
September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.1

Introduction to Algorithms
6.046J/18.401J

Prof. Charles E. Leiserson

LECTURE 1
Analysis of Algorithms
• Insertion sort
• Asymptotic analysis
• Merge sort
• Recurrences

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.2

Course information

1. Staff
2. Distance learning
3. Prerequisites
4. Lectures
5. Recitations
6. Handouts
7. Textbook

8. Course website
9. Extra help
10. Registration
11. Problem sets
12. Describing algorithms
13. Grading policy
14. Collaboration policy

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.3

Analysis of algorithms

The theoretical study of computer-program
performance and resource usage.

What’s more important than performance?
• modularity
• correctness
• maintainability
• functionality
• robustness

• user-friendliness
• programmer time
• simplicity
• extensibility
• reliability

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.4

Why study algorithms and
performance?

• Algorithms help us to understand scalability.
• Performance often draws the line between what

is feasible and what is impossible.
• Algorithmic mathematics provides a language

for talking about program behavior.
• Performance is the currency of computing.
• The lessons of program performance generalize

to other computing resources.
• Speed is fun!

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.5

The problem of sorting

Input: sequence 〈a1, a2, …, an〉 of numbers.

Example:
Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Output: permutation 〈a'1, a'2, …, a'n〉 such
that a'1 ≤ a'2 ≤ … ≤ a'n .

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.6

Insertion sort
INSERTION-SORT (A, n) ⊳ A[1 . . n]
 for j ← 2 to n
 do key ← A[j]
 i ← j – 1
 while i > 0 and A[i] > key
 do A[i+1] ← A[i]
 i ← i – 1
 A[i+1] = key

“pseudocode”

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.7

Insertion sort
INSERTION-SORT (A, n) ⊳ A[1 . . n]
 for j ← 2 to n
 do key ← A[j]
 i ← j – 1
 while i > 0 and A[i] > key
 do A[i+1] ← A[i]
 i ← i – 1
 A[i+1] = key

“pseudocode”

sorted

i j

key
A:

1 n

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.8

Example of insertion sort
8 2 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.9

Example of insertion sort
8 2 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.10

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.11

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.12

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.13

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.14

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.15

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.16

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.17

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.18

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.19

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

• Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.20

Kinds of analyses
Worst-case: (usually)

• T(n) = maximum time of algorithm
on any input of size n.

Average-case: (sometimes)
• T(n) = expected time of algorithm

over all inputs of size n.
• Need assumption of statistical

distribution of inputs.
Best-case: (bogus)

• Cheat with a slow algorithm that
works fast on some input.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.21

Machine-independent time

What is insertion sort’s worst-case time?
• It depends on the speed of our computer:

• relative speed (on the same machine),
• absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.22

Θ-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

Math:
Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n)
for all n ≥ n0 }

Engineering:

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.23

Asymptotic performance

n

T(n)

n0

• We shouldn’t ignore
asymptotically slower
algorithms, however.

• Real-world design
situations often call for a
careful balancing of
engineering objectives.

• Asymptotic analysis is a
useful tool to help to
structure our thinking.

When n gets large enough, a Θ(n2) algorithm
always beats a Θ(n3) algorithm.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.24

Insertion sort analysis
Worst case: Input reverse sorted.

()∑
=

Θ=Θ=
n

j
njnT

2

2)()(

Average case: All permutations equally likely.

()∑
=

Θ=Θ=
n

j
njnT

2

2)2/()(

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

[arithmetic series]

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.25

Merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.26

Merging two sorted arrays

20

13

7

2

12

11

9

1

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.27

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.28

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.29

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.30

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.31

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.32

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.33

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.34

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.35

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.36

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.37

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.38

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = Θ(n) to merge a total
of n elements (linear time).

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.39

Analyzing merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)
Abuse

Sloppiness: Should be T(n/2) + T(n/2) ,
but it turns out not to matter asymptotically.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.40

Recurrence for merge sort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base
case when T(n) = Θ(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

• CLRS and Lecture 2 provide several ways
to find a good upper bound on T(n).

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.41

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.42

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.43

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.44

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.45

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.46

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.47

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.48

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.49

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

…

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.50

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.51

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)
Total = Θ(n lg n)

…

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.52

Conclusions

• Θ(n lg n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically

beats insertion sort in the worst case.
• In practice, merge sort beats insertion

sort for n > 30 or so.
• Go test it out for yourself!

	Introduction to Algorithms�6.046J/18.401J
	Course information
	Analysis of algorithms
	Why study algorithms and performance?
	The problem of sorting
	Insertion sort
	Insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Running time
	Kinds of analyses
	Machine-independent time
	Q-notation
	Asymptotic performance
	Insertion sort analysis
	Merge sort
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Analyzing merge sort
	Recurrence for merge sort
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Conclusions

