Algorithms

University of Virginia

Gabriel Robins

Course Outline

- Historical perspectives
- Foundations
- Data structures
- Sorting
- Graph algorithms
- Geometric algorithms
- Statistical analysis
- NP-completeness
- Approximation algorithms

Prerequisites

Some discrete math / algorithms knowledge would be helpful (but is not necessary)

Textbook

Cormen, Leiserson, Rivest, and Stein, <u>Introduction to</u> <u>Algorithms</u>, Third Edition, McGraw-Hill, 2009.

Suggested Reading

Polya, How to Solve it, Princeton University Press, 1957.

Preparata and Shamos, <u>Computational Geometry, an</u> <u>Introduction</u>, Springer-Verlag, 1985.

Miyamoto Musashi, <u>Book of Five Rings</u>, Overlook Press, 1974.

> "This book fills a much-needed gap." - Moses Hadas (1900-1966) in a review

Grading scheme

Midterm:	35%
Final:	35%
Project:	30%
Extra credit:	10%

"The mistakes are all there waiting to be made." - chessmaster Savielly Grigorievitch Tartakower (1887-1956) on the game's opening position

Specifics

- Homeworks
- Solutions
- Extra-credit
 - In-class
 - Find mistakes
- Office hours: after class
 - Any time
 - Email (preferred)
 - By appointment
 - Q&A posted on the Web
- Exams: take home?

Contact Information

Prof:Gabriel RobinsOffice:406 Rice HallPhone:(434) 982-2207EMail:robins@cs.virginia.edu

www.cs.virginia.edu/~robins

"Good teaching is one-fourth preparation and three-fourths theater." - Gail Godwin

Good Advice

- Ask questions ASAP
- Do homeworks ASAP
- <u>Do not</u> fall behind
- "Cramming" won't work
- Start on project early
- Attend every lecture
- Read Email often
- Solve lots of problems

Basic Questions/Goals

- Q: How do you solve problems?
 - Proof techniques
- Q: What <u>resources</u> are needed to compute certain functions?
 - Time / space / "hardware"
- Q: What makes problems <u>hard</u>/easy?
 - Problem classification
- Q: What are the fundamental <u>limitations</u> of algorithms?
 - Computability / undecidability

Historical Perspectives

- Euclid (325BC 265BC)
 "Elements"
- Rene Descartes (1596-1650)
 Cartesian coordinates
- Pierre de Fermat (1601-1665) Fermat's Last Theorem
- Blaise Pascal (1623-1662) Probability
- Leonhard Euler (1707-1783) Graph theory

- Carl Friedrich Gauss (1777-1855) Number theory
- George Boole (1815-1864)
 Boolean algebra
- Augustus De Morgan (1806-1871)
 Symbolic logic, induction
- Ada Augusta (1815-1852)
 Babbage's Analytic Engine
- Charles Dodgson (1832-1898)
 Alice in Wonderland
- John Venn (1834-1923) Set theory and logic

- Georg Cantor (1845-1918) Transfinite arithmetic
- Bertrand Russell (1872-1970) "Principia Mathematica"
- Kurt Godel (1906-1978) Incompleteness
- Alan Turing (1912-1954) Computability
- Alonzo Church (1903-1995) Lambda-calculus
- John von Neumann (1903-1957)
 Stored program

- Claude Shannon (1916-2001) Information theory
 - Stephen Kleene (1909-1994) Recursive functions
- Noam Chomsky (1928-) Formal languages
- John Backus (1924-)
 Functional programming
- Edsger Dijkstra (1930-2002) Structured programming
- Paul Erdos (1913-1996)
 Combinatorics

Symbolic Logic

Def: *proposition* - statement either true (T) or false (F)

Ex: 1+1=2

2+2=3

"today is Monday"

"what time is it?"

x + 4 = 5

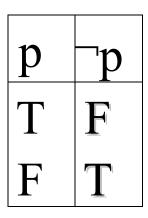
Boolean Functions

- "<u>and</u>" ^
- "<u>or</u>" ∨
- "<u>not</u>" ¬
- "<u>xor</u>" ⊕
- "<u>nand</u>"
- "<u>nor</u>"
- "implication" \Rightarrow
- "<u>equivalence</u>" ⇔

"not"

"negation"

Truth table:



Ex: let p="today is Monday"

¬p ="today is not Monday"

"<u>and</u>"

"conjunction"

Truth table:

p	q	p∧q
T	T	Т
T	F	F
F	T	F
F	F	F

 \wedge

Ex: $x \ge 0 \land x \le 10$ ($x \ge 0$) \land ($x \le 10$)

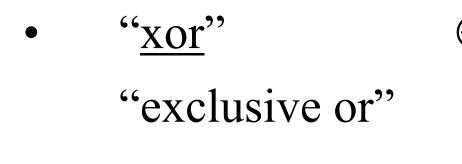


"disjunction"

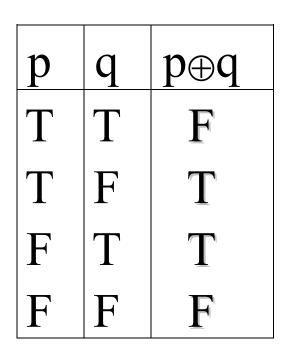
Truth table:

p	q	p∨q
Τ	Τ	Τ
T	F	Τ
F	Τ	Τ
F	F	F

Ex: $(x \ge 7) \lor (x = 3)$ (x=0) ∨ (y=0)



Truth table:



Ex: $(x=0) \oplus (y=0)$

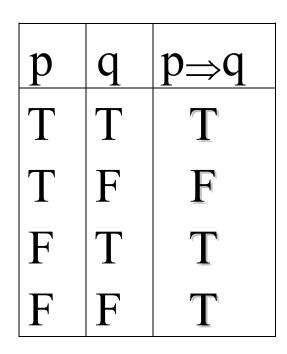
"it is midnight" \oplus "it is sunny"

Logical Implication

"implies"

\Rightarrow

Truth table:



Ex: $(x \le 0) \land (x \ge 0) \Rightarrow (x=0)$ $1 < x < y \Rightarrow x^3 < y^3$ "today is Sunday" $\Rightarrow 1+1=3$

Other interpretations of $p \Rightarrow q$:

- "p implies q"
- "if p, then q"
- "q only if p"
- "p is sufficient for q"
- "q if p"
- "q whenever p"
- "q is necessary for p"

Logical Equivalence

- or "if and only if" ("iff")
- or "necessary and sufficient"
- or "logically equivalent" \equiv

Truth table:

p	q	p⇔q
T	T	Т
T	F	F
F	T	F
F	F	Т

Ex: $p \Leftrightarrow p$

 $[(x=0) \lor (y=0)] \Leftrightarrow (xy=0)$ $\min(x,y)=\max(x,y) \Leftrightarrow x=y$

logically equivalent (\Leftrightarrow) - means "has same truth table"

Ex: $p \Rightarrow q$ is equivalent to $(\neg p) \lor q$ i.e., $p \Rightarrow q \Leftrightarrow (\neg p) \lor q$

p	q	p⇒q	p	¬p∨q
Τ	T	Т	F	Т
Τ	F	F	F	F
F	T	Τ	Т	Т
F	F	Τ	T	Τ

Ex: $(p \Leftrightarrow q) \equiv [(p \Rightarrow q) \land (q \Rightarrow p)]$ $p \Leftrightarrow q \equiv p \Rightarrow q \land q \Rightarrow p$ $(p \Leftrightarrow q) \equiv [(\neg p \lor q) \land (\neg q \lor p)]$ Note: $p \Rightarrow q$ is <u>not</u> equivalent to $q \Rightarrow p$

Thm: $(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$

Q: What is the negation of $p \Rightarrow q$?

$$A: \neg(p \Longrightarrow q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$$

p	q	q	p⇒q	¬(p⇒q)	p∧¬q
Τ	Т	F	Т	F	F
Τ	F	T	F	Τ	Τ
F	Τ	F	Т	F	F
F	F	Т	Т	F	F

"Logic is in the eye of the logician." - Gloria Steinem

Example

- let p = "it is raining"
 let q = "the ground is wet"
- $p \Rightarrow q$: "if it is raining, then the ground is wet"
- $\neg q \Rightarrow \neg p$: "if the ground is not wet, then it is not raining"
- $q \Rightarrow p$: "if the ground is wet, then it is raining"
- $\neg(p \Rightarrow q)$: "it is raining, and the ground is not wet"

Order of Operations

- negation first
- or/and next
- implications last
- parenthesis override others

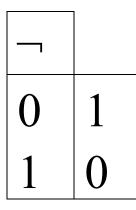
(similar to arithmetic)

Def: *converse* of $p \Rightarrow q$ is $q \Rightarrow p$ *contrapositive* of $p \Rightarrow q$ is $\neg q \Rightarrow \neg p$

Prove: $p \Longrightarrow q \equiv \neg q \Longrightarrow \neg p$

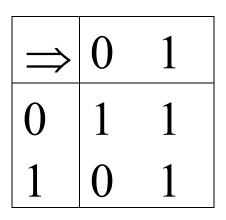
Q: How many distinct 2-variable Boolean functions are there?

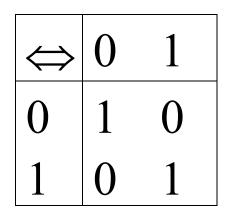
Bit Operations



\wedge	0	1
0	0	0
1	0	1

\vee	0	1
0	0	1
1	1	1





Bit Strings

Def: *bit string* - sequence of bits

- Boolean functions extend to bit strings (bitwise)
 - Ex: $\neg 0100 = 1011$ $0100 \land 1110 = 0100$ $0100 \lor 1110 = 1110$ $0100 \oplus 1110 = 1010$ $0100 \Rightarrow 1110 = 1111$ $0100 \Leftrightarrow 1110 = 0101$

Proposition types

Def: *tautology:* <u>always</u> true *contingency:* <u>sometimes</u> true *contradiction:* <u>never</u> true

Ex: $p \lor \neg p$ is a tautology $p \land \neg p$ is a contradiction $p \Rightarrow \neg p$ is a contingency

p	¬p	p∨¬p	р∧¬р	p⇒¬p
Τ	F	Т	F	F
F	T	Τ	F	Τ

Logic Laws

Identity:

 $p \land T \Leftrightarrow p$ $p \lor F \Leftrightarrow p$

Domination:

 $p \lor T \Leftrightarrow T$ $p \land F \Leftrightarrow F$

Idempotent:

 $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$

Logic Laws (cont.)

Double Negation:

$\neg(\neg p) \Leftrightarrow p$

Commutative:

 $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$

Associative:

 $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Logic Laws (cont.)

Distributive:

 $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

De Morgan's:

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$ $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

Misc:

 $p \lor \neg p \Leftrightarrow T$ $p \land \neg p \Leftrightarrow F$ $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$

Example

Simplify the following: $(p \land q) \Rightarrow (p \lor q)$

Predicates

Def:*predicate* - a function or formula involving some variables

Ex: let P(x) = "x > 3"x is the variable "x>3" is the predicate P(5)P(1)Ex: $Q(x,y,z) = "x^2+y^2=z^2"$ Q(2,3,4)

Q(3,4,5)

Quantifiers

Universal: "for all" \forall $\forall x P(x)$ $\Leftrightarrow P(x_1) \land P(x_2) \land P(x_3) \land ...$ Ex: $\forall x \quad x < x + 1$ $\forall x \quad x < x^3$

Existential: "there exists" $\exists \exists x P(x) \\ \Leftrightarrow P(x_1) \lor P(x_2) \lor P(x_3) \lor ... \\ Ex: \exists x \quad x = x^2 \\ \exists x \quad x < x - 1 \end{cases}$

Combinations:

$$\forall x \exists y \quad y > x$$

Examples

- $\forall x \exists y x+y=0$
- $\exists y \forall x x+y=0$
- "every dog has his day":
 ∀d ∃y H(d,y)
- $\lim_{x \to a} f(x) = L$

 $\forall \varepsilon \exists \delta \forall x \ (0 \le |x - a| \le \delta \Longrightarrow |f(x) - L| \le \varepsilon)$

Examples (cont.) • n is divisible by j (denoted n|j): $n|j \Leftrightarrow \exists k \in \mathbb{Z} \ n=kj$

- m is prime (denoted P(m)): $P(m) \Leftrightarrow [\forall i \in Z (m|i) \Rightarrow (i=m) \lor (i=1)]$
- "there is no largest prime"
 - $\forall p \exists q \in \mathsf{Z} (q \geq p) \land \mathsf{P}(q)$
 - $\forall p \exists q \in Z (q > p) \land [\forall i \in Z (q|i) \Rightarrow (i=q) \lor (i=1)]$

 $\forall p \exists q \in Z (q > p) \land$ $[\forall i \in Z \{ \exists k \in Z q = ki \} \Rightarrow (i = q) \lor (i = 1)]$

Negation of Quantifiers

Thm: $\neg(\forall x P(x)) \Leftrightarrow \exists x \neg P(x)$

Ex: ¬ "all men are mortal" ⇔ "there is a man who is not mortal"

Thm: $\neg(\exists x P(x)) \Leftrightarrow \forall x \neg P(x)$

Ex: ¬ "there is a planet with life on it" ⇔ "all planets do not contain life"

Thm: $\neg \exists x \forall y P(x,y) \Leftrightarrow \forall x \exists y \neg P(x,y)$

Ex: \neg "there is a man that exercises every day"

⇔"every man does not exercise some day"

Thm: $\neg \forall x \exists y P(x,y) \Leftrightarrow \exists x \forall y \neg P(x,y)$

Ex: \neg "all things come to an end"

 \Leftrightarrow "some thing does not come to any end"

Quantification Laws

Thm: $\forall x (P(x) \land Q(x))$ $\Leftrightarrow (\forall x P(x)) \land (\forall x Q(x))$ Thm: $\exists x (P(x) \lor Q(x))$ $\Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$

Q: Are the following true?

$\exists x (P(x) \land Q(x)) \\ \Leftrightarrow (\exists x P(x)) \land (\exists x Q(x))$

$\forall x (P(x) \lor Q(x)) \\ \Leftrightarrow (\forall x P(x)) \lor (\forall x Q(x))$

More Quantification Laws

- $(\forall x Q(x)) \land P \Leftrightarrow \forall x (Q(x) \land P)$
- $(\exists x Q(x)) \land P \Leftrightarrow \exists x (Q(x) \land P)$
- $(\forall x Q(x)) \lor P \Leftrightarrow \forall x (Q(x) \lor P)$
- $(\exists x Q(x)) \lor P \Leftrightarrow \exists x (Q(x) \lor P)$

Unique Existence

Def: $\exists !x P(x)$ means there exists a <u>unique</u> x such that P(x) holds

Q: Express $\exists !x P(x)$ in terms of the other logic operators

A:

Mathematical Statements

- Definition
- Lemma
- Theorem
- Corollary

Proof Types

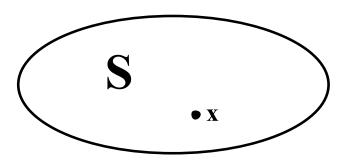
- Construction
- Contradiction
- Induction
- Counter-example
- Existence

<u>Sets</u>

Def: *set* - an <u>unordered collection</u> of elements

Ex: $\{1, 2, 3\}$ or $\{hi, there\}$

Venn Diagram:



Def: two sets are *equal* iff they contain the <u>same</u> elements

Ex:
$$\{1, 2, 3\} = \{2, 3, 1\}$$

 $\{0\} \neq \{1\}$
 $\{3, 5\} = \{3, 5, 3, 3, 5\}$

Set <u>construction</u>: | or э means "such that"

- Ex: $\{k \mid 0 \le k \le 4\}$ $\{k \mid k \text{ is a perfect square}\}$
- Set <u>membership</u>: $\in \notin$ Ex: $7 \in \{p \mid p \text{ prime}\}$ $q \notin \{0, 2, 4, 6, ...\}$
- Sets can contain other sets
 - Ex: $\{2, \{5\}\}$
 - $\{\{\{0\}\}\} \neq \{0\} \neq 0$
 - $S = \{1, 2, 3, \{1\}, \{\{2\}\}\}$

Common Sets

- <u>Naturals</u>: $N = \{1, 2, 3, 4, ...\}$
- <u>Integers</u>: $Z = \{..., -2, -1, 0, 1, 2, ...\}$
- <u>Rationals</u>: $Q = \{ \frac{a}{b} \mid a, b \in Z, b \neq 0 \}$
- <u>Reals</u>: $\Re = \{x \mid x \text{ a real } \#\}$
- $\underline{\text{Empty set}}: \quad \emptyset = \{\}$
- Z^+ = non-negative integers \Re^- = non-positive reals, etc.

<u>Multisets</u>

Def: a *set* w/repeated elements allowed (i.e., each element has "multiplier")

Ex: {0, 1, 2, 2, 2, 5, 5}

For multisets: $\{3, 5\} \neq \{3, 5, 3, 3, 5\}$

<u>Sequences</u>

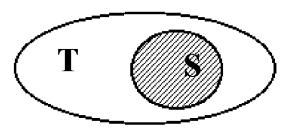
Def: ordered list of elements

Ex:
$$(0, 1, 2, 5)$$
 "4-tuple"
 $(1,2) \neq (2,1)$ "2-tuple"

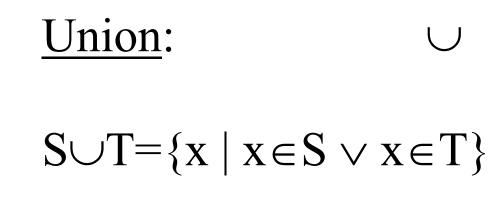
<u>Subsets</u>

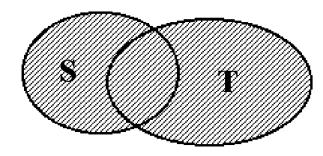
• <u>Subset</u> notation: \subseteq

 $S \subseteq T \Leftrightarrow (x \in S \Rightarrow x \in T)$



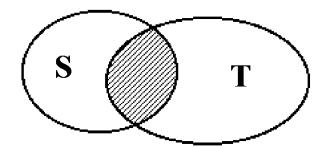
Proper subset: \subset $S \subset T \Leftrightarrow ((S \subseteq T) \land (S \neq T))$ $S=T \Leftrightarrow ((T \subseteq S) \land (S \subseteq T))$ $\forall S \ \emptyset \subseteq S$ $\forall S \ S \subseteq S$





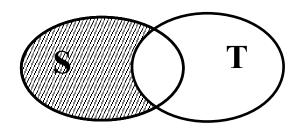
<u>Intersection</u>: \cap

$S \cap T = \{x \mid x \in S \land x \in T\}$



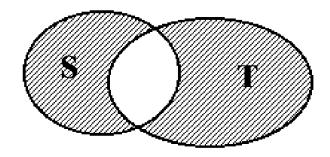
• Set <u>difference</u>: S - T

 $S - T = \{x \mid x \in S \land x \notin T\}$



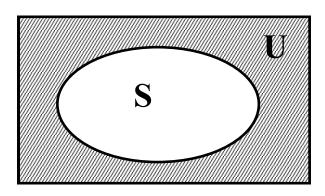
• <u>Symmetric difference</u>: S⊕T

$S \oplus T = \{ x \mid x \in S \oplus x \in T \}$ $= S \cup T - S \cap T$

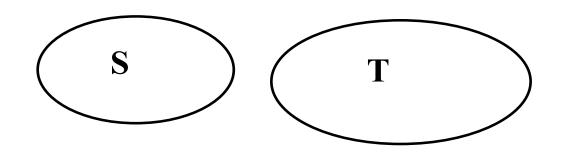


- Universal set: U (everything)
- Set <u>complement</u>: S' or S

 $S' = \{x \mid x \notin S\} = U - S$



• <u>Disjoint</u> sets: $S \cap T = \emptyset$



S - T= S \cap T'

 $S - S = \emptyset$

Examples

 $\mathsf{N} \cup \mathsf{Z} \cup \mathsf{Q} \cup \mathfrak{R} = \mathfrak{R}$ $\mathsf{N}\subset\mathsf{Z}\subset\mathsf{Q}\subset\mathfrak{R}$ $\forall \mathbf{x} \in \Re \ \mathbf{x} < \mathbf{x}^2 + 1$ $\forall x, y \in Q \min(x, y) = \max(x, y) \Leftrightarrow x = y$ $\mathfrak{R}^+ \cup \mathfrak{R}^- = \mathfrak{R}$ $\mathfrak{R}^+ \cap \mathfrak{R}^- = \{0\}$

Set Identities

- <u>Identity</u>: $S \cup \emptyset = S$ $S \cap U = S$
- <u>Domination</u>: $S \cup U = U$ $S \cap \emptyset = \emptyset$
- <u>Idempotent</u>: $S \cup S = S$
 - $S \cap S = S$
- <u>Complementation</u>:
 (S')' = S

Set Identities (Cont.)

- <u>Commutative Law:</u>
 - $S \cup T = T \cup S$

$S \cap T = T \cap S$

• Associative Law:

$S \cup (T \cup V) = (S \cup T) \cup V$ $S \cap (T \cap V) = (S \cap T) \cap V$

Set Identities (Cont.)

• <u>Distributive Law:</u>

 $S \cup (T \cap V) = (S \cup T) \cap (S \cup V)$ $S \cap (T \cup V) = (S \cap T) \cup (S \cap V)$

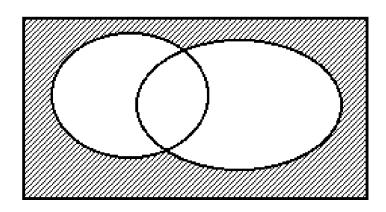
• <u>Absorption:</u>

 $S \cup (S \cap T) = S$

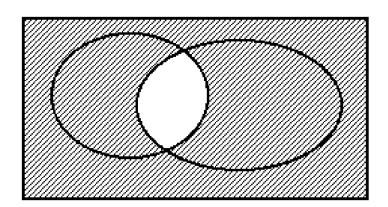
 $S \cap (S \cup T) = S$

DeMorgan's Laws

$(S \cup T)' = S' \cap T'$



 $(S \cap T)' = S' \cup T'$



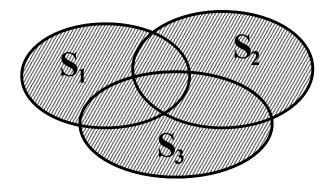
Boolean logic version:

 $(X^{A}Y)'=X'_{V}Y'$ $(X_{V}Y)'=X'^{Y}Y'$

$\underline{Generalized} \cup and \cap$

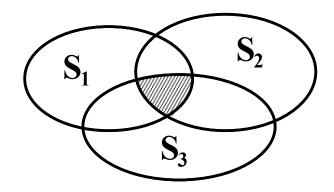
• $\bigcup_{1 \le i \le n} S_i = S_1 \cup S_2 \cup S_3 \cup \ldots \cup S_n$

 $= \{ x \mid \exists i \ 1 \leq i \leq n \ \ni x \in S_i \}$



• $\bigcap_{1 \le i \le n} S_i = S_1 \cap S_2 \cap S_3 \cap \ldots \cap S_n$

 $= \{ x \mid \forall i \ 1 \leq i \leq n \Longrightarrow x \in S_i \}$



Set Representation

• U = { $x_1, x_2, x_3, x_4, ..., x_{n-1}, x_n$ }

Ex: $S = \{x_1, x_3, x_n\}$ bits: 1 0 1 0 ... 0 0 1

1010000...01 encodes $\{x_1, x_3, x_n\}$ 0111000...00 encodes $\{x_2, x_3, x_4\}$

- "or" yields union: 1010000...01 {x₁, x₃, x_n}
 ∨ <u>0111000...00</u> {x₂, x₃, x₄}
- 1111000...01 $\{x_1, x_2, x_3, x_4, x_n\}$
- "and" yields intersection: 1010000...01 {x₁, x₃, x_n}
 ∧ <u>0111000...00</u> {x₂, x₃, x₄}
 0010000...00 {x₃}



• Ex: \Re is closed under addition since $x, y \in \Re \Rightarrow x + y \in \Re$

Abbreviations

- WRT "with respect to"
- WLOG"without loss of generality"

"When ideas fail, words come in very handy." - Goethe (1749-1832)

Cartesian Product

- <u>Ordered n-tuple</u>: element sequence Ex: (2,3,5,7) is a 4-tuple
- <u>Tuple equality</u>:

 $\begin{array}{l} (a,b)=(x,y) \Leftrightarrow (a=x) \land (b=y) \\ \text{Generally:} (a_i)=(x_i) \Leftrightarrow \forall i \ a_i=x_i \end{array}$

<u>Cross-product</u>: ordered tuples

 $S \times T = \{(s,t) \mid s \in S, t \in T\}$

Ex: $\{1, 2, 3\} \times \{a, b\} =$ $\{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

Generally, $S \times T \neq T \times S$

• Generalized <u>cross-product</u>:

$$\begin{split} S_1 &\times S_2 \times \ldots \times S_n \\ &= \{(x_1, \ldots, x_n) \mid x_i \!\in\! S_i, \ 1 \!\leq\! i \!\leq\! n\} \\ T^i &= T \!\times\! T^{i-1} \\ T^1 &= T \end{split}$$

- Euclidean plane = $\Re \times \Re = \Re^2$
- Euclidean space = $\Re \times \Re \times \Re = \Re^3$
- <u>Russel's paradox</u>: set of all sets that do not contain themselves:

 $\{S \mid S \notin S \}$

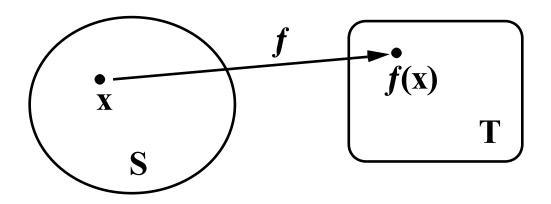
Q: Does S contain itself??

Functions

• <u>Function</u>: mapping $f:S \rightarrow T$

Domain S

Range T



- k-ary: has k "arguments"
- Predicate: with range = {true, false}

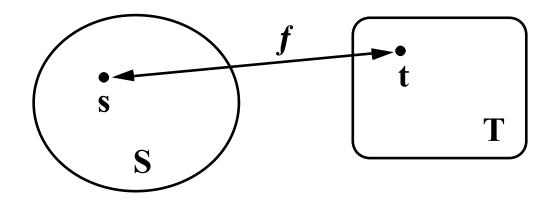
Function Types

- <u>One-to-one</u> function: "1-1" $a,b \in S \land a \neq b \Rightarrow f(a) \neq f(b)$
 - Ex: $f: \mathfrak{R} \rightarrow \mathfrak{R}, f(x)=2x$ is 1-1 g(x)=x² is not 1-1

- <u>Onto</u> function:
 - $\forall t \in T \exists s \in S \ni f(s)=t$ Ex: $f: Z \rightarrow Z, f(x)=13-x$ is onto $g(x)=x^2$ is not onto

1-to-1 Correspondence

- <u>1-to-1 correspondence</u>: $f:S \leftrightarrow T$
 - $f \text{ is } \underline{\text{both}} 1-1 \text{ and onto}$



Ex: $f: \mathfrak{R} \leftrightarrow \mathfrak{R} \rightarrow f(\mathbf{x})=\mathbf{x}$ (identity)

h:
$$N \leftrightarrow Z \rightarrow h(x) = \frac{x-1}{2}$$
, x odd,
 $\frac{-x}{2}$, x even.

• <u>Inverse function</u>:

 $f:S \rightarrow T \qquad f^{-1}:T \rightarrow S$ $f^{-1}(t)=s \quad \text{if } f(s)=t$ $Ex: f(x)=2x \quad f^{-1}(x)=x/2$

• Function composition:

$$\beta:S \rightarrow T, \alpha:T \rightarrow V$$

$$\Rightarrow (\alpha \bullet \beta)(x) = \alpha(\beta(x))$$

$$(\alpha \bullet \beta):S \rightarrow V$$

Ex: $\beta(x)=x+1$ $\alpha(x)=x^2$ $(\alpha \cdot \beta)(x)=x^2+2x+1$

Thm: $(f \bullet f^{-1})(\mathbf{x}) = (f^{-1} \bullet f)(\mathbf{x}) = \mathbf{x}$

Set Cardinality

• <u>Cardinality</u>: |S| = #elements in S

Ex: $|\{a,b,c\}|=3$ $|\{p \mid p \text{ prime } < 9\}|=4$ $|\emptyset|=0$ $|\{\{1,2,3,4,5\}\}|=?$

• <u>Powerset</u>: 2^{S} = set of all subsets

 $2^{S} = \{T \mid T \subseteq S\}$ Ex: $2^{\{a,b\}} = \{\{\},\{a\},\{b\},\{a,b\}\}\}$ Q: What is 2^{\emptyset} ?

Theorem: $|2^{S}|=2^{|S|}$

Proof:

"Sometimes when reading Goethe, I have the paralyzing suspicion that he is trying to be funny." - Guy Davenport

Generalized Cardinality

- S is <u>at least as large</u> as T: $|S| \ge |T| \Rightarrow \exists f: S \rightarrow T, f \text{ onto}$ i.e., "S covers T"
 - Ex: $r: \Re \rightarrow Z, r(x) = round(x)$ $\Rightarrow |\Re| \ge |Z|$
- S and T have <u>same cardinality</u>: $|S|=|T| \Rightarrow |S| \ge |T| \land |T| \ge |S|$ or $\exists 1-1 \text{ correspondence } S \leftrightarrow T$
- Generalizes finite cardinality:

 $\{1, 2, 3, 4, 5\} \geq \{a, b, c\}$

Infinite Sets

- Infinite set: |S| > k ∀k∈Z or ∃ 1-1 corres. *f*:S↔T, S⊂T Ex: {p | p prime}, ℜ
 Countable set: |S| ≤ |N| Ex: Ø, {p | p prime}, N, Z
- S is <u>strictly smaller</u> than T: $|S| < |T| \implies |S| \le |T| \land |S| \ne |T|$
- <u>Uncountable set</u>: |N| < |S|Ex: $|N| < \Re$ $|N| < [0,1] = \{x \mid x \in \Re, 0 \le x \le 1\}$

<u>Thm</u>: \exists 1-1 correspondence $Q \leftrightarrow N$ <u>Pf (dove-tailing)</u>:

	• •	• •	• •	• •	• •	• •	
6	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	$\frac{6}{6}$.	••
5	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{5}{5}$	$\frac{6}{5}$.	••
	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	$\frac{5}{4}$	$\frac{6}{4}$.	••
3	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{4}{3}$	$\frac{5}{3}$	$\frac{6}{3}$.	••
2	$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$	$\frac{5}{2}$	$\frac{6}{2}$.	••
1	$\frac{1}{1}$	$\frac{2}{1}$	$\frac{3}{1}$	$\frac{4}{1}$	$\frac{5}{1}$	$\frac{6}{1}$.	••
]]	2	Z	A,	5	6	

<u>Thm</u>: $|\Re| > |\mathsf{N}|$

<u>Pf (diagonalization)</u>:

Assume \exists 1-1 corres. $f: \Re \leftrightarrow N$ Construct $X \in \Re$:

$$\begin{array}{ll} f(1) = 2.718281828... & \longrightarrow \$ \\ f(2) = 1.414213562... & \longrightarrow 2 \\ f(3) = 1.61\$033989... & \longrightarrow \$ \end{array}$$

 $\mathbf{X} = 0.829... \neq f(\mathbf{K}) \forall \mathbf{K} \in \mathbf{N}$

- \Rightarrow *f* not a 1-1 correspondence
- \Rightarrow contradiction
- $\Rightarrow \Re$ is uncountable

Q: Is $|2^{Z}| = |\Re|$?

Q: Is $|\Re| > |[0,1]|$?

<u>Thm</u>: any set is "smaller" than its powerset. $|S| < |2^{S}|$

Infinities

- $|\mathsf{N}| = \aleph_0$
- $|\Re| = \aleph_1$
- $\aleph_0 < \aleph_1 = 2^{\aleph_0}$
- "Continuum Hypothesis"

$$\exists ? \omega \ni \aleph_0 < \omega < \aleph_1$$

Independent of the axioms! [Cohen, 1966]

- <u>Axiom of choice</u> [Godel 1938]
- Parallel postulate

Infinity Hierarchy

• $\aleph_{i} < \aleph_{i+1} = 2^{\aleph_{i}}$ 0, 1, 2,..., k, k+1,..., \aleph_{0} , $\aleph_{1}, \aleph_{2}, ..., \aleph_{k}, \aleph_{k+1}, ...,$ $\aleph_{\aleph_{0}}, \aleph_{\aleph_{1}}, ..., \aleph_{\aleph_{k}}, \aleph_{\aleph_{k+1}}, ...$

• First inaccessible infinity: ω...

For an informal account on infinities, see e.g.: Rucker, <u>Infinity and the Mind</u>, Harvester Press, 1982.

```
<u>Thm</u>: # algorithms is countable.
<u>Pf</u>: sort programs by size:
        "main(){}"
        "main(){int k; k=7;}"
        "<all of UNIX>"
        "<Windows XP>"
        "<intelligent program>"
\Rightarrow # algorithms is countable!
```

<u>Thm</u>: # of functions is uncountable. <u>Pf</u>: Consider 0/1-valued functions (i.e., functions from N to $\{0,1\}$): $\{(1,0), (2,1), (3,1), (4,0), (5,1), ...\}$ $\Rightarrow \{2, 3, 5, ...\} \in 2^{N}$

So, every subset of N corresponds to a different 0/1-valued function

 $|2^{N}| \text{ is uncountable (why?)} \\ \implies \# \text{ functions is uncountable!}$

Thm: most functions are uncomputable!

- <u>Pf</u>: # algorithms is countable # functions is <u>not</u> countable
- ⇒∃ <u>more</u> functions than algorithms / programs!
- \Rightarrow some functions <u>do not</u> have algorithms!
- Ex: The <u>halting problem</u>

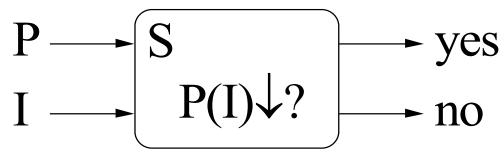
Given a program P and input I, does P halt on I?

Def: H(P,I) = 1 if P halts on I 0 otherwise

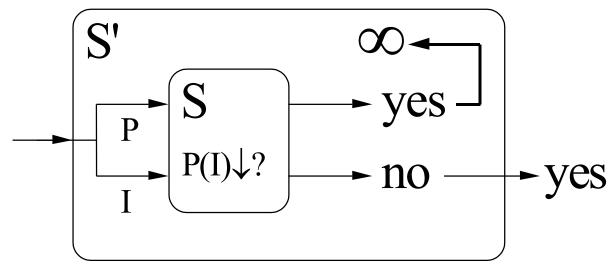
The Halting Problem

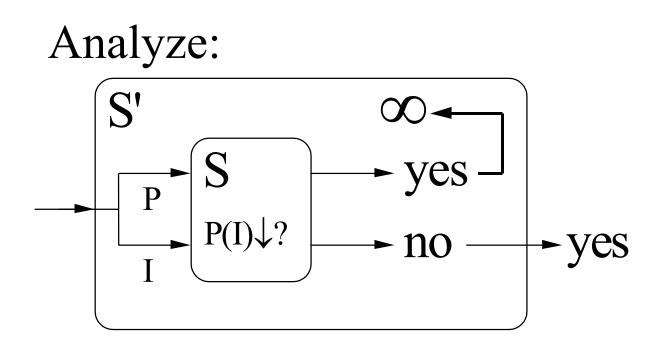
H: Given a program P and input I, does P halt on I? i.e., does $P(I) \downarrow ?$

<u>Thm</u>: H is uncomputable <u>Pf</u>: Assume subroutine S solves H.



Construct:





 $S'(S') \downarrow \Longrightarrow S'(S') \uparrow$ $S'(S') \uparrow \Rightarrow S'(S') \downarrow$

so, $S'(S')\uparrow \Leftrightarrow S'(S')\downarrow$ a contradiction!

 \Rightarrow S does not correctly compute H

But S was an arbitrary subroutine, so \Rightarrow H is not computable!

Discrete Probability

Sample space: set of possible outcomes Event E: subset of sample space S Probability p of an event: |E| / |S|

•
$$0 \le p \le 1$$

- p(not(E)) = 1 p(E)
- $p(E_1 \cup E_2) = p(E_1) + p(E_2) p(E_1 \cap E_2)$

Ex: two dice yielding total of 9 $E = \{(3,6), (4,5), (5,4), (6,3)\}$ $S = \{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\}$ p(E) = |E|/|S| = 4/36 = 1/9

General Probability

Outcome x_i is assigned probability $p(x_i)$

- $0 \le p(x_i) \le 1$
- $\sum p(\mathbf{x}_i) = 1$
- $E = \{a_1, a_2, \dots, a_m\} \rightarrow p(E) = \sum p(a_i)$
- p(not(E)) = 1 p(E)

 $p(E \cap F) = p(F) p(E | F)$

• $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$

Conditional Probability

p(E | F) = probability of E given F

Ex: what is the probability of two siblings being both male, given that one of them is male?

Let (x,y) be the two siblings Sample space: $\{(m,m),(m,f),(f,m),(f,f)\}$ Let E = both are male = $\{(m,m)\}$ Let F = at least one is male = $\{(m,m),(m,f),(f,m)\}$

- $E \cap F = \{(m,m)\}\$ = both are male
- $p(E \cap F) = p(F) p(E \mid F)$
- $p(E | F) = p(E \cap F) / p(F)$ = (1/4) / (3/4) = 1/3

Relations

Relation: a set of "ordered tuples"

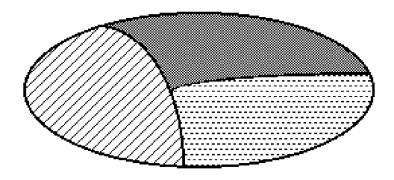
Ex: $\{(a,1),(b,2),(b,3)\}$ "<" $\{(x,y) | x,y \in \mathbb{Z}, x < y\}$ Reflexive: $x \forall x \forall x$ <u>Symmetric</u>: $x \forall y \Rightarrow y \forall x$ <u>Transitive</u>: $x \forall y \land y \forall z \Rightarrow x \forall z$ <u>Antisymmetric</u>: $x \forall y \Rightarrow \neg(y \forall x)$ Ex: \leq is reflexive transitive not symmetric

Equivalence Relations

Def: reflexive, symmetric, & transitive

Ex: standard equality "=" x=x $x=y \Rightarrow y=x$ $x=y \wedge y=z \Rightarrow x=z$

Partition - disjoint equivalence classes:



<u>Closures</u>

• <u>Transitive closure</u> of \checkmark : TC smallest superset of \checkmark satisfying $x \checkmark y \land y \checkmark z \Rightarrow x \checkmark z$

Ex: "predecessor" $\{(x-1,x) \mid x \in Z\}$ TC(predecessor) is "<" relation

Symmetric closure of ♥:
 smallest superset of ♥ satisfying

$$\mathbf{x} \mathbf{\Psi} \mathbf{y} \Longrightarrow \mathbf{y} \mathbf{\Psi} \mathbf{x}$$

Algorithms

- Existence
- Efficiency

<u>Analysis</u>

- Correctness
- Time
- Space
- Other resources

<u>Worst case</u> analysis (as function of input size |w|)

Asymptotic growth: O $\Omega \Theta$ o

Upper Bounds

$f(n) = O(g(n)) \Leftrightarrow \exists c, k > 0$ $\Rightarrow |f(n)| \le c \cdot |g(n)| \quad \forall n > k$

- Lim f(n) / g(n) exists
- n→∞
- "f(n) is big-O of g(n)"

Ex:
$$n = O(n^2)$$

- 33n+17 = O(n) $n^{8}-n^{7} = O(n^{123})$ $n^{100} = O(2^{n})$
 - 213 = O(1)

Lower Bounds

$f(n)=\Omega(g(n)) \Leftrightarrow g(n)=O(f(n))$

Lim g(n) / f(n) exists

 $n \rightarrow \infty$

"f(n) is Omega of g(n)"

Ex: $100n = \Omega(n)$

$33n+17 = \Omega(\log n)$

$n^8 - n^7 = \Omega(n^8)$

$213 = \Omega(1/n)$

$1 = \Omega(213)$

Tight Bounds

 $f(n) = \Theta(g(n)) \Leftrightarrow$ $f(n)=O(g(n)) \land g(n)=O(f(n))$

"f(n) is Theta of g(n)" Ex: $100n = \Theta(n)$ $33n+17 + \log n = \Theta(n)$ $n^{8}-n^{7}-n^{-13} = \Theta(n^{8})$ $213 = \Theta(1)$ $3 + \cos(2^n) = \Theta(1)$

Loose Bounds

 $f(n) = o(g(n)) \Leftrightarrow$ $f(n)=O(g(n)) \wedge f(n)\neq \Omega(g(n))$ $\operatorname{Lim} f(n)/g(n) = 0$ $n \rightarrow \infty$ "f(n) is little-o of g(n)" Ex: $100n = o(n \log n)$ $33n+17 + \log n = o(n^2)$ $n^{8}-n^{7}-n^{-13}=o(2^{n})$ $213 = o(\log n)$ $3 + \cos(2^n) = o(\sqrt{n})$

Growth Laws

Let $f_1(n)=O(g_1(n))$ and $f_2(n)=O(g_2(n))$

Thm: $f_1(n) + f_2(n)$ = $O(\max(g_1(n), g_2(n)))$

Thm: $f_1(n) \cdot f_2(n)$ = $O(g_1(n) \cdot g_2(n))$

Thm: $n^k = O(c^n) \forall c, k > 0$

Ex: $n^{1000} = O(1.001^n)$

Recurrences

$$T(n) = a \cdot T(n/b) + f(n)$$

let $c = \log_{b} a$

Thm:

$$\begin{split} &f(n)=O(n^{c-\varepsilon}) \Rightarrow T(n)=\Theta(n^{c}) \\ &f(n)=\Theta(n^{c}) \Rightarrow T(n)=\Theta(n^{c}\log n) \\ &f(n)=\Omega(n^{c+\varepsilon}) \wedge a \cdot f(n/b) \leq d \cdot f(n) \\ &\forall d < 1, n > n_{0} \Rightarrow T(n) = \Theta(f(n)) \end{split}$$

Ex: $T(n) = 9T(n/3) + n \Rightarrow T(n) = \Theta(n^2)$

$T(n) = T(2n/3) + 1 \implies T(n) = \Theta(\log n)$

Pigeon-Hole Principle

If N+1 objects are placed into N boxes $\Rightarrow \exists$ a box with 2 objects.

If M objects are placed into N boxes & $M \ge N \Longrightarrow \exists$ box with $\left(\frac{M}{N} \right)$ objects.

• Useful in proofs & analyses

Stirling's Formula

 $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-2) \cdot (n-1) \cdot n$ $n! = \sqrt{2 \Pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)$ $n! \approx \left(\frac{n}{e}\right)^n$

log(n!) = O(n log n)

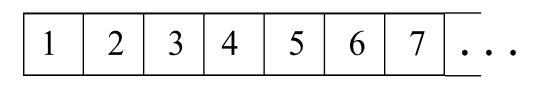
•Useful in analyses and bounds

Data Structures

- What is a "data structure"?
- Operations:
 - Initialize
 - Insert
 - Delete
 - Search
 - Min/max
 - Successor/Predecessor
 - Merge

<u>Arrays</u>

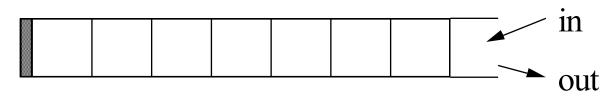
• Sequence of "indexible" locations



- Unordered:
 - O(1) to add
 - O(n) to search
 - O(n) for min/max
- Ordered:
 - O(n) to add
 - O(log n) to (binary) search
 - O(1) for min/max

Stacks

LIFO (last-in first-out)



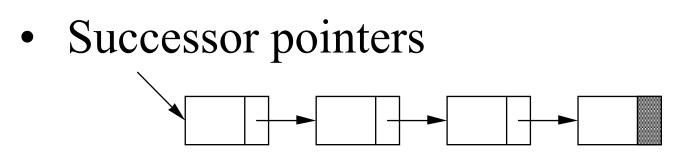
- Operations: push/pop (O(1) each)
- Can not access "middle"
- Analogy: trays at Cafeteria
- Applications:
 - Compiling / parsing
 - Dynamic binding
 - Recursion
 - Web surfing

Queues

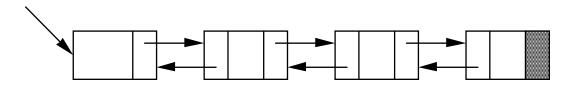
• FIFO (first-in first-out)

- Operations: push/pop (O(1) each)
- Can not access "middle"
- Analogy: line at your Bank
- Applications:
 - Scheduling
 - Operating systems
 - Simulations
 - Networks

Linked Lists



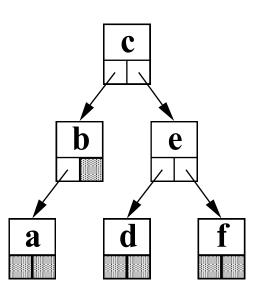
- Types:
 - Singly linked
 - Doubly linked
 - Circular



- Operations:
 - Add: O(1) time
 - Search: O(n) time
 - Delete: O(1) time (if known)

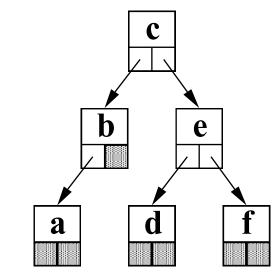
Trees

Parent/children pointers



- Binary/N-ary
- Ordered/unordered
- Height-balanced:
 - AVL
 - B-trees
 - Red-black
 - O(log n) worst-case time

Tree Traversals



pre-order:1) process node
 2) visit children

 \Rightarrow c b a e d f

post-order: 1) visit children
2) process node

 \Rightarrow a b d f e c

in-order: 1) visit left-child
 2) process node
 3) visit right-child
 ⇒ a b c d e f

<u>Heaps</u>

- A tree where all of a node's children have smaller "keys"
- Can be implemented as a binary tree
- Can be implemented as an array
- Operations:
 - Find max: O(1) time
 - Add: O(log n) time
 - Delete: O(log n) time
 - Search: O(n) time

Hash Tables

- Direct access
- Hash function
- Collision resolution:
 - Chaining
 - Linear probing
 - Double hashing
- Universal hashing
- O(1) average access
- O(n) worst-case access
- Q: How can worst-case access time be <u>improved</u> to O(log n)?

Sorting

Fact: almost half of <u>all</u> CPU cycles are spent on sorting!!

- Input: array X[1..n] of integers Output: sorted array
- Decision tree model
- <u>Thm</u>: Sorting takes $\Omega(n \log n)$ time <u>Pf</u>: n! different permutations
- \Rightarrow decision tree has n! leaves
- $\Rightarrow tree height is: log(n!)$ $> log((n/e)^n)$ $= \Omega(n log n)$

Sort Properties

- Worst case?
- Average case?
- In practice?
- Input distribution?
- Randomized?
- Stability?
- In-Situ?
- Stack depth?
- Internal vs. external?

• Bubble Sort:

$$\Rightarrow \Theta(n^2)$$
 time

• <u>Insertion Sort</u>:

For i=1 to n-1 For j=i+1 to n If X[j]>X[i] Then Swap(X,i,j)

 $\Rightarrow \Theta(n^2)$ time

• <u>Quicksort</u>:

QuickSort(X,i,j) If i<j Then p=Partition(X,i,j) QuickSort(X,i,p) QuickSort(X,p+1,j)

 \Rightarrow O(n log n) time (ave-case)

- C.A.R. Hoare, 1962
- <u>Good news</u>: usually best in practice
- <u>Bad news</u>: worst-case $O(n^2)$ time
- Usually avoids worst-case
- Only beats $O(n^2)$ sorts for n>40

• <u>Merge Sort</u>:

MergeSort(X,i,j) if i<j then $m=\lfloor(i+j)/2\rfloor$ MergeSort(X,i,m) MergeSort(X,m+1,j) Merge(X,i,m,j)

T(n) = 2 T(n/2) + n $\Rightarrow \Theta(n \log n) \text{ time}$

• <u>Heap Sort</u>:

InitHeap For i=1 to n HeapInsert(X(i)) For i=1 to n M=HeapMax Print(M) HeapDelete(M) $\Rightarrow \Theta(n \log n) \text{ time}$

• <u>Counting Sort</u>:

Assumes integers in small range 1..k

 $\Rightarrow \Theta(n)$ time (worst-case)

• <u>Radix Sort</u>:

Assumes d digits in range 1..k

For i=1 to d StableSort(X on digit i)

 \Rightarrow O(dn+kd) time (worst-case)

• <u>Bucket Sort</u>:

Assumes <u>uniform</u> inputs in range 0..1

For i=1 to n
Insert X[i] into Bucket \n⋅X[i]
For i=1 to n Sort Bucket i
Concat contents of Buckets 1 thru n

 $\Rightarrow O(n) \text{ time (expected)} \\ O(\underline{Sort}) \text{ time (worst)}$

Order Statistics

- <u>Exact</u> comparison count
- Minimum element

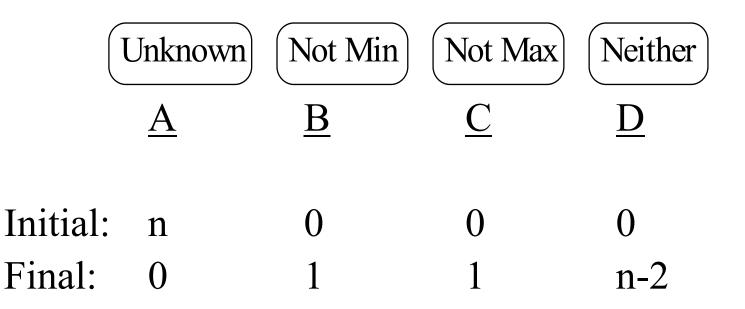
k=X[1]For i=2 to n If X[i]<k Then k = X[i] ⇒n-1 comparisons

<u>Thm</u>: Min requires n-1 comparisons. <u>Proof</u>: • Min <u>and</u> Max:

(a)Compare all pairs(b)Find Min of min's of all pairs(c)Find Max of max's of all pairs

 \Rightarrow n/2+n/2+n/2=3n/2 comparisons

<u>Thm</u>: Min&Max require 3n/2 comparisons. <u>Pf</u>: Represent known info by four sets:



Track movement of elements between sets.

Effect of comparisons:

<u>Origin</u>	<u>Target</u>			
	< >			
A&A	C&B B&C(1)			
A&B	C&B B&D			
A&C	C&D B&C			
A&D	C&D B&D			
B&B	D&B B&D(2)			
B&C	D&D B&C			
B&D	D&D B&D			
C&C	$C\&D \mid D\&C(3)$			
C&D	C&D D&D			
D&D	D&D D&D			

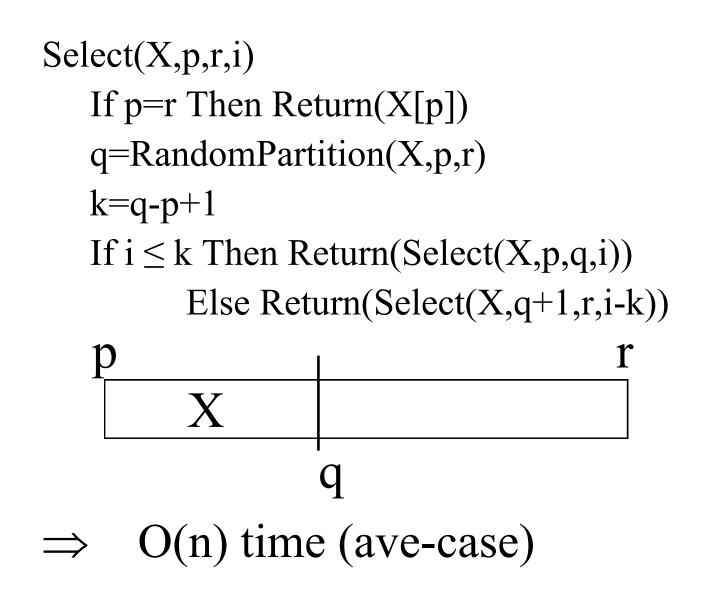
• Going from A to D forces passing through B or C

- "Emptying" A into B&C takes n/2 comparisons (1)
- "Almost emptying" B takes n/2-1 comparisons (2)
- "Almost emptying" C takes n/2-1 comparisons (3)
- Other moves will not reach the "final state" faster
- Total comparisons required: 3n/2-2

<u>Problem</u>: Find Max and next-to-Max using least # of comparisons.

Selection

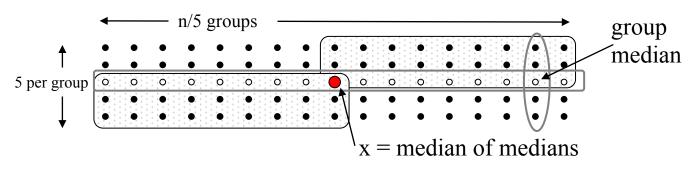
- Not harder than median-finding (why?)
- Randomized ith-Selection (return the ith-largest element in X[p..r])



Deterministic ith-Selection

[Blum, Floyd, Pratt, Rivest, Tarjan; 1973]

- Partition input into n/5 groups of 5 each
- Compute median of each group
- Compute median of medians (recursively)



- Compute median of medians (recursively)
- Eliminate 3n/10 elements & recurse on rest

T(n) = T(n/5) + T(7n/10) + O(n)= T(2n/10) + T(7n/10) + O(n)

 $\leq T(9n/10) + O(n)$ since $T(n) = \Omega(n)$

 \Rightarrow T(n) = O(n)

<u>Problem</u>: Find in O(n) time the majority element (i.e., occurring $\geq n/2$ times, if any).

a) Using "<",">","="

b) Using "=" only (i.e., no "order")

Graphs

• A special kind of relation

Graphs can model:

- Common relationships
- Communication networks
- Dependency constraints
- Reachability information
- + <u>many more</u> practical applications!

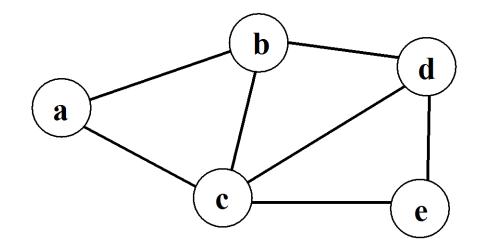
<u>Graph</u> G=(V,E): set of vertices V, and a set of edges $E \subseteq V \times V$

Pictorially: nodes & lines

Undirected Graphs

Def: edges have <u>no</u> direction

• Example of undirected graph:

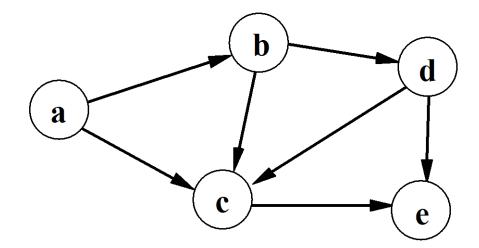


$$V=\{a,b,c,d,e\} \\ E=\{(c,a),(c,b),(c,d),(c,e), \\ (a,b),(b,d),(d,e)\}$$

Directed Graphs

Def: edges <u>have</u> direction

• Example of directed graph:

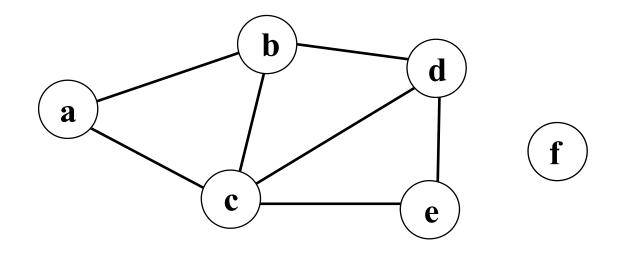


```
V=\{a,b,c,d,e\} \\ E=\{(a,b),(a,c),(b,c),(b,d), \\ (d,c),(d,e),(c,e)\}
```

Graph Terminology

Graph G=(V,E), $E \subseteq V \times V$

- node \equiv vertex
- $edge \equiv arc$



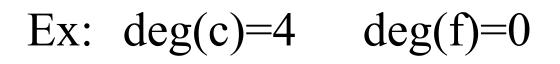
Vertices $u,v \in V$ are <u>neighbors</u> in G iff (u,v) or (v,u) is an edge of G

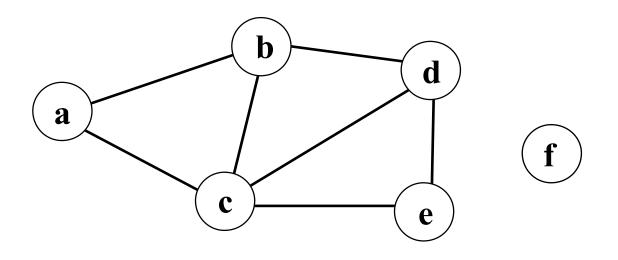
Ex: a & b are neighbors a & e are <u>not</u> neighbors

Undirected Node Degree

Degree in <u>undirected</u> graphs:

$\underline{\text{Degree}(v)} = \# \text{ of } \underline{\text{adjacent}} (\underline{\text{incident}})$ edges to vertex v in G



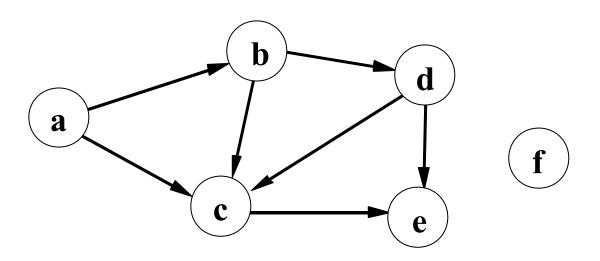


Directed Node Degree

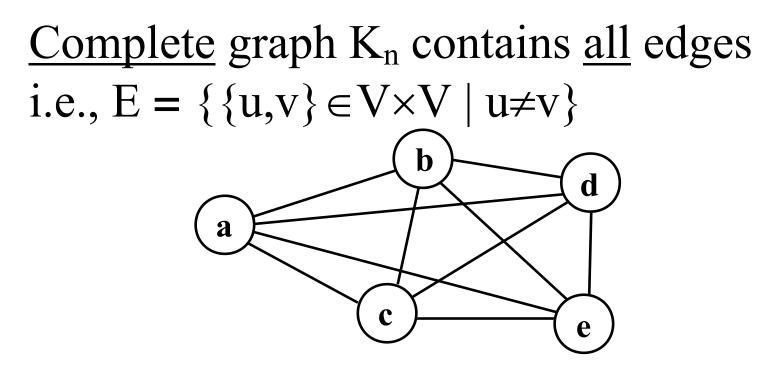
Degree in <u>directed</u> graphs:

 $\underline{\text{In-degree}(v)} = \# \text{ of } \underline{\text{incoming edges}}$ $\underline{\text{Out-degree}(v)} = \# \text{ of } \underline{\text{outgoing edges}}$

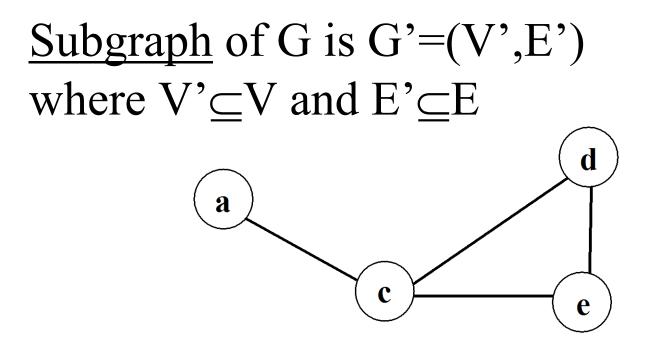
Ex: in-deg(c)=3 out-deg(c)=1in-deg(f)=0 out-deg(f)=0



Q: Show that at any party there is an even number of people who shook hands an odd number of times.

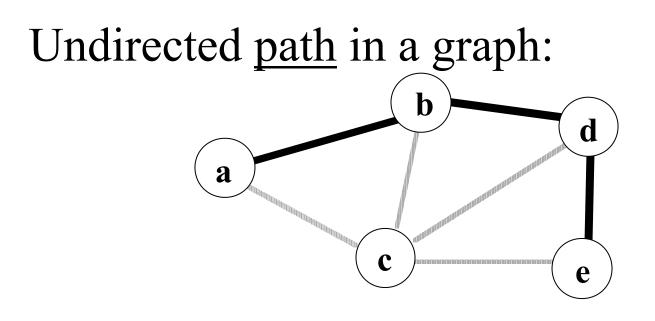


Q: How many edges are there in K_n?

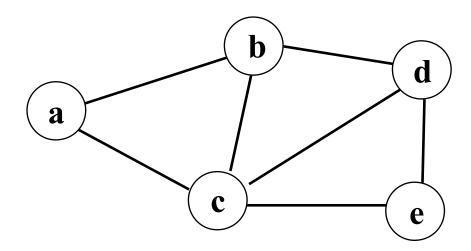


Q: Give a (non-trivial) lower bound on the number of graphs over n vertices.

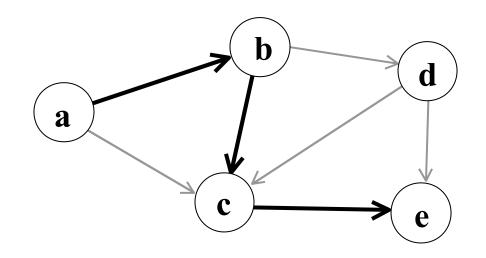
Paths in Graphs



A graph is <u>connected</u> iff there is a path between any pair of nodes:

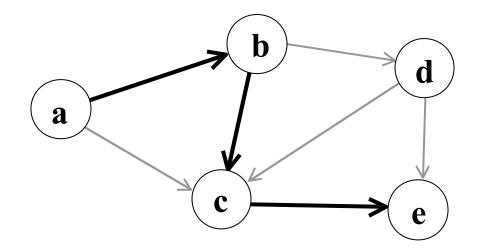


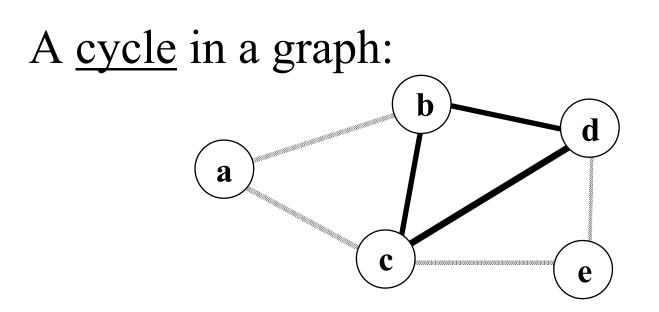
Directed path in a graph:



Graph is <u>strongly connected</u> iff there is a directed path between <u>any</u> node pair:

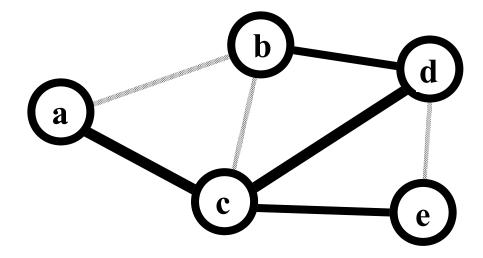
Ex: connected but not strongly:





A tree is an acyclic graph.

Tree T=(V',E') <u>spans</u> G=(V,E) if T is a connected subgraph with V'=V



Q: How many edges are there in a <u>tree</u> over n vertices?

Q: Is the # of distinct spanning trees in a graph G always polynomial in |G|?

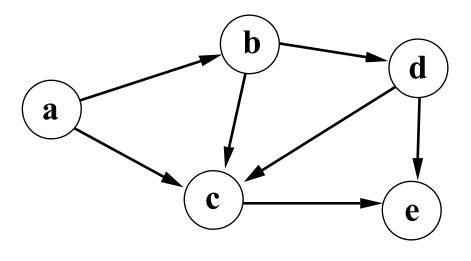
Graph Traversals Breadth-first search: b d C e Depth-first search: b d C e

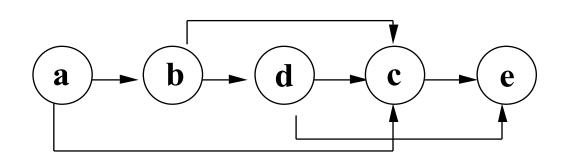
O(E+V) time for either BFS or DFS

Yields a spanning tree for the graph

Topological Sort

Given a digraph, list vertices so that all edges point/direct to the right:



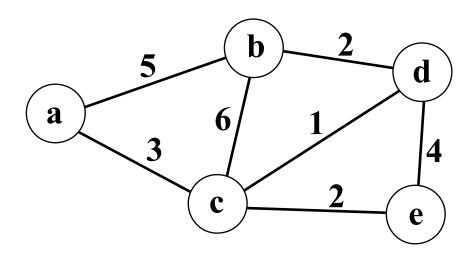


Can be done in O(E+V) time

Application: scheduling w/constraints

Weighted Graphs

Each edge has a weight: w:E \rightarrow Z



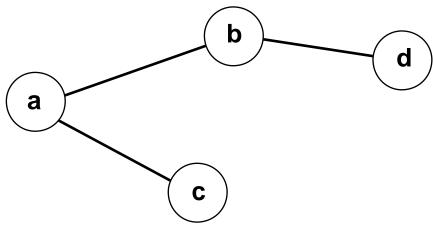
Weights can model many things:

- Distances / lengths
- Speed / time
- Costs

Cost(G) = sum of edge costs

Find a shortest / least-expensive subgraph with a given property

Graph Representation



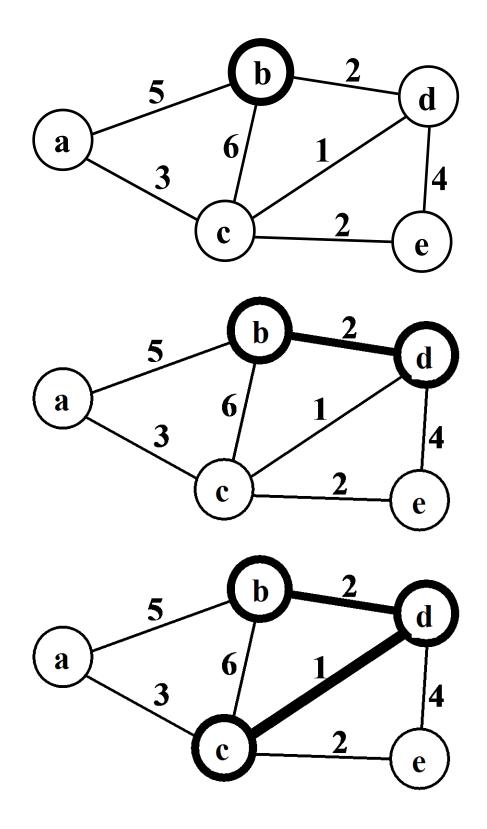
Adjacency list:

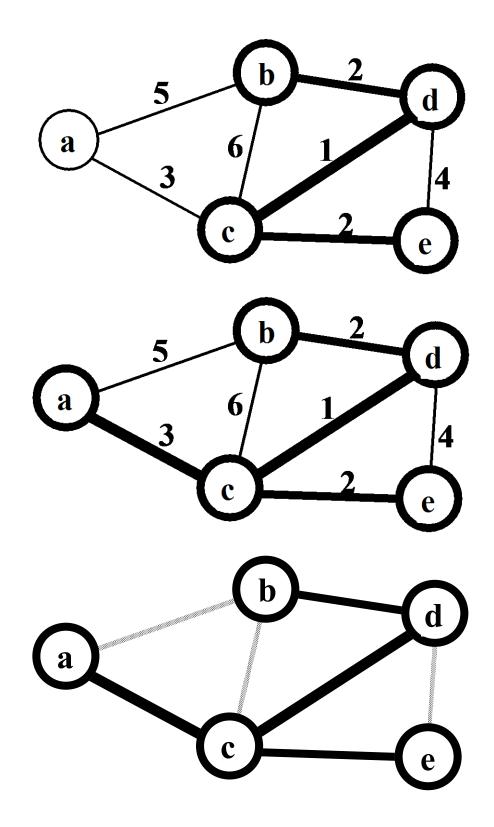
- 1: (a) \rightarrow b \rightarrow c 2: (b) \rightarrow a \rightarrow d 3: (c) \rightarrow a
- 4: (d) \rightarrow b

Adjacency matrix:

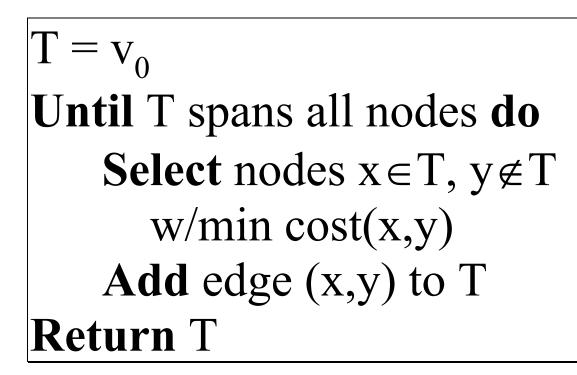
	a	b	C	d
а	0	1	1	0
b	1	0	0	1
С	1	0	0	0
d	0	1	0	0

Minimum Spanning Trees



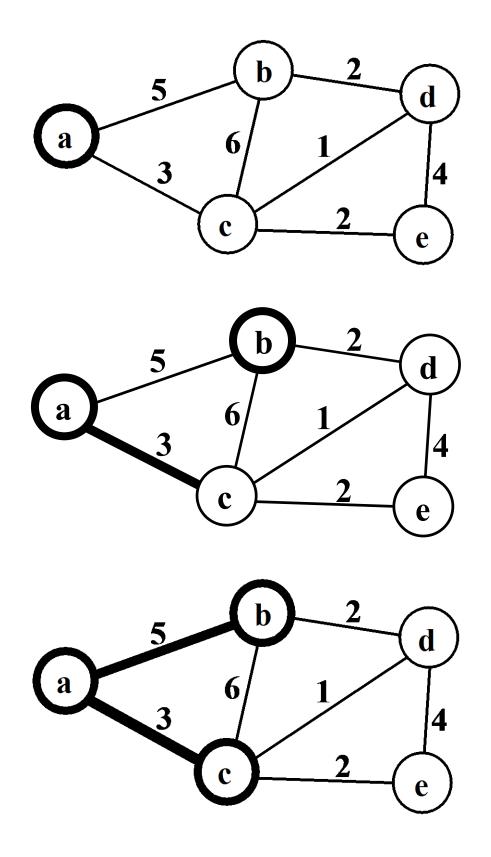


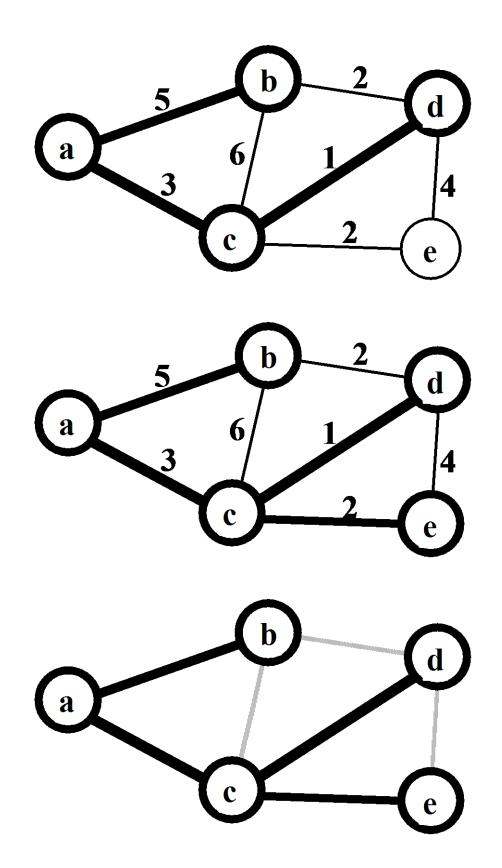
Prim's MST Algorithm



- Time complexity: O(E log E)
- Kruskal: O(E log V)
- Fibonacci heaps: O(E+VlogV)

Shortest Paths Trees





Dijkstra's Single-Source Shortest paths Algorithm

$T = v_0$ Until T spans all nodes do Select nodes x∈T, y∉T w/min cost(x,y) + dist(v_0,x) Add edge (x,y) to T Return T

- Time complexity: $O(V^2)$
- All pairs: $O(V^3)$

Cost-Radius Tradeoffs

Cong, Kahng, Robins, Sarrafzadeh, and Wong, <u>Provably Good</u> <u>Performance-Driven Global Routing</u>, IEEE Transactions on Computer-Aided Design, Vol 11, No. 6, June 1992, pp. 739-752.

Signal delay $\uparrow \Rightarrow$ Performance \downarrow

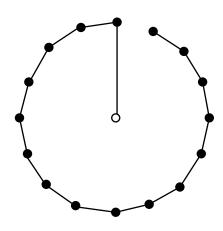
• Source \rightarrow sink pathlength \propto delay

 \Rightarrow Avoid long paths

• Capacitive delay / building cost

 \Rightarrow Minimize total wirelength

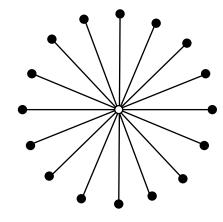
Possible Trees

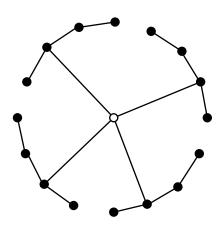


MST:

SPT:

?

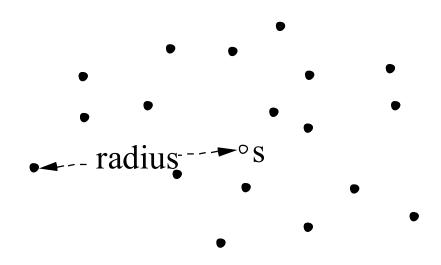




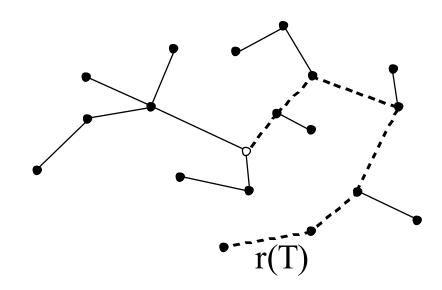
Definitions

Input: pointset with distinguished source

ptset radius R: max source-sink dist



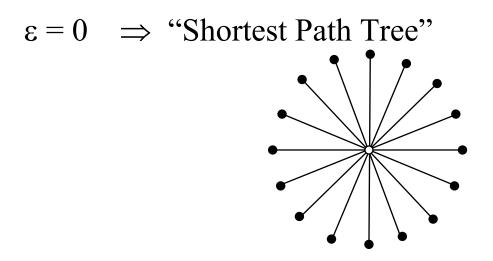
tree radius: max source-sink pathlength



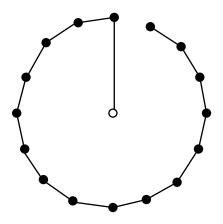
Problem Formulation

Given a pointset P, $\epsilon \ge 0$, find min-cost tree T with r(T) $\le (1+\epsilon) \cdot R$

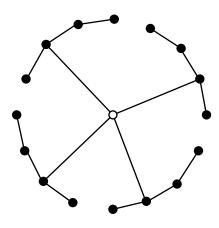
Tradeoff: ε trades off <u>radius</u> and <u>tree cost</u>



 $\varepsilon = \infty \implies$ Minimum Spanning Tree



Arbitrary $\varepsilon \Rightarrow$ hybrid construction



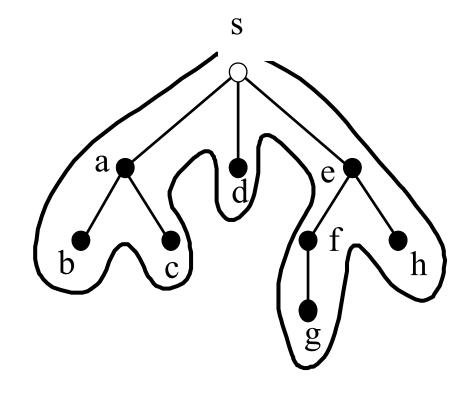
• Unifies Prim and Dijkstra!

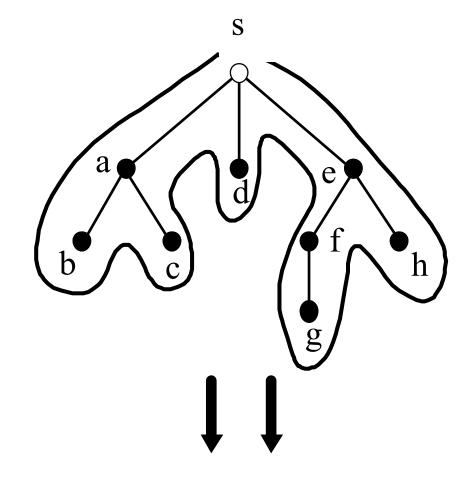
Bounded Radius MSTs

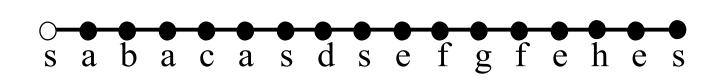
Goal: cost \approx cost(MST)

radius \approx r(SPT)

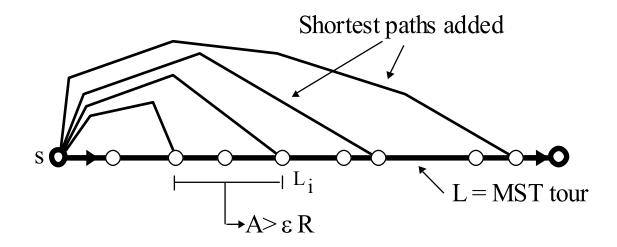
- Let Q = MST
- Let L be tour of MST:



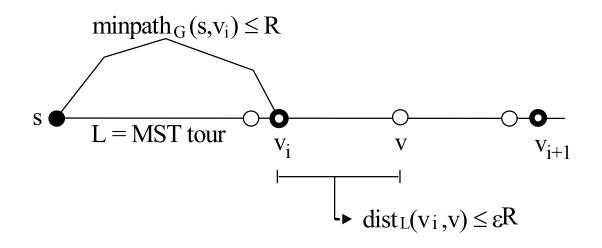




- Traverse L
- A = running total of edge costs
- If $A > \varepsilon \cdot R$ Then A = 0 $Q = Q \cup \text{minpath}_G(s, L_i)$



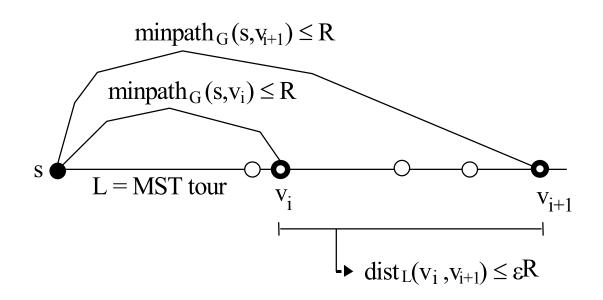
• Final **routing** tree is SPT_Q



$$dist_{T}(s,v) \leq dist_{G}(s,v_{i}) + dist_{L}(v_{i},v)$$

$$\leq \mathbf{R} + \boldsymbol{\varepsilon} \cdot \mathbf{R} = (1 + \boldsymbol{\varepsilon}) \cdot \mathbf{R}$$

$$\Rightarrow$$
 r(T) $\leq (1 + \varepsilon) \cdot R$



$$cost(T) \le cost(MST_G) + \frac{cost(L)}{\epsilon \cdot R} \cdot R$$

$$= \cot(MST_G) + \frac{2 \cdot \cot(MST_G)}{\epsilon}$$

$$= (1 + \frac{2}{\varepsilon}) \cdot \operatorname{cost}(MST_G)$$

$$\Rightarrow \operatorname{cost}(T) \le (1 + \frac{2}{\epsilon}) \cdot \operatorname{cost}(MST_G)$$

Bounded Radius MST Algorithm

```
Compute MST_G and SPT_G

E' = edges of MST_G

Q = (V,E')

L = depth-first tour of <math>MST_G

A = 0

For i = 2 to |L|

A = A + cost(L_{i-1}, L_i)

If A > \epsilon \cdot R Then

E' = E' \cup minpath_G(s, L_i)

A=0

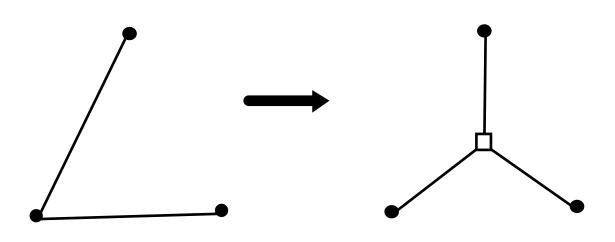
T = SPT_Q
```

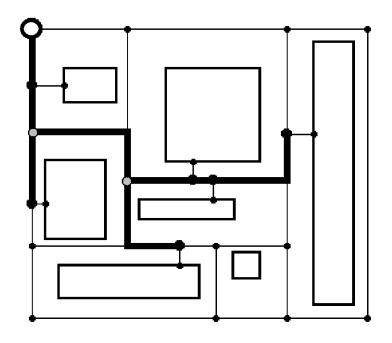
Input: G=(V,E), source s, radius R, $0 \le \varepsilon$

Output:
$$T = \text{routing tree with}$$

 $\cot(T) \le (1 + \frac{2}{\epsilon}) \cdot \cot(MST_G)$
 $r(T) \le (1 + \epsilon) \cdot R$

Steiner Trees





Bounded Radius Steiner Trees

Given weighted graph G=(V,E), node subset N, source $s \in N$, and $0 \le \epsilon$, find min-cost tree T spanning N, with $r(T) \le (1+\epsilon) \cdot r(N)$

• NP-complete

Bounded Radius Steiner Trees

• Can use *any* low-cost spanning tree

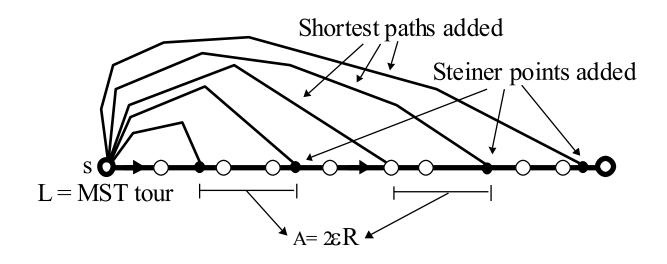
• Use [KMB, 1981] to span N (cost $\leq 2 \cdot \text{opt}$)

• Run previous algorithm

$$\Rightarrow \cot(T) \le 2 \cdot (1 + \frac{2}{\epsilon}) \cdot \operatorname{opt}$$

Geometry Helps

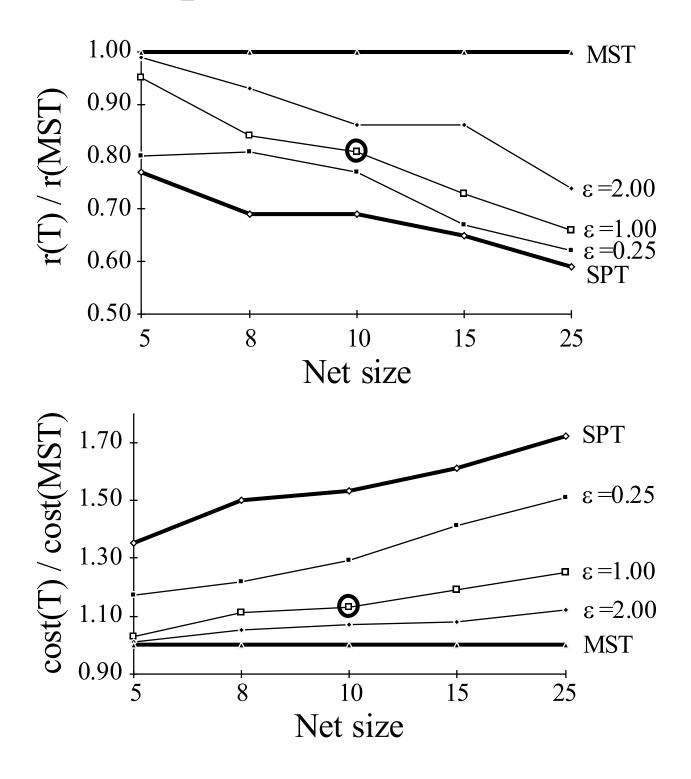
• Add Steiner points when $A = 2\varepsilon \cdot R$



• Use bounds on MST/Steiner ratio

Tree type	Graph type	Radius bound	Cost bound
spanning	arbitrary	$(1+\varepsilon)\cdot R$	$(1+2/\varepsilon)$ ·MST
Steiner	arbitrary	$(1+\varepsilon)\cdot R$	$2 \cdot (1+2/\varepsilon) \cdot \text{opt}$
Steiner	Manhattan	$(1+\varepsilon)\cdot \mathbf{R}$	$\frac{3}{2}(1+1/\varepsilon)$ ·opt
Steiner	Euclidean	$(1+\varepsilon)\cdot \mathbf{R}$	$\frac{2}{\sqrt{3}} \cdot (1+1/\varepsilon) \cdot \text{opt}$

Experimental Results

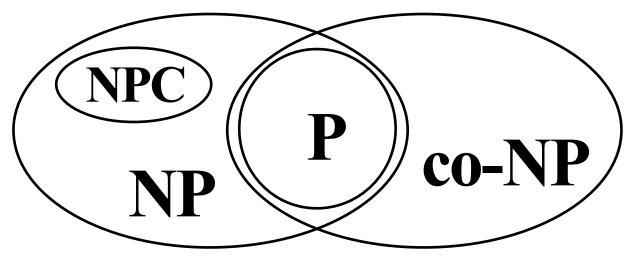


NP-Completeness

- Tractability
- Polynomial time
- Computation vs. verification
- Non-determinism
- Encodings
- Transformation & reducibilities
- P vs. NP
- "completeness"

A problem L is NP-hard if:

- 1) all problems in NP reduce to L in polynomial time.
- <u>A problem L is NP-complete if:</u>
- 1) L is NP-hard; and
- 2) L is in NP.
- One NPC problem is in $P \Rightarrow P=NP$



Open question: is P=NP ?

Satisfiability

<u>SAT</u>: is a given n-variable boolean formula (in CNF) satisfiable?

CNF (Conjunctive Normal Form): i.e., product-of-sums "satisfiable" \Rightarrow can be made "true"

Ex: $(x+y)(\overline{x}+z)$ is satisfiable

 $(x+z)(\overline{x})(\overline{z})$ is not satisfiable

<u>3-SAT</u>: is a given n-var boolean formula (in 3-CNF) satisfiable?

3-CNF: three literals per clause

Ex: $(x_1 + x_5 + x_7)(x_3 + \overline{x}_4 + \overline{x}_5)$

Cook's Theorem

Thm: SAT is NP-complete [Cook 1971]

<u>Pf idea</u>: given a non-deterministic polynomial-time TM M and input w, construct a CNF formula that is satisfiable iff M accepts w.

Use variables:

- $q[i,k] \Rightarrow$ at step i, M is in state k
- h[i,k] ⇒ at step i, read-write head scans tape cell k
- $s[i,j,k] \Rightarrow at step i, tape cell j$ contains symbol Σ_k
- M always halts in polynomial time \Rightarrow # of variables is polynomial

Clauses for necessary restrictions:

• At each time i:

M is in <u>exactly</u> 1 state r/w head scans <u>exactly</u> 1 cell all cells contain <u>exactly</u> 1 symb

- Time $0 \Rightarrow$ initial state
- Time $P(n) \Rightarrow$ final state
- Transitions from time i to time i+1 obey M's transition function

Resulting formula is satisfiable iff M accepts w.

<u>Thm</u>: 3-SAT is NP-complete

<u>Pf idea</u>: convert each long clause to an equivalent set of short ones:

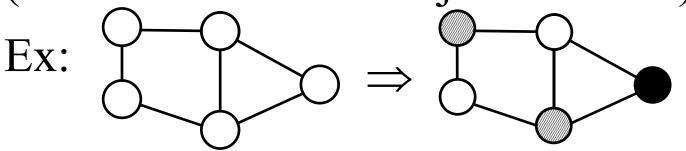
(x+y+z+u+v+w)

 $\Rightarrow (x+y+a)(\overline{a}+z+b)(\overline{b}+u+c)(\overline{c}+v+w)$

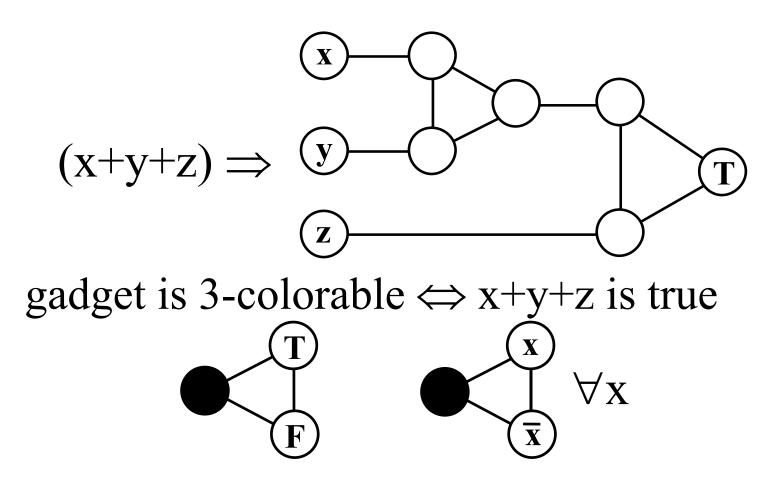
Q: is 1-SAT NP-complete?

Q: is 2-SAT NP-complete?

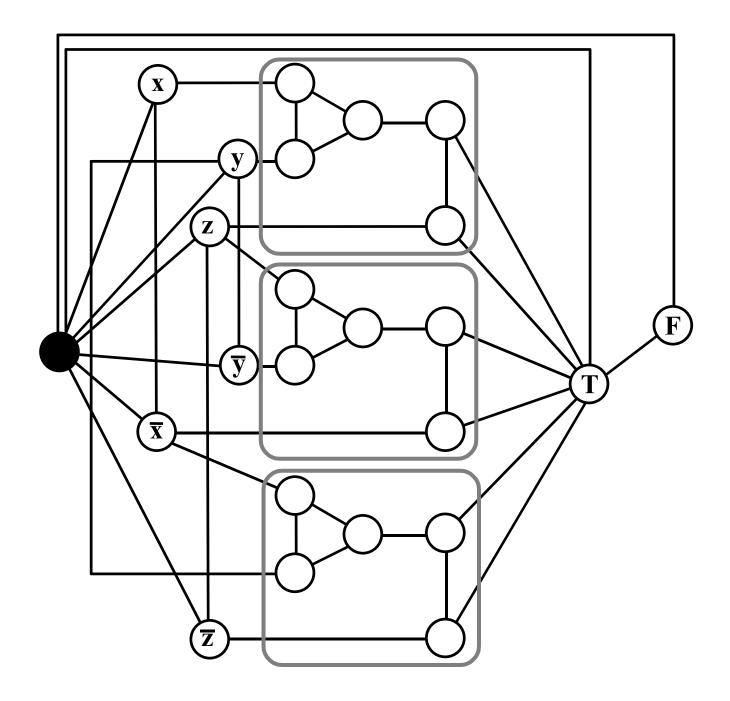
(different colors for adjacent nodes)



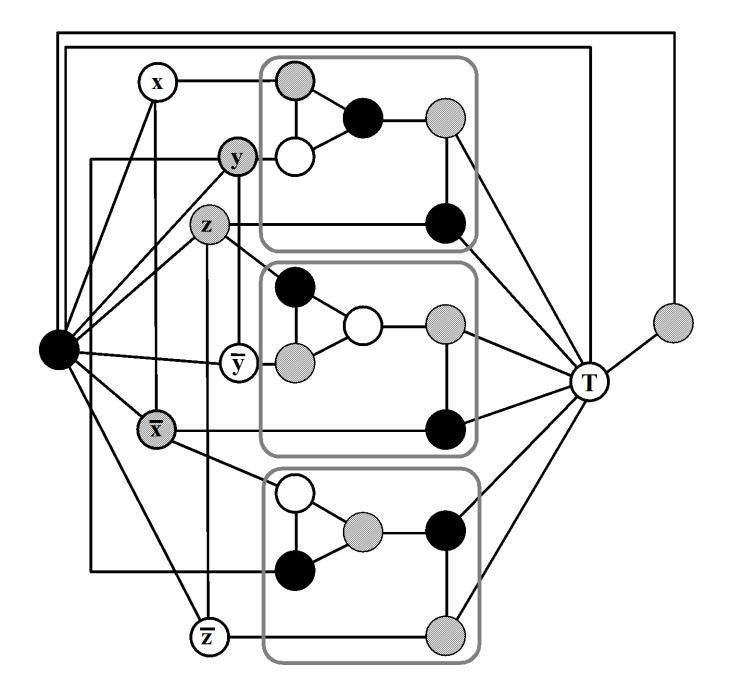
<u>Thm</u>: 3-COLORABILITY is NPC <u>Proof</u>: reduction from 3-SAT



Ex: $(x+y+z)(\overline{x}+\overline{y}+z)(\overline{x}+y+\overline{z})$



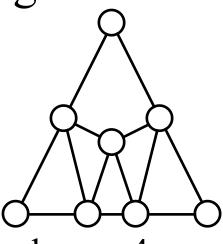
Ex (cont.): a 3-coloring:

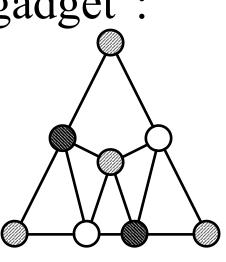


Solution \Rightarrow x=true, y=false, z=false

<u>Thm</u>: 3-COLORABILITY is NPC for graphs with max degree 4.

<u>Pf</u>: degree-reduction "gadget":



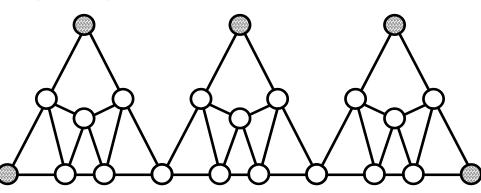


a) max degree 4

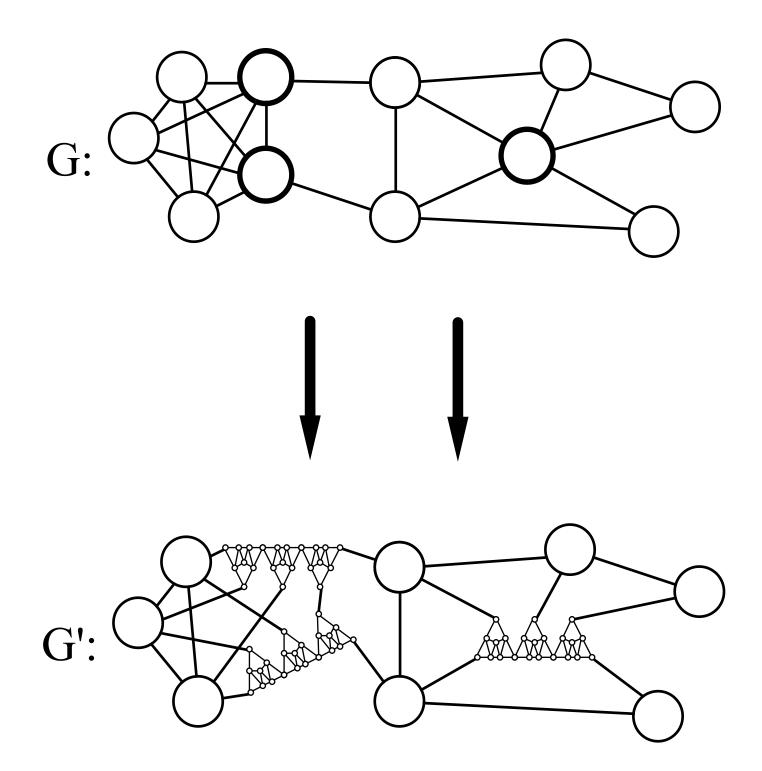
b) 3-colorable but not 2-colorable

c) all corners get same color

"Super"-gadgets:



Use these "fanout" components to reduce node degrees to 4 or less

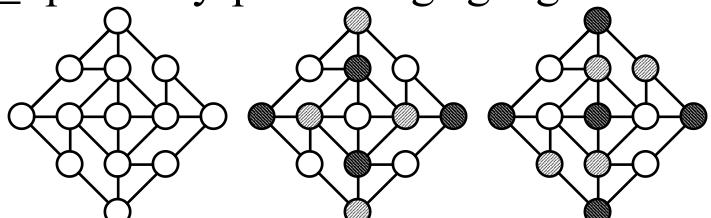


G is 3-colorable \Leftrightarrow G' is 3-colorable

Q: is 3-COLORABILITY NPC for graphs with max degree 3?

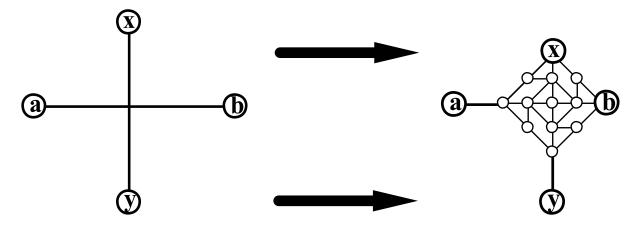
<u>Thm</u>: 3-COLORABILITY is NPC for planar graphs.

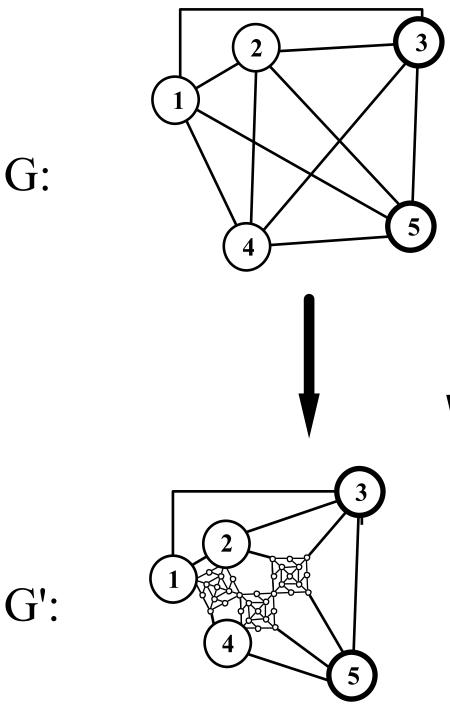
<u>Pf</u>: planarity-preserving "gadget":



a) planar and 3-colorableb) Opposite Corners get same colorc) "independence" of pairs of OC's

Use gadget to avoid edge crossings:





G is 3-colorable \Leftrightarrow G' is 3-colorable