
Gabriel Robins

Department of

Computer Science

University of Virginia
www.cs.virginia.edu/robins

Algorithms
CS4102– Fall 2015

Algorithms (CS4102) Textbook

Textbook:

Introduction to Algorithms

by Cormen et al (MIT)

Third Edition, 2009

Thomas Cormen Charles Leiserson

Ronald Rivest Clifford Stein

Algorithms (CS4102) Textbook

Supplemental reading:

How to Solve It, by George Polya (MIT)

Princeton University Press, 1945

• A classic on problem solving

Good Articles / videos:
www.cs.virginia.edu/robins/CS_readings.html

George Polya (1887-1985)

Algorithms Syllabus

Fundamentals:

• History of algorithms

• Problem solving

• Pigeon-hole principle

• Occam's razor

• Uncomputability

• Universality

• Asymptotic complexity

• Set theory and logic

Algorithms Syllabus

Data structures:

• Arrays

• Stacks and queues

• Linked lists

• Binary and general trees

• Height-balanced trees

• Heaps

• Hash tables

Algorithms Syllabus

Sorting and searching:

• Classical sorting methods

• Specialized sorting techniques

• Finding max & min

• Median finding and Kth selection

• Majority detection

• Meta algorithms

Algorithms Syllabus

Computational geometry:
• Convex hulls

• Lower bounds

• Line segment intersection

• Planar subdivision search

• Voronoi diagrams

• Nearest neighbors

• Geometric minimum spanning trees

• Delaunay triangulations

• Distance between convex polygons

• Triangulation of polygons

• Collinear subsets

Algorithms Syllabus

Graph algorithms:

• Depth-first search

• Breadth-first search

• Minimum spanning trees

• Shortest paths trees

• Radius-cost tradeoffs

• Steiner trees

• Degree-constrained trees

Algorithms Syllabus

NP-completeness:

• Resource-constrained computation

• Complexity classes

• Intractability

• Boolean satisfiability

• Cook-Levin theorem

• Transformations

• Graph clique problem

• Independent sets

• Hamiltonian cycles

• Colorability problems

• Heuristics

PNP

NP-complete SAT

co-NP-complete TAUT

co-NP
P-complete LP

Algorithms Syllabus

Other topics in algorithms:

• Linear programming

• Matrix multiplication

• String matching

• Minimum matchings

• Network flows

• Distributed algorithms

• Amortized analysis

• Zero knowledge proofs
≈

• Focus on the “big picture” & “scientific method”

• Emphasis on problem solving & creativity

• Discuss applications & practice

• A primary objective: have fun!

Overarching Philosophy

Algorithms Throughout History

A brief history of computing:

• Aristotle, Euclid, Archimedes, Eratosthenes

• Abu Ali al-Hasan ibn al-Haytham

• Fibonacci, Descartes, Fermat, Pascal

• Newton, Euler, Gauss, Hamilton

• Boole, De Morgan, Babbage, Ada Agusta

• Venn, Carroll, Cantor, Hilbert, Russell

• Hardy, Ramanujan, Ramsey

• Godel, Church, Turing, von Neumann

• Shannon, Kleene, Chomsky

An Ancient Computer: The Antikythera
• Oldest known mechanical computer

• Built around 150-100 BCE !

• Calculates eclipses and astronomical

positions of sun, moon, and planets

• Very sophisticated for its era

• Contains dozens of intricate gears

• Comparable to 1700’s Swiss clocks

• Has an attached “instructions manual”

• Still the subject of ongoing research

Problem: Can 5 test tubes be spun simultaneously in a

12-hole centrifuge in a balanced way?

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

• Some discrete math & algorithms knowldege

• Ideally, should have taken CS2102

• Course will “bootstrap”

(albeit quickly) from first

principles

• Critical: Tenacity, patience

Prerequisites

• Exams: probably take home

– Decide by vote

– Flexible exam schedule

• Problem sets:

– Lots of problem solving

– Work in groups!

– Not formally graded

– Many exam questions will

come from homeworks!

• Extra credit problems

– In class & take-home

– Find mistakes in slides, handouts, etc.

• Course materials posted on Web site

www.cs.virginia.edu/robins/theory

Course Organization

• Midterm 35%

• Final 35%

• Project 30%

• Extra credit 10%

Best strategy:

• Solve lots of problems!

Grading Scheme

Professor Gabriel Robins

Office: 409 Rice Hall

Phone: (434) 982-2207

Email: robins@cs.virginia.edu

Web: www.cs.virginia.edu/robins

www.cs.virginia.edu/robins

Office hours: after class
• Any other time

• By email (preferred)

• By appointment

• Q&A blog posted on class Web site

Contact Information

• Ask questions ASAP

• Do homeworks ASAP

• Work in study groups

• Do not fall behind

• “Cramming” won’t work

• Start on project early

• Attend every lecture

• Read Email often

• Solve lots of problems

Good Advice

Supplemental Readings
www.cs.virginia.edu/robins/CS_readings.html

• Great videos:

– Randy Pausch's "Last Lecture”, 2007

– Randy Pausch's "Time Management“, 2007

– "Powers of Ten", Charles and Ray Eames, 1977

http://www.cs.virginia.edu/~robins/Randy/Randy_TM_jow0247.jpg
http://www.cs.virginia.edu/~robins/Randy/Randy_TM_jow0247.jpg

Supplemental Readings
www.cs.virginia.edu/robins/CS_readings.html

• Theory and Algorithms:

– Who Can Name the Bigger Number, Scott Aaronson, 1999

– The Limits of Reason, Gregory Chaitin, Scientific American, March

2006, pp. 74-81.

– Breaking Intractability, Joseph Traub and Henryk Wozniakowski,

Scientific American, January 1994, pp. 102-107.

– Confronting Science's Logical Limits, John Casti, Scientific

American, October 1996, pp. 102-105.

– Go Forth and Replicate, Moshe Sipper and James Reggia, Scientific

American, August 2001, pp. 34-43.

– The Science Behind Sudoku, Jean-Paul Delahaye, Scientific

American, June 2006, pp. 80-87.

– The Traveler's Dilemma, Kaushik Basu, Scientific American, June

2007, pp. 90-95.

Supplemental Readings
www.cs.virginia.edu/robins/CS_readings.html

• Biological Computing:

– Computing with DNA, Leonard Adleman, Scientific American,

August 1998, pp. 54-61.

– Bringing DNA Computing to Life, Ehud Shapiro and Yaakov

Benenson, Scientific American, May 2006, pp. 44-51.

– Engineering Life: Building a FAB for Biology, David Baker et

al., Scientific American, June 2006, pp. 44-51.

– Big Lab on a Tiny Chip, Charles Choi, Scientific American,

October 2007, pp. 100-103.

– DNA Computers for Work and Play, Macdonald et al, Scientific

American, November 2007, pp. 84-91.

Supplemental Readings
www.cs.virginia.edu/robins/CS_readings.html

• Quantum Computing:

– Quantum Mechanical Computers, Seth Lloyd, Scientific

American, 1997, pp. 98-104.

– Quantum Computing with Molecules, Gershenfeld and Chuang,

Scientific American, June 1998, pp. 66-71.

– Black Hole Computers, Seth Lloyd and Jack Ng, Scientific

American, November 2004, pp. 52-61.

– Computing with Quantum Knots, Graham Collins, Scientific

American, April 2006, pp. 56-63.

– The Limits of Quantum Computers, Scott Aaronson, Scientific

American, March 2008, pp. 62-69.

– Quantum Computing with Ions, Monroe and Wineland,

Scientific American, August 2008, pp. 64-71.

Supplemental Readings
www.cs.virginia.edu/robins/CS_readings.html

• History of Computing:

– Alan Turing's Forgotten Ideas, B. Jack Copeland and Diane

Proudfoot, Scientific American, May 1999, pp. 98-103.

– Ada and the First Computer, Eugene Kim and Betty Toole,

Scientific American, April 1999, pp. 76-81.

• Security and Privacy:

– Malware Goes Mobile, Mikko Hypponen, Scientific American,

November 2006, pp. 70-77.

– RFID Powder, Tim Hornyak, Scientific American, February

2008, pp. 68-71.

– Can Phishing be Foiled, Lorrie Cranor, Scientific American,

December 2008, pp. 104-110.

Supplemental Readings
www.cs.virginia.edu/robins/CS_readings.html

• Future of Computing:
– Microprocessors in 2020, David Patterson, Scientific American, September

1995, pp. 62-67.

– Computing Without Clocks, Ivan Sutherland and Jo Ebergen, Scientific

American, August 2002, pp. 62-69.

– Making Silicon Lase, Bahram Jalali, Scientific American, February 2007,

pp. 58-65.

– A Robot in Every Home, Bill Gates, Scientific Am, January 2007, pp. 58-65.

– Ballbots, Ralph Hollis, Scientific American, October 2006, pp. 72-77.

– Dependable Software by Design, Daniel Jackson, Scientific American, June

2006, pp. 68-75.

– Not Tonight Dear - I Have to Reboot, Charles Choi, Scientific American,

March 2008, pp. 94-97.

– Self-Powered Nanotech, Zhong Lin Wang, Scientific American, January

2008, pp. 82-87.

Supplemental Readings
www.cs.virginia.edu/robins/CS_readings.html

• The Web:
– The Semantic Web in Action, Lee Feigenbaum et al., Scientific American,

December 2007, pp. 90-97.

– Web Science Emerges, Nigel Shadbolt and Tim Berners-Lee, Scientific

American, October 2008, pp. 76-81.

• The Wikipedia Computer Science Portal:
– Theory of computation and Automata theory

– Formal languages and grammars

– Chomsky hierarchy and the Complexity Zoo

– Regular, context-free &Turing-decidable languages

– Finite & pushdown automata; Turing machines

– Computational complexity

– List of data structures and algorithms

http://upload.wikimedia.org/wikipedia/commons/b/b7/Wikipedia-logo.svg
http://upload.wikimedia.org/wikipedia/commons/b/b7/Wikipedia-logo.svg

Supplemental Readings
www.cs.virginia.edu/robins/CS_readings.html

• The Wikipedia Math Portal:

– Problem solving

– List of Mathematical lists

– Sets and Infinity

– Discrete mathematics

– Proof techniques and list of proofs

– Information theory & randomness

– Game theory

• Mathematica's “Math World”

http://mathworld.wolfram.com/

Problem: Can 5 test tubes be spun simultaneously in a

12-hole centrifuge in a balanced way?

• What does “balanced” mean?

• Why are 3 test tubes balanced?

• Symmetry!

• Can you merge solutions?

• Superposition!

• Linearity! ƒ(x + y) = ƒ(x) + ƒ(y)

• Can you spin 7 test tubes?

• Complementarity!

• Empirical testing…

Problem: 1 + 2 + 3 + 4 + …+ 100 = ?

Proof: Induction…

1 + 2 + 3 + … + 99 + 100

100 + 99 + 98 + … + 2 + 1

101 + 101 + 101 + … + 101 + 101 =

2

)1(

1

nn
i

n

i

n+1

n

100*101

= (100*101)/2

= 5050

• You must a priori know the formula / result

• Easy to make mistakes in inductive proof

• Mostly “mechanical” – ignores intuitions

• Tedious to construct

• Difficult to check

• Hard to understand

• Not very convincing

• Generalizations not obvious

• Does not “shed light on truth”

• Obfuscates connections

Conclusion: only use induction as a last resort!

I.e., almost never!

Drawbacks of Induction

Oh oh!

Problem: (1/4) + (1/4)2 + (1/4)3 + (1/4)4 + … = ?

?
4

1

1

i
i

Extra Credit:

Find a short, geometric, induction-free proof.

Problem: (1/4) + (1/4)2 + (1/4)3 + (1/4)4 + … = ?

Find a short, geometric, induction-free proof.

3

1

4

1

1

i
i1

1

Problem: (1/8) + (1/8)2 + (1/8)3 + (1/8)4 + …= ?

?
8

1

1

i
i

Extra Credit:

Find a short, geometric, induction-free proof.

Problem: (1/8) + (1/8)2 + (1/8)3 + (1/8)4 + …= ?

Find a short, geometric, induction-free proof.

7

1

8

1

1

i
i

Problem: 13 + 23 + 33 + 43 + …+ n3 = ?

?i
1

3

n

i

Extra Credit:

find a short, geometric,

induction-free proof.

Problem: Can an 8x8 board with two opposite

corners missing be tiles with 31 dominoes?

= 31 x ?

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Given any five points in/on the unit

square, is there always a pair with distance ≤ ?

1

1

2

1

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Given any five points in/on the unit

equilateral triangle, is there always a pair with

distance ≤ ½ ?

1 1

1

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Prove that there are an infinity of primes.

Extra Credit: Find a short, induction-free proof.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: True or false: there are arbitrary long

blocks of consecutive composite integers

(i.e., big “prime deserts”)

Extra Credit: find a short, induction-free proof.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Prove that is irrational.

Extra Credit: find a short, induction-free proof.

2

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Does exponentiation preserve irrationality?

i.e., are there two irrational numbers x and y such

that xy is rational?

Extra Credit: find a short, induction-free proof.

X = 2
X

X
X

X

Problem: Solve the following equation for X:

where the stack of exponentiated x’s extends forever.

• What approaches fail?

• What techniques work and why?

• Lessons and generalizations

Problem: Are the complex numbers closed under

exponentiation ? E.g., what is the value of ii?

Theorem [Turing]: not all problems are solvable by algorithms.

Theorem: not all functions are computable by algorithms.

Theorem: not all Boolean functions are computable by algorithms.

Theorem: most Boolean functions are not computable!

Q: Can we find a concrete example of an uncomputable function?

A [Turing]: Yes, for example, the Halting Problem.

Definition: The Halting problem: given a program P

and input I, will P ever halt if we ran it on I?

Define H:ℕℕ{0,1}

H(P,I)=1 if program P halts on input I

H(P,I)=0 otherwise

• Both P and I can be encoded as strings

• P and I can also be encoded as integers (in some canonical order)

• H is an everywhere-defined Boolean function on natural #’s

P
I

yes

no

Does P(I)

halt?

H

Number of steps to termination

for the first 10,000 numbers

Theorem [Turing]: the halting problem (H) is not computable.

Ex: the “3X+1” problem (the Ulam conjecture):

• Start with any integer X>0

• If X is even, then replace it with X/2

• If X is odd then replace it with 3X+1

• Repeat until X=1 (i.e., short cycle 4, 2, 1, ...)

Ex: 26 terminates after 10 steps

27 terminates after 111 steps

Termination verified for X<1018

Q: Does this terminate for every X>0 ?

A: Open since 1937!

“Mathematics is not yet ready for such confusing,

troubling, and hard problems." - Paul Erdős, who

offered a $500 bounty for a solution to this problem

Observation: termination is

in general difficult to detect!

Theorem [Turing]: the halting problem (H) is not computable.

Corollary: we can not algorithmically detect all infinite loops.

Q: Why not? E.g., do the following programs halt?

main()

{ int k=3; }

main()

{ while(1) {} }

Halts! Runs forever! ?

main()

{ Find a Fermat

triple an+bn=cn

with n>2 & stop}

Runs forever!

Open from 1637-1995!

main()

{ Find a Goldbach

integer that is not a sum

of two primes & stop}

?

Still open since 1742!

Theorem: solving the halting problem is at least as

hard as solving arbitrary open mathematical problems!

Theorem [Turing]: the halting problem (H) is not computable.

Proof: Assume $ algorithm S that solves the halting problem

H, that always stops with the correct answer for any P & I.

P
I

yes

no
Does

P(I) halt?

S

X

T

T(T) halts
Q ~Q Contradiction!

P
I

yes

no
Does

P(I) halt?

S

P
I

yes

no
Does

P(I) halt?

S

 S cannot exist! (at least as an algorithm / program / TM)

Using S, construct algorithm / TM T:

 T(T) halts

 T(T) does not halt

T(T) does not halt

Theorem: all computable numbers are finitely describable.
Proof: A computable number can be outputted by a TM.

A TM is a (unique) finite description.

What the unsolvability of the Halting Problem means:

There is no single algorithm / program / TM that correctly
solves all instances of the halting problem in finite time each.

This result does not necessarily apply if we allow:

• Incorrectness on some instances

• Infinitely large algorithm / program

• Infinite number of finite algorithms / programs

• Some instances to not be solved

• Infinite “running time” / steps

• Powerful enough oracles

Q: When do we want to feed a program to itself in practice?

A: When we build compilers.

Q: Why?

A: To make them more efficient!

To boot-strap the coding in the compiler’s own language!

Program C
compiler

Executable
code

Theorem: virus detection

is not computable.

Theorem: Infinite loop

detection is not computable.

Self-Replication
• Biology / DNA

• Nanotechnology

• Computer viruses

• Space exploration

• Memetics / memes

• “Gray goo”

Problem (extra credit): write a program that

prints out its own source code (no inputs of

any kind are allowed).

Self-replicating

cellular automata

designed by von Neumann

Non-Existence Proofs

• Must cover all possible (usually infinite) scenarios!

• Examples / counter-examples are not convincing!

• Not “symmetric” to existence proofs!

Ex: proof that you

are a millionaire:

“Proof” that you

are not a millionaire ?

PNP

Pigeon-Hole Principle

• J. Dirichlet (1834)

• “Drawer principle”

• “Shelf Principle”

• “Box principle”

Theorem (pigeon-hole): There is no injective (1-to-1) function

from a finite set (domain) to a smaller finite set (range).

Generalization:
N objects placed in M containers; then:

• at least 1 container must hold

• at least 1 container must hold

M

N

M

N

Naturals ℕ 6
Integers ℤ -4

Rationals ℚ 2/9

Reals ℝ

Q
u
at

er
n
io

n
s
ℍ

1
+

i+
j+

k Complex ℂ 7+3i
Su

r
r

e
a

l
{
L

|R
}

S
u

rc
o

m
p
le

x
 A

+
B

i

Primes ℙ 5

O
ct

o
n
io

n
s

1
+

i+
j+

k
+

E
+

I+
J+

K

Hypernumbers

S
ed

en
io

n
s
S

1
+

i+
j+

k
+

…
+

e 1
5
+

e 1
6

?

Boolean 1

C
o
m

p
u
ta

b
le

 n
u

m
b

er
s

Finitely describable numbers H

A
lg

eb
ra

ic

2

T
ra

n
ce

n
d
en

ta
l
p

Ir
ra

ti
o
n
al

s
J

Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!

Generalized Numbers

