knowing N bits of omega would enable
me to solve the halting problem—to determine which programs
halt—far all programs up to N bits in size. Do this by performing
acomputationinstages. Use the integer K to label which stage
weareat:K=1,2,3,...

AtstageK, run every program up to K bits in size for K
seconds. Then compute a halting probability, which we will call
omegag, based on all the programs that halt by stage K.

80 SCIENTIFIC AMERICAN

AsKincreases, the value of omegag will getcloser and
closertothe actual value of omega. As it gets closer toomega's
actualvalue, more and more of omegag's first bits will be
correct—that is, the same as the corresponding bits of omega.

And as soon as the first Nbits are correct, you know that you
have encountered every program up to N bits in size that will
ever halt. (If there were another such N-bit program, at some
later-stage K that program would halt, whichwouldincrease the
value of omega to be greater than omega, which is impossible.]

Sowe canuse the first N bits of omega to solve the halting
problem for all programs up to N bits in size. Now suppose we
could compute the first Nbits of omega with a program
substantially shorterthan N bits long. We could then combine
that program with the one for carrying out the omegayx
algorithm, to produce a program shorter than N bits that solves
the Turing halting problem up to programs of length N bits.

But, as stated up front, we know that no such program
exists. Consequently, the first N bits of omega must require
aprogram that is almost N bits long to compute them. That is
good enough to call omega incompressible or irreducible.

(A compression from N bits to almost N bits is not significant for
large N.) —G.C.

MARCH 2006

OMEGA represents a part of mathematics
thatisin asense unknowable. Afinite
computer program can reveal only a finite
number of omega’s digits; the restremain
shrouded in obscurity.

Other examples are the law of the
excluded middle in logic and the axiom
of choice in set theory. Most mathemati-
cians are happy to make use of those
axioms in their proofs, although others
do not, exploring instead so-called intu-
itionist logic or constructivist mathe-
matics. Mathemarics is not a single
monolithic structure of absolute truth!

Another very interesting axiom may
be the “P not equal to NP conjecture.
P and NP are names for classes of prob-
lems. An NP problem is one for which
a proposed solution can be verified
quickly. For example, for the problem

“find the factors of 8,633,” one can
quickly verify the proposed solution
“97 and 89~ by multiplying those two
numbers. (There is a technical defini-
tion of “quickly,” but those details are
not important here.) AP problem is one
that can be solved quickly even without
being given the solution. The question
is—and no one knows the answer—can
every NP problem be solved quickly?
(Is there a quick way to find the factors
of 8,633?) That is, is the class P the
same as the class NP? This problem is
one of the Clay Millennium Prize Prob-
lems for which a reward of $1 million
is on offer.

(~ Computer scientists widely believe
that P is not equal to NP, but no proof is
known. One could say that a lot of quasi-
empirical evidence points to P not being
equal to NP. Should P not equal to NP
be adopted as an axiom, then? In effect,
this is what the computer science com-
munity has done. Closely related to this
issue is the security of certain crypto-
graphic systems used throughout the
world. The systems are believed to be
invulnerable to being cracked, but no

el]? can prove it. Y,

Experimental Mathematics

ANOTHER AREA ofsimilarity between
mathematics and physics is experimen-
tal mathematics: the discovery of new
mathematical results by looking at

www.sciam.com

many examples using a compurter.
Whereas this approach is not as persua-
sive as a short proof, it can be more con-
vincing than a long and extremely com-
plicated proof, and for some purposes it
is quite sufficient.

In the past, this approach was de-
fended with great vigor by both George
Pélya and Lakatos, believers in heuristic
reasoning and in the quasi-empirical
nature of mathematics. This methodol-
ogy is also practiced and justified in Ste-
phen Wolfram’s A New Kind of Science
(2002).

Extensive computer calculations can
be extremely persuasive, but do they
render proof unnecessary? Yes and no.

In fact, they provide a different kind of
evidence. In important situations, I
would argue that both kinds of evidence
are required, as proofs may be flawed,
and conversely computer searches may
have the bad luck to stop just before en-
countering a counterexample that dis-
proves the conjectured result.

from now we will know the answer. ®
(. J

All these issues are intriguing but far |
from resolved. It is now 2006, 50 years
after this magazine published its article
on Godel’s proof, and we still do not
know how serious incompleteness is. We
do not know if incompleteness is telling
us that mathematics should be done
somewhat differently. Maybe 50 years

MORE TO EXPLORE

Forachapteron Leibniz, see Men of Mathematics. E. T. Bell. Reissue. Touchstone, 1986.

For more on a quasi-empirical view of math, see New Directions in the Philosophy of
Mathematics. Edited by Thomas Tymoczko. Princeton University Press, 1998.

Godel’s Proof. Revised edition. E. Nagel, J.R. Newman and D. R. Hofstadter. New York University

Press, 2002.

Mathematics by Experiment: Plausible Reasoningin the 21st Century. J. Borwein and

D. Bailey.A. K. Peters, 2004.

For Godel as a philosopher and the Godel-Leibniz

seel I :The Proof

P

and Paradox of Kurt Godel. Rebecca Goldstein. W.W. Norton, 2005.
Meta Math!: The Quest for Omega. Gregory Chaitin. Pantheon Books, 2005.

Shortbiographies of mathematicians can be found at
www-history.mcs.st-andrews.ac.uk/Biogindex.html|

Gregory Chaitin’s home page is www.umcs.maine.edu/~chaitin/

SCIENTIFIC AMERICAN 81

