
1

Algorithms

University of Virginia

Gabriel Robins

2

Course Outline

• Historical perspectives

 • Foundations

 • Data structures

 • Sorting

 • Graph algorithms

 • Geometric algorithms

 • Statistical analysis

 • NP-completeness

 • Approximation algorithms

3

Prerequisites

Some discrete math / algorithms knowledge

would be helpful (but is not necessary)

Textbook

Cormen, Leiserson, Rivest, and Stein, Introduction to

Algorithms, Third Edition, McGraw-Hill, 2009.

4

Suggested Reading

Polya, How to Solve it, Princeton University Press, 1957.

Preparata and Shamos, Computational Geometry, an

Introduction, Springer-Verlag, 1985.

Miyamoto Musashi, Book of Five Rings, Overlook

Press, 1974.

“This book fills a much-needed gap.”
 - Moses Hadas (1900-1966) in a review

5

Grading scheme

 Midterm: 35%

 Final: 35%

 Project: 30%

 Extra credit: 10%

“The mistakes are all there waiting to be made.”

 - chessmaster Savielly Grigorievitch Tartakower (1887-1956)
on the game’s opening position

6

Specifics

 • Homeworks

 • Solutions

 • Extra-credit

 • In-class

 • Find mistakes

 • Office hours: after class

 • Any time

 • Email (preferred)

 • By appointment

 • Q&A posted on the Web

 • Exams: take home?

7

Contact Information

 Prof: Gabriel Robins

 Office: 406 Rice Hall

 Phone: (434) 982-2207

 EMail: robins@cs.virginia.edu

 www.cs.virginia.edu/~robins

“Good teaching is one-fourth preparation

and three-fourths theater.” - Gail Godwin

8

Good Advice

 • Ask questions ASAP

 • Do homeworks ASAP

 • Do not fall behind

 • “Cramming” won’t work

 • Start on project early

 • Attend every lecture

 • Read Email often

 • Solve lots of problems

9

Basic Questions/Goals

Q: How do you solve problems?

 Proof techniques

Q: What resources are needed to

 compute certain functions?

 Time / space / “hardware”

Q: What makes problems hard/easy?

 Problem classification

Q: What are the fundamental

 limitations of algorithms?

 Computability / undecidability

10

Historical Perspectives

• Euclid (325BC – 265BC)

 “Elements”

• Rene Descartes (1596-1650)

 Cartesian coordinates

• Pierre de Fermat (1601-1665)

 Fermat’s Last Theorem

• Blaise Pascal (1623-1662)

 Probability

• Leonhard Euler (1707-1783)

 Graph theory

11

• Carl Friedrich Gauss (1777-1855)

 Number theory

• George Boole (1815-1864)

 Boolean algebra

• Augustus De Morgan (1806-1871)

 Symbolic logic, induction

• Ada Augusta (1815-1852)

 Babbage’s Analytic Engine

• Charles Dodgson (1832-1898)

 Alice in Wonderland

• John Venn (1834-1923)

 Set theory and logic

12

• Georg Cantor (1845-1918)

 Transfinite arithmetic

• Bertrand Russell (1872-1970)

 “Principia Mathematica”

• Kurt Godel (1906-1978)

 Incompleteness

• Alan Turing (1912-1954)

 Computability

• Alonzo Church (1903-1995)

 Lambda-calculus

• John von Neumann (1903-1957)

 Stored program

13

• Claude Shannon (1916-2001)

 Information theory

• Stephen Kleene (1909-1994)

 Recursive functions

• Noam Chomsky (1928-)

 Formal languages

• John Backus (1924-)

 Functional programming

• Edsger Dijkstra (1930-2002)

 Structured programming

• Paul Erdos (1913-1996)

 Combinatorics

14

Symbolic Logic

 Def: proposition - statement

 either true (T) or false (F)

 Ex: 1+1=2

 2+2=3

 “today is Monday”

 “what time is it?”

 x + 4 = 5



15

Boolean Functions

 • “and” ^

 • “or” 

 • “not” ¬

 • “xor” 

 • “nand” 

 • “nor” 

 • “implication”  

 • “equivalence”  

16

 • “not” ¬


 “negation”



 Truth table:

p ¬p

T FF

F TT

 Ex: let p=“today is Monday”

 ¬p =“today is not Monday”

17

• “and” 


 “conjunction”



 Truth table:

p q pq

T T TT

T F FF

F T FF

F F FF

 Ex: x≥0  x≤10

 (x≥0)  (x≤10)

18

 • “or” 



 “disjunction”

 Truth table:

p q pq

T T TT

T F TT

F T TT

F F FF

 Ex: (x≥7)  (x=3)

 (x=0)  (y=0)

19

 • “xor” 

 “exclusive or”

 Truth table:

p q pq

T T FF

T F TT

F T TT

F F FF

 Ex: (x=0)  (y=0)

 “it is midnight”  “it is sunny”

20

Logical Implication

• “implies” 

 Truth table:

p q pq

T T TT

T F FF

F T TT

F F TT

 Ex: (x≤0)  (x≥0)  (x=0)

 1 < x < y  x3 < y3

 “today is Sunday”  1+1=3

21

Other interpretations of p q:

 • “p implies q”

 • “if p, then q”

 • “q only if p”

 • “p is sufficient for q”

 • “q if p”

 • “q whenever p”

 • “q is necessary for p”

22

 Logical Equivalence

• “biconditional” 


 or “if and only if” (“iff”)

 or “necessary and sufficient”

 or “logically equivalent” 


Truth table:

p q pq

T T TT

T F FF

F T FF

F F TT

Ex: p p


 [(x=0)  (y=0)]  (xy=0)

 min(x,y)=max(x,y)  x=y

23

logically equivalent () - means “has

same truth table”

Ex: pq is equivalent to (¬p)  q

 i.e., pq  (¬p)q

p q pq ¬p ¬pq

T T TT F TT

T F FF F FF

F T TT T TT

F F TT T TT

Ex: (pq)  [(pq) (qp)]

  pq  pq qp

 (pq)  [(¬p  q)  (¬q  p)]

24

 Note: pq is not equivalent to qp

Thm: (PQ) (¬Q  ¬P)

Q: What is the negation of pq?

A: ¬(pq)  ¬(¬pq)  p¬q

p q ¬q pq ¬(pq) p¬q

T T F T FF FF

T F T F TT TT

F T F T FF FF

F F T T FF FF

“Logic is in the eye of the logician.”

 - Gloria Steinem

25

Example

let p = “it is raining”

let q = “the ground is wet”

pq : “if it is raining,

 then the ground is wet”

¬q¬p : “if the ground is not wet,

 then it is not raining”

qp : “if the ground is wet,

 then it is raining”

¬(pq) : “it is raining, and

 the ground is not wet”

26

Order of Operations

 • negation first

 • or/and next

 • implications last

 • parenthesis override others

(similar to arithmetic)

Def: converse of pq is qp

 contrapositive of pq is ¬q¬p

Prove: pq  ¬q¬p

27

Q: How many distinct 2-variable

Boolean functions are there?

28

 Bit Operations

¬

0 1

1 0

 0 1  0 1

0 0 0 0 0 1

1 0 1 1 1 1

 0 1  0 1

0 1 1 0 1 0

1 0 1 1 0 1

29

Bit Strings

Def: bit string - sequence of bits

Boolean functions extend to bit strings

(bitwise)

 Ex: ¬ 0100 = 1011

 0100  1110 = 0100

 0100  1110 = 1110

 0100  1110 = 1010

 0100 1110 = 1111

 0100 1110 = 0101

30

Proposition types

Def: tautology: always true

 contingency: sometimes true

 contradiction: never true

 Ex: p¬p is a tautology

 p¬p is a contradiction

 p¬p is a contingency

p ¬p p¬p p¬p p¬p

T F TT FF FF

F T TT FF TT

31

Logic Laws

Identity:

 pT  p

 pF  p

Domination:

 pT  T

 pF  F

Idempotent:

 pp  p

 pp  p

32

Logic Laws (cont.)

Double Negation:

 ¬(¬p)  p

Commutative:

 pq  qp

 pq  qp

Associative:

 (pq)r  p(qr)

 (pq)r  p(qr)

33

Logic Laws (cont.)

Distributive:

 p  (qr)  (pq)  (pr)

 p  (qr)  (pq)  (pr)

De Morgan’s:

 ¬(pq)  ¬p  ¬q

 ¬(pq)  ¬p  ¬q

Misc:

 p¬p  T

 p¬p  F

 (pq)  (¬pq)

34

 Example

Simplify the following:

 (pq)  (pq)

35

 Predicates

Def:predicate - a function or formula

involving some variables

Ex: let P(x) = “x > 3”

 x is the variable

 “x>3” is the predicate

 P(5)

 P(1)

Ex: Q(x,y,z) = “ x
2
+y

2
=z

2
”

 Q(2,3,4)

 Q(3,4,5)

36

 Quantifiers

• Universal: “for all” 

  xP(x)

  P(x1)P(x2)P(x3)

 Ex: xx < x + 1

 xx < x
3

• Existential: “there exists” 

  xP(x)

  P(x1)P(x2)P(x3) ...

 Ex: x xx2

 x x < x - 1

 Combinations:

x y  y>x

37

Examples

• x y  x+y=0

• y x  x+y=0

• “every dog has his day”:

 d y H(d,y)

• Lim ƒ(x) = L

xa

 x (0<|x-a|<|ƒ(x)-L|<)

38

Examples (cont.)

• n is divisible by j (denoted n|j):

 n|j  kZ n=kj

• m is prime (denoted P(m)):

 P(m) iZ (m|i) imi1

• “there is no largest prime”

 p qZ (q>p)  P(q)

 p qZ (q>p) 

[iZ q|i) iqi1

 p qZ (q>p) 

[iZ kZ q=ki iqi1

39

Negation of Quantifiers

Thm: ¬(x P(x))  x ¬P(x)

Ex: ¬ “all men are mortal”

  “there is a man who is not mortal”

Thm: ¬(x P(x))  x ¬P(x)

Ex: ¬ “there is a planet with life on it”

 “all planets do not contain life”

Thm: ¬xy P(x,y)xy ¬P(x,y)

Ex: ¬ “there is a man that exercises every day”

 “every man does not exercise some day”

Thm: ¬xy P(x,y)xy ¬P(x,y)

Ex: ¬ “all things come to an end”

 “some thing does not come to any end”

40

Quantification Laws

Thm: x (P(x)  Q(x))

  (x P(x))  (x Q(x))

Thm: x (P(x)  Q(x))

  (x P(x)) (x Q(x))

Q: Are the following true?

 x (P(x)Q(x))

 x P(x))  (x Q(x))

 x (P(x)Q(x))

 x P(x))  x Q(x))

41

More Quantification Laws

• x Q(x))  P x (Q(x) P)

• x Q(x))  Px (Q(x)  P)

• x Q(x))  Px (Q(x)  P)

• x Q(x))  Px (Q(x)  P)

42

Unique Existence

Def: x P(x) means there exists a

unique x such that P(x) holds

Q: Express x P(x) in terms of the

other logic operators

A:

43

Mathematical Statements

 Definition

 Lemma

 Theorem

 Corollary

Proof Types

 Construction

 Contradiction

 Induction

 Counter-example

 Existence

 …

44

Sets

Def: set - an unordered collection of

elements

 Ex: {1, 2, 3} or {hi, there}

Venn Diagram:

Def: two sets are equal iff they contain

the same elements

 Ex: {1, 2, 3} = {2, 3, 1}

 {0}  {1}

 {3, 5}  {3, 5, 3, 3, 5}

S
x

45

• Set construction:

 | or means “such that”

 Ex: {k | 0<k<4}

 {k | k is a perfect square}

• Set membership:  

 Ex: 7 {p | p prime}

 q {0, 2, 4, 6,...}

• Sets can contain other sets

 Ex: {2, {5}}

 {{{0}}}  {0}  0

 S = {1, 2, 3, {1}, {{2}}}

46

Common Sets

Naturals: N = {1, 2, 3, 4, ...}

Integers: Z = {..,-2, -1, 0, 1, 2,..}

Rationals: Q = {
a

b
 | a,b, b0}

Reals:  = {x | x a real #}

Empty set: Ø = {}

Z
+

 = non-negative integers


-
= non-positive reals, etc.

47

Multisets

Def: a set w/repeated elements allowed

(i.e., each element has “multiplier”)

Ex: {0, 1, 2, 2, 2, 5, 5}

For multisets: {3, 5}  {3, 5, 3, 3, 5}

Sequences

Def: ordered list of elements

Ex: (0, 1, 2, 5) “4-tuple”

 (1,2)  (2,1) “2-tuple”

48

Subsets

• Subset notation: 

 S T  (xS  xT)

• Proper subset: 


 S T  ((S T) ^ (ST))


 S=T  ((T S) ^ (S T))


  S Ø S


  S S S

49

• Union: 

 ST={x | xS  xT}

• Intersection: 

 ST={x | xS  xT}

50

• Set difference: S - T

 S - T= {x | xS  xT}

• Symmetric difference: ST

 ST = {x | xS  xT}

 = ST - ST

S T

51

• Universal set: U (everything)
 _

• Set complement: S’ or S

 S’ = {x | xS} = U - S

• Disjoint sets: ST=Ø

S - T= S  T’

S - S = Ø

S

U

S T

52

Examples

N  Z  Q  

N  Z  Q  

x x ≤ x2+1

xyQ min(x,y)=max(x,y)  x=y


+
 

-
 = 


+
 

-
 = {0}

53

Set Identities

• Identity:

 S  Ø = S

 S  U = S

• Domination:

 S  U = U

 S  Ø = Ø

• Idempotent:

 S  S = S

 S  S = S

• Complementation:

 (S’)’ = S

54

Set Identities (Cont.)

 • Commutative Law:

 ST=TS

 ST=TS

 • Associative Law:

 S(TV)= (ST)V

 S(TV) = (ST)V

55

Set Identities (Cont.)

• Distributive Law:

 S(TV)=(ST)(SV)

 S(TV) = (ST)(SV)

• Absorption:

S(ST)=S

 S(ST)=S

56

DeMorgan's Laws

 (ST)' = S'T'

 (ST)' = S'T'

 Boolean logic version:

 (X^Y)'=X'Y'

 (XY)'=X'^Y'

57

Generalized  and 

• Si=S1S2S3Sn

 1≤i≤n

 ={x | i 1≤i≤n  xSi}

• Si=S1S2S3Sn

 1≤i≤n

 ={x | i 1≤i≤n  xSi}

S3

S2S1

S3

S2S1

58

Set Representation

• U = {x1, x2, x3, x4,... , xn-1, xn }

Ex: S = {x1, x3, xn}

bits: 1 0 1 0 ... 0 0 1

1010000...01 encodes {x1, x3, xn}

0111000...00 encodes {x2, x3, x4}

• “or” yields union:

 1010000...01 {x1, x3, xn}

 0111000...00 {x2, x3, x4}

 1111000...01 {x1, x2, x3, x4, xn}

• “and” yields intersection:

 1010000...01 {x1, x3, xn}

 0111000...00 {x2, x3, x4}

 0010000...00 {x3}

59

• Set closure: WRT operation 

x,yS xyS

x y xy

• Ex:  is closed under addition

 since x,y x+y

Abbreviations

• WRT “with respect to”

• WLOG “without loss of

 generality”

"When ideas fail, words come in very handy."

 - Goethe (1749-1832)

60

Cartesian Product

• Ordered n-tuple: element sequence

 Ex: (2,3,5,7) is a 4-tuple

• Tuple equality:

 (a,b)=(x,y)  (a=x)  (b=y)

 Generally: (ai)=(xi)  i ai=xi

• Cross-product: ordered tuples

 ST = {(s,t) | sS, tT}

 Ex: {1, 2, 3}  {a,b}=

{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

 Generally, ST ≠ TS

61

• Generalized cross-product:

 S1 S2 ...  Sn

   = {(x1,...,xn) | xiSi, 1≤i≤n}

 Ti = TTi-1

 T1 = T

• Euclidean plane =  = 2

• Euclidean space =  = 3

• Russel’s paradox: set of all sets that

do not contain themselves:

 {S | S  S }

 Q: Does S contain itself??

62

Functions

 • Function: mapping ƒ:ST

 Domain S

 Range T

 k-ary: has k “arguments”

 Predicate: with range = {true, false}

S
T

ƒ(x)
x

ƒ

63

Function Types

• One-to-one function: “1-1”

 a,bS ^ ab  ƒ(a)ƒ(b)

 Ex: ƒ:, f(x)=2x is 1-1

 g(x)=x2 is not 1-1

• Onto function:

  t T  sS  ƒ(s)=t

 Ex: ƒ:, f(x)=13-x is onto

 g(x)=x2 is not onto

64

1-to-1 Correspondence

• 1-to-1 correspondence: ƒ:ST


  ƒ is both 1-1 and onto



Ex: ƒ:  ƒ(x)=x (identity)

 h: NZ  h(x)=
x-1

2
 , x odd,

-x

2
 , x even.

S
T

t
s

ƒ

65

• Inverse function:

 ƒ:ST  ƒ
-1

:TS

 ƒ
-1

(t)=s if ƒ(s)=t

 Ex: ƒ(x)=2x ƒ
-1

(x)=x/2

• Function composition:

 :ST:TV

  ( • )(x)=((x))

 ( • ):SV

 Ex: (x)=x+1 (x)=x
2

 ( • )(x)= x
2
 + 2x + 1

66

Thm: (ƒ•ƒ
-1

)(x) = (ƒ
-1

•ƒ)(x) = x

67

Set Cardinality

• Cardinality: |S| = #elements in S

Ex: |{a,b,c}|=3

 |{p | p prime < 9}| = 4

 |Ø|=0

 |{{1,2,3,4,5}}| = ?

 • Powerset: 2S = set of all subsets

 2S ={T | T  S}

 Ex: 2
{a,b}

= {{},{a},{b},{a,b}}

Q: What is 2
Ø

?

68

Theorem: |2S|=2|S|

Proof:

“Sometimes when reading Goethe, I have the

paralyzing suspicion that he is trying to be funny.”

- Guy Davenport

69

Generalized Cardinality

• S is at least as large as T:

 |S||T|  ƒ:ST, ƒ onto

 i.e., “S covers T”

 Ex: r:Z, r(x)=round(x)

 ||||

• S and T have same cardinality:

 |S|=|T|  |S||T| ^ |T||S|

or

 1-1 correspondence ST

• Generalizes finite cardinality:

{1, 2, 3, 4, 5}  {a, b, c}

70

Infinite Sets

• Infinite set: |S| > k kZ

or

   1-1 corres. ƒ:ST, ST

 Ex: {p | p prime}, 

• Countable set: |S|  |N|

 Ex: Ø, {p | p prime}, 

• S is strictly smaller than T:

 |S| < |T| |S||T| ^ |S||T|

• Uncountable set: |N| < |S|

 Ex: |N| < 

|N| < [0,1] = {x | x, x}

71

Thm:  1-1 correspondence QN
Pf (dove-tailing):

 • • • • • •

 • • • • • •

 • • • • • •

1

6

2

6

3

6

4

6

5

6

6

6
 ...

1

5

2

5

3

5

4

5

5

5

6

5
 ...

1

4

2

4

3

4

4

4

5

4

6

4
 ...

1

3

2

3

3

3

4

3

5

3

6

3
 ...

1

2

2

2

3

2

4

2

5

2

6

2
 ...

1

1

2

1

3

1

4

1

5

1

6

1
 ...

72

Thm: ||>|N|

Pf (diagonalization):

 Assume  1-1 corres. ƒ:N

 Construct x  :

 ƒ(1)=2. 18281828... 

 ƒ(2)=1.4 4213562... 

 ƒ(3)=1.61 033989... 

 x = 0. ...ƒ(K) KN

 ƒ not a 1-1 correspondence

 contradiction

  is uncountable

73

Q: Is || 

74

Q: Is || > |[0,1]| ?

75

Thm: any set is "smaller" than its powerset.

 |S| < |2S|

76

Infinities

 • |N| = 0

 • || = 1

 • 0 < 1 = 20

 • “Continuum Hypothesis”

 ?   0 <  < 1

 Independent of the axioms!

 [Cohen, 1966]

 • Axiom of choice [Godel 1938]

 • Parallel postulate

77

Infinity Hierarchy

• i < i+1 = 2i

 0, 1, 2,..., k, k+1,...,0,

   1, 2,..., k, k+1,...,

    0
, 1

,..., k
, k+1

,...

• First inaccessible infinity: 

For an informal account on infinities, see e.g.:

Rucker, Infinity and the Mind, Harvester Press, 1982.

78

Thm: # algorithms is countable.

Pf: sort programs by size:

 "main(){}"
 •

 •

 "main(){int k; k=7;}"
 •

 •

 "<all of UNIX>"
 •

 •

 “<Windows XP>"
 •

 •

 "<intelligent program>"
 •

 •

 # algorithms is countable!

79

Thm: # of functions is uncountable.

Pf: consider 0/1-valued functions

(i.e., functions from N to {0,1}):


{(1,0), (2,1), (3,1), (4,0), (5,1), ...}


 { 2, 3, 5, ...}2N

So, every subset of N corresponds to a

different 0/1-valued function



|2N| is uncountable (why?)

# functions is uncountable!

80

Thm: most functions are uncomputable!

Pf: # algorithms is countable

 # functions is not countable

 more functions than

 algorithms / programs!

 some functions do not have

algorithms!

Ex: The halting problem

Given a program P and input I,

does P halt on I?

Def: H(P,I) = 1 if P halts on I

 0 otherwise

81

The Halting Problem

H: Given a program P and input I,

does P halt on I? i.e., does P(I)

Thm: H is uncomputable

Pf: Assume subroutine S solves H.

 Construct:

S
P

I

S'

yes

no yes



P(I)?

SP

I

yes

noP(I)?

82

 Analyze:

S
P

I

S'

yes

no yes



P(I)?

 S'(S') S'(S')

 S'(S') S'(S')



 so, S'(S')S'(S')

 a contradiction!

S does not correctly compute H

But S was an arbitrary subroutine, so

 H is not computable!

83

Discrete Probability

Sample space: set of possible outcomes

Event E: subset of sample space S

Probability p of an event: |E| / |S|

• 0 ≤ p ≤ 1

• p(not(E)) = 1 - p(E)

• p(E1E2) = p(E1) + p(E2) - p(E1E2)

Ex: two dice yielding total of 9

 E={(3,6),(4,5),(5,4),(6,3)}

 S={1,2,3,4,5,6}{1,2,3,4,5,6}

 p(E) = |E|/|S| = 4/36 = 1/9

84

General Probability

Outcome xi is assigned probability p(xi)

• 0 ≤ p(xi) ≤ 1

• ∑ p(xi) = 1

• E = {a1,a2,...,am} p(E) = ∑ p(ai)

• p(not(E)) = 1 - p(E)

• p(E1E2) = p(E1)+p(E2) - p(E1E2)

Conditional Probability

p(E | F) = probability of E given F

p(EF) = p(F) p(E | F)

85

Ex: what is the probability of two

siblings being both male, given that

one of them is male?

Let (x,y) be the two siblings

Sample space: {(m,m),(m,f),(f,m),(f,f)}

Let E = both are male

 = {(m,m)}

Let F = at least one is male

 = {(m,m),(m,f),(f,m)}

EF = {(m,m)}

 = both are male

p(EF) = p(F) p(E | F)

p(E | F) = p(EF) / p(F)

 = (1/4) / (3/4) = 1/3

86

Relations

Relation: a set of “ordered tuples”

Ex: {(a,1),(b,2), (b,3)}

 “<” {(x,y) | x,yZ, x<y}

 Reflexive: xx x

 Symmetric: xy  yx

 Transitive: xy ^ yz  xz

 Antisymmetric: xy  ¬(yx)

 Ex:  is reflexive

 transitive

not symmetric

87

Equivalence Relations

Def: reflexive, symmetric, & transitive

 Ex: standard equality “=”

 x=x

 x=y  y=x

 x=y ^ y=z  x=z

Partition - disjoint equivalence classes:

88

Closures

• Transitive closure of  TC


 smallest superset of satisfying


xy ^ yz  xz

 Ex“predecessor”

 {(x-1,x) | xZ}


 TC(predecessor) is “<” relation



• Symmetric closure of 


 smallest superset of satisfying


xy  yx

89

 Algorithms

• Existence

• Efficiency

Analysis

 • Correctness

 • Time

 • Space

 • Other resources

Worst case analysis

(as function of input size |w|)

Asymptotic growth:

90

Upper Bounds

f(n) g(n)c,k > 0

  |f(n)|  c|g(n)|  n>k





 Lim f(n) / g(n) exists
 n

 “f(n) is big-O of g(n)”

Ex: n = O(n2)
 

 33n+17 = O(n)

 n8-n7 = O(n123)

 n100 = O(2n)

 213 = O(1)

91

Lower Bounds

f(n)g(n)g(n)=f(n)


 Lim g(n) / f(n) exists
 n

 “f(n) is Omega of g(n)”


Ex: 100n = (n)
 

 33n+17 = (log n)

 n8-n7 = (n8)

 213 = (1/n)

 1= (213)

92

Tight Bounds

f(n) g(n)

f(n)g(n)^g(n)f(n)

“f(n) is Theta of g(n)”
 

Ex: 100n = (n)
 

 33n+17 + log n = (n)
 

 n8-n7-n-13 = (n8)
 

 213 = (1)

 3+cos(2n) = (1)

93

Loose Bounds

f(n) g(n)

f(n)g(n)^ f(n)g(n)
 

Lim f(n)/g(n)  0
 n

 “f(n) is little-o of g(n)”

Ex: 100n = (n log n)
 

 33n+17 + log n = (n2)

 n8-n7-n-13 = (2n)

 213 = (log n)

 3+cos(2n) = (n)

94

Growth Laws

Let f1(n)=O(g1(n)) and

f2(n)=O(g2(n))

Thm: f1(n) + f2(n)

 = O(max(g1(n),g2(n)))

Thm: f1(n) • f2(n)

 = O(g1(n) • g2(n))

Thm: nk = O(cn)  c,k>0

Ex: n1000 = O(1.001n)

95

Recurrences

 T(n) = a•T(n/b) + f(n)

 let c = log
b
a

Thm:

 f(n)=O(nc-) T(n)=(nc)
 f(n)=(nc) T(n)=(nc log n)

 f(n)=(nc+) ^ a•f(n/b) ≤ d•f(n)

  d<1, n>n
0
 T(n)=(f(n))

Ex: T(n) = 9T(n/3)+n T(n)=(n2)

T(n) = T(2n/3)+1 T(n)=(log n)

96

Pigeon-Hole Principle

If N+1 objects are placed into N boxes

  a box with 2 objects.

If M objects are placed into N boxes &

M>N   box withM
N
objects.

 Useful in proofs & analyses

97

Stirling's Formula

n! = 1•2•3• . . . •(n-2)•(n-1)•n

n! = 2n • (n

e
)n

• (1 + (1

n
))

n!  (n

e
)n

log(n!) = O(n log n)

 Useful in analyses and bounds

98

Data Structures

 • What is a "data structure"?

 • Operations:

 • Initialize

 • Insert

 • Delete

 • Search

 • Min/max

 • Successor/Predecessor

 • Merge

99

Arrays

• Sequence of "indexible" locations

• Unordered:

 • O(1) to add

 • O(n) to search

 • O(n) for min/max

• Ordered:

 • O(n) to add

 • O(log n) to (binary) search

 • O(1) for min/max

1 2 3 4 5 6 7 . . .

100

Stacks

• LIFO (last-in first-out)

• Operations: push/pop (O(1) each)

• Can not access "middle"

• Analogy: trays at Cafeteria

• Applications:

 • Compiling / parsing

 • Dynamic binding

 • Recursion

 • Web surfing

in

out

101

Queues

• FIFO (first-in first-out)

• Operations: push/pop (O(1) each)

• Can not access "middle"

• Analogy: line at your Bank

• Applications:

 • Scheduling

 • Operating systems

 • Simulations

 • Networks

in out

102

Linked Lists

• Successor pointers

• Types:

 • Singly linked

 • Doubly linked

 • Circular

• Operations:

 • Add: O(1) time

 • Search: O(n) time

 • Delete: O(1) time (if known)

103

Trees

• Parent/children pointers

• Binary/N-ary

• Ordered/unordered

• Height-balanced:

 • AVL

 • B-trees

 • Red-black

 • O(log n) worst-case time

c

b e

d fa

104

Tree Traversals

• pre-order: 1) process node

 2) visit children

  c b a e d f

• post-order: 1) visit children

 2) process node
  a b d f e c

• in-order: 1) visit left-child
 2) process node
 3) visit right-child
  a b c d e f

c

b e

d fa

105

Heaps

• A tree where all of a node’s children

have smaller “keys”

• Can be implemented as a binary tree

• Can be implemented as an array

• Operations:

 • Find max: O(1) time

 • Add: O(log n) time

 • Delete: O(log n) time

 • Search: O(n) time

106

Hash Tables

• Direct access

• Hash function

• Collision resolution:

 • Chaining

 • Linear probing

 • Double hashing

• Universal hashing

• O(1) average access

• O(n) worst-case access

Q: How can worst-case access time be

improved to O(log n)?

107

Sorting

Fact: almost half of all CPU

 cycles are spent on sorting!!

• Input: array X[1..n] of integers

 Output: sorted array

• Decision tree model

Thm: Sorting takes (n log n) time

Pf: n! different permutations

decision tree has n! leaves

tree height is: log(n!)

 > log((n/e)n)

 = (n log n)

108

Sort Properties

 • Worst case?

 • Average case?

 • In practice?

 • Input distribution?

 • Randomized?

 • Stability?

 • In-Situ?

 • Stack depth?

 • Internal vs. external?

109

• Bubble Sort:

 For k=1 to n

 For i=1 to n-1

 If X[i+1]>X[i]

 Then Swap(X,i,i+1)

 (n2) time

• Insertion Sort:

 For i=1 to n-1

 For j=i+1 to n

 If X[j]>X[i] Then Swap(X,i,j)

 (n2) time

110

• Quicksort:

 QuickSort(X,i,j)

 If i<j Then p=Partition(X,i,j)

 QuickSort(X,i,p)

 QuickSort(X,p+1,j)

 O(n log n) time (ave-case)

• C.A.R. Hoare, 1962

• Good news: usually best in practice

• Bad news: worst-case O(n2) time

• Usually avoids worst-case

• Only beats O(n2) sorts for n>40

111

• Merge Sort:

 MergeSort(X,i,j)

 if i<j then m=(i+j)/2

 MergeSort(X,i,m)

 MergeSort(X,m+1,j)

 Merge(X,i,m,j)

 T(n) = 2 T(n/2) + n

 (n log n) time

• Heap Sort:

 InitHeap

 For i=1 to n HeapInsert(X(i))

 For i=1 to n M=HeapMax

 Print(M)

 HeapDelete(M)

 (n log n) time

112

• Counting Sort:

 Assumes integers in small range 1..k

 For i=1 to k C[i]=0

 For i=1 to k C[X[i]]++

 For i=1 to k

 If C[i]>0 Then print(i) C[i] times

 (n) time (worst-case)

• Radix Sort:

 Assumes d digits in range 1..k

 For i=1 to d StableSort(X on digit i)

 O(dn+kd) time (worst-case)

113

• Bucket Sort:

 Assumes uniform inputs in range 0..1

 For i=1 to n

 Insert X[i] into Bucket n•X[i]

 For i=1 to n Bucket i

 Concat contents of Buckets 1 thru n

 O(n) time (expected)

   O() time (worst)

114

Order Statistics

• Exact comparison count

• Minimum element

 k=X[1]

 For i=2 to n

 If X[i]<k Then k = X[i]

 n-1 comparisons

Thm: Min requires n-1 comparisons.

Proof:

115

• Min and Max:

 (a) Compare all pairs

 (b) Find Min of min’s of all pairs

 (c) Find Max of max’s of all pairs

n/2+n/2+n/2 =3n/2 comparisons

Thm: Min&Max require 3n/2 comparisons.

Pf: Represent known info by four sets:

 A B C D

Initial: n 0 0 0

Final: 0 1 1 n-2

Track movement of elements between sets.

Unknown Not Min Not Max Neither

116

Effect of comparisons:

 Origin Target

 < >

 A&A C&B | B&C (1)

 A&B C&B | B&D

 A&C C&D | B&C

 A&D C&D | B&D

 B&B D&B | B&D (2)

 B&C D&D | B&C

 B&D D&D | B&D

 C&C C&D | D&C (3)

 C&D C&D | D&D

 D&D D&D | D&D

• Going from A to D forces passing through B or C

• "Emptying" A into B&C takes n/2 comparisons (1)

• "Almost emptying" B takes n/2-1 comparisons (2)

• "Almost emptying" C takes n/2-1 comparisons (3)

• Other moves will not reach the "final state" faster

• Total comparisons required: 3n/2-2

117

Problem: Find Max and next-to-Max

using least # of comparisons.

118

Selection

• Not harder than median-finding (why?)

• Randomized ith-Selection

 (return the ith-largest element in X[p..r])

 Select(X,p,r,i)

 If p=r Then Return(X[p])

 q=RandomPartition(X,p,r)

 k=q-p+1

 If i ≤ k Then Return(Select(X,p,q,i))

 Else Return(Select(X,q+1,r,i-k))

  O(n) time (ave-case)

q

p r

X

119

Deterministic ith-Selection

 [Blum, Floyd, Pratt, Rivest, Tarjan; 1973]

• Partition input into n/5 groups of 5 each

• Compute median of each group

• Compute median of medians (recursively)

• Compute median of medians (recursively)

• Eliminate 3n/10 elements & recurse on rest

T(n) = T(n/5) + T(7n/10) + O(n)

= T(2n/10) + T(7n/10) + O(n)

 T(9n/10) + O(n) since T(n)=(n)

 T(n) = O(n)

5 per group

x = median of medians

n/5 groups group

median

120

Problem: Find in O(n) time the majority

element (i.e., occurring ≥ n/2 times, if any).

a) Using "<",">","="

b) Using "=" only (i.e., no "order")

121

 Graphs

 A special kind of relation

Graphs can model:

 • Common relationships

 • Communication networks

 • Dependency constraints

 • Reachability information

+ many more practical applications!

Graph G=(V,E): set of vertices V,

and a set of edges E  VV

Pictorially: nodes & lines

122

 Undirected Graphs

Def: edges have no direction

 Example of undirected graph:

V={a,b,c,d,e}

E={(c,a),(c,b),(c,d),(c,e),

 (a,b),(b,d),(d,e)}

123

Directed Graphs

Def: edges have direction

 Example of directed graph:

V={a,b,c,d,e}

E={(a,b),(a,c),(b,c),(b,d),

 (d,c),(d,e),(c,e)}

124

Graph Terminology

Graph G=(V,E), E  VV

 node  vertex

 edge  arc

Vertices u,vV are neighbors in G iff

(u,v) or (v,u) is an edge of G

Ex: a & b are neighbors

 a & e are not neighbors

f

a

b

c e

d

125

Undirected Node Degree

Degree in undirected graphs:

Degree(v) = # of adjacent (incident)

 edges to vertex v in G

Ex: deg(c)=4 deg(f)=0

f

a

b

c e

d

126

Directed Node Degree

Degree in directed graphs:

In-degree(v) = # of incoming edges

Out-degree(v) = # of outgoing edges

Ex: in-deg(c)=3 out-deg(c)=1

in-deg(f)=0 out-deg(f)=0

a

b

c e

d

f

127

Q: Show that at any party there is an

even number of people who shook

hands an odd number of times.

128

Complete graph Kn contains all edges

i.e., E = {{u,v}VV | uv}

Q: How many edges are there in Kn?

Subgraph of G is G’=(V’,E’)

where V’V and E’E

Q: Give a (non-trivial) lower bound on

the number of graphs over n vertices.

a

b

c e

d

129

Paths in Graphs

Undirected path in a graph:

a

b

c e

d

A graph is connected iff there is a path

between any pair of nodes:

a

b

c e

d

130

Directed path in a graph:

a

b

c e

d

Graph is strongly connected iff there is

a directed path between any node pair:

Ex: connected but not strongly:

a

b

c e

d

131

A cycle in a graph:

A tree is an acyclic graph.

Tree T=(V’,E’) spans G=(V,E) if T is a

connected subgraph with V’=V

b

c e

d

a

a

b

c e

d

132

Q: How many edges are there in a

 tree over n vertices?

Q: Is the # of distinct spanning trees in

a graph G always polynomial in |G|?

133

Graph Traversals

Breadth-first search:

Depth-first search:

O(E+V) time for either BFS or DFS

Yields a spanning tree for the graph

134

Topological Sort

Given a digraph, list vertices so that all

edges point/direct to the right:

Can be done in O(E+V) time

Application: scheduling w/constraints

a

b

c e

d

a b c ed

135

Weighted Graphs

Each edge has a weight: w:EZ

Weights can model many things:

 • Distances / lengths

 • Speed / time

 • Costs

Cost(G) = sum of edge costs

Find a shortest / least-expensive

subgraph with a given property

a

b
5

3

2

c e

d

4
1

2

6

136

Graph Representation

Adjacency list:

 1: (a)  b  c

 2: (b)  a  d

 3: (c)  a

 4: (d)  b

Adjacency matrix:

 a b c d

 a          

 b 1 0 0 1

 c 1 0 0 0

 d 0 1 0 0

a

b
d

c

137

Minimum Spanning Trees

6

5

3

2

4
1

2

a

b

c e

d

138

a

b

c e

d

139

Prim’s MST Algorithm

T = v
0

Until T spans all nodes do

 Select nodes xT, yT

 w/min cost(x,y)

 Add edge (x,y) to T

Return T

• Time complexity: O(E log E)

• Kruskal: O(E log V)

• Fibonacci heaps: O(E+VlogV)

140

Shortest Paths Trees

6

5

3

2

4
1

2

a

b

c e

d

141

142

Dijkstra’s Single-Source

Shortest paths Algorithm

T = v
0

Until T spans all nodes do

 Select nodes xT, yT

 w/min cost(x,y) + dist(v
0
,x)

 Add edge (x,y) to T

Return T

• Time complexity: O(V2)

• All pairs: O(V3)

143

Cost-Radius Tradeoffs

 Cong, Kahng, Robins, Sarrafzadeh, and Wong, Provably Good

Performance-Driven Global Routing, IEEE Transactions on Computer-

Aided Design, Vol 11, No. 6, June 1992, pp. 739-752.

Signal delay  Performance 

• Source  sink pathlength  delay

   Avoid long paths

• Capacitive delay / building cost

   Minimize total wirelength

144

Possible Trees

 MST:

 SPT:

 ?

145

Definitions

Input: pointset with distinguished source

ptset radius R: max source-sink dist

tree radius: max source-sink pathlength

radius s

r(T)

146

Problem Formulation

Given a pointset P, , find min-cost tree T with r(T)

 (1+)·R

Tradeoff:  trades off radius and tree cost

 = 0  “Shortest Path Tree”

 =   Minimum Spanning Tree

147

Arbitrary  hybrid construction

 • Unifies Prim and Dijkstra!

148

Bounded Radius MSTs

Goal: cost  cost(MST)

 radius  r(SPT)

 • Let Q = MST

 • Let L be tour of MST:

s

a

b c

d
e

f

g

h

149

s

a

b c

d
e

f

g

h

a b a cs a s d s e f g f e h e s

150

• Traverse L

• A = running total of edge costs

• If A > ·R Then A = 0

 Q = Q  minpathG(s,Li)

• Final routing tree is SPTQ

L = MST tour
L i

s

Shortest paths added

A>  R

151

dist (v ,v)  RiL

s
L = MST tour

minpath (s,v)  RG i

vi+1vi v

dist
T
(s,v)  dist

G
(s,v

i
) + dist

L
(v

i
,v)

  R + ·R = (1 + )·R

  r(T)  (1 + )·R

152

dist (v ,v)  RiL

s
L = MST tour

minpath (s,v)  RG i

vi+1
v

i

i+1

minpath (s,v)  RG i+1

cost(T)  cost(MST
G
) +

cost(L)

·R
 ·R

 = cost(MST
G
) +

2·cost(MST
G

)



 = (1 +
2


)· cost(MST

G
)



  cost(T)  (1 +
2


)·cost(MSTG)

153

Bounded Radius MST Algorithm

 Compute MSTG and SPTG

 E' = edges of MSTG

 Q = (V,E')

 L = depth-first tour of MSTG

 A = 0

 For i = 2 to |L|

 A = A + cost(Li-1, Li)

 If A > ·R Then

 E' = E'  minpathG(s, Li)

 A=0

 T = SPTQ

Input: G=(V,E), source s, radius R, 0

Output: T = routing tree with

 cost(T)  (1+
2

)·cost(MSTG)

 r(T)  (1+)·R

154

Steiner Trees

155

Bounded Radius Steiner Trees

Given weighted graph G=(V,E), node subset N,

source sN, and 0, find min-cost tree T spanning N, with

r(T)  (1+)·r(N)

• NP-complete

156

Bounded Radius Steiner Trees

• Can use any low-cost spanning tree

• Use [KMB, 1981] to span N (cost  2·opt)

• Run previous algorithm

  cost(T)  2·(1+
2

)·opt

157

Geometry Helps

• Add Steiner points when A = 2·R

• Use bounds on MST/Steiner ratio

Tree type Graph type Radius bound Cost bound

spanning arbitrary (1+)·R (1+ 2/·MST

Steiner arbitrary (1+)·R 2·(1+ 2/·opt

Steiner Manhattan (1+)·R

3

2
 (1+1/ ·opt

Steiner Euclidean (1+)·R 2

3
 ·(1+1/·opt

L = MST tour
s

A= 2 R

Shortest paths added

Steiner points added

158

Experimental Results

0.50

0.60

0.70

0.80

0.90

1.00

Net size
5 10 15 258

r(
T

)
/

r(
M

S
T

)

SPT

MST

 =0.25
 =1.00

 =2.00

0.90

1.10

1.30

1.50

1.70

co
st

(T
)

/
co

st
(M

S
T

)

SPT

 =0.25

 =1.00

 =2.00

MST

Net size
5 10 15 258

159

NP-Completeness

• Tractability

• Polynomial time

• Computation vs. verification

• Non-determinism

• Encodings

• Transformation & reducibilities

• P vs. NP

• "completeness"

160

A problem L is NP-hard if:

1) all problems in NP reduce to L in

polynomial time.

A problem L is NP-complete if:

1) L is NP-hard; and

2) L is in NP.

• One NPC problem is in PP=NP

Open question: is P=NP ?

P co-NP
NP

NPC

161

Satisfiability

SAT: is a given n-variable boolean

formula (in CNF) satisfiable?

CNF (Conjunctive Normal Form):

i.e., product-of-sums

"satisfiable" can be made "true"

Ex: (x+y)(x
_
 +z) is satisfiable

 (x+z)(x
_
)(z

_
) is not satisfiable

3-SAT: is a given n-var boolean

formula (in 3-CNF) satisfiable?

3-CNF: three literals per clause

Ex: (x1+x5+x7)(x3
+x

_

4
+x

_

5)

162

Cook's Theorem

Thm: SAT is NP-complete [Cook 1971]

Pf idea: given a non-deterministic

polynomial-time TM M and input w,

construct a CNF formula that is

satisfiable iff M accepts w.

Use variables:

• q[i,k] at step i, M is in state k

• h[i,k] at step i, read-write head

 scans tape cell k

• s[i,j,k] at step i, tape cell j

 contains symbol k

M always halts in polynomial time

  # of variables is polynomial

163

Clauses for necessary restrictions:
• At each time i:

 M is in exactly 1 state

 r/w head scans exactly 1 cell

 all cells contain exactly 1 symb

• Time 0 initial state

• Time P(n) final state

• Transitions from time i to time

 i+1 obey M's transition function

Resulting formula is satisfiable iff M

accepts w.

Thm: 3-SAT is NP-complete

Pf idea: convert each long clause to an

equivalent set of short ones:
 (x+y+z+u+v+w)

(x+y+)(
_

 +z+)(
_

 +u+)(
_

 +v+w)

164

Q: is 1-SAT NP-complete?

Q: is 2-SAT NP-complete?

165

COLORABILITY: given a graph G

and integer k, is G k-colorable?

(different colors for adjacent nodes)

Ex:







Thm: 3-COLORABILITY is NPC

Proof: reduction from 3-SAT

(x+y+z) 

gadget is 3-colorable  x+y+z is true

T

F

x

x

x

z

T

x

y

166

Ex: (x+y+z)(x
_
 +y

_
 +z)(x

_
 +y+z

_
)

z

F

z

x

T

y

x

y

167

Ex (cont.): a 3-coloring:

Solution  x=true, y=false, z=false

168

Thm: 3-COLORABILITY is NPC for

graphs with max degree 4.

Pf: degree-reduction "gadget":

a) max degree 4

b) 3-colorable but not 2-colorable

c) all corners get same color

"Super"-gadgets:

Use these "fanout" components to

reduce node degrees to 4 or less

169

Ex:

G:

G':

G is 3-colorable  G' is 3-colorable

170

Q: is 3-COLORABILITY NPC for

graphs with max degree 3?

171

Thm: 3-COLORABILITY is NPC for

planar graphs.

Pf: planarity-preserving "gadget":

a) planar and 3-colorable

b) Opposite Corners get same color

c) "independence" of pairs of OC's

Use gadget to avoid edge crossings:

a b

x

y

a b

x

y

172

Ex:

G:

G':

G is 3-colorable  G' is 3-colorable

1

2 3

4
5

1

2

3

5

4

