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Problem: Can 5 test tubes be spun simultaneously in a
12-hole centrifuge In a balanced way?

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations



Theory of Computation (CS6160) - Textbook

Textbook:

|

nirc

Introduction to the Theory of C“M‘PUT ATI@N

decond ! tition

Computation, by Michael Sipser
(MIT), 2" Edition, 2005

Good Articles / videos: MICHAEL SIPSER
www.cs.virginia.edu/~robins/CS_readings.html



Theory of Computation (CS6160)

Required reading:
How to

How to S(_)Ive It, by C_Seorg_je Polya Solve It
(MIT), Princeton University Press, 1945

mathematical method

G. POLYA

A classic on problem solving




Theory of Computation (CS6160)

Good algorithms textbook:
Introduction to Algorithms
by Cormen et al (MIT)
Third Edition, 2009

INTRODUCTION TO

ALGORITHMS

Thomas Cormen Charles Leiserson |

We don't have much time, so we

don't teach them; we acquaint them
with things that they can learn.

— Charles £ Leiserson —

AZ QUOTES



computer science

Introduction to Algorithms

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
Third Edition

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Intro-
duction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algo-
rithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively
self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode
designed to be readable by anyone who has done a little programming. The explanations have been kept elemen-
tary without sacrificing depth of coverage or mathematical rigor.

The first edition became a widely used text in universities worldwide as well as the standard reference for
professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and
randomized algorithms, and linear programming. The third edition has been revised and updated throughout.
It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, and substan-
tial additions to the chapter on recurrences (now called “Divide-and-Conquer”). It features improved treatment
of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow
networks. Many new exercises and problems have been added for this edition.

As of the third edition, this textbook is published exclusively by the MIT Press.

Thomas H. Cormen is Professor of Computer Science and former Director of the Institute for Writing and
Rhetoric at Dartmouth College. Charles E. Leiserson is Professor of Computer Science and Engineering at MIT.
Ronald L. Rivest is Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.

e 'S - o™ oSt ey v evieme, OTTS - = & Lo

“In light of the explosive growth in the amount of data and the diversity of computing applications, efficient al-
gorithms are needed now more than ever. This beautifully written, thoughtfully organized book is the definitive
introductory book on the design and analysis of algorithms. The first half offers an effective method to teach and
study algorithms; the second half then engages more advanced readers and curious students with compelling
material on both the possibilities and the challenges in this fascinating field.”

—Shang-Hua Teng, University of Southern California

“Introduction to Algorithms, the ‘bible’ of the field, is a comprehensive textbook covering the full spectrum of
modern algorithms: from the fastest algorithms and data structures to polynomial-time algorithms for seemingly

metry, and number theory. The revised third editio
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Theory of Computation (CS6160) - Syllabus
A brief history of computing:

 Aristotle, Euclid, Archimedes, Eratosthenes
» Abu Ali al-Hasan ibn al-Haytham

» Fibonacci, Descartes, Fermat, Pascal
 Newton, Euler, Gauss, Hamilton

» Boole, De Morgan, Babbage, Ada Agusta

e Venn, Carroll, Cantor, Hilbert, Russell

» Hardy, Ramanujan, Ramsey

» Godel, Church, Turing, von Neumann

» Shannon, Kleene, Chomsky, Hoare

» McCarthy, Erdos, Knuth, Backus, Dijkstra




Theory of Computation Syllabus (continued)

Beyond the Chomsky Hierarchy:

The Extended Chomsky Hierarchy

* Review of automata & languages =

« Two-way and infinite automata 3

e Generalized finite automata :

e State set minimization ]
Z

» Deterministic context-free languages
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* Counter automata and languages
» Ambiguity in grammars and languages
» Nondeterminism & alternation

» Context-sensitive grammars é: i
* The Turing Test +a




Theory of Computation Syllabus (continued)

Advanced Undecidability:
e Context-free intersections %8 § £ g
* Post correspondence problem “o8
e Linear-bounded automata
» Turing reducibilities o8
» Computational universality
» Conway’s Game of Life
« Busy beaver problem
 The recursion theorem
 Oracles and relativizations
» Non-recognizability
 Turing degrees
« Randomness and entropy




Theory of Computation Syllabus (continued)

Advanced complexity theory:

» Time and space complexity classes
» Complexity hierarchies/ separations

* Density and gap theorems (5 o )

. NP-co%pletegne%s reloaded -N-P--E-qmp-l-?-t?---%T--» .
e Problem reductions NP P co-NP
» Graph colorability {pcommeteLp

* Set cover problem L

« Knapsacks and subset sums :co-NP-complete TAUT |

* Savitch’s Theorem

» PSPACE completeness

* NL completeness

« Approximation algorithms
« Zero-knowledge proofs




Generalized Numbers
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Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!



The Extended Chomsky Hierarchy
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Dense Infinite time & space complexity hierarchies
Other infinite complexity & descriptive hierarchies



Overarching Philosophy

Focus on the “big picture” & “scientific method”
Emphasis on problem solving & creativity

Discuss applications & practice

A primary objective: have fun!




Prerequisites

Some discrete math & algorithms knowledge
|deally, should have taken CS2102
Course will “bootstrap” <7

(albeit quickly) from first (e

. . W'
principles ! e

SPLEER

Critical: Tenacity, patience i((“ %\g



Course Organization

Exams: probably take home
— Decide by vote
— Flexible exam schedule
Problem sets:

— Lots of problem solving ELY so«lax)eg_
— Work in groups! (max size 6 people) C*\,i,:ﬁ(}:f—;,) 5

= 3 )y V3he, ‘5’5 "
T =TA¥ 7|

— Not formally graded
— Most exam guestions will
come from these sets!

Homeworks: 'f\ &5

— Will come from problem sets | A

— Formally graded D,

Readings: papers / videos / books e

Extra credit problems A S
B In CIaSS_ & take_-hor_ne "Goor i, Slilney!u've got it! YOI::fe o1 it Good
— Find mistakes in slides, handouts, etc. hands! Don't choke!”

Course materials posted on Web site
WWwWw.cs.virginia.edu/robins/theory_grad




Grading Scheme

 Attendance 10%
* Homeworks 20%
* Readings 20%
« Midterm 25%
* Final 25%
« Extra credit 10%
Total: 110% +
Best strategy:
» Solve lots of problems!

* Do lots of readings / EC!
« “Ninety percent of success is just showing up.” —Woody Allen




Cheating Policy & 3

Cheating / plagiarism is strictly prohibited
Serious penalties for violators

Please review the UVa Honor Code X
Examples of Cheating / plagiarism: {bio 2

— Copying of solutions from others / Web (&

— Cutting-and-pasting frory
— Copying article/book/nf#vi offor pellole / Web B
— Other people / Web sol igproblems f@r you
— Providing other people

— Submitting answers that y3&
— This list is not exhaustive!

* \We have automated cheating / plagiarism detection tools!
« \We encourage collaborations / brainstorming
« Lets keep it positive (and lets not play “gotcha”)

Midway through the exam, Allen pulls out
a bigger brain.



Contact Information

Professor Gabriel Robins
Office: 406 Rice Hall
Phone: (434) 982-2207

Email:  robins@cs.virginia.edu \
Web: WWW.cs.virginia.edu/robins %
www.cs.virginia.edu/robins/theory grad N —
REAU
$TATISTICS e 7
Office hours: right after class o)
+ Any other time
« By email (preferred) Li} g/ i
« By appointment | - ’:4.,\ |
* Q&A blog posted on class Web site | N ﬁ
| (
e L



Course Readings
www.cs.virginia.edu/robins/CS_readings.html

Goal: broad exposure to lots of cool ideas & technologies!
« Required: total of at least 36 items over the semester

 Diversity: minimums in each of 3 categories:
1. Minimum of 15 videos
2.  Minimum of 15 papers / Web sites
3.  Minimum of 6 books

« More than 36 total is even better! (extra credit)
« Some required items in each category

o Remaining “elective” items should be a diverse mix

Submissions form: www.cs.virginia.edu/robins/theory _homework grad



Required Readings

www.cs.virginia.edu/robins/CS_readings.html

* Required videos:
— Last Lecture, Randy Pausch, 2007
— Time Management, Randy Pausch, 2007
— Powers of Ten, Charles and Ray Eames, 1977


http://www.cs.virginia.edu/~robins/Randy/Randy_TM_jow0247.jpg
http://www.cs.virginia.edu/~robins/Randy/Randy_TM_jow0247.jpg

Required Reading

» “Scale of the Universe”, Cary and Michael Huang, 2012

JdQ

Giant Earthworm
o

= 4
Dodo Bird

e

Beach ball

L)

Human Rafflesia

100.0

« 1024 to 10%° meters = 50 orders of magnitude!


http://htwins.net/scale2/

Required Readings

www.cs.virginia.edu/robins/CS_readings.html

* More required videos:
— Claude Shannon - Father of the Information Age, UCTV
— The Pattern Behind Self-Deception, Michael Shermer, 2010

Claude Shannon
(1916-2001)




Required Readings

www.cs.virginia.edu/robins/CS_readings.html

* Required articles:

— Decoding an Ancient Computer, Freeth, 2009

— Alan Turing’s Forgotten Ideas, Copeland and Proudfoot, 1999
— You and Your Research, Richard Hamming, 1986

— Who Can Name the Bigger Number, Scott Aaronson, 1999

TN
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Alan Turing  Richard Hamming Scott Aaronson



‘BENEDICT CUMBERBATCH IS OUTSTANDING"

RADIO TIMES
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Re

Basic Concepts and Notation

. 0% Gabriel Robins
d (6‘& "When I use a word," Humpty Dumpty said, in a rather scornful tone,

"it means just what | choose it to mean -- neither more nor less."

A set is formally an undefined term, but intuitively it is a (possibly empty) collection of
arbitrary objects. A set is usually denoted by curly braces and some (optional) restrictions.
Examples of sets are {1,2,3}, {hi, there}, and {k | k is a perfect square}. The symbol € denotes

sct membership, while the symbol ¢ denotes set non-membership; for example, 7€ {p | p

prime} states that 7 is a prime number, while q¢ {0,2,4.6....} states that q is not an even number.

Some common sets are denoted by special notation:

The natural numbers: = {1.,2.3....}

= {---;-37'2:-1:0717273""}
_ {% |abe &, bz0}

The integers:

The rational numbers:

The real numbers: = {x | x is a real number}

Q = & M =

~—

The empty set: }

http://www.cs.virginia.edu/robins/cs6160/basics.pdf
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Discrete Math Review Slides

Symbolic Logic Boolean Functions Logical Implication Logical Equivalence Predicates Quantifiers
Y e tOSHIOR - e Sand® A «  “implies™ = = “hbiconditional™ (=
Tet: ;;fl;;pcf.;:if()ﬂT Slal?."]wm(F) and HmE “itand only i (i Def:predicate - o function or formula +  Universal: “for all” v
either true (T) or false . gt v Truth table: or L: and only 1 e “ involving some variables x Mx)
or or necessary and sulficient -
e = 19 lp=9 or  “logically equivalent” = N < P} A Plxo) A Plxs) e
Ix: 111=2 * not Ex I Pl ="x> ¥ Fx:  vx x<x+|
h o rmr Truth table: % is the variable Tx AT
3+2=3 : Xor B FIF P 19 [Po] “x>3” is the predicate
- nand® FYT | T TIT| T ; +  Lxistential: “there exiyrs” J
37 e 9 T TIF|F P(5) Ix Plx)
- “nor” > _ Pl |r Py < Plx) v Plxe) v Plxs) v
s \ xR (0) = (6-0) vl | o e A e
. “implication™ = l<x=y=x?<y? Ex: p=p Fx: Qixy,z) —“xty—7 " Ix x<x-1
“today is Monday™ “today is Sunday” = 1+1-3 ) T
o sequivalenee® % [(x=0) v (v=0)] = (xy=0) H2.3.4) Combmatmn; 4w
A ‘ min(r.y ) max(x,y} < 5=y QA5 Iy yx
v
. . . e T o
Sets Common Sets Subsets « Universal set: U (everything) DeMorgan's Laws
Df: ser - an unordered collect . +  Union: U . Selc \ g 3 T,
Naturals: N={1,2,3,4, ..} . Subset notation: - - Set complement: §7 or (SuT) =81
Tntegers: Z - 0,2,-1,0,1,2,) SuT={x|xe8 v xeT} S —ix|xgS}—U-8

ScT<=(xeS=xeT)
Rationals: Q= {ﬁ | a.beZ, bx0}

Reals: R - {x|xareal i}
Empiy set:  @— {} * Proper subset c v Inemsecion + Digjoint sers:  SAT=0)
. TN . ALEISCCAON.
Def: two sets are eqgual iff they contain + TR ScTedsch(210) L, . .
the same elements 2" = non-negative iniegers ST (TSNS STY SAT={x | xe$ A xeT}
o = 1= non-positive reals, etc. S5 — &
Tx EL2.3)= (L3 1) P VS OCs e ST ST Roolean logic version:
fop= 413 VS S8 % o XAYYy=X"Y'
{3,5=1{3,5,3,3,5} 5-8=6 (XvYP=X'AY'
Function Types 1-to-1 Correspondence Generalized Cardinality Infinite Sets Thm: 3 1-1 correspondence Q>N 9 N
: Pf (dove-tailing): 9= NI
ot . ot + Sis al lcast as large as Tt + Infinite sct: |$ > k vkeZ s : : : PI (diagonalizalion):
. - * 1-to- Sp e )
* Onc-lo-one lunclion: ¥1-1 u-1 correspandence: f:S« |S=T| =3 :8=T, f onlo or 1oz 2 4 : E Assume T 1-1 corres. /1 RN
abes *axzh = jla)/(b) £ is both 1-1 and onto ie. ™S covers T 3 1-1 cormres. f:SeT, ST & 6 6 & & & Consiruct X & 9
' 1z 3 o4z o8 o lemeas ;
Lx: fi M=, fx)=2x is 1-1 Ex: rR—Z, r{x)—round(x) Fx: {p|pprime}, R CA- N S S S f S 1s78Ta%s. .. N
o . R iz 1213562, .. >
g(xj-x*isnot -1 = |92z + Countable sct: |S < N| : l 5 M J 3 S ?j : e
« Sand 1 have same cardinality: Ex: @, {p|pprime}, N, Z | : B (’ X o= 0.7 ... #fiK) ¥KeN
* Onto [unction: Ex: [ Rl 3 f(x)=x (identity S=T| = |S)2[T] * [T]2s v S is setly smaller than Tt . <
X: 3 f(x)=x (identity) [S=T]= [S[z] lor‘ =1 S is sirictly smaller than T: 1z oa s s = frota I-1 cotrespondence
¥1eT Ises s f(s)=t h:NeZ > h(x):)};I . xo0dd, 3 1-1 correspondence ST [§ = |T] = [SI=[T| * |SR{T| 1201 4 3 — contradiction
Ly fr2>2, fx)=13-x s oo = L even. + Cieneralizes finite cardinality: : Uiucoum%b‘lc sot: [N| <3| 1 s = % is uncountable
g(x)—x° is not onlo 2 Ex: [N <9

(1,2,3, 4,5} = fa, b,c) INJ < [0,1] - {x | x& 9, 0=x=1}

http://www.cs.virginia.edu/robins/cs6160/discrete_math_review_slides.pdf




Required Readings

www.cs.virginia.edu/robins/CS_readings.html

Required books:

— “How to Solve It”, Polya, 1957

— “Infinity and the Mind”, Rucker, 1995

— “Godel, Escher, Bach”, Hofstadter, 1979

— “The Demon-Haunted World”, Sagan, 2009
— “What If”, Munroe, 2014

Illl NEW YORK TINES BESTSELLE R
NTIFIC ANSWERS

SERIOUS SCIED ) AN s
( A Rl to Absurd Hypothetical Questions
I e k

How to Infnltyand /&%(
Solve [t | JEERMIne

mathematical method

of the infinite

princeton science library

RUDY RUCKER
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Required Readings

www.cs.virginia.edu/robins/CS_readings.html
Remaining videos / articles / books are “electives”
At least 2 submissions per week (due 11:59pm Mon)
At most 2 submissions per day
This policy Is intended to help you avoid “cramming”
“Cramming” is highly correlated with cheating!
Length: 1-2 paragraphs per article / video

1-2 pages per book

Books are worth more credit than articles / videos
Additional readings beyond 36 are welcome! (extra credit)

« Submissions form: www.cs.virginia.edu/robins/theory _homework_grad



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

» Theory and Algorithms:

Who Can Name the Bigger Number, Scott Aaronson, 1999

The Limits of Reason, Gregory Chaitin, Scientific American, March
2006, pp. 74-81.

Breaking Intractability, Joseph Traub and Henryk Wozniakowski,
Scientific American, January 1994, pp. 102-107.

Confronting Science's Logical Limits, John Casti, Scientific
American, October 1996, pp. 102-105.

Go Forth and Replicate, Moshe Sipper and James Reggia, Scientific
American, August 2001, pp. 34-43.

The Science Behind Sudoku, Jean-Paul Delahaye, Scientific
American, June 2006, pp. 80-87.

The Traveler's Dilemma, Kaushik Basu, Scientific American, June
2007, pp. 90-95.



Other “Elective” Readings

www.cs.virginia.edu/robins/CS_readings.html

 Biological Computing:
— Computing with DNA, Leonard Adleman, Scientific American,
August 1998, pp. 54-61.

— Bringing DNA Computing to Life, Ehud Shapiro and Yaakov
Benenson, Scientific American, May 2006, pp. 44-51.

— Engineering Life: Building a FAB for Biology, David Baker et
al., Scientific American, June 2006, pp. 44-51.

— Big Lab on a Tiny Chip, Charles Choli, Scientific American,
October 2007, pp. 100-103.

— DNA Computers for Work and Play, Macdonald et al, Scientific
American, November 2007, pp. 84-91.

Submissions Web form: www.cs.virginia.edu/robins/theory _homework_grad



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

* Quantum Computing:

— Quantum Mechanical Computers, Seth Lloyd, Scientific
American, 1997, pp. 98-104.

— Quantum Computing with Molecules, Gershenfeld and Chuang,
Scientific American, June 1998, pp. 66-71.

— Black Hole Computers, Seth Lloyd and Jack Ng, Scientific
American, November 2004, pp. 52-61.

— Computing with Quantum Knots, Graham Collins, Scientific
American, April 2006, pp. 56-63.

— The Limits of Quantum Computers, Scott Aaronson, Scientific
American, March 2008, pp. 62-69.

— Quantum Computing with lons, Monroe and Wineland,
Scientific American, August 2008, pp. 64-71.



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

» History of Computing:
— The Origins of Computing, Campbell-Kelly, Scientific
American, September 2009, pp. 62-69.
— Ada and the First Computer, Eugene Kim and Betty Toole,
Scientific American, April 1999, pp. 76-81.
 Security and Privacy:

— Malware Goes Mobile, Mikko Hypponen, Scientific American,
November 2006, pp. 70-77.

— RFID Powder, Tim Hornyak, Scientific American, February
2008, pp. 68-71.

— Can Phishing be Foiled, Lorrie Cranor, Scientific American,
December 2008, pp. 104-110.



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

 Future of Computing:

Microprocessors in 2020, David Patterson, Scientific American, September
1995, pp. 62-67.

Computing Without Clocks, Ivan Sutherland and Jo Ebergen, Scientific
American, August 2002, pp. 62-69.

Making Silicon Lase, Bahram Jalali, Scientific American, February 2007,
pp. 58-65.

A Robot in Every Home, Bill Gates, Scientific Am, January 2007, pp. 58-65.
Ballbots, Ralph Hollis, Scientific American, October 2006, pp. 72-77.

Dependable Software by Design, Daniel Jackson, Scientific American, June
2006, pp. 68-75.

Not Tonight Dear - | Have to Reboot, Charles Choli, Scientific American,
March 2008, pp. 94-97.

Self-Powered Nanotech, Zhong Lin Wang, Scientific American, January
2008, pp. 82-87.



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

 The Web:

— The Semantic Web in Action, Lee Feigenbaum et al., Scientific American,
December 2007, pp. 90-97.

— Web Science Emerges, Nigel Shadbolt and Tim Berners-Lee, Scientific
American, October 2008, pp. 76-81.

» The Wikipedia Computer Science Portal: 5 |
— Theory of computation and Automata theory f b
— Formal languages and grammars
— Chomsky hierarchy and the Complexity Zoo |
— Regular, context-free &Turing-decidable languages RS
— Finite & pushdown automata; Turing machines
— Computational complexity

— List of data structures and algorithms
Submissions form: www.cs.virginia.edu/robins/theory _homework_grad



http://upload.wikimedia.org/wikipedia/commons/b/b7/Wikipedia-logo.svg
http://upload.wikimedia.org/wikipedia/commons/b/b7/Wikipedia-logo.svg

Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

« The Wikipedia Math Portal:

— Problem solving
— List of Mathematical lists

— Sets and Infinity SR
- - WIKIPEDIA
— Discrete mathematics The Free Encyclopedia
— Proof techniques and list of proofs ==~ =
— Information theory & randomness ="
Wolfram MathWerld’
— Game theory — e
e Mathematica's “Math World” =
Submissions Web form: o

Www.cs.virginia.edu/robins/theory_homework_grad S m—
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Good Advice

» Ask questions ASAP

 Solve problems ASAP

« Work in study groups

* Do not fall behind

* “Cramming” won’t work
Do lots of extra credit

o Attend every lecture

* Visit class Website often
* Solve lots of problems

Latin convulsions

/
I é E% E
] bl

Physics T(lounderinﬂ

Wood shop apathy Basic stupidity

Classtoom afflictions



Goal: Become a more effective problem solver!

o & )
HELP IS ONLY 140 MILLION MIBES:AWAY
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Submissions Web form: www.cs.virginia.edu/robins/theory _homework_grad



Problem: Can 5 test tubes be spun simultaneously in a

 What does “balanced” mean?
« Why are 3 test tubes balanced?

Superposition

« Linearity! f(x+y) = f(X) + f(y)
« Can you spin 7 test tubes?

cComplementanyt, S
« Empirical testing. ..




Problem: 1+2+3+4+ ...+100="7

=(100*101)/2
Proof: — £050

1 + 2 + 3 +... +99 + 100

101 + 101 + 101 +

. n(n+1)
21=75




Drawbacks of Induction

 You must a priori know the formula / result
 Easy to make mistakes in inductive proof

* Mostly “mechanical” — ignores intuitions
 Tedious to construct
* Difficult to check
 Hard to understand
« Not very convincing E
 Generalizations not obvious o Y

* Does not “shed light on truth” %
* Obfuscates connections

Conclusion: only use induction as a last resort! (i.e., rarely)



Problem: (1/4) + (1/4)2 + (1/4)3 + (1/4)* + ... =2

= 1

=

Extra Credit:
Find a short, geometric, induction-free proof.



Problem: (1/4) + (1/4)? + (1/4)3 + (1/4)* + ... =7
Find a short, geometric, induction-free proof.




Problem: (1/8) + (1/8)% + (1/8)3 + (1/8)* + ...=7?

Extra Credit:
Find a short, geometric, induction-free proof.



Problem: (1/8) + (1/8)% + (1/8)3+ (1/8)* + ...=?
Find a short, geometric, induction-free proof.




Problem: 13+ 23+ 33+ 43+ .. +n3="?

Extra Credit:
find a short, geometric,
Induction-free proof.

“Yes, yes, | know that, Sidney ... everybody knows that! ..
But look: Four wrongs squared, minus two wrongs to the
fourth power, divided by this formula, do make a right.”

Submissions Web form: wwuw.cs.virginia.edu/robins/theory homework grad




Problem: Prove that /2 is irrational.

Extra Credit: find a short, induction-free proof.

» What approaches fail? | ‘

T~

FEN Lo ™ (2a )

[rL— -

+ What techniques work and why? €%

* Lessons and generalizations

Taacp‘bucp&mbwt,b ey

I

M CR26)( 8723
iy ~

=

Einstein discovers that time is actually money.




Problem: Prove that there are an infinity of primes.

Extra Credit: Find a short, induction-free proof.

« What approaches fail?
« What techniques work and why?
* Lessons and generalizations

Submissions Web form: www.cs.virginia.edu/robins/theory homework grad



Problem: True or false: there arbitrary long blocks of
consecutive composite integers.

Extra Credit: find a short, induction-free proof.

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

» What approaches fail?
« What techniques work and why?} |
* Lessons and generalizations




Problem: Are the complex numbers closed under
exponentiation ? E.g., what is the value of i'?

- | IN My Parer, I USE AN IT MIGHT

" | FUNCTION OVER THE GAUSSIEN IS THIS PAPER
; | INTEGERS To GENERALIZE ™E %‘U""'L"LD"’ L‘?P?r'_g‘” IR 2\; ﬁaﬁﬁh‘é WERE
et Real l -CALLED “FRIENDLY NUMBERS" el BKING YOUR
P e ﬁm THE COMPLEX PLANE. AN “IMAGINARY MATH LICEMSE
FRIENDS" PUN?

M%




Problem: Does exponentiation preserve irrationality?
l.e., are there two Irrational numbers x and y such
that xY is rational?

Extra Credit: find a short, induction-free proof.

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations

¥




Problem: Solve the following equation for X:
X<
X =2

X
where the stack of exponentiated x’s extends forever.

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations

§ il

“Mr. Osborne, may I be excused? My brain is full.”




Problem: For the given infinite ladder of resistors
of resistance R each, what iIs the resistance measured
between points x and y?

1 have four apples
I give Two away, how
do T have left?

9 i
many

» What approaches fail?
» What techniques work and why?
* Lessons and generalizations
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Historical Perspectives




Historical Perspectives

Knowing the “big picture” is empowering

Science and mathematics builds heavily on past
Often the simplest ideas are the most subtle

Most fundamental progress was done by a few

We learn much by observing the best minds
Research benefits from seeing connections

The field of computer science has many “parents”
We get inspired and motivated by excellence

The giants can show us what is possible to achieve
It is fun to know these things!



“Standing on the Shoulders of Giants™

Aristotle, Euclid, Archimedes, Eratosthenes

o S o
N

Abu Ali al-Hasan 1bn al-Haytham
Fibonacci, Descartes, Fermat, Pascal
Newton, Euler, Gauss, Hamilton
Boole, De Morgan

Babbage, Ada Lovelace
\Venn, Carroll 5




“Standing on the Shoulders of Giants™

Cantor, Hilbert, Russell

« Hardy, Ramanujan, Ramsey
» (odel, Church, Turing
 von Neumann, Shannon

Kleene, Chomsky
* Hoare, McCarthy, Erdos
« Knuth, Backus, Dijkstra

.
¥ ﬁ{

Many Others ce David Hilbert (1862-1943) :f Kun,t@;ddéif’goa 9






Gauss
(p/ = _1(-1Xg-1)4
Newton p/g)(a/p) = -1

Archimgdes + na*'b + n(n-1)a*?b? + n(n-1)(n-2)a™’b+...
P ]

F(s) =s?

Cantor

Cayley

Pascal P2 1 ;
ael S
Hilbert
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Historical Perspectives
Aristotle (384BC-322BC)
 Founded Western philosophy
e Student of Plato
 Taught Alexander the Great
* “Aristotelianism”
* Developed the “scientific method”
 One of the most influential people ever

 Wrote on physics, theatre, poetry, music, logic, rhetoric,
politics, government, ethics, biology, zoology, morality,
optics, science, aesthetics, psychology, metaphysics, ...

» Last person to know everything known in his own time!

“Almost every serious Intellectual advance has had to begin with
an attack on some Aristotelian doctrine.” — Bertrand Russell
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“What I especially like about being a philosopher-scientist is that I don’t
have to get my hands dirty.”
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Euclid (325BC-265BC) ©4 /&

Historical Perspectives

i

Founder of geometry |- -
& the axiomatic method AR R
“Elements” — oldest and | e
most impactful textbook [
Unified logic & math |
Introduced rigor and
“Euclidean” geometry
Influenced all other fields of science:
Copernicus, Kepler, Galileo, Newton,
Russell, Lincoln, Einstein & many others
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Euclid’s Straight-Edge and Compass Geometric Constructions
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Euclid’s Axioms
1: Any two points can be connected by exactly one 1) . B

straight line. 7
2: Any segment can be extended indefinitely into a
straight line.

3)
3: A circle exists for any given center and radius. @

4: All right angles are equal to each other.

5: The parallel postulate: Given a line and a point off 4 _
that line, there is exactly one line passing through ul —%
the point, which does not intersect the first line.

The first 28 propositions of Euclid’s Elements were
proven without using the parallel postulate!

Theorem [Beltrami, 1868]: The parallel postulate is
independent of the other axioms of Euclidean geometry:.

1 gk

The parallel postulate can be modified to yield
non-Euclidean geometries!
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Non-Euclidean Geometries

Hyperbolic geometry: Given a line and a point off that line,
there are an infinity of lines passing through that point that
do not intersect the first line.

« Sum of triangle angles is less than 180°

* Different triangles have different angle sum
* Triangles with same angles have same area
 There are no similar triangles ‘

2 Anolyﬁ‘c Hyperbolic. Geometry:,
-, -and Albert Einstein’s Special
* Theory of Relativity.® .-



Non-Euclidean Geometries

Spherical / Elliptic geometry: Given a line and a point off that
line, there are no lines passing through that point that do not
Intersect the first line. g

* Lines are geodesics - “great circles”

« Sum of triangle angles is > 180°
 Not all triangles have same angle sum
* Figures can not scale up indefinitely

» Area does not scale as the square
 \/olume does not scale as the cube

* The Pythagorean theorem fails

« Self-consistent, and complete
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Founders of Non-Euclidean Geometry
Janos Bolyai (1802-1860)
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Non-Euclidean Non-Orientable Surfaces

A A i a2 =
Mobius 5 Klein 5 BPYOJeC'[IV%
strip bottle plane

one side,
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no boundary!
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Problem: A man leaves his house and walks one
mile south. He then walks one mile west and sees a
Bear. Then he walks one mile north back to his
house. What color was the bear?

Problem: Is the house location unique?



Historical Perspectives
Archimedes of Syracuse (287-212 BC)
« Mathematician, physicist, engineer,

Inventor, astronomer
» Leading scientist of classical antiquity
* Originated hydrostatics, mechanics
Archimedean screw, spiral, lever
* Discovered Archimedes’ principle

« Used infinitesimals, approximated Pi
+ Designed siege and naval weapons /4
» Invented large number notation g
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Historical Perspectives
Eratosthenes (276BC-194BC)
 Chief librarian at Library of Alexandria
« Measured the Earth’s size (<1% error!)
» Calculated the Earth-Sun distance
e Invented latitude and longtitude

e Primes - “Sieve of Eratosthenes”

_ _ X[ 2[3 %[5 %7 %[

» Chronology of ancient history 1132,13/34/36[ (17 9819 |26
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2 3 4 5 6 T 8 9 10 Prime numbers

1 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 &7 58 59 60
61 62 63 64 65 66 67 68 69 70
M 72 73 74 75 76 77 T8 79 80

RATO
&y Dy

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110

1M1 112 113 114 115 116 117 118 119 120




An Ancient Computer: The Antlkythera

* Oldest known mechanical computer

e Built around 150-100 BCE !

e Calculates eclipses and astronomical ==&
positions of sun, moon, and planets

* \ery sophisticated for its era

» Contains dozens of intricate gears

» Comparable to 1700’s Swiss clocks

« Has an attached “instructions manual”

. StlII the subject of ongomg research
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New explorations have revealed how the Antikythera

DECODING AN
Ancient Computer

mechanism modeled lunar motion and predicted
eclipses, among other sophisticated tricks

KEY CONCEPTS

= The Antikythera mecha-
nism is a unique mechani-
cal calculator from sec-
ond-century B.C. Greece.
Its sophistication sur-
prised archaeologists
when it was discovered in
1901. But no one had an-
ticipated its true power.

Advanced imaging tools
have finally enabled re-
searchers to reconstruct
how the device predicted
lunar and solar eclipses
and the motion of the
moon in the sky.

Inscriptions on the mecha-
nism suggest that it might
have been built in the
Greek city of Syracuse
(now in modern Sicily),
perhaps in a tradition

that originated with
Archimedes.

—The Editors

7() SCIENTIFIC AMERICAN

fit had not been for two storms 2,000 years

apart in the same area of the Mediterra-

nean, the most important technological ar-
tifact from the ancient world could have been
lost forever.

The first storm, in the middle of the 1st cen-
tury B.C., sank a Roman merchant vessel laden
with Greek treasures. The second storm, in A.D.
1900, drove a party of sponge divers to shelter
off the tiny island of Antikythera, between Crete
and the mainland of Greece. When the storm
subsided, the divers tried their luck for sponges
in the local waters and chanced on the wreck.
Months later the divers returned, with backing
from the Greek government. Over nine months
they recovered a hoard of beautiful ancient
Greek objects—rare bronzes, stunning glass-
ware, amphorae, pottery and jewelry—in one of
the first major underwater archaeological exca-
vations in history.

One item attracted little attention at first: an
undistinguished, heavily calcified lump the size
of a phone book. Some months later it fell apart,
revealing the remains of corroded bronze gear-
wheels—all sandwiched together and with teeth
just one and a half millimeters long—along with

plates covered in scientific scales and Greek in-

scriptions. The discovery was a shock: until
then, the ancients were thought to have made
gears only for crude mechanical tasks.

Three of the main fragments of the Anti-
kythera mechanism, as the device has come to be
known, are now on display at the Greek Nation-
al Archaeological Museum in Athens. They look
small and fragile, surrounded by imposing
bronze statues and other artistic glories of an-
cient Greece. But their subtle power is even more
shocking than anyone had imagined at first.

I first heard about the mechanism in 2000. I
was a filmmaker, and astronomer Mike Ed-
munds of Cardiff University in Wales contacted
me because he thought the mechanism would
make a great subject for a TV documentary. I
learned that over many decades researchers
studying the mechanism had made considerable
progress, suggesting that it calculated astronom-
ical data, but they still had not been able to fully
grasp how it worked. As a former mathemati-
cian, I became intensely interested in under-
standing the mechanism myself.

Edmunds and I gathered an international col-
laboration that eventually included historians,
astronomers and two teams of imaging experts.

In the past few years our group has reconstruct-

December 2009
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By Tony Freeth

ed how nearly all the surviving parts worked and
what functions they performed. The mechanism
calculated the dates of lunar and solar eclipses,
modeled the moon’s subtle apparent motions
through the sky to the best of the available knowl-
edge, and kept track of the dates of events of so-
cial significance, such as the Olympic Games.
Nothing of comparable technological sophistica-
tion is known anywhere in the world for at least
a millennium afterward. Had this unique speci-
men not survived, historians would have thought

that it could not have existed at that time.

German philologist Albert Rehm was the first
person to understand, around 1905, that the
Antikythera mechanism was an astronomical
calculator. Half a century later, when science
historian Derek J. de Solla Price, then at the
Institute for Advanced Study in Princeton, N.J.,
described the device in a Scientific American
article, it still had revealed few of its secrets.
T'he device, Price suggested, was operated by
turning a crank on its side, and it displayed its
output by moving pointers on dials located on its
front and back. By turning the crank, the user

could set the machine on a certain date as indi-

www.ScientificAmerican.com

cated on a 365-day calendar dial in the front.
(The dial could be rotated to adjust for an extra
day every four years, as in today’s leap years.) At
the same time, the crank powered all the other
gears in the mechanism to yield the information
corresponding to the set date.

A second front dial, concentric with the cal-
endar, was marked out with 360 degrees and
with the 12 signs representing the constellations
of the zodiac [see box on pages 80 and 81). These
are the constellations crossed by the sun in its ap-
parent motion with respect to the “fixed” stars
“motion” that in fact results from Earth’s orbit-
ing the sun—along the path called the ecliptic.
Price surmised that the front of the mechanism
probably had a pointer showing where along the
ecliptic the sun would be at the desired date.

In the surviving fragments, Price identified
the remains of a dozen gears that had been part
of the mechanism’s innards. He also estimated
their tooth counts—which is all one can do given
that nearly all the gears are damaged and incom-
plete. Later, in a landmark 1974 study, Price de-
scribed 27 gears in the main fragment and pro-
vided improved tooth counts based on the first
x-rays of the mechanism, by Greek radiologist
Charalambos Karakalos.

© 2009 SCIENTIFIC AMERICAN, INC.

ANCIENT GREEKS knew how to
calculate the recurring patterns
of lunar eclipses thanks to obser-
vations made for centuries by
the Babylonians. The Antiky-
thera mechanism would have
done those calculations

for them—or perhaps for the
wealthy Romans who could
afford to own it. The depiction
here is based on a theoretical
reconstruction by the author
and his collaborators.

ry
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[THE PLACES]

SICILY

THE AUTHOR]

academic back-
ground is in mathematics and
mathematical logic (in which he
holds a Ph.D.). His award-winning
career as a filmmaker culminated
in a series of documentaries about
increasing crop yields in sub-Saha-
ran Africa, featuring the late Nobel
Peace Prize Laureate Norman
Borlaug. Since 2000 Freeth has
returned to an academic focus with
research on the Antikythera mech-
anism. He is managing director
of the film and television produc-
tion company Images First, and
he is now developing a film on
the mechanism.
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The Greek and Roman
worlds, circa 145 B.C.

The Antikythera mechanism was built around the middle of the 2nd century B.C., a time when Rome was
expanding at the expense of the Greek-dominated Hellenistic kingdoms (green). Divers recovered its
corroded remnants (including fragment at left) in A.D. 1901 from a shipwreck near the island of Anti-
kythera. The ship sank around 65 B.C. while carrying Greek artistic treasures, perhaps from Pergamon to
Rome. Rhodes had one of the major traditions of Greek astronomy, but the latest evidence points to a
Corinthian origin. Syracuse, which had been a Corinthian colony in Sicily, is a possibility: the great
Greek inventor Archimedes had lived there and may have left behind a technological tradition.

Tooth counts indicate what the mechanism
calculated. For example, turning the crank to
give a full turn to a primary 64-tooth gear rep-
resented the passage of a year, as shown by a
pointer on the calendar dial. That primary gear
was also paired to two 38-tooth secondary
gears, each of which consequently turned by

64/38 times for every year. Similarly, the motion

relayed from gear to gear throughout the mech-
anism; at each step, the ratio of the numbers of
gear teeth represents a different fraction. The
motion eventually transmitted to the pointers,
which thus turned at rates corresponding to dif-
ferent astronomical cycles. Price discovered that
the ratios of one of these gear trains embodied
an ancient Babylonian cycle of the moon.

Price, like Rehm before him, suggested that
the mechanism also contained epicyclic gear-
ing—gears spinning on bearings that are them-
selves attached to other gears, like the cups on a
Mad Hatter teacup ride. Epicyclic gears extend
the range of formulas gears can calculate beyond
multiplications of fractions to additions and sub-
tractions. No other example of epicyclic gearing
is known to have existed in Western technology
for another 1,500 years.

Several other researchers studied the mecha-
nism, most notably Michael Wright, a curator at
the Science Museum in London, in collaboration

with computer scientist Allan Bromley of the
University of Sydney. They took the first three-
dimensional x-rays of the mechanism and showed
that Price’s model of the mechanism had to be
wrong. Bromley died in 2002, but Wright per-
sisted and made significant advances. For exam-
ple, he found evidence that the back dials, which
at first look lik
rals and discovered an epicyclic mechanism at the

oncentric rings, are in fact spi-

front that calculated the phase of the moon.
Wright also adopted one of Price’s insights,
namely that the dial on the upper back might be
a lunar calendar, based on the 19-year, 235
lunar-month cycle called the Metonic cycle. This
calendar is named after fifth-century B.C. as-
tronomer Meton of Athens—although it had
been discovered earlier by the Babylonians—and
is still used today to determine the Jewish festi-
val of Rosh Hashanah and the Chris
of Easter. Later, we would discover that the
pointer was extensible, so that a pin on its end

ian festival

could follow a groove around each successive
turn of the spiral.

As our group began its efforts, we were ham-
pered by a frustrating lack of data. We had no
access to the previous x-ray studies, and we did
not even have a good set of still photographs.
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Two images in a science magazine—x-rays of a
zoldfish and an enhanced photograph of a Bab-
ylonian clay tablet—suggested to me new ways
10 get better data.

We asked Hewlett-Packard in California to
perform state-of-the-art photographic imaging
and X-Tek Systems in the U.K. to do three-di-
mensional x-ray imaging. After four years of
zareful diplomacy, John Seiradakis of the Aris-
rotle University of Thessaloniki and Xenophon
Moussas of the University of Athens obtained
the required permissions, and we arranged for
the imaging teams to bring their tools to Athens,
anecessary step because the Antikythera mech-
anism is too fragile to travel.

Meanwhile we had a totally unexpected call
from Mary Zafeiropoulou at the museum. She
had been to the basement storage and found box-
25 of bits labeled “Antikythera.” Might we be in-
rerested? Of course we were interested. We now
1ad a total of 82 fragments, up from about 20.

The HP team, led by Tom Malzbender, as-
sembled a mysterious-looking dome about five
feet across and covered in electronic flashbulbs
that provided lighting from a range of different
angles. The team exploited a technique from the
:omputer gaming industry, called polynomial
rexture mapping, to enhance surface details. In-

[THE RECONSTRUCTION]

Anatomy of a Relic

scriptions Price had found difficult to read were
now clearly legible, and fine details could be en-
hanced on the computer screen by controlling
the reflectance of the surface and the angle of the
lighting. The inscriptions are essentially an in-
struction manual written on the outer plates.

A month later local police had to clear the
streets in central Athens so thata truck carrying
the BladeRunner, X-Tek’s eight-ton x-ray ma-
chine, could gain access to the museum. The
BladeRunner performs computed tomography
similar to a hospital’s CT scan, but with finer de-
tail. X-Tek’s Roger Hadland and his group had
specially modified it with enough x-ray power to
penetrate the fragments of the Antikythera mech-
anism. The resulting 3-D reconstruction was

wonderful: whereas Price could see only a puzzle

of overlapping gears, we could now isolate layers
inside the fragment and see all the fine details of
the gear teeth.

Unexpectedly, the x-rays revealed more than
2,000 new text characters that had been hidden
deep inside the fragments. (We have now identi-
fied and interpreted a total of 3,000 characters
out of perhaps 15,000 that existed originally.) In
Athens, Moussas and Yanis Bitsakis, also at the
University of Athens, and Agamemnon Tselikas
of the Center for History and Palacography be-

Computed tomography—a 3-D mapping obtained from multiple x-ray shots—enabled the author and

his colleagues to get inside

ws of the Antikythera mechanism’s remnants. For example, a CT scan

can be used to virtually slice up an object (below, slices of main fragment). The information helped the
team see how the surviving gears connected and estimate their tooth counts, which determined what
calculations they performed. The team could then reconstruct most of the device [see mode! at right

and box on next two pages].
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Historians
would have
thought that

could not
have existed
at the time.
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[INSIDE THE ANTIKYTHERA MECHANISM]

to discover inscriptions that had been invis- This exploded view of the mechanism shows all but one of the dar on the back and then read the astronomical predictions for that
ible to human eyes for more than 2,000 years. A s.tr o n 0 m i c a I 30 known gears., plus a. few that have beerf hypothesized'. Turning ti_me—such as -the position and phases of the moon—fronf the other
Orie: translated s .. spiral subdivisions a crank on the side activated all the gearsin the mechanism and dials. Alternatlv.ely, one could turn the crank to set.a particular event
235....” confirming that the upper back dial was c I ocC kW or k moved pointers on th_e front and bac:.k dials: th? arrows colored blue, on an astronomical dial and then see on what date |.t-would occur.

al des ibinq‘rhc Metonic calendar. red and yellow explain how the motion transmitted f.rom one gear to Other gears, now lost, may have calculated t-he po§tts?ns of th.e sun
; the next. The user would choose a date on the Egyptian, 365-day and of some or all of the five planets known in antiquity and displayed
calendar dial on the front or on the Metonic, 235-lunar-month calen- them via pointers on the zodiac dial.
EGYPTIAN
ZODIAC DIAL CALENDAR DIAL
n fragments were clear- Showed the 12 Displayed 365 days
e e o e :::s:ali'l’a:ii:'g‘:long e 2";:3:':;2'5::‘::‘:':”“ Metonic calendar, made of 235 lunar months,
estimate of the total number of divisions in the sun’s path in the sky. and displayed it via a pointer @ on the Metonic calendar dial on the back.
dial’s four-turn spiral suggested 220 to 225. Apin ‘at the pointer’s tip followed the spiral groove, and the pointer
The prime numt 3 was the obvious con- extended in length as it reached months marked on successive, outer twists.

= ) ) S Auxiliary gears @ turned a pointer @ on a smaller dial indicating four-year
[cndu: The ancient Babylonians had discovered cycles of Olympiads and other games. Other gears moved a pointer on
that if a lunar eclipse is observed—something another small dial @, which may have indicated a 76-year cycle.

n only during a full moon—usu-

ally a similar lunar eclipse will take place 223 PRIMARY GEAR METONIC
full moons . Similarly, if the Babylonians Vzhell; Sf':ln by the cI;anIk, i;.a:tl;llat ] ® ® CALIEND:R"DIAL
saw a solar eclipse—which can mkc. place only :‘o‘a’edoa :;iai::s(ilatai::ic;;:cli tyhe 7 rl:l':zt:y:n; e
during a new moon—they could predict that 223 date on the Egyptian calendar dial. 235-lunar-month
new moons later there would be a similar one Afull turn of this gear represented cycle arranged
(although they could not always see it: solar the passage of one year. S on aspiral.
eclipses are visible only from specific locations,

i could not predict t OLYMPIAD DIAL
reliz ).E ses repeat this way because every Date pointer Indicated the years
223 lunar months the sun, Earth and the moon Solar pointer 81 ‘l:‘e ia:sc;::;
return to approximately the same alignment otgerpgames.
with respect to one another, a periodicity known
as the Saros cycle.

Between the scale divisions w blocks of
symbols, nearly all containing X (s
(eta), or both. I soon realized that X stands for
p3 selene), Greek for “moon,” indicating a
lunar eclipse; H stands for H\wo (belios|
for “sun,” indicating a solar eclipse. The Babylo-
ians also knew that within the 223-month pe- PLANETARY
riod, eclipses can take place only in particular P}?YI:"'IIE'SSETI Al
months, arranged in a predictable pattern and :vlay l?ave shocwn)
ated by gaps of five or six months; the dis- the positions of SAROS LUNAR
tribution of symbols around the dial exactly the planets on ECLIPSE DIAL
matched that pattern. the;zodlacdlal. Inscriptions on this
I now needed to follow the trail of clues into spiral indicated the
the heart of the mechanism to discover where this | UMAR GEAR TRAIN m:::h:n:‘:;ral:h
new insight would lead. The first step was to find A system that included epicyclic gears simulated eclipses can occur.
with 223 teeth to drive this new Saros di variations in the moon’s motion now know to stem

from its changing orbital velocity. The epicyclic
gears were attached to a larger gear (A’ like the cups
on a Mad Hatter teacup ride. One gear turned the
other via a pin-and-slot mechanism (B). The motion
was then transmitted through the other gears and to
the front of the mechanism. There, another epicyclic

Karakalos had estimated that a large gear vi

at the back of the main fragment had 222 te

But Wright had revised thi imate to 223, and

Edmunds confirmed this. With plausible tooth

counts for other s and with the addition of a = |EEEREL RIS system © turned a half-black, half-white sphere D
2 'pothe ved is 223- oes - i to show the lunar phases, and a pointer (E! showed
>-m 1]|:, h.'\ : mhu]l ) 1[‘ Beas “?I\l . o togthigedr’ 2 2i|::|v:)?:l::$n%o:rl| the position of the moon on the zodiac dial. ECLIPSE GEAR TRAIN
could perform the requi : calcu ‘.mnn. with respect to the FRONT-PLATE INSCRIPTIONS Calculated the month in the 223-lunar-month Saros cycle
But a huge problem still remained unsolved constellations on Described the rising and setting times of recurring eclipses. It displayed the month on the Saros
and proved to be the hardest part of the gearing the zodiac dial. of important stars throughout the year. dial with an extensible pointer O similar to the one on
e the Metonic dial. Auxiliary gears moved a pointer
to crack. In addition to calculating the Saros cy- a smaller dial. That pointer made one third of a turn for

each 223-month cycle to indicate that the corresponding
eclipse time would be offset by eight hours.




[A USER’S MANUAL]

cle, the large 223-tooth gear also carried the ep-

How to Predict
an Eclipse

Operating the Antikythera mechanism may have
required only a small amount of practice and astro-
nomical knowledge. After an initial calibration by an
expert, the mechanism could provide fairly accurate
predictions of events several decades in the past or
future. The inscriptions on the Saros dial, coming

at intervals of five or six months, corresponded to
months when Earth, the sun and the moon come to

a near alignment (and so represented potential solar
and lunar eclipses) in a 223-lunar-month cycle. Once
the month of an eclipse was known, the actual day
could be calculated on the front dials using the fact
that solar eclipses always happen during new moons
and lunar eclipses during full moons.

icyclic system noticed by Price: a sandwich of
two small gears attached to the larger gear in
teacup-ride fashion. Each epicyclic gear also
connected to another small gear. Confusingly, all Date pointer
four small gears appeared to have the same tooth
count—S50—which seemed nonsensical because Solar pointer
the output would then be the same as the input.

After months of frustration, I remembered
that Wright had observed that one of the two ep-
icyclic gears has a pin on its face that engages
with a slot on the other. His key idea was that the
two gears turned on slightly different axes, sepa-
rated by about a millimeter. As a consequence, RESET DATE

Begin by turning the crank to set the
current month and year on the Metonic
calendar. The lower pointer will turn
to the corresponding month on the
Saros (eclipse)

FIND ECLIPSE MONTH

Turn the crank to move time forward until the
pointer on the Saros dial points to an eclipse
inscription. The inscription will indicate month
and time of the day (but not the day) of an
eclipse and whether it will be solar or lunar.

CALCULATE DAY

Adjust the crank until the lunar and solar
pointers are aligned (for a solar eclipse) or

at 180 degrees (for a lunar eclipse). The
Egyptian calendar pointer will move corre-
spondingly and indicate the day of the eclipse.

the angle turned by one gear alternated between
being slightly wider and being slightly narrower
than the angle turned by the other gear. Thus, if

one gear turned at a constant rate, the other
gear’s rate kept varying between slightly faster
and slightly slower.

Although Wright rejected his own observation, I
realized that the varying rotation rate is precisely
what is needed to calculate the moon’s motion
according to the most advanced astronomical
theory of the second century B.C., the one often
attributed to Hipparchos of Rhodes. Before
Kepler (A.D. 1605), no one understood that orbits
are elliptical and that the moon accelerates
toward the perigee—its closest point to Earth—
and slows down toward the apogee, the opposite
point. But the ancients did know that the moon’s
motion against the zodiac appears to periodical-
ly slow down and speed up. In Hipparchos’s
model, the moon moved at a constant rate around
a circle whose center itself moved around a circle
at a constant rate—a fairly good approximation
of the moon’s apparent motion. These circles on
circles, themselves called epicycles, dominated
astronomical thinking for the next 1,800 years.

There was one further complication: the apo-
gee and perigee are not fixed, because the ellipse
of the moon’s orbit rotates by a full turn about ev-
ery nine years. The time it takes for the body to
get back to the perigee is thus a bit longer than
the time it takes it to come back to the same
point in the zodiac. The difference was just
0.11257965S5 turns a year. With the input gear
having 27 teeth, the rotation of the large gear was
slightly too big; with 26 teeth, it was slightly too
small. The right result seemed to be about half-
way in between. So I tried the impossible idea
that the input gear had 26 2 teeth. I pressed the
key onmy calculator,and itgave 0.112579655—

exactly the right answer. It could not be a
coincidence to nine places of decimals! But
gears cannot have fractional numbers of teeth.
Then I realized that 26 /> X 2 = 53. In fact,
Wright had estimated a crucial gear to have 53
teeth, and I now saw that that count made every-
thing work out. The designer had mounted the
pin and slot epicyclically to subtly slow down the
period of its variation while keeping the basic ro-
tation the same, a conception of pure genius.
Thanks to Edmunds, we also realized that the
epicyclic gearing system, which is in the back of
the mechanism, moved a shaft that turned inside
another, hollow shaft through the rest of the
mechanism and to the front, so that the lunar
motion could be represented on the zodiac dial
and on the lunar phase display. All gear counts
were now explained, with the exception of one
small gear that remains a mystery to this day.
Further research has caused us to make some
modifications to our model. One was about a
small subsidiary dial that is positioned in the
back, inside the Metonic dial, and is divided into
four quadrants. The first clue came when I read
the word “NEMEA” under one of the quad-
rants. Alexander Jones, a New York University
historian, explained that it refers to the Nemean
Games, one of the major athletic events in an-
cient Greece. Eventually we found, engraved
round the four sectors of the dial, most of
“ISTHMIA,” for games at Corinth, “PYTHIA,”
for games at Delphi, “NAA,” for minor games at
Dodona,and “OLYMPIA,” for the most impor-
tant games of the Greek world, the Olympics. All
games took place every two or four years. Previ-
ously we had considered the mechanism to be
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purely an instrument of mathematical astrono-
my, but the Olympiad dial—as we named it—
gave it an entirely unexpected social function.

Twenty-nine of the 30 surviving gears calcu-
late cycles of the sun and the moon. But our stud-
ies of the inscriptions at the front of the mecha-
nism have also yielded a trove of information on
the risings and settings of significant stars and of
the planets. Moreover, on the “primary” gear-
wheel at the front of the mechanism remnants of
bearings stand witness to a lost epicyclic system
that could well have modeled the back-and-forth
motions of the planets along the ecliptic (as well
as the anomalies in the sun’s own motion). All
these clues strongly support the inclusion of the
sun and of at least some of the five planets known
in ancient times—Mercury, Venus, Mars, Jupi-
ter and Saturn.

Wright built a model of the mechanism with
epicyclic systems for all five planets. But his in-
genious layout does not agree with all the evi-
dence. With its 40 extra gears, it may also be too
complex to match the brilliant simplicity of the
rest of the mechanism. The ultimate answer may
still lie 50 meters down on the ocean floor.

The question of where the mechanism came from
and who created it is still open. Most of the car-
go in the wrecked ship came from the eastern
Greek world, from places such as Pergamon, Kos
and Rhodes. It was a natural guess that Hippar-
chos or another Rhodian astronomer built the
mechanism. But text hidden between the 235
monthly scale divisions of the Metonic calendar
contradicts this view. Some of the month names
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were used only in specific locations in the ancient
Greek world and suggest a Corinthian origin. If
the mechanism was from Corinth itself, it was
almost certainly made before Corinth was com-
pletely devastated by the Romans in 146 B.C. Per-
haps more likely is that it was made to be used in

one of the Corinthian colonies in northwestern
Greece or Sicily.

Sicily suggests a remarkable possibility. The
island’s city of Syracuse was home to Archime-
des, the greatest scientist of antiquity. In the first
century B.C. Roman statesman Cicero tells how
in 212 Archimedes was killed at the siege of Syr-
acuse and how the victorious Roman general,
Marcellus, took away with him only one piece of
plunder—an astronomical instrument made by
Archimedes. Was that the Antikythera mecha-
nism? We believe not, because it appears to have
been made many decades after Archimedes died.
But it could have been constructed in a tradition
of instrument making that originated with the
eureka man himself.

Many questions about the Antikythera mech-
anism remain unanswered—perhaps the great-
est being why this powerful technology seems to
have been so little exploited in its own era and in
succeeding centuries.

In Scientific American, Price wrote:

It is a bit frightening to know that just before
the fall of their great civilization the ancient Greeks
had come so close to our age, not only in their
thought, but also in their scientific technology.

Our discoveries have shown that the Anti-
kythera mechanism was even closer to our world
than Price had conceived. [
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