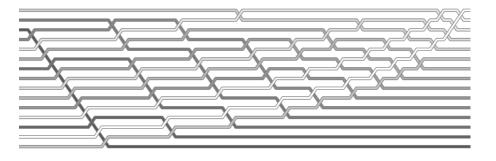
Sorting

Almost half of <u>all</u> CPU cycles are spent on sorting!

- Input: array X[1..n] of integers
- Output: sorted array (permutation of input)

In: 5,2,9,1,7,3,4,8,6

Out: 1,2,3,4,5,6,7,8,9



- Assume WLOG all input numbers are unique
- Decision tree model ⇒ count comparisons "<"

Lower Bound for Sorting

Theorem: Sorting requires $\Omega(n \log n)$ time

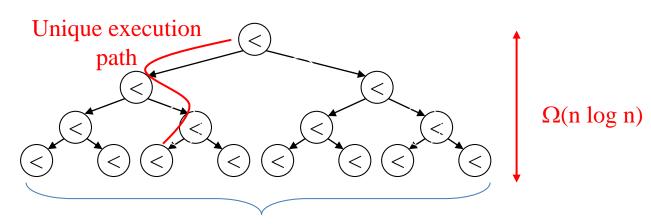
Proof: Assume WLOG unique numbers

⇒ n! different permutations

- ⇒ comparison decision tree has n! leaves

$$\Rightarrow \text{tree height} > \log\left(\frac{n}{e}\right)^n = n \cdot \log\left(\frac{n}{e}\right) = \Omega(n \log n)$$

 $\Rightarrow \Omega(n \log n)$ decisions / time necessary to sort



n! permutations (i.e., distinct sorted outcomes)

Sorting Algorithms (Sorted!)

1.	AKS sort	17. Franceschini's sort	33. Selection sort
2.	Bead sort	18. Gnome sort	34. Shaker sort
3.	Binary tree sort	19. Heapsort	35. Shell sort
4.	Bitonic sorter	20. In-place merge sort	36. Simple pancake sort
5.	Block sort	21. Insertion sort	37. Sleep sort
6.	Bogosort	22. Introspective sort	38. Smoothsort
7.	Bozo sort	23. Library sort	39. Sorting network
8.	Bubble sort	24. Merge sort	40. Spaghetti sort
9.	Bucket sort	25. Odd-even sort	41. Splay sort
10.	Burstsort	26. Patience sorting	42. Spreadsort
11.	Cocktail sort	27. Pigeonhole sort	43. Stooge sort
12.	Comb sort	28. Postman sort	44. Strand sort
13.	Counting sort	29. Quantum sort	45. Timsort
14.	Cubesort	30. Quicksort	46. Tree sort
15.	Cycle sort	31. Radix Sort	47. Tournament sort
16.	Flashsort	32. Sample sort	48. UnShuffle Sort

Sorting Algorithms

- Q: Why so many sorting algorithms?
- A: There is no "best" sorting algorithm!

Some considerations:

- Worst case?
- Average case?
- In practice?
- Input distribution?
- Near-sorted data?
- Stability?
- In-situ?

- Randomized?
- Stack depth?
- Internal vs. external?
- Pipeline compatible?
- Parallelizable?
- Locality?
- Online

Problem: Given n pairs of integers (x_i, y_i) , where $0 \le x_i \le n$ and $1 \le y_i \le n$ for $1 \le i \le n$, find an algorithm that sorts all n ratios x_i / y_i in linear time O(n).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Problem: Given n integers, find in O(n) time the majority element (i.e., occurring $\geq n/2$ times, if any).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Problem: Given n objects, find in O(n) time the majority element (i.e., occurring $\geq n/2$ times, if any), using only equality comparisons (=).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Problem: Given n integers, find both the maximum and the next-to-maximum using the least number of comparisons (exact comparison count, not just O(n)).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Bubble Sort

Input: array X[1..n] of integers

Output: sorted array (monotonic permutation)

Idea: keep swapping adjacent pairs

```
until array X is sorted do
for i=1 to n-1
if X[i+1]<X[i]
then swap(X,i,i+1)
```

- O(n²) time worst-case, but sometimes faster
- •Adaptive, stable, in-situ, slow

Odd-Even Sort

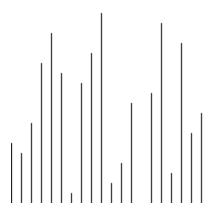
Input: array X[1..n] of integers

Output: sorted array (monotonic)

Idea: swap even and odd pairs

```
until array X is sorted do
for even i=1 to n-1
   if X[i+1]<X[i] swap(X,i,i+1)
for odd i=1 to n-1
   if X[i+1]<X[i] swap(X,i,i+1)</pre>
```

- O(n²) time worst-case, but faster on near-sorted data
- •Adaptive, stable, in-situ, parallel



Selection Sort

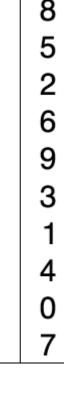
Input: array X[1..n] of integers

Output: sorted array (monotonic permutation)

Idea: move the largest to current pos

```
for i=1 to n-1
let X[j] be largest
among X[i..n]
swap(X,i,j)
```

- $\Theta(n^2)$ time worst-case
- Stable, in-situ, simple, not adaptive
- Relatively fast (among quadratic sorts)



Insertion Sort

- Input: array X[1..n] of integers
- Output: sorted array (monotonic permutation)

Idea: insert each item into list

for i=2 to n
insert X[i] into the
sorted list X[1..(i-1)]

- O(n²) time worst-case
- O(nk) where k is max dist of any item from final sorted pos
- Adaptive, stable, in-situ, online

Heap Sort

Input: array X[1..n] of integers

Output: sorted array (monotonic)

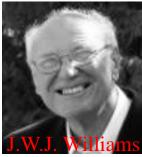
Idea: exploit a heap to sort

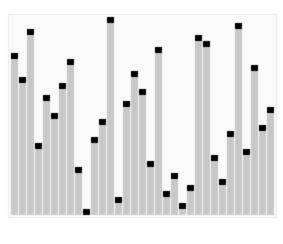
InitializeHeap
For i=1 to n HeapInsert(X[i])
For i=1 to n do
M=HeapMax; Print(M)

• $\Theta(n \log n)$ optimal time

HeapDelete(M)

• Not stable, not adaptive, in-situ





5 5 3 1 8 7 2 4

SmoothSort

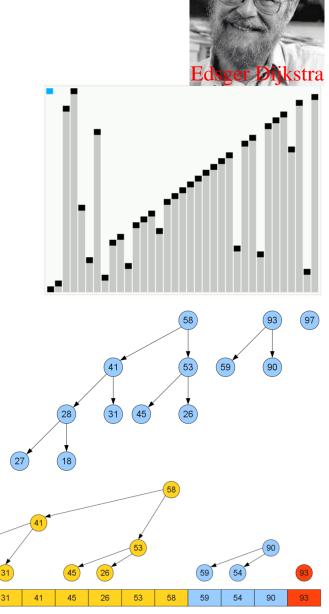
Input: array X[1..n] of integers

Output: sorted array (monotone)

Idea: adaptive heapsort

InitializeHeaps
for i=1 to n HeapsInsert(X[i])
for i=1 to n do
 M=HeapsMax; Print(M)
 HeapsDelete(M)

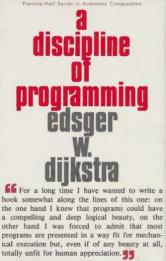
- Uses multiple (Leonardo) heaps
- O(n log n)
- O(n) if list is mostly sorted
- Not stable, adaptive, in-situ

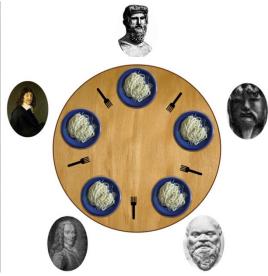


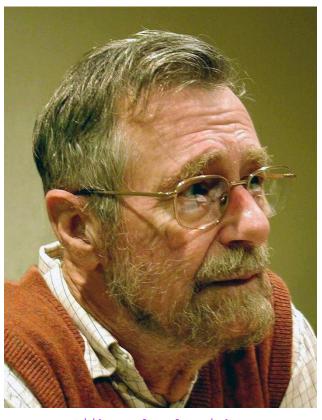
Historical Perspectives

Edsger W. Dijkstra (1930-2002)

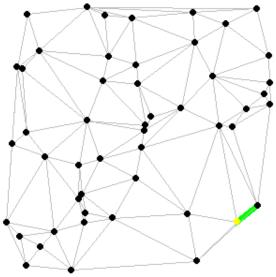
- Pioneered software engineering, OS design
- Invented concurrent programming, mutual exclusion / semaphores
- Invented shortest paths algorithm
- Advocated structured (GOTO-less) code
- Stressed elegance & simplicity in design
- Won Turing Award in 1972





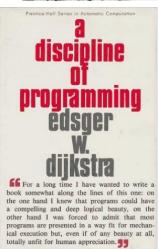


Dijkstra's algorithm



Quotes by Edsger W. Dijkstra (1930-2002)

- "Computer science is no more about computers than astronomy is about telescopes."
- "If debugging is the process of removing software bugs, then programming must be the process of putting them in."
- "Testing shows the presence, not the absence of bugs."
- "Simplicity is prerequisite for reliability."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offense."
- "Object-oriented programming is an exceptionally bad idea which could only have originated in California."
- "Elegance has the disadvantage, if that's what it is, that hard work is needed to achieve it and a good education to appreciate it."

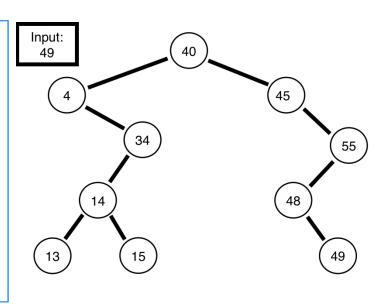


Generalizing Heap Sort

Input: array X[1..n] of integers

Output: sorted array

```
InitializeTree
For i=1 to n
        TreeInsert(X[i])
For i=1 to n do
        M=TreeMax; Print(M)
        TreeDelete(M)
```



- Observation: other data structures can work here!
- Ex: replace heap with any height-balanced tree
- Retains O(n log n) worst-case time!

Tree Sort

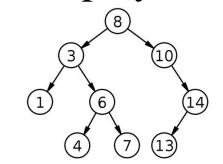
Input: array X[1..n] of integers

Output: sorted array (monotonic)

Idea: populate a tree & traverse

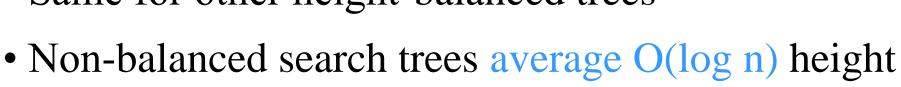
InitializeTree
for i=1 to n TreeInsert(X[i])
traverse tree in-order
to produce sorted list

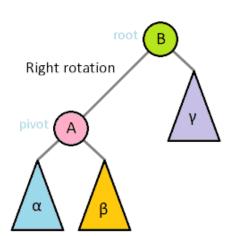
- Use balanced tree (AVL, B, 2-3, splay)
- O(n log n) time worst-case
- Faster for near-sorted inputs
- Stable, adaptive, simple



B-Tree Sort

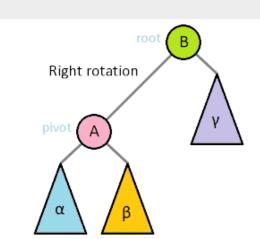
- Multi-rotations occur infrequently
- Rotations don't propagate far
- Larger tree ⇒ fewer rotations
- Same for other height-balanced trees





AVL-Tree Sort

- Multi-rotations occur infrequently
- Rotations don't propagate far
- Larger tree \Rightarrow fewer rotations
- Same for other height-balanced trees
- Non-balanced trees average O(log n) height



Merge Sort

Input: array X[1..n] of integers

Output: sorted array (monotonic)

Idea: sort sublists & merge them

```
MergeSort(X,i,j)
if i<j then m=\[ (i+j)/2 \]
MergeSort(X,i..m)
MergeSort(X,m+1..j)
Merge(X,i..m,m+1..j)
```

- $T(n)=2T(n/2)+n=\Theta(n \log n)$ optimal!
- Stable, parallelizes, not in-situ
- Can be made in-situ & stable

Merge Sort

Theorem: MergeSort runs within time $\Theta(n \log n)$ which is optimal.

Proof: Even-split divide & conquer:

$$T(n) = 2 \cdot T(n/2) + n$$

n							
n/2			n/2				
n,	/4	n,	/4	n/	/4	n/	/4
n/8	n/8						
•							•
1 1	1 1					• • •	1 1

 \Rightarrow n total / level

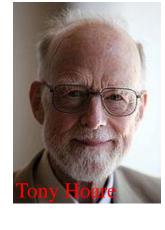
log n levels of recursion

Total time is $O(n \log n)$; $\Omega(n \log n) \Rightarrow \Theta(n \log n)$

Quicksort

Input: array X[1..n] of integers

Output: sorted array (monotonic)



Idea: sort two sublists around pivot

```
QuickSort(X,i,j)

If i<j Then p=Partition(X,i,j)

QuickSort(X,i,p)

QuickSort(X,p+1,j)
```

- $\Theta(n \log n)$ time average-case
- $\Theta(n^2)$ worst-case time (rare)
- Unstable, parallelizes, O(log n) space.
- Ave: only beats $\Theta(n^2)$ sorts for n>40

Shell Sort

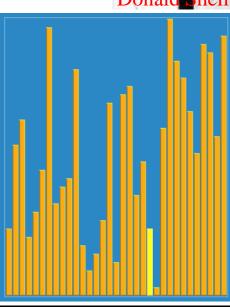
Input: array X[1..n] of integers

Output: sorted array (monotonic)

Idea: generalize insertion sort

for each h_i in sequence $h_k,...,h_1=1$ Insertion-sort all items h_i apart

- Array is sorted after last pass (h_i=1)
- Long swaps quickly reduce disorder
- $O(n^2)$, $O(n^{3/2})$, $O(n^{4/3})$, ... ?
- Complexity still open problem!
- LB is $\Omega(N(\log/\log\log n)^2)$
- Not stable, adaptive, in-situ



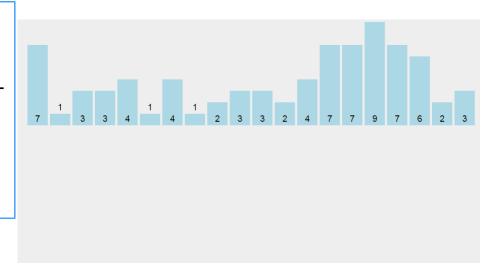
Counting Sort

Input: array X[1..n] of integers in small range 1..k

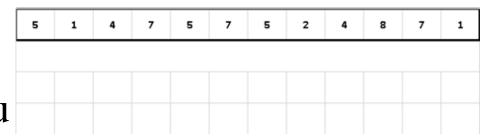
Output: sorted array (monotonic)

Idea: use values as array indices

for i=1 to k do C[i] = 0for i=1 to n do C[X[i]]++for i=1 to k do if $C[i] \neq 0$ then print(i) C[i] times

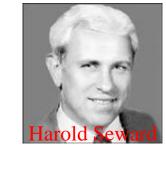


- $\Theta(n)$ time, $\Theta(k)$ space
- Not comparison-based
- For specialized data only
- Stable, parallel, not in-situ



Counting Sort

Q: Why not use counting sort for arbitrary 32-bit integers? (i.e., range k is "fixed")



A: Range is fixed (2³²) but very large (4,294,967,296). Space/time: the counts array will be huge (4 GB)

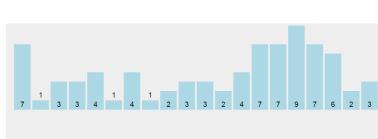
Much worse for 64-bit integers $(2^{64}>10^{19})$: Time: 5 GHz PC will take over 2^{64} / $(5\cdot10^9)$ /

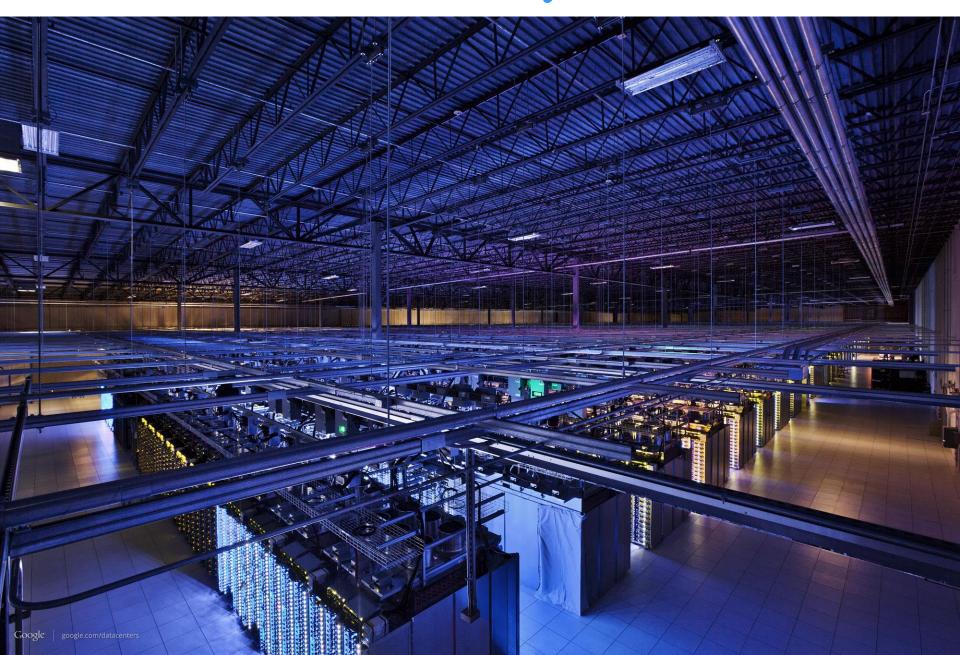
(60.60.24.365) sec >116 years to initialize array!

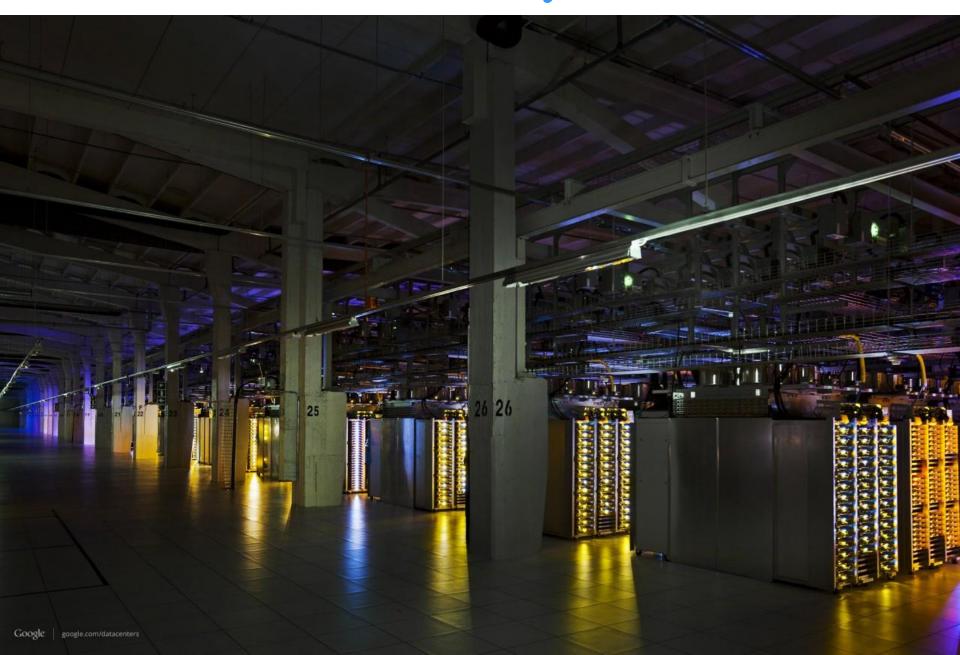
Memory: 2⁶⁴>10¹⁹> 18 Exabytes

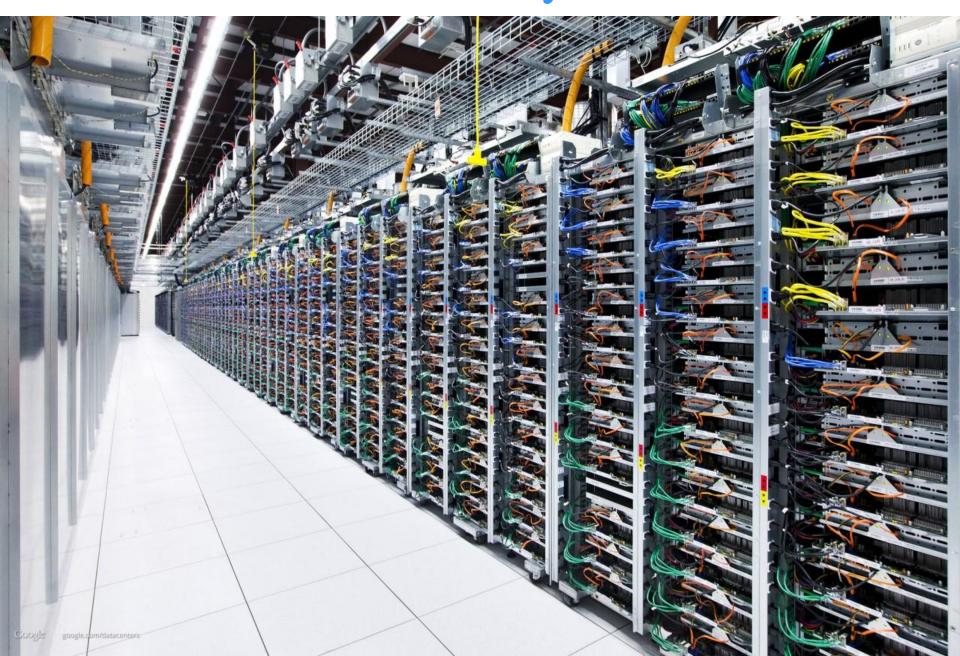
- > 2.3 million TB RAM chips!
 - > total amount of Google's data!

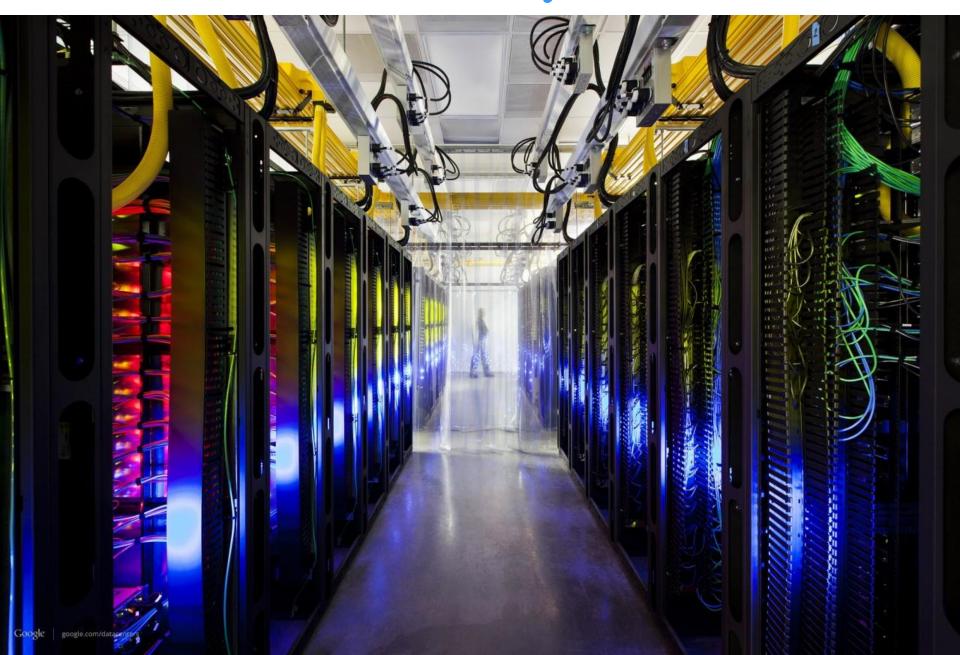
Q: What's an Exabyte? (10¹⁸)

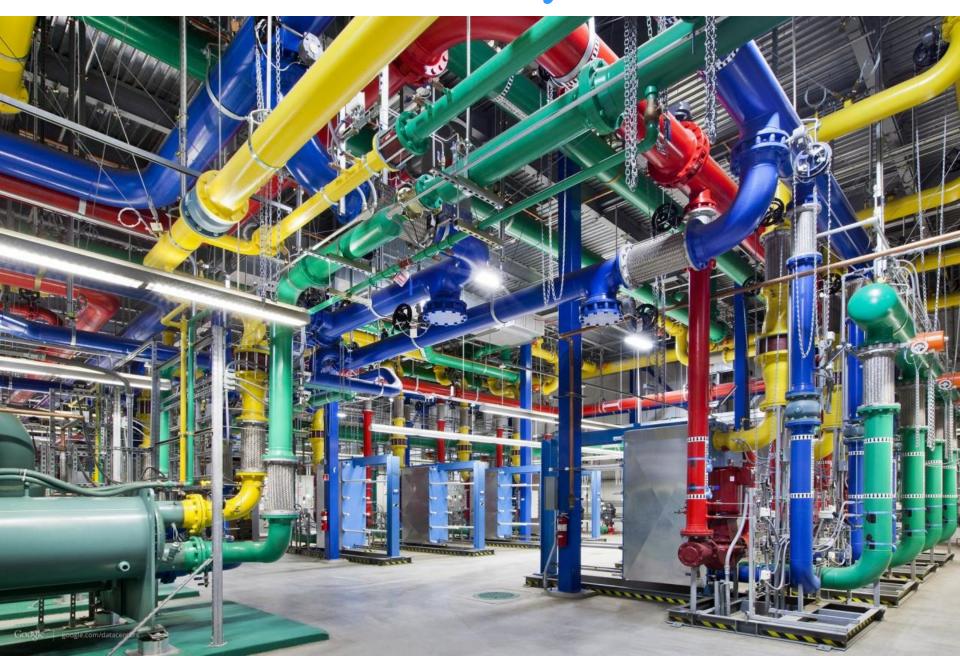




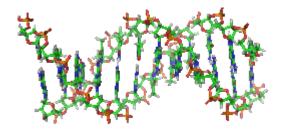








- All content of Library of Congress: ~ 0.001 Exabytes
- Total words ever spoken by humans: ~ 5 Exabytes
- Total data stored by Google: ~ 15 Exabytes
- Total monthly world internet traffic: ~ 110 Exabytes
- Storage capacity of 1 gram of DNA: ~ 455 Exabytes



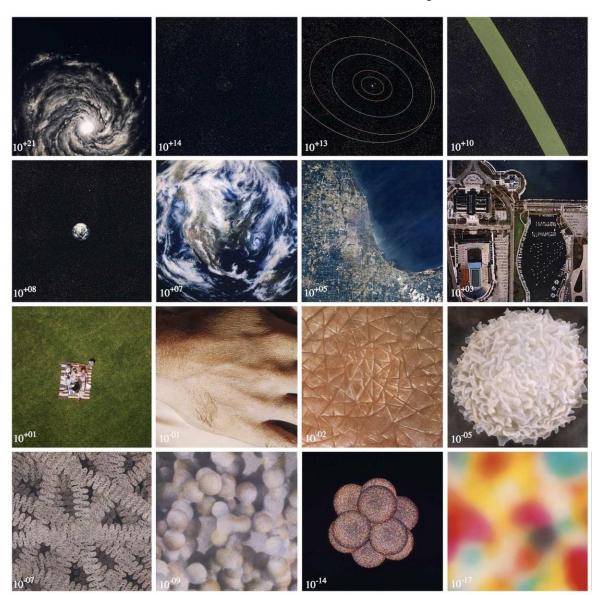
Orders-of-Magnitude

Standard International (SI) quantities:

Deca	10^{1}	Deci	10^{-1}
Hecto	10^2	Centi	10^{-2}
Kilo	10^3	Milli	10^{-3}
Mega	10^6	Micro	10-6
Giga	10^{9}	Nano	10^{-9}
Tera	10^{12}	Pico	10^{-12}
Peta	10^{15}	Femto	10^{-15}
Exa	10^{18}	Atto	10^{-18}
Zetta	10^{21}	Zepto	10^{-21}
Yotta	10^{24}	Yocto	10^{-24}

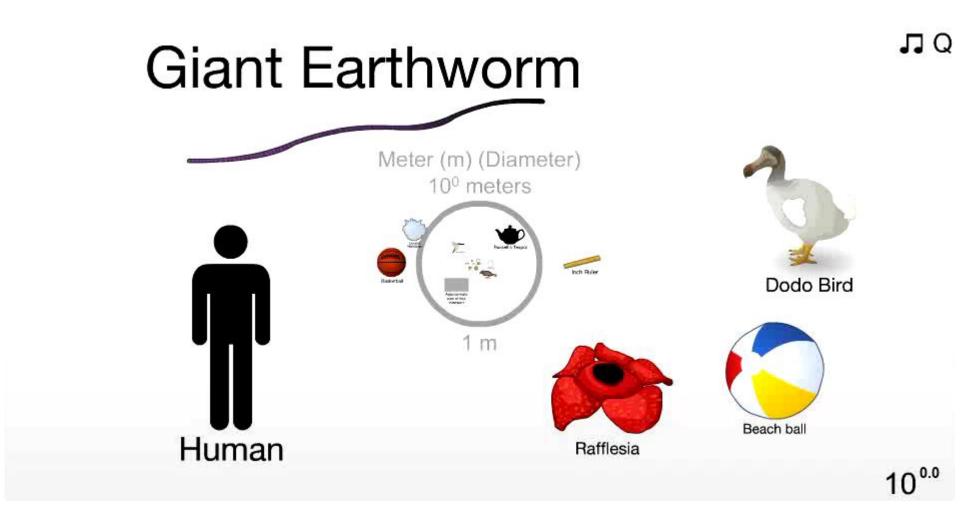
Orders-of-Magnitude

• "Powers of Ten", Charles and Ray Eames, 1977



Orders-of-Magnitude

• "Scale of the Universe", Cary and Michael Huang, 2012



• 10^{-24} to 10^{26} meters \Rightarrow 50 orders of magnitude!

Bucket Sort

Input: array X[1..n] of real numbers in [0,1]

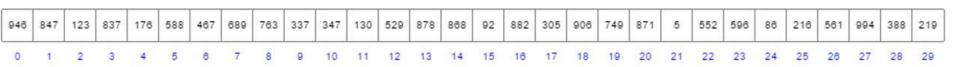
Output: sorted array (monotonic)

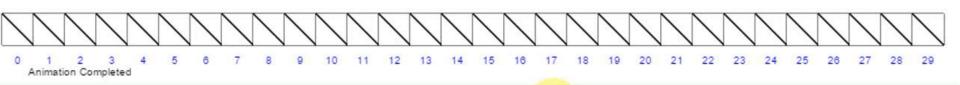
Idea: spread data among buckets

for i=1 to n do
insert X[i] into bucket \[\ln \cdot X[i] \]
for i=1 to n do Sort bucket i
concatenate all the buckets

- O(n+k) time expected, O(n) space
- O(Sort) time worst-case
- Assumes subtantial data uniformity
- Stable, parallel, not in-situ
- Generalizes counting sort / quicksort

Bucket Sort

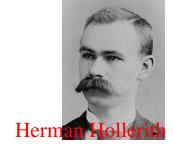




Q: How does bucket sort generalize counting sort? Quicksort?

Radix Sort

Input: array X[1..n] of integers each with d digits in range 1..k

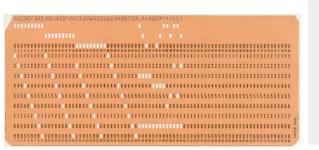


Output: sorted array (monotonic)

Idea: sort each digit in turn

For i=1 to d do StableSort(X on digit i)

- $\Theta(d \cdot n)$ time, $\Theta(k+n)$ space
- Not comparison-based
- Stable
- Parallel
- Not in-situ





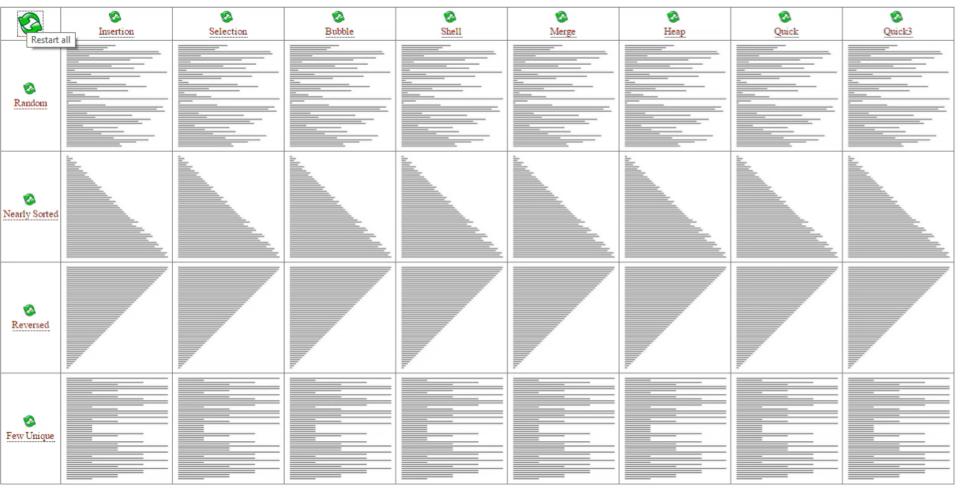
[6428] [4754] [9650] [5650] [9843] [7118] [8804] [3871] [6592] [1163] [2899] [9602]

Radix Sort

6428 4754 9650 5650 9843 7118 8804 3871 6592 1163 2899 9602

Q: is Radix Sort faster than Merge Sort? $\Theta(d \cdot n)$ vs. $\Theta(n \log n)$

Sorting Comparison



- $O(n \log n)$ sorts tend to beat the $O(n^2)$ sorts (n>50)
- Some sorts work faster on random data vs. near-sorted data
- For more details see http://www.sorting-algorithms.com

Meta Sort

Q: how can we easily modify quicksort to have O(n log n) worst-case time?

Idea: combine two algorithms to leverage the best behaviors of each one.

MetaSort(X,i,j):

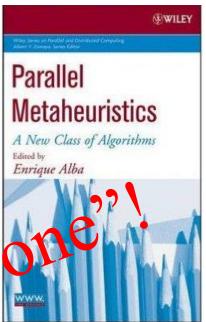
parallel-run:

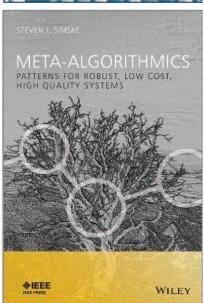
• QuickScrt(X,i,j)

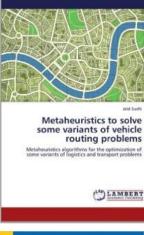
• MergeSort(X,i,j)

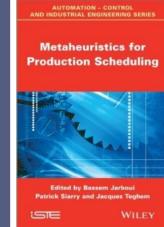
when either stops, abort the other

- Ave-case time is Min of both: O(n log n)
- Worst-case time is Min of both: O(n log n)
- Meta-algorithms / meta-heuristics generalize!

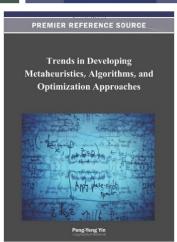


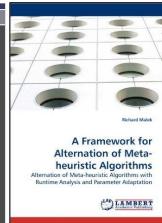






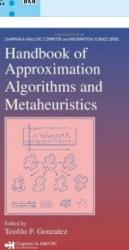


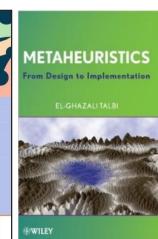


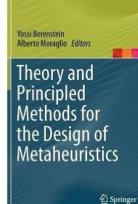


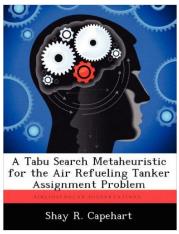
KLUWER ACADEMIC PUBLISHERS

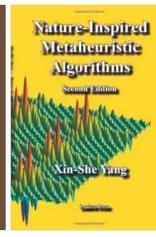
Amelia Epps

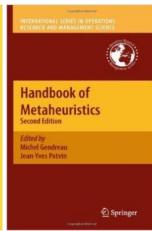


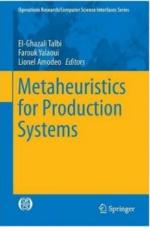


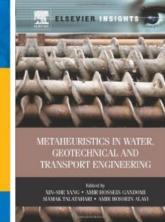


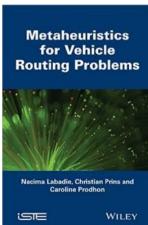


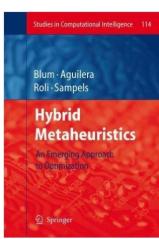


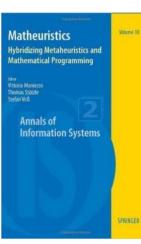


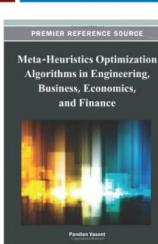


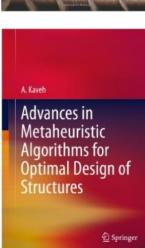


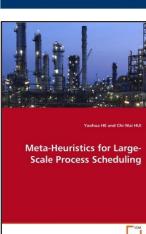


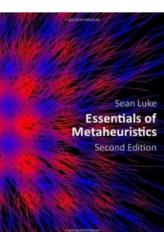


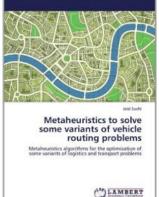


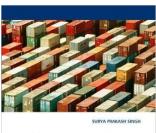


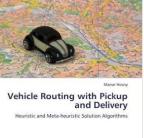




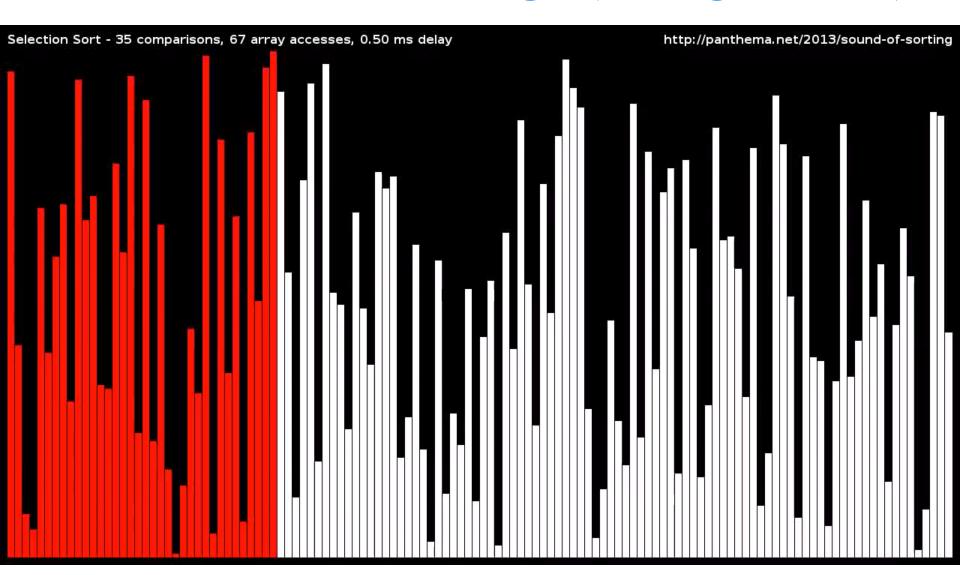






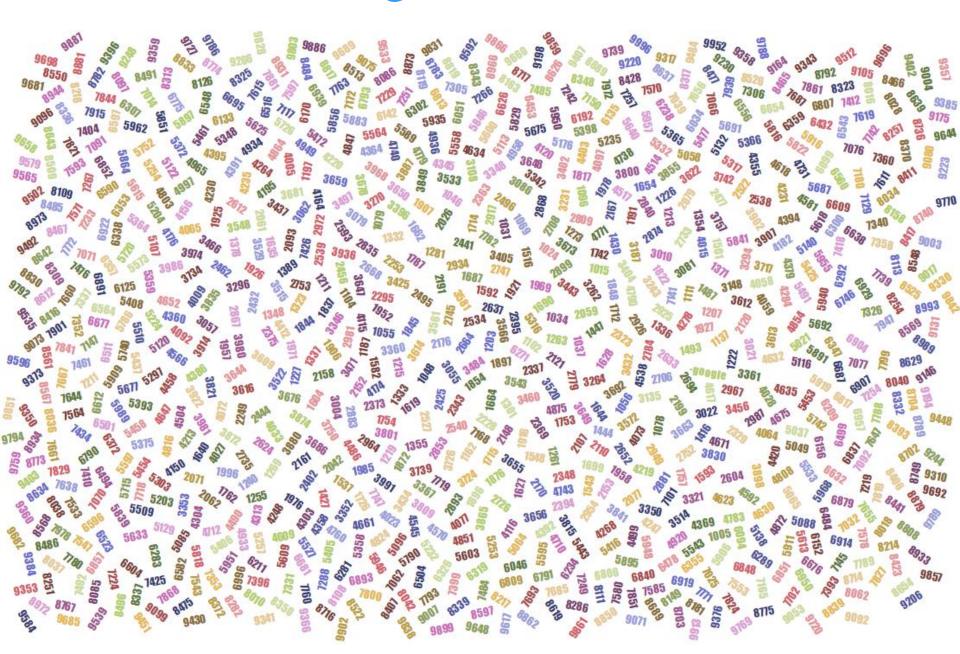


"The Sound of Sorting" (15 algorithms)



• Sound pitch is proportional to value of current sort element sorted!

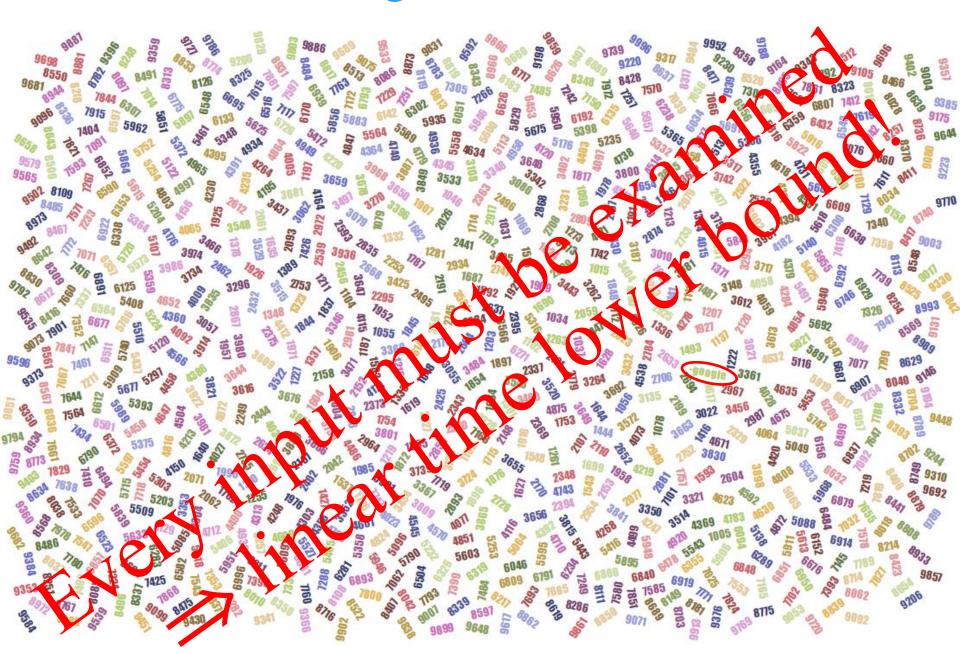
https://www.youtube.com/watch?v=kPRA0W1kECg



- Input: array X[1..n] of integers
- Output: minimum element
- Theorem: $\Omega(n)$ time is necessary to find Min.
- Proof 1: each element must be examined at least once, otherwise we may miss the true maximum. Therefore O(n) work is required.
- Therefore $\Omega(n)$ work is required.

 Proof 2: Assume a correct min finding algorithm didn't examine element X_i for some array X_i .

 Then the same algorithm will be wrong on X_i
- with X_i replaced with say -10¹⁰⁰.



Input: array X[1..n] of integers

Output: minimum element

Idea: keep track of the best-so-far

```
\begin{aligned} & \text{Min} = X[1] \\ & \text{for } i = 2 \text{ to n} \\ & \text{if } X[i] < \text{min then } \min = X[i] \end{aligned}
```

- Exact comparison count: n-1
- Theorem: n-1 comparisons are sufficient for finding the minimum.
- Corollary: This $\Theta(n)$ -time algorithm is optimal.
- Q: What about finding the maximum?

- Q: Can we do better than n-1 comparisons?
- Theorem: n/2 comparisons are necessary for finding the minimum.
- Ior finding the minimum.

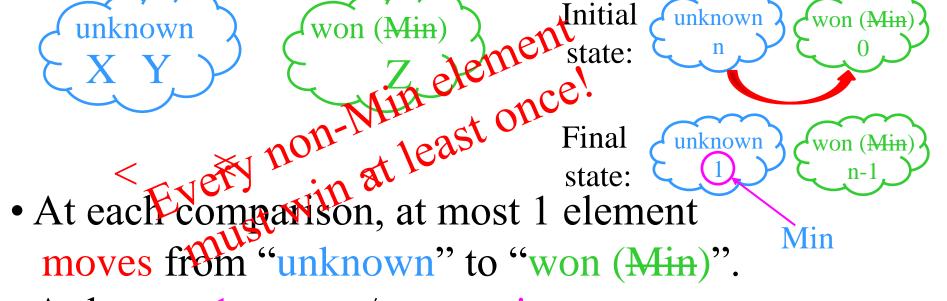
 Idea: must examine all n inputs!

 Proof: each element must participate in at least 1 comparison (otherwise wesnay miss e.g. -10¹⁰⁰).
- Each comparison involves 2 elements
- At least n/2 comparisons are necessary
- Q: Can we improve lower bound up to n-1?

Finding the Minimum Theorem: n-1 comparisons are necessary for finding the minimum (or maximum).

Idea: keep track of "knowledge" gained!

Proof: consider two classes of elements:



• At least n-1 moves / comparisons are necessary to convert the initial state into the final state Corollary: The (n-1)-comparison algorithm is optimal.

Input: array X[1..n] of integers

Output: minimum and maximum elements

Idea: find Min independently from Max

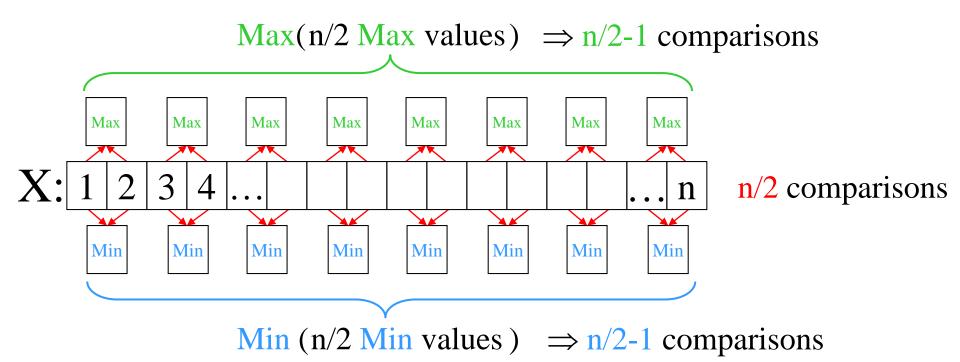
```
FindMin(X)
FindMax(X) \equiv FindMin(-X)
```

- n-1 comparisons to find Min
- n-1 comparisons to find Max
- Total 2n-2 comparisons needed
- Observation: much information is discarded!
- Q: Can we do better than 2n-2 comparisons?

Input: array X[1..n] of integers

Output: minimum and maximum elements

Idea: pairwise compare to reduce work



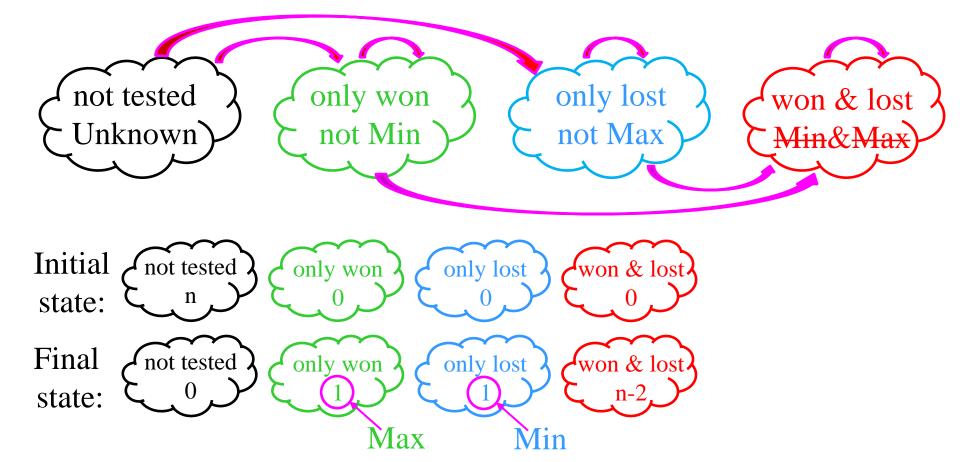
Theorem: 3n/2-2 comparisons are sufficient for finding the minimum and maximum.

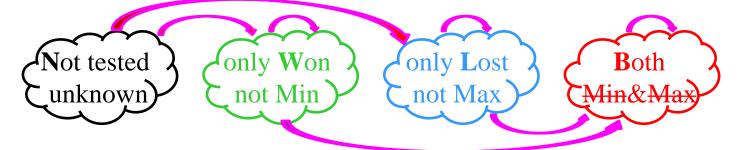
Theorem: 3n/2-2 comparisons are necessary

for finding the minimum and maximum.

Idea: keep track of "knowledge" gained!

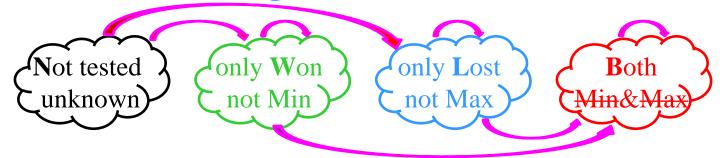
Proof: consider four classes of elements:





$N < N \Rightarrow L \&W$	$N > N \Rightarrow W\&L$	2
$N < W \Rightarrow L \&W$	$N > W \Rightarrow W \& B$	1
$N < L \Rightarrow L \& B$	$N > L \Rightarrow W\& L$	1
$N < B \Rightarrow L \& B$	$N > B \Rightarrow W\& B$	1
$W < W \Rightarrow B \& W$	$W>W \Rightarrow W\& B$	1
$W < L \Rightarrow B \& B$	$W > L \Rightarrow W\&L$	0
$W < B \Rightarrow B \& B$	$W > B \Rightarrow W \& B$	0
$L < L \implies L \& B$	$L > L \Rightarrow B \& L$	1
$L < B \Rightarrow L \& B$	$L > B \Rightarrow B \& B$	0
$B < B \implies B \& B$	$B > B \Rightarrow B \& B$	0.

Minimum
guaranteed
knowledge
gained
i.e. "moves"
towards
final state



- Moving from N to B forces passing through W or L
- Emptying N into W & L takes n/2 comparisons

- Emptying most of L takes n/2-1 comparisons
 Other moves will not recent at a first takes n/2-1. • Other moves will not reach the "final rate" any faster
- Total comparisons required: 3n/2
- \Rightarrow 3n/2-2 comparisons are necessary for finding the minimum and maximum.
- Theorem: Our Min&Max algorithm is optimal.

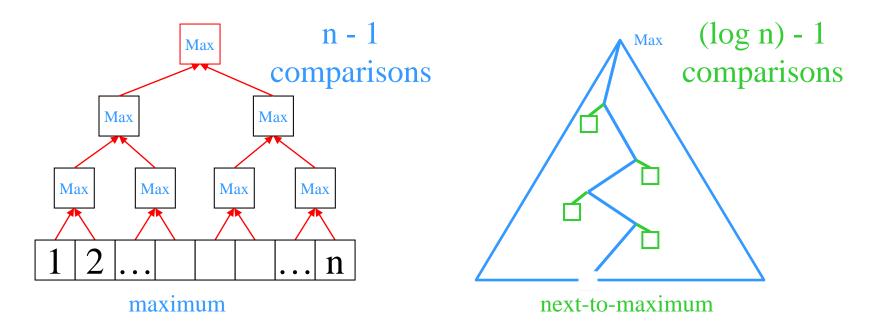
Problem: Given n integers, find both the maximum and the next-to-maximum using the least number of comparisons (exact comparison count, not just O(n)).

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Finding the Max and Next-to-Max

Theorem: (n-2) + log n comparisons are sufficient for finding the maximum and next-to-maximum.

Proof: consider elimination tournament:



Theorem: (n-2) + log n comparisons are necessary for finding the maximum and next-to-maximum.

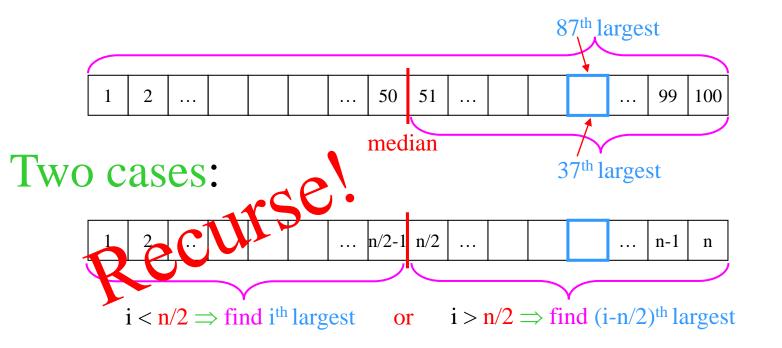
Selection (Order Statistics)

Input: array X[1..n] of integers and i

Output: ith largest integer

Obvious: ith-largest subroutine can find median since median is the special case (n/2)th-largest

Not obvious: repeat medians can find ith largest:



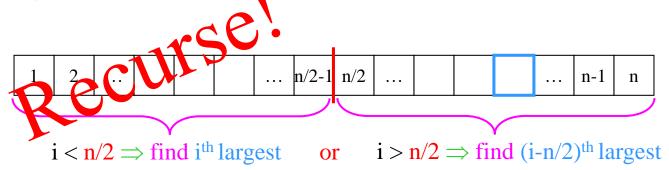
Selection (Order Statistics)

- Run time for ith largest: T(n) = T(n/2) + M(n) where M(n) is time to find median
- Finding median in O(n log n) time is easy (why?)
- Assume $M(n) = c \cdot n = O(n)$ $\Rightarrow T(n) < c \cdot (n + n/2 + n/4 + n/8 + ...)$

$$< \mathbf{c} \cdot (2\mathbf{n}) = \mathbf{O}(\mathbf{n})$$

Conclusion: linear-time median algorithm automatically yields linear-time ith selection!

New goal: find the median in O(n) time!



QuickSelect (ith-Largest)

Idea: partition around pivot and recurse

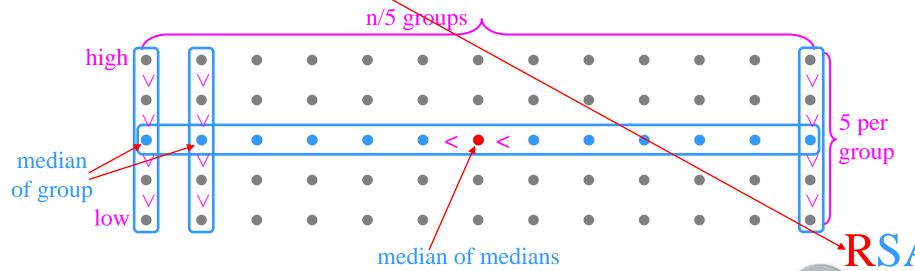
```
X: p p+1 ... q q+1 ... r-1 r k=q-p+1 elements i < k \Rightarrow QuickSelect i^{th} largest or <math>i > k \Rightarrow QuickSelect (i-k)^{th} largest
```

```
\begin{aligned} &\text{QuickSelect}(X,p,r,i) \\ &\text{if } p == r \text{ then } return(X[p]) \\ &\text{q} = RandomPartition(X,p,r) \\ &\text{k} = \text{q} - \text{p} + 1 \\ &\text{If } i \leq \text{k then } return(\text{QuickSelect}(X,p,q,i)) \\ &\text{else } return(\text{QuickSelect}(X,q+1,r,i-k)) \end{aligned}
```

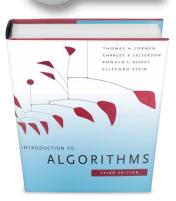
- O(n) time average-case (analysis like QuickSort's)
- $\Theta(n^2)$ worst-case time (very rare)

Idea: quickly eliminate a constant fraction & repeat

[Blum, Floyd, Pratt, Rivest, and Tarjan, 1973]

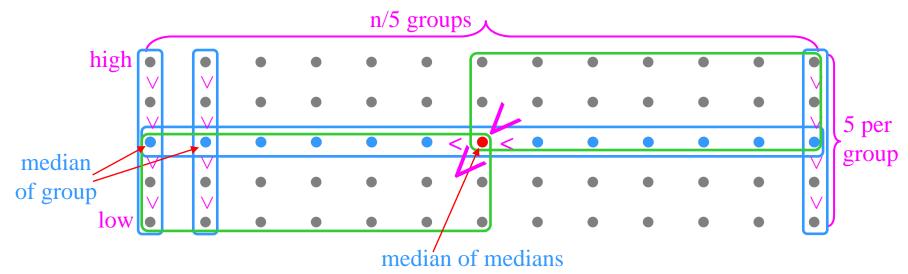


- Partition into n/5 groups of 5 each
- Sort each group (high to low)
- Compute median of medians (recursively)
- Move columns with larger medians to right
- Move columns with smaller medians to left



Idea: quickly eliminate a constant fraction & repeat

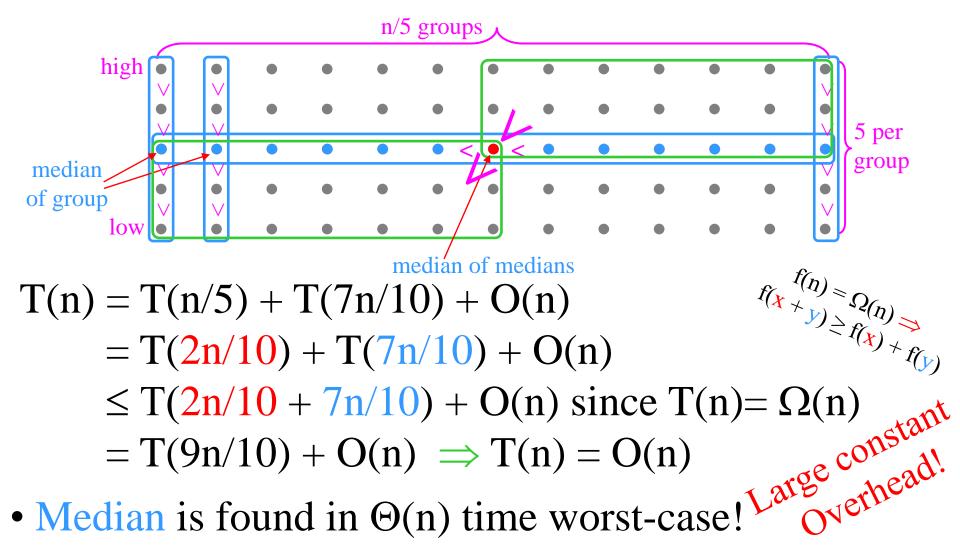
[Blum, Floyd, Pratt, Rivest, and Tarjan, 1973]

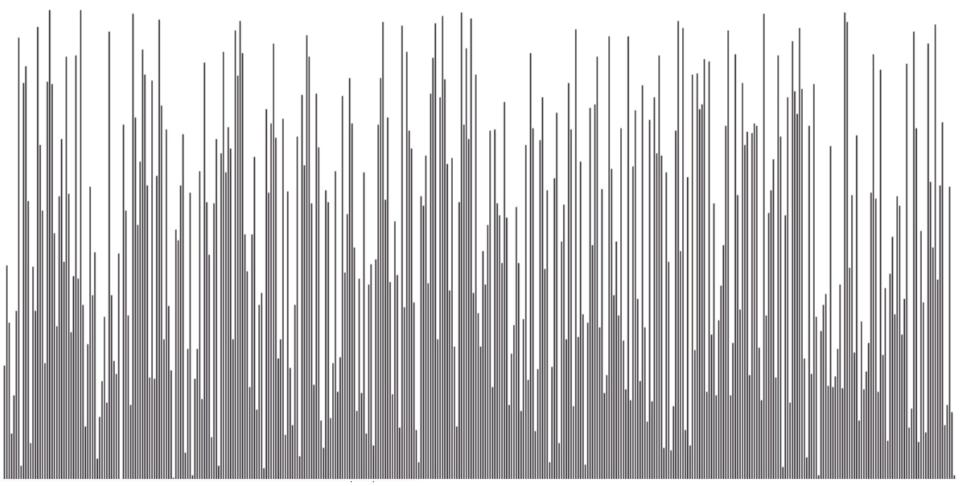


- > 3/10 of elements larger than median of medians
- > 3/10 of elements smaller than median of medians
- Partition all elements around median of medians
- Each partition contains at most 7n/10 elements
- Recurse on the proper partition (like in QuickSelect)

Idea: quickly eliminate a constant fraction & repeat

[Blum, Floyd, Pratt, Rivest, and Tarjan, 1973]





Exact upper bounds: < 24n, 5.4n, 3n, 2.95n, ... + o(n)

Exact lower bounds: >1.5n, 1.75n, 1.8n, 1.837n, 2n,...+ O(1)

Closing this comparisons gap further is still an open problem!