
1 

  

 

Algorithms 
 

 

University of Virginia 

 
 

 

 
 

Gabriel Robins 
 

  



2 

Course Outline 
 

 

• Historical perspectives 
 

 • Foundations 
  

 • Data structures 
 

 • Sorting 
 

 • Graph algorithms 
 

 • Geometric algorithms 
 

 • Statistical analysis 
 

 • NP-completeness 
 

 • Approximation algorithms 
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Prerequisites 

 

Some discrete math / algorithms knowledge 

would be helpful (but is not necessary) 

 

 

Textbook 

 

Cormen, Leiserson, Rivest, and Stein, Introduction to 

Algorithms, Third Edition, McGraw-Hill, 2009. 
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Suggested Reading 
 

 

Polya, How to Solve it, Princeton University Press, 1957. 

 

Preparata and Shamos, Computational Geometry, an 

Introduction, Springer-Verlag, 1985. 

 

Miyamoto Musashi, Book of Five Rings, Overlook 

Press, 1974. 

 

 

 

 
 

“This book fills a much-needed gap.” 
 - Moses Hadas (1900-1966) in a review 
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Grading scheme 
 
 

 

   Midterm:   35% 
 

   Final:    35% 
 

   Project:   30% 
 

   Extra credit:  10% 

 

 

 
“The mistakes are all there waiting to be made.” 

 - chessmaster Savielly Grigorievitch Tartakower (1887-1956)  
on the game’s opening position 
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Specifics 
 

  • Homeworks 
 

  • Solutions 
 

  • Extra-credit 

    • In-class  

    • Find mistakes 
 

  • Office hours: after class 

    • Any time  

    • Email (preferred) 

    • By appointment 

    • Q&A posted on the Web 
 

  • Exams: take home? 
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Contact Information 
 

 

 

  Prof:    Gabriel Robins 
 

  Office:    406 Rice Hall 

 

  Phone:   (434) 982-2207 

 

  EMail:    robins@cs.virginia.edu 

 

 

 www.cs.virginia.edu/~robins 

 

 
“Good teaching is one-fourth preparation  

and three-fourths theater.”   - Gail Godwin 
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Good Advice 
 

 

 • Ask questions ASAP 
 

 • Do homeworks ASAP 
 

 • Do not fall behind 
 

 • “Cramming” won’t work 
 

 • Start on project early 
 

 • Attend every lecture 
 

 • Read Email often 
 

 • Solve lots of problems 
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Basic Questions/Goals 
 

Q: How do you solve problems? 
 

  Proof techniques 
 

 

Q: What resources are needed to 

  compute certain functions? 
 

   Time / space / “hardware” 
 

 

Q: What makes problems hard/easy? 
 

   Problem classification 
 

 

Q: What are the fundamental  

  limitations of algorithms? 
 

   Computability / undecidability 
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Historical Perspectives 
 

 

• Euclid (325BC – 265BC) 

  “Elements” 
 

• Rene Descartes (1596-1650) 

  Cartesian coordinates 
 

• Pierre de Fermat (1601-1665) 

  Fermat’s Last Theorem 
 

• Blaise Pascal (1623-1662) 

  Probability 
 

• Leonhard Euler (1707-1783) 

  Graph theory 
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• Carl Friedrich Gauss (1777-1855) 

  Number theory 
 

• George Boole (1815-1864) 

  Boolean algebra 
 

• Augustus De Morgan (1806-1871) 

  Symbolic logic, induction 
 

• Ada Augusta (1815-1852) 

  Babbage’s Analytic Engine 
 

• Charles Dodgson (1832-1898) 

  Alice in Wonderland 
 

• John Venn (1834-1923) 

  Set theory and logic 
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• Georg Cantor (1845-1918) 

  Transfinite arithmetic 
 

• Bertrand Russell (1872-1970) 

  “Principia Mathematica” 
 

• Kurt Godel (1906-1978) 

  Incompleteness 
 

• Alan Turing (1912-1954) 

  Computability 
 

• Alonzo Church (1903-1995) 

  Lambda-calculus 
 

• John von Neumann (1903-1957) 

  Stored program 
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• Claude Shannon (1916-2001) 

  Information theory 
 

• Stephen Kleene (1909-1994) 

  Recursive functions 
 

• Noam Chomsky (1928-) 

  Formal languages 
 

• John Backus (1924-) 

  Functional programming 
 

• Edsger Dijkstra (1930-2002) 

  Structured programming 
 

• Paul Erdos (1913-1996) 

  Combinatorics 



14 

Symbolic Logic 
 

 Def:  proposition - statement 

    either true (T) or false (F) 

 

 

 Ex: 1+1=2 

 

   2+2=3 

 

   “today is Monday” 

 

   “what time is it?” 

 

   x + 4 = 5 


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Boolean Functions 
 

 •  “and”     ^
 

 •  “or”       
 

 •  “not”     ¬ 
 

 •  “xor”     
 

 •  “nand”     
 

 •  “nor”     
 

 •  “implication”    
 

 •  “equivalence”     
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 •  “not”     ¬ 


   “negation” 
 


 Truth table: 

 

p ¬p 

T FF  

F TT  

 
 

 Ex: let p=“today is Monday” 
 

   ¬p =“today is not Monday” 
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•  “and”      


   “conjunction” 

 


 Truth table: 

 

p q pq 

T T TT  

T F FF  

F T FF  

F F FF  

 

 Ex: x≥0  x≤10 
 

   (x≥0)  (x≤10) 
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 •  “or”       



   “disjunction” 

 
 

 Truth table: 

 

p q pq 

T T TT  

T F TT  

F T TT  

F F FF  

 

 Ex: (x≥7)  (x=3) 
 

   (x=0)  (y=0) 
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 •  “xor”      
 

   “exclusive or” 
 

 

 Truth table: 

    

p q pq 

T T FF  

T F TT  

F T TT  

F F FF  

 

 Ex: (x=0)  (y=0) 
 

  “it is midnight”  “it is sunny” 
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Logical Implication 
 

•  “implies”     
 

 

 Truth table: 
    

p q pq 

T T TT  

T F FF  

F T TT  

F F TT  
 

 

  Ex: (x≤0)  (x≥0)  (x=0) 
 

    1 < x < y  x3 < y3 

  “today is Sunday”  1+1=3 
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Other interpretations of p q: 
 

 • “p implies q” 
 

 • “if p, then q” 
 

 • “q only if p” 
 

 • “p is sufficient for q” 
 

 • “q if p” 
 

 • “q whenever p” 
 

 • “q is necessary for p” 
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 Logical Equivalence 

•  “biconditional”     


 or  “if and only if” (“iff”) 

 or   “necessary and sufficient” 

 or   “logically equivalent”  


Truth table: 

p q pq 

T T TT  

T F FF  

F T FF  

F F TT  

Ex: p p 


  [(x=0)  (y=0)]  (xy=0) 

  min(x,y)=max(x,y)  x=y 
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logically equivalent () - means “has 

same truth table” 
 

Ex: pq is equivalent to (¬p)  q 

  i.e., pq  (¬p)q 
 

p q pq ¬p ¬pq 

T T TT  F TT  

T F FF  F FF  

F T TT  T TT  

F F TT  T TT  

   

Ex: (pq)  [(pq) (qp)] 

  pq  pq qp 

 (pq)  [(¬p  q)  (¬q  p)] 
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 Note: pq is not equivalent to qp 

 

Thm: (PQ) (¬Q  ¬P) 

 

Q: What is the negation of pq? 

 

A: ¬(pq)  ¬(¬pq)  p¬q 

 

p q ¬q pq ¬(pq) p¬q 

T T F T FF  FF  

T F T F TT  TT  

F T F T FF  FF  

F F T T FF  FF  

 
“Logic is in the eye of the logician.” 

      - Gloria Steinem 
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Example 

 

let p = “it is raining” 

let q = “the ground is wet” 

 

pq :   “if it is raining, 

      then the ground is wet” 

 

¬q¬p : “if the ground is not wet,  

     then it is not raining” 

 

qp :   “if the ground is wet, 

     then it is raining” 

 

¬(pq) : “it is raining, and  

     the ground is not wet” 
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Order of Operations 
 

 •  negation first 
 

 •  or/and next 
  

 •  implications last 
  

 •  parenthesis override others 

 

(similar to arithmetic) 

 

Def: converse of pq is qp 

 contrapositive of pq is ¬q¬p 

  

Prove:  pq  ¬q¬p 
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Q: How many distinct 2-variable 

Boolean functions are there? 



28 

 Bit Operations 
 

 

¬  

0 1 

1 0 
 

 

 0 1    0 1 

0 0 0   0 0 1 

1 0 1   1 1 1 

 
 

 0 1    0 1 

0 1 1   0 1 0 

1 0 1   1 0 1 
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Bit Strings 
 

 

Def:  bit string - sequence of bits 
 

Boolean functions extend to bit strings 

(bitwise) 

 

 Ex:  ¬ 0100 = 1011 
 

   0100  1110 = 0100 
 

   0100  1110 = 1110 
 

   0100  1110 = 1010 
 

   0100 1110 = 1111 
 

   0100 1110 = 0101 
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Proposition types 
 

Def:  tautology: always true 

   contingency: sometimes true 

   contradiction: never true 

 

  Ex:  p¬p is a tautology 
 

   p¬p is a contradiction 
 

   p¬p is a contingency 

 

p ¬p p¬p p¬p p¬p 

T F TT  FF  FF  

F T TT  FF  TT  
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Logic Laws 
 

Identity: 
 

  pT  p 

  pF  p 

 

Domination: 
 

  pT  T 

  pF  F 

 

Idempotent: 
 

  pp  p 

  pp  p 
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Logic Laws (cont.) 
 

Double Negation: 
 

  ¬(¬p)  p 

 

Commutative: 
 

  pq  qp 

  pq  qp 

 

Associative: 
 

  (pq)r  p(qr) 

  (pq)r  p(qr) 
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Logic Laws (cont.) 
 

 

Distributive: 
 

  p  (qr)  (pq)  (pr) 

  p  (qr)  (pq)  (pr) 

 

De Morgan’s: 
 

  ¬(pq)  ¬p  ¬q 

  ¬(pq)  ¬p  ¬q 
 

Misc: 
 

  p¬p  T 

  p¬p  F 

  (pq)  (¬pq) 
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 Example 
 

 

Simplify the following: 
 

  (pq)  (pq) 
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 Predicates 
 

 

Def:predicate - a function or formula 

involving some variables 

 
Ex: let P(x) = “x > 3” 

  x is the variable 

  “x>3” is the predicate 
 

  P(5) 
 

  P(1) 

 

Ex: Q(x,y,z) = “ x
2
+y

2
=z

2 
” 

 

  Q(2,3,4) 
 

  Q(3,4,5) 
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  Quantifiers 
 

•  Universal:  “for all”   

  xP(x)

  P(x1)P(x2)P(x3)

  Ex:   xx < x + 1 

     xx < x
3
 

 

•  Existential: “there exists” 

  xP(x)

  P(x1)P(x2)P(x3) ... 

  Ex:   x  xx2 

     x  x < x - 1 
 

 Combinations: 

x y  y>x 
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Examples 
 

• x y  x+y=0 
 

• y x  x+y=0 

 

• “every dog has his day”:  
  

 d y H(d,y) 

 

• Lim   ƒ(x) = L 
 

xa 

 x (0<|x-a|<|ƒ(x)-L|<) 
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Examples (cont.) 
 

• n is divisible by j (denoted n|j ): 
 

 n|j  kZ n=kj 
 

• m is prime (denoted P(m)): 
  

 P(m) iZ (m|i) imi1 
 

• “there is no largest prime” 
  

 p qZ (q>p)  P(q) 
 

 p qZ (q>p)   

[iZ q|i) iqi1
 

 p qZ (q>p)   

[iZ kZ q=ki iqi1
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Negation of Quantifiers 
 

Thm: ¬(x P(x))  x ¬P(x) 
 

Ex: ¬ “all men are mortal”

  “there is a man who is not mortal” 
               

Thm: ¬(x P(x))  x ¬P(x) 
 

Ex: ¬ “there is a planet with life on it” 

 “all planets do not contain life” 
               

Thm: ¬xy P(x,y)xy ¬P(x,y) 
 

Ex: ¬ “there is a man that exercises every day” 

 “every man does not exercise some day”
               

Thm: ¬xy P(x,y)xy ¬P(x,y) 
 

Ex: ¬ “all things come to an end” 

 “some thing does not come to any end”
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Quantification Laws 
 

Thm: x (P(x)  Q(x)) 

    (x P(x))  (x Q(x)) 
 

Thm: x (P(x)  Q(x)) 

    (x P(x)) (x Q(x)) 
               

 

Q: Are the following true? 
               

 x (P(x)Q(x)) 

  x P(x))  (x Q(x)) 

 
 

 

 x (P(x)Q(x)) 

  x P(x))  x Q(x)) 
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More Quantification Laws 
 

 

• x Q(x))  P x (Q(x) P) 
 

 

• x Q(x))  Px (Q(x)  P) 
 

 

• x Q(x))  Px (Q(x)  P) 
 

 

• x Q(x))  Px (Q(x)  P) 
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Unique Existence 
 

Def: x P(x) means there exists a 

unique x such that P(x) holds 
 

Q: Express x P(x) in terms of the 

other logic operators 

 

A: 
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Mathematical Statements 
 

  Definition 

  Lemma 

  Theorem 

  Corollary 

 

Proof Types 
 

  Construction 

  Contradiction 

  Induction 

  Counter-example 

  Existence 

  … 
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Sets 
 

Def: set - an unordered collection of 

elements 
 

   Ex: {1, 2, 3} or {hi, there} 

 

Venn Diagram: 
 

 
 

Def: two sets are equal iff they contain 

the same elements 
 

  Ex: {1, 2, 3} = {2, 3, 1} 
 

    {0}  {1} 

    {3, 5}  {3, 5, 3, 3, 5} 

S
x
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•  Set construction:  

   |  or means “such that” 
 

  Ex: {k | 0<k<4} 
 

    {k |  k is a perfect square} 
 

•  Set membership:   
 

   Ex:  7 {p | p prime} 
 

     q {0, 2, 4, 6,...} 
 

 

• Sets can contain other sets 
 

  Ex:  {2, {5}} 

 

     {{{0}}}  {0}  0 

 

     S = {1, 2, 3, {1}, {{2}}} 
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Common Sets 
 

 

Naturals:   N = {1, 2, 3, 4, ...} 
 

Integers:   Z = {..,-2, -1, 0, 1, 2,..} 
 

Rationals:  Q = { 
a

b
   | a,b, b0} 

 

Reals:     = {x | x a real #} 
 

Empty set:  Ø = {} 
 

Z
+

 = non-negative integers 


-
= non-positive reals, etc. 
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Multisets 
 

Def: a set w/repeated elements allowed 

 

(i.e., each element has “multiplier”) 

 

Ex: {0, 1, 2, 2, 2, 5, 5} 

 

For multisets: {3, 5}  {3, 5, 3, 3, 5} 

 

Sequences 
 

Def: ordered list of elements 

 

Ex: (0, 1, 2, 5)  “4-tuple” 

  (1,2)  (2,1)  “2-tuple” 
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Subsets 
 

 

• Subset notation:    
 

  S T  (xS  xT) 
 

 

 

•  Proper subset:     


  S T  ((S T) ^ (ST)) 


  S=T  ((T S) ^ (S T)) 


  S  Ø S 


  S  S S 
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•  Union:      

 

  ST={x | xS  xT} 
 

 

 

 

•  Intersection:  

 

  ST={x | xS  xT} 
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• Set difference:  S - T 

 

  S - T= {x | xS  xT} 

 

 

 

 

• Symmetric difference: ST 

 

  ST = {x | xS  xT} 

     = ST - ST 

 

 
  

S T
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• Universal set:  U   (everything) 
           _ 

• Set complement: S’  or S 
 

  S’ = {x | xS} = U - S 
 

 

 

• Disjoint sets:  ST=Ø 
 

 

 

S - T= S  T’ 
 

S - S = Ø 

  

S

U

S T
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Examples 
 

 

N  Z  Q   
 

N  Z  Q   
 

x  x ≤ x2+1 

 

xyQ min(x,y)=max(x,y)  x=y 

 


+
 

-
 =  

 


+
 

-
 = {0} 
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Set Identities 
 

• Identity:   
 

  S  Ø = S 

  S  U = S 
 

• Domination:   
 

  S  U = U 

  S  Ø = Ø 
 

• Idempotent:   
 

  S  S = S 

  S  S = S 
 

• Complementation:   
 

  (S’)’ = S 
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Set Identities (Cont.) 

 
 

 • Commutative Law:  
 

  ST=TS  

 

  ST=TS 

 

 

 • Associative Law:  

 

  S(TV)= (ST)V 

 

  S(TV) = (ST)V 
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Set Identities (Cont.) 
 

 

• Distributive Law: 

 

  S(TV)=(ST)(SV) 

 

  S(TV) = (ST)(SV) 

 

 

• Absorption:    

 

S(ST)=S 

 

  S(ST)=S 
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DeMorgan's Laws 
 

  (ST)' = S'T' 
 

 

 

  (ST)' = S'T' 
 

 

 

 Boolean logic version: 
 

   (X^Y)'=X'Y' 

   (XY)'=X'^Y'  
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Generalized  and  
 

• Si=S1S2S3Sn 

 1≤i≤n 

   ={x | i 1≤i≤n  xSi} 
 

 

• Si=S1S2S3Sn 

 1≤i≤n 

   ={x | i 1≤i≤n  xSi} 
 

 

S3

S2S1

S3

S2S1
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Set Representation 
 

• U  = {x1, x2, x3, x4,... , xn-1, xn } 
 

Ex: S =  {x1,   x3,      xn} 

bits:     1 0  1   0 ... 0   0  1 
 

1010000...01 encodes {x1, x3, xn} 

0111000...00 encodes {x2, x3, x4} 
 

• “or” yields union: 

 1010000...01 {x1, x3, xn} 

 0111000...00 {x2, x3, x4} 

 1111000...01 {x1, x2, x3, x4, xn} 
 

• “and” yields intersection: 

 1010000...01 {x1, x3, xn} 

 0111000...00 {x2, x3, x4} 

 0010000...00 {x3} 
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• Set closure: WRT operation  

x,yS xyS 
 

x y xy
 

 

• Ex:  is closed under addition 

   since  x,y x+y 
 

Abbreviations 
 

• WRT  “with respect to” 
 

• WLOG “without loss of  

      generality” 
 

"When ideas fail, words come in very handy." 

        - Goethe (1749-1832) 
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Cartesian Product 
 

• Ordered n-tuple: element sequence 
   

  Ex: (2,3,5,7) is a 4-tuple
   

•  Tuple equality:  
   

  (a,b)=(x,y)  (a=x)  (b=y) 

  Generally: (ai)=(xi)  i  ai=xi 
   

•  Cross-product: ordered tuples 
   

  ST = {(s,t) | sS, tT} 
   

  Ex: {1, 2, 3}  {a,b}=  

{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)} 
 

  Generally,  ST ≠ TS 
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• Generalized cross-product: 
   

  S1 S2 ...  Sn

   = {(x1,...,xn) | xiSi, 1≤i≤n} 
 

  Ti = TTi-1 

  T1 = T 

 

• Euclidean plane =  = 2 

 

• Euclidean space =  = 3 

 

• Russel’s paradox: set of all sets that 

do not contain themselves: 
 

  {S | S  S } 
 

 Q: Does S contain itself?? 
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Functions 
 

 

 • Function: mapping  ƒ:ST 

  

   Domain S 

 

   Range T 

 
 

 

 

  k-ary: has k “arguments” 

  Predicate: with range = {true, false} 

    

S
T

ƒ(x)
x

ƒ
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Function Types 

 
 

• One-to-one function: “1-1” 

  a,bS ^ ab  ƒ(a)ƒ(b) 
 

 Ex: ƒ:, f(x)=2x is 1-1 
 

   g(x)=x2 is not 1-1 

 
 

 

• Onto function: 

 

  t T   sS  ƒ(s)=t 
 

 Ex: ƒ:, f(x)=13-x is onto 
 

   g(x)=x2 is not onto 
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1-to-1 Correspondence 

 
• 1-to-1 correspondence: ƒ:ST 


  ƒ is both 1-1 and onto 

 

 

 

Ex: ƒ:   ƒ(x)=x (identity) 
 

  h: NZ   h(x)= 
x-1

2
 , x odd, 

          
-x

2
 , x even. 

  

S
T

t
s

ƒ
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• Inverse function: 
 

 ƒ:ST  ƒ
-1

:TS 
  

 ƒ
-1

(t)=s  if  ƒ(s)=t 
  

 Ex: ƒ(x)=2x ƒ
-1

(x)=x/2 

  

• Function composition:  
 

 :ST:TV 

   ( • )(x)=((x)) 

   ( • ):SV 

 

 Ex: (x)=x+1  (x)=x
2
 

   ( • )(x)= x
2
 + 2x + 1 
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Thm: (ƒ•ƒ
-1

)(x) = (ƒ
-1

•ƒ)(x) = x 
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Set Cardinality 
 

• Cardinality: |S| = #elements in S 

 

Ex: |{a,b,c}|=3 
 

   |{p | p prime < 9}| = 4 
 

   |Ø|=0 
 

   |{{1,2,3,4,5}}| = ?  
 

 

 • Powerset: 2S = set of all subsets 
 

  2S ={T | T  S} 
 

  Ex: 2
{a,b} 

= {{},{a},{b},{a,b}} 
 

Q: What is 2
Ø  

? 
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Theorem:  |2S|=2|S| 

 

Proof: 

 

 

 

 

 

 

 

 

 

 

 

 
 

“Sometimes when reading Goethe, I have the  

paralyzing suspicion that he is trying to be funny.” 

- Guy Davenport 
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Generalized Cardinality 
 

• S is at least as large as T:  
 

 |S||T|  ƒ:ST, ƒ onto 
 

 i.e., “S covers T” 
 

 Ex: r:Z, r(x)=round(x) 
 

    |||| 
 

• S and T have same cardinality:  

 |S|=|T|  |S||T| ^ |T||S| 

or 

 1-1 correspondence ST 

 

• Generalizes finite cardinality:  
  

{1, 2, 3, 4, 5}   {a, b, c} 
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Infinite Sets 
 

• Infinite set: |S| > k kZ  

or 

   1-1 corres. ƒ:ST, ST 
 

 Ex: {p | p prime},   
 

• Countable set: |S|  |N| 
 

 Ex: Ø, {p | p prime},  
 

• S is strictly smaller than T:  
 

 |S| < |T|  |S||T| ^ |S||T| 
 

• Uncountable set: |N| < |S| 

 Ex:  |N| <  

|N| < [0,1] = {x | x, x} 
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Thm:  1-1 correspondence QN 
Pf (dove-tailing): 
 

 • • • • • • 

 • • • • • • 

 • • • • • • 
 

 
1

6
   

2

6
   

3

6
   

4

6
   

5

6
   

6

6
  ... 

 
1

5
   

2

5
   

3

5
   

4

5
   

5

5
   

6

5
  ... 

 
1

4
   

2

4
   

3

4
   

4

4
   

5

4
   

6

4
  ... 

 
1

3
   

2

3
   

3

3
   

4

3
   

5

3
   

6

3
  ... 

 
1

2
   

2

2
   

3

2
   

4

2
   

5

2
   

6

2
  ...

 
1

1
   

2

1
   

3

1
   

4

1
   

5

1
   

6

1
  ... 
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Thm: ||>|N| 
 

Pf (diagonalization): 
 

 Assume  1-1 corres. ƒ:N 

 Construct x  : 

 ƒ(1)=2. 18281828...    

 ƒ(2)=1.4 4213562...    

 ƒ(3)=1.61 033989...    
 

 x = 0. ...ƒ(K) KN 
 

 ƒ not a 1-1 correspondence  
 

 contradiction  
 

  is uncountable 
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Q: Is ||  
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Q: Is || > |[0,1]| ? 
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Thm: any set is "smaller" than its powerset. 
  

  |S| < |2S| 
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Infinities 

  

 • |N|  = 0 
 

 • ||  = 1 
 

 • 0 < 1 = 20 

 

 • “Continuum Hypothesis” 

 

  ?    0 <  < 1 
 

  Independent of the axioms! 
 

  [Cohen, 1966] 
 

 • Axiom of choice [Godel 1938] 
 

 

 • Parallel postulate 
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Infinity Hierarchy 

 

• i < i+1 = 2i
 

 

  0, 1, 2,..., k, k+1,...,0, 

 

   1, 2,..., k, k+1,...,  

 

    0
, 1

,..., k
, k+1

,... 

 

 

• First inaccessible infinity:  

 
 

For an informal account on infinities, see e.g.: 

Rucker, Infinity and the Mind, Harvester Press, 1982. 
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Thm: # algorithms is countable. 

Pf: sort programs by size: 

   "main(){}" 
   • 

   • 

   "main(){int k; k=7;}" 
   • 

   • 

   "<all of UNIX>" 
   • 

   • 

   “<Windows XP>" 
   • 

   • 

   "<intelligent program>" 
   • 

   • 

 # algorithms is countable! 
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Thm: # of functions is uncountable. 

Pf: consider 0/1-valued functions 

(i.e., functions from N to {0,1}): 


{(1,0), (2,1), (3,1), (4,0), (5,1), ...} 


 { 2, 3, 5, ...}2N 

 

So, every subset of N corresponds to a 

different  0/1-valued function 



|2N| is uncountable (why?) 
 

# functions is uncountable!
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Thm: most functions are uncomputable! 
 

Pf: # algorithms is countable 

  # functions is not countable 
 

 more functions than 

   algorithms / programs! 
 

 some functions do not have 

algorithms! 
 

                

 

 

Ex: The halting problem 
 

Given a program P and input I, 

does P halt on I? 
 

Def: H(P,I) = 1  if P halts on I 

      0  otherwise 
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The Halting Problem 
 

H: Given a program P and input I, 

does P halt on I? i.e., does P(I) 

 

Thm: H is uncomputable 

Pf: Assume subroutine S solves H. 

  
 Construct: 

S
P

I

S'

yes

no yes



P(I)?

SP

I

yes

noP(I)?
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 Analyze: 

S
P

I

S'

yes

no yes



P(I)?

 
 

   S'(S') S'(S')

   S'(S') S'(S')



 so, S'(S')S'(S')  

 a contradiction! 
 

S does not correctly compute H 
 

But S was an arbitrary subroutine, so 

 H is not computable! 
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Discrete Probability 
 
 

Sample space: set of possible outcomes 
 

Event E: subset of sample space S 
 

Probability p of an event: |E| / |S| 
 

• 0 ≤ p ≤ 1 
 

• p(not(E)) = 1 - p(E) 
 

• p(E1E2) = p(E1) + p(E2) - p(E1E2) 
 

Ex: two dice yielding total of 9 
 

  E={(3,6),(4,5),(5,4),(6,3)} 
 

  S={1,2,3,4,5,6}{1,2,3,4,5,6} 
 

  p(E) = |E|/|S| = 4/36 = 1/9 
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General Probability 
 

 

Outcome xi is assigned probability p(xi) 
 

• 0 ≤ p(xi) ≤ 1 
 

• ∑ p(xi) = 1 
 

• E = {a1,a2,...,am} p(E) = ∑ p(ai) 
 

• p(not(E)) = 1 - p(E) 
 

• p(E1E2) = p(E1)+p(E2) - p(E1E2) 
 

Conditional Probability 
 

p(E | F) = probability of E given F 
 

p(EF) = p(F) p(E | F) 
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Ex: what is the probability of two 

siblings being both male, given that 

one of them is male? 

 

Let (x,y) be the two siblings 
 

Sample space: {(m,m),(m,f),(f,m),(f,f)} 
 

Let E  = both are male 

   = {(m,m)} 
 

Let F  = at least one is male 

   = {(m,m),(m,f),(f,m)} 
 

EF  = {(m,m)} 

   = both are male 
 

p(EF) = p(F) p(E | F) 
 

p(E | F) = p(EF) / p(F) 

    = (1/4) / (3/4) = 1/3 
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Relations 
 

Relation: a set of “ordered tuples” 
 

Ex:    {(a,1),(b,2), (b,3)} 
 

  “<”  {(x,y) | x,yZ, x<y} 
 

 Reflexive: xx x 
 

 Symmetric: xy  yx 
 

 Transitive:  xy ^ yz  xz 
 

 Antisymmetric: xy  ¬(yx) 
 

 Ex:     is reflexive 

      transitive 

not symmetric  
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Equivalence Relations
 

 

Def: reflexive, symmetric, & transitive 

 

 Ex: standard equality “=” 

     x=x 

     x=y  y=x 

     x=y ^ y=z  x=z 

 

 

Partition - disjoint equivalence classes: 
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Closures 
 

• Transitive closure of  TC


 smallest superset of satisfying 


xy ^ yz  xz 

 
 

 Ex“predecessor”  

   {(x-1,x) | xZ} 


 TC(predecessor) is “<” relation


 

• Symmetric closure of 


 smallest superset of satisfying 


xy  yx 
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 Algorithms 
 

• Existence 

• Efficiency 
 

Analysis 
 

 • Correctness 

 • Time 

 • Space 

 • Other resources 
 

Worst case analysis  

(as function of input size |w|) 

 

Asymptotic growth:
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Upper Bounds 
 

f(n) g(n)c,k > 0  

   |f(n)|  c|g(n)|  n>k 





  Lim f(n) / g(n) exists
 n

 “f(n) is big-O of g(n)” 
 

Ex: n = O(n2) 
 

  33n+17 = O(n)

  n8-n7 = O(n123)

  n100 = O(2n)

  213 = O(1)
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Lower Bounds  
 

f(n)g(n)g(n)=f(n)


 

  Lim g(n) / f(n) exists
 n
  

 “f(n) is Omega of g(n)”


Ex: 100n = (n)
 

  33n+17 = (log n)

  n8-n7 = (n8)

  213 = (1/n)

   1= (213)
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Tight Bounds 
 

f(n) g(n)

f(n)g(n)^g(n)f(n)

 

“f(n) is Theta of g(n)”
 

Ex: 100n = (n)
 

  33n+17 + log n = (n)
 

  n8-n7-n-13 = (n8)
 

  213 = (1) 

  3+cos(2n) = (1) 
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Loose Bounds 
 

f(n) g(n)

f(n)g(n)^ f(n)g(n)
 

Lim f(n)/g(n)  0 
 n
 

 “f(n) is little-o of g(n)”
 

Ex: 100n = (n log n)
 

  33n+17 + log n = (n2)

  n8-n7-n-13 = (2n)

  213 = (log n) 

  3+cos(2n) = (n) 
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Growth Laws 
 

 

Let f1(n)=O(g1(n)) and  

f2(n)=O(g2(n)) 

 

Thm: f1(n) + f2(n)  

   = O(max(g1(n),g2(n))) 

 

Thm: f1(n) • f2(n) 

   = O(g1(n) • g2(n)) 

 

Thm: nk = O(cn)   c,k>0

 

Ex:  n1000 = O(1.001n) 
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Recurrences 
 

 T(n) = a•T(n/b) + f(n) 
 

 let c = log
b
a 

 

Thm: 

 f(n)=O(nc-) T(n)=(nc)
 f(n)=(nc) T(n)=(nc log n)

 f(n)=(nc+) ^ a•f(n/b) ≤ d•f(n) 

   d<1, n>n
0
  T(n)=(f(n))

 

Ex: T(n) = 9T(n/3)+n T(n)=(n2) 

 

T(n) = T(2n/3)+1 T(n)=(log n)  
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Pigeon-Hole Principle 
 

 

If N+1 objects are placed into N boxes 

  a box with 2 objects. 

 

If M objects are placed into N boxes & 

M>N   box withM
N
objects. 

 

  Useful in proofs & analyses 
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Stirling's Formula 

 
 

n! = 1•2•3• . . . •(n-2)•(n-1)•n 
 

n! = 2n  • (n

e
 )n

• (1 + (1

n
 )) 

 

n!  (n

e
 )n

  

 

log(n!) = O(n log n) 

 

 Useful in analyses and bounds 
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Data Structures 
 

 

 • What is a "data structure"? 
 

 • Operations: 
 

  • Initialize 
 

  • Insert 
 

  • Delete 
 

  • Search 
 

  • Min/max 
 

  • Successor/Predecessor 
 

  • Merge 
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Arrays 
 

• Sequence of "indexible" locations 
 

 
 

• Unordered: 
 

 • O(1) to add 
 

 • O(n) to search 
 

 • O(n) for min/max 
 

 

• Ordered: 
 

 • O(n) to add 
 

 • O(log n) to (binary) search 
 

 • O(1) for min/max 

1 2 3 4 5 6 7 . . .



100 

Stacks 
 

 

• LIFO (last-in first-out) 
 

 
 

• Operations: push/pop (O(1) each) 
 

• Can not access "middle" 
 

• Analogy: trays at Cafeteria  
 

• Applications: 
  

 • Compiling / parsing 

 • Dynamic binding 

 • Recursion 

 • Web surfing 

in

out
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Queues 
 

 

• FIFO (first-in first-out)  
 

 
 

• Operations: push/pop (O(1) each) 
 

• Can not access  "middle" 
 

• Analogy: line at your Bank 
 

• Applications: 
  

 • Scheduling 

 • Operating systems 

 • Simulations 

 • Networks 

in out
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Linked Lists 
 

 

• Successor pointers 

 
 

• Types: 

 • Singly linked 

 • Doubly linked 

 • Circular 
 

 
 

• Operations: 

 • Add: O(1) time 

 • Search: O(n) time 

 • Delete: O(1) time (if known) 
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Trees 
 

• Parent/children pointers 
 

 

 

• Binary/N-ary 
 

• Ordered/unordered 
 

• Height-balanced: 

 • AVL 

 • B-trees 

 • Red-black 

 • O(log n) worst-case time 

c

b e

d fa
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Tree Traversals 

 
• pre-order: 1) process node 

      2) visit children 

  c b a e d f 
               

• post-order: 1) visit children 

      2) process node 
  a b d f e c 
               

• in-order:  1) visit left-child 
      2) process node 
      3) visit right-child 
  a b c d e f 

c

b e

d fa
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Heaps 
 

• A tree where all of a node’s children 

have smaller “keys” 
 

• Can be implemented as a binary tree 
 

• Can be implemented as an array 

 

• Operations: 

 • Find max: O(1) time 

 • Add: O(log n) time 

 • Delete: O(log n) time 

 • Search: O(n) time 
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Hash Tables 
 

• Direct access 
 

• Hash function 
 

• Collision resolution: 
 

 • Chaining 

 • Linear probing 

 • Double hashing 
 

• Universal hashing 

• O(1) average access 

• O(n) worst-case access 
 

 

Q: How can worst-case access time be 

improved to O(log n)? 
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Sorting 
 

Fact: almost half of all CPU 

  cycles are spent on sorting!! 
 

• Input: array X[1..n] of integers 

 Output: sorted array 
 

• Decision tree model 
 

Thm: Sorting takes (n log n) time 

Pf: n! different permutations  
 

decision tree has n! leaves 
 

tree height is: log(n!)  

       > log((n/e)n) 

       = (n log n) 
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Sort Properties 

 
  • Worst case? 
 

  • Average case? 

 

  • In practice? 
 

  • Input distribution? 
 

  • Randomized? 
 

  • Stability? 
 

  • In-Situ? 
 

  • Stack depth? 
 

  • Internal vs. external? 
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• Bubble Sort: 
 

 For k=1 to n 

  For i=1 to n-1 

   If X[i+1]>X[i] 

    Then Swap(X,i,i+1) 

 

 (n2) time 

               

• Insertion Sort: 
 

 For i=1 to n-1 

  For j=i+1 to n 

   If X[j]>X[i] Then Swap(X,i,j) 

 

 (n2) time 
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• Quicksort: 
 

 QuickSort(X,i,j) 

  If i<j Then p=Partition(X,i,j) 

      QuickSort(X,i,p) 

      QuickSort(X,p+1,j) 
 

 O(n log n) time (ave-case) 
 

• C.A.R. Hoare, 1962 

• Good news: usually best in practice 

• Bad news: worst-case O(n2) time 

• Usually avoids worst-case 

• Only beats O(n2) sorts for n>40 
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• Merge Sort: 
 

 MergeSort(X,i,j) 

  if i<j then m=(i+j)/2 

      MergeSort(X,i,m) 

      MergeSort(X,m+1,j) 

      Merge(X,i,m,j) 
 

   T(n) = 2 T(n/2) + n 

 (n log n) time 
               

• Heap Sort:  
 

  InitHeap 

  For i=1 to n HeapInsert(X(i)) 

  For i=1 to n  M=HeapMax 

       Print(M) 

       HeapDelete(M) 

 (n log n) time 
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• Counting Sort:  
 

 Assumes integers in small range 1..k 
  

  For i=1 to k C[i]=0 

  For i=1 to k C[X[i]]++ 

  For i=1 to k  

   If C[i]>0 Then print(i) C[i] times 
 

 (n) time (worst-case) 
               

 

• Radix Sort:  
 

 Assumes d digits in range 1..k 
 

  For i=1 to d StableSort(X on digit i) 
 

 O(dn+kd) time (worst-case) 
  



113 

• Bucket Sort:  
 

 Assumes uniform inputs in range 0..1 
 

  For i=1 to n  

   Insert X[i] into Bucket n•X[i] 

  For i=1 to n  Bucket i 

  Concat contents of Buckets 1 thru n 

 

 O(n) time (expected) 

   O( ) time (worst) 
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Order Statistics 
 

• Exact comparison count 
 

• Minimum element 
 

  k=X[1] 

  For i=2 to n  

   If X[i]<k Then k = X[i] 
 

 n-1 comparisons 

 

Thm: Min requires n-1 comparisons. 

Proof:  
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• Min and Max: 
 

  (a) Compare all pairs 

  (b) Find Min of min’s of all pairs 

  (c) Find Max of max’s of all pairs 
 

n/2+n/2+n/2 =3n/2 comparisons 
 

Thm: Min&Max require 3n/2 comparisons. 

Pf: Represent known info by four sets: 

 

 
  A B C D 

 

Initial: n 0 0 0 

Final: 0 1 1 n-2 

 

Track movement of elements between sets.

Unknown Not Min Not Max Neither
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Effect of comparisons: 
 

    Origin  Target 

        <  > 

    A&A  C&B | B&C (1) 

    A&B  C&B | B&D 

    A&C  C&D | B&C 

    A&D  C&D | B&D 

    B&B  D&B | B&D (2) 

    B&C  D&D | B&C 

    B&D  D&D | B&D 

    C&C  C&D | D&C (3) 

    C&D  C&D | D&D 

    D&D  D&D | D&D 
 

• Going from A to D forces passing through B or C 

• "Emptying" A into B&C takes n/2 comparisons (1) 

• "Almost emptying" B takes n/2-1 comparisons (2) 

• "Almost emptying" C takes n/2-1 comparisons (3) 

• Other moves will not reach the "final state" faster 

• Total comparisons required: 3n/2-2 
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Problem: Find Max and next-to-Max 

using least # of comparisons. 
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Selection 
 

• Not harder than median-finding  (why?) 

• Randomized ith-Selection  

 (return the ith-largest element in X[p..r]) 
 

 Select(X,p,r,i) 

  If p=r Then Return(X[p]) 

  q=RandomPartition(X,p,r) 

  k=q-p+1 

  If i ≤ k Then Return(Select(X,p,q,i)) 

    Else Return(Select(X,q+1,r,i-k)) 

 

  O(n) time (ave-case) 

q

p r

X
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Deterministic ith-Selection 
 

 

 [Blum, Floyd, Pratt, Rivest, Tarjan; 1973] 

 

• Partition input into n/5 groups of 5 each 

• Compute median of each group 

• Compute median of medians (recursively) 

 

 

 
 

 

• Compute median of medians (recursively) 

• Eliminate 3n/10 elements & recurse on rest 
 

T(n)  = T(n/5) + T(7n/10) + O(n) 

= T(2n/10) + T(7n/10) + O(n) 

 T(9n/10) + O(n)  since T(n)=(n) 
 

 T(n) = O(n)  

5 per group 

 

x = median of medians 

n/5 groups group 

median 



120 

Problem: Find in O(n) time the majority 

element (i.e., occurring ≥ n/2 times, if any). 

 

a) Using "<",">","=" 

 

 

 

 

 

b) Using "=" only (i.e., no "order") 
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 Graphs 
 

 

 A special kind of relation 

 

Graphs can model: 

 • Common relationships 

 • Communication networks 

 • Dependency constraints 

 • Reachability information 
 

+ many more practical applications! 
 

Graph G=(V,E): set of vertices V,  

and a set of edges E  VV 

 

Pictorially: nodes & lines 
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 Undirected Graphs 
 

Def: edges have no direction 

 

  Example of undirected graph: 
 

 

 

V={a,b,c,d,e} 

E={(c,a),(c,b),(c,d),(c,e), 

  (a,b),(b,d),(d,e)} 
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Directed Graphs 
 

Def: edges have direction 

 

  Example of directed graph: 

 

V={a,b,c,d,e} 

E={(a,b),(a,c),(b,c),(b,d), 

  (d,c),(d,e),(c,e)} 

 



124 

Graph Terminology 
 

Graph G=(V,E), E  VV 

 

  node  vertex 

  edge  arc 

 

 

 

Vertices u,vV are neighbors in G iff 

(u,v) or (v,u) is an edge of G 
 

Ex: a & b are neighbors 

  a & e are not neighbors 
 

f

a

b

c e

d
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Undirected Node Degree 
 

Degree in undirected graphs: 

 

Degree(v) = # of adjacent (incident) 

     edges to vertex v in G 

 

Ex: deg(c)=4  deg(f)=0 
 

 

f

a

b

c e

d
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Directed Node Degree 
 

Degree in directed graphs: 
 

In-degree(v) = # of incoming edges 

Out-degree(v) = # of outgoing edges 

 

Ex: in-deg(c)=3  out-deg(c)=1 

in-deg(f)=0  out-deg(f)=0 

 

a

b

c e

d

f
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Q: Show that at any party there is an 

even number of people who shook 

hands an odd number of times. 
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Complete graph Kn contains all edges  

i.e., E = {{u,v}VV | uv} 

 
 

Q: How many edges are there in Kn? 

 

Subgraph of G is G’=(V’,E’) 

where V’V and E’E 

 
 

Q: Give a (non-trivial) lower bound on 

the number of graphs over n vertices. 

a

b

c e

d
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Paths in Graphs 
 

Undirected path in a graph: 

a

b

c e

d

 
 

 

A graph is connected iff there is a path 

between any pair of nodes: 

 

  
 

a

b

c e

d
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Directed path in a graph: 

 

a

b

c e

d

 

 

Graph is strongly connected iff there is 

a directed path between any node pair: 

 

Ex: connected but not strongly: 

 

a

b

c e

d
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A cycle in a graph: 

 
 

 

 

A tree is an acyclic graph. 
 

 

Tree T=(V’,E’) spans G=(V,E) if T is a 

connected subgraph with V’=V 

 
 

 

b

c e

d

a

a

b

c e

d
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Q: How many edges are there in a  

 tree over n vertices? 

 

 

 

 

 

 

 

Q: Is the # of distinct spanning trees in 

a graph G always polynomial in |G|? 
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Graph Traversals 
 

Breadth-first search: 

 
 

 

Depth-first search: 

 

 

 

O(E+V) time for either BFS or DFS 
 

Yields a spanning tree for the graph 
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Topological Sort 
 

 

Given a digraph, list vertices so that all 

edges point/direct to the right: 
 

 
 

 

 
 

 

Can be done in O(E+V) time 
 

Application: scheduling w/constraints 

a

b

c e

d

a b c ed
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Weighted Graphs 
 

Each edge has a weight: w:EZ 
 

 

 

Weights can model many things: 
 

 • Distances / lengths 

 • Speed / time 

 • Costs 
 

Cost(G) = sum of edge costs 
 

Find a shortest / least-expensive 

subgraph with a given property 

a

b
5

3

2

c e

d

4
1

2

6
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Graph Representation 
 

 

 

Adjacency list: 

 

 1: (a)  b  c 

 2: (b)  a  d 

 3: (c)  a 

 4: (d)  b 

 

Adjacency matrix:  

 

    a  b  c  d 
 

 a           

 b   1  0  0  1 

 c   1  0  0  0

 d   0  1  0  0 

a

b
d

c



137 

Minimum Spanning Trees 
 

 

 
 

 
 

 
  

6

5

3

2

4
1

2

a

b

c e

d
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a

b

c e

d
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Prim’s MST Algorithm 
 

 

 

T = v
0
 

Until T spans all nodes do 

 Select nodes xT, yT 

   w/min cost(x,y) 

  Add edge (x,y) to T 

Return T 
 

 

• Time complexity: O(E log E) 
 

• Kruskal: O(E log V) 

 

• Fibonacci heaps: O(E+VlogV) 
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Shortest Paths Trees 
 

 
 

 

 

6

5

3

2

4
1

2

a

b

c e

d
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Dijkstra’s Single-Source 

Shortest paths Algorithm 
 

 

 

T = v
0
 

Until T spans all nodes do 

 Select nodes xT, yT 

   w/min cost(x,y) + dist(v
0
,x) 

  Add edge (x,y) to T 

Return T 
 

 

• Time complexity: O(V2) 
 

• All pairs: O(V3) 
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Cost-Radius Tradeoffs 
 

 Cong, Kahng, Robins, Sarrafzadeh, and Wong, Provably Good 

Performance-Driven Global Routing, IEEE Transactions on Computer-

Aided Design,  Vol 11, No. 6, June 1992, pp. 739-752. 

 

 

Signal delay  Performance  
 

 

 

• Source  sink pathlength   delay 

 

 

   Avoid long paths 

 

 
 

• Capacitive delay / building cost 
 

 

   Minimize total wirelength 
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Possible Trees 
 

 

 MST: 
   

 

 

 

 SPT: 
 

 

 

 

 

 ? 
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Definitions 
 

Input: pointset with distinguished source 

 

ptset radius R: max source-sink dist 

 

 
 

 

 

tree radius: max source-sink pathlength  

 

 
  

radius s

r(T)
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Problem Formulation 
 

Given a pointset P, , find min-cost tree T with r(T) 

 (1+)·R 

 

Tradeoff:  trades off radius and tree cost 
 

 = 0  “Shortest Path Tree” 

 
 

 =   Minimum Spanning Tree 
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Arbitrary  hybrid construction 

 

 

 
 

 

 

 

 

 

 

 •  Unifies Prim and Dijkstra! 
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Bounded Radius MSTs 
 

 

 

 

Goal: cost  cost(MST)  
 

 radius  r(SPT) 

 
 

 • Let Q =  MST 
 

 

 • Let L be tour of MST: 
 

 

s 

a

b c

d
e

f

g

h
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s 

a

b c

d
e

f

g

h

a b a cs a s d s e f g f e h e s
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• Traverse L 

 

 

• A = running total of edge costs 

 

 

• If A > ·R Then A = 0 

       Q = Q  minpathG(s,Li) 

 

 

 

 
 

 

• Final routing tree is SPTQ 

 

 

  

L = MST tour
L   i

s

Shortest paths added

A>  R
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dist  (v  ,v)  RiL

s
L = MST tour

minpath   (s,v )  RG i

vi+1vi v

 
 

 

 

dist
T
(s,v)   dist

G
(s,v

i
) + dist

L
(v

i
,v) 

 

    R + ·R = (1 + )·R 
 

 

 

 

 

  r(T)  (1 + )·R 
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dist  (v  ,v   )  RiL

s
L = MST tour

minpath   (s,v )  RG i

vi+1
v

i

i+1

minpath   (s,v   )  RG i+1

 
 

 

cost(T)  cost(MST
G
) + 

cost(L)

·R
  ·R 

 

 

  = cost(MST
G
) + 

2·cost(MST
G

)


  

 
 

  = (1 + 
2


 )· cost(MST

G
) 

 



   cost(T)  (1 + 
2


 )·cost(MSTG) 
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Bounded Radius MST Algorithm 
 

  

 Compute MSTG and SPTG 

 E' = edges of MSTG 

 Q = (V,E') 

 L = depth-first tour of MSTG 

 A = 0 

 For i = 2 to  |L| 

  A = A + cost(Li-1, Li) 

  If A > ·R Then 

   E' = E'  minpathG(s, Li) 

   A=0 

 T = SPTQ 

 

 

 

Input: G=(V,E), source s, radius R, 0 

 

Output: T = routing tree with 

    cost(T)  (1+
2

 )·cost(MSTG) 

    r(T)  (1+)·R 
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Steiner Trees 
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Bounded Radius Steiner Trees 
 

 

 

Given weighted graph G=(V,E), node subset N,  

source sN, and 0, find min-cost tree T spanning N, with 

r(T)  (1+)·r(N) 

 

 

 

• NP-complete 
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Bounded Radius Steiner Trees  
 

 

• Can use any low-cost spanning tree 

 

 

 

• Use [KMB, 1981] to span N (cost  2·opt) 

 

 

 

• Run previous algorithm 
 

 

 

 

 

 

  cost(T)  2·(1+ 
2

 )·opt  
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Geometry Helps 
 

 

• Add Steiner points when A = 2·R 

 

 

 

 

• Use bounds on MST/Steiner ratio 

 
 

Tree type Graph type Radius bound Cost bound 

spanning arbitrary (1+)·R (1+ 2/·MST 

Steiner arbitrary (1+)·R 2·(1+ 2/·opt 

Steiner Manhattan (1+)·R 
 
3

2
 (1+1/ ·opt 

Steiner Euclidean (1+)·R 2

3
  ·(1+1/·opt 

  

L = MST tour
s

A= 2 R

Shortest paths added

Steiner points added
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Experimental Results 
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NP-Completeness 
 

• Tractability 
 

• Polynomial time 
 

• Computation vs. verification 
 

• Non-determinism 
 

• Encodings 
 

• Transformation & reducibilities 
 

• P vs. NP 
 

• "completeness" 
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A problem L is NP-hard if: 
 

1) all problems in NP reduce to L in 

polynomial time. 
 

A problem L is NP-complete if: 
 

1) L is NP-hard; and 

2) L is in NP. 

 

• One NPC problem is in PP=NP 
 

 
 

Open question: is P=NP ? 

P co-NP
NP

NPC
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Satisfiability 
 
 

SAT: is a given n-variable boolean 

formula (in CNF) satisfiable? 
 

CNF (Conjunctive Normal Form): 

i.e., product-of-sums 

"satisfiable" can be made "true" 

Ex: (x+y)(x
_
 +z) is satisfiable 

  (x+z)(x
_
 )(z

_
 ) is not satisfiable 

 

3-SAT: is a given n-var boolean 

formula (in 3-CNF) satisfiable? 
 

3-CNF: three literals per clause 

Ex: (x1+x5+x7)(x3
+x

_
 
4
+x

_
 
5) 
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Cook's Theorem 
 

 

Thm: SAT is NP-complete [Cook 1971] 
 

Pf idea:  given a non-deterministic 

polynomial-time TM M and input w, 

construct a CNF formula that is 

satisfiable iff M accepts w. 
 

Use variables: 

• q[i,k] at step i, M is in state k 

• h[i,k] at step i, read-write head 

    scans tape cell k 

• s[i,j,k] at step i, tape cell j  

    contains symbol k 
 

M always halts in polynomial time 

  # of variables is polynomial 
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Clauses for necessary restrictions: 
• At each time i: 

  M is in exactly 1 state 

  r/w head scans exactly 1 cell 

  all cells contain exactly 1 symb 

• Time 0 initial state 

• Time P(n) final state 

• Transitions from time i to time  

 i+1 obey M's transition function 
 

Resulting formula is satisfiable iff M 

accepts w. 
              

 

Thm: 3-SAT is NP-complete 
 

Pf idea: convert each long clause to an 

equivalent set of short ones: 
  (x+y+z+u+v+w) 

(x+y+ )(
_

 +z+ )(
_

 +u+ )(
_

 +v+w)
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Q: is 1-SAT NP-complete? 

 

 

 

 

 

 

 

 

Q: is 2-SAT NP-complete? 
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COLORABILITY: given a graph G 

and integer k, is G k-colorable? 
 

(different colors for adjacent nodes)  

Ex: 





  

Thm: 3-COLORABILITY is NPC 

Proof: reduction from 3-SAT 

 

(x+y+z) 

 
gadget is 3-colorable  x+y+z is true 

T

F    

x

x  

x

 

z

T

x

y
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Ex: (x+y+z)(x
_
 +y

_
 +z)(x

_
 +y+z

_
 ) 

 

z

F

z

x

T

y

x

y
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Ex (cont.): a 3-coloring: 

 

 
 

Solution  x=true, y=false, z=false  
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Thm: 3-COLORABILITY is NPC for 

graphs with max degree 4. 
  

Pf: degree-reduction "gadget": 

    
a) max degree 4 

b) 3-colorable but not 2-colorable 

c) all corners get same color 
 

"Super"-gadgets: 
 

 
 

Use these "fanout" components to 

reduce node degrees to 4 or less
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Ex: 

 

G:

  
 

 
 

G': 

 
 

G is 3-colorable  G' is 3-colorable 
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Q: is 3-COLORABILITY NPC for 

graphs with max degree 3? 
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Thm: 3-COLORABILITY is NPC for 

planar graphs. 
  

Pf: planarity-preserving "gadget": 

   

a) planar and 3-colorable 

b) Opposite Corners get same color 

c) "independence" of pairs of OC's 

 

Use gadget to avoid edge crossings: 
 

        
 

a b

x

y

a b

x

y
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Ex: 

G:   

 
 

 
 

G':   

 

 

G is 3-colorable  G' is 3-colorable 

 

1

2 3

4
5

1

2

3

5

4


