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Introduction to Algorithms 
6.046J/18.401J 

Prof. Charles E. Leiserson 

LECTURE 1  
Analysis of Algorithms 
• Insertion sort 
• Asymptotic analysis 
• Merge sort 
• Recurrences 
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Course information 

1. Staff 
2. Distance learning 
3. Prerequisites 
4. Lectures 
5. Recitations 
6. Handouts 
7. Textbook 

8. Course website  
9. Extra help 
10. Registration  
11. Problem sets 
12. Describing algorithms 
13. Grading policy 
14. Collaboration policy 
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Analysis of algorithms 

The theoretical study of computer-program 
performance and resource usage. 

What’s more important than performance? 
• modularity 
• correctness 
• maintainability 
• functionality 
• robustness 

• user-friendliness 
• programmer time 
• simplicity 
• extensibility 
• reliability 
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Why study algorithms and 
performance? 

• Algorithms help us to understand scalability. 
• Performance often draws the line between what 

is feasible and what is impossible. 
• Algorithmic mathematics provides a language 

for talking about program behavior. 
• Performance is the currency of computing. 
• The lessons of program performance generalize 

to other computing resources.  
• Speed is fun! 
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The problem of sorting 

Input: sequence  〈a1, a2, …, an〉  of numbers. 

Example: 
Input:  8  2  4  9  3  6 

Output:  2  3  4  6  8  9 

Output: permutation  〈a'1, a'2, …, a'n〉  such 
that  a'1 ≤ a'2 ≤ … ≤ a'n . 
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Insertion sort 
INSERTION-SORT (A, n) ⊳ A[1 . . n]  
 for j ← 2 to n 
  do key ← A[ j] 
   i ← j – 1 
   while i > 0 and A[i] > key 
    do A[i+1] ← A[i] 
     i ← i – 1 
   A[i+1] = key 

“pseudocode” 
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Insertion sort 
INSERTION-SORT (A, n) ⊳ A[1 . . n]  
 for j ← 2 to n 
  do key ← A[ j] 
   i ← j – 1 
   while i > 0 and A[i] > key 
    do A[i+1] ← A[i] 
     i ← i – 1 
   A[i+1] = key 

“pseudocode” 

sorted 

i j 

key 
A: 

1 n 
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Example of insertion sort 
8 2 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 
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2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 



September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.18 

Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 

2 3 4 6 8 9 done 
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Running time 

• The running time depends on the input: an 
already sorted sequence is easier to sort. 

• Parameterize the running time by the size of 
the input, since short sequences are easier to 
sort than long ones. 

• Generally, we seek upper bounds on the 
running time, because everybody likes a 
guarantee. 
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Kinds of analyses 
Worst-case: (usually) 

• T(n) = maximum time of algorithm 
on any input of size n. 

Average-case: (sometimes) 
• T(n) = expected time of algorithm 

over all inputs of size n. 
• Need assumption of statistical 

distribution of inputs. 
Best-case: (bogus) 

• Cheat with a slow algorithm that 
works fast on some input. 
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Machine-independent time 

What is insertion sort’s worst-case time? 
• It depends on the speed of our computer: 

• relative speed (on the same machine), 
• absolute speed (on different machines). 

BIG IDEA: 
• Ignore machine-dependent constants. 
• Look at growth of T(n) as n → ∞ . 

“Asymptotic Analysis” 
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Θ-notation 

• Drop low-order terms; ignore leading constants. 
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3) 

Math: 
Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and 

n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n) 
for all n ≥ n0 } 

Engineering: 
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Asymptotic performance 

n 

T(n) 

n0 

• We shouldn’t ignore 
asymptotically slower 
algorithms, however. 

• Real-world design 
situations often call for a 
careful balancing of 
engineering objectives. 

• Asymptotic analysis is a 
useful tool to help to 
structure our thinking. 

When n gets large enough, a Θ(n2) algorithm 
always beats a Θ(n3) algorithm. 
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Insertion sort analysis 
Worst case: Input reverse sorted. 
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Average case: All permutations equally likely. 
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Is insertion sort a fast sorting algorithm? 
• Moderately so, for small n. 
• Not at all, for large n. 

[arithmetic series] 
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Merge sort 

MERGE-SORT  A[1 . . n] 
1. If n = 1, done. 
2. Recursively sort A[ 1 . . n/2 ] 

and A[ n/2+1 . . n ] . 
3. “Merge” the 2 sorted lists. 

Key subroutine: MERGE 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Time = Θ(n) to merge a total 
of n elements (linear time). 
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Analyzing merge sort 

MERGE-SORT A[1 . . n] 
1. If n = 1, done. 
2. Recursively sort A[ 1 . . n/2 ] 

and A[ n/2+1 . . n ] . 
3. “Merge” the 2 sorted lists 

T(n) 
Θ(1) 
2T(n/2) 

Θ(n)   
Abuse 

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically. 
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Recurrence for merge sort 

T(n) = 
Θ(1) if n = 1; 
2T(n/2) + Θ(n) if n > 1. 

• We shall usually omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect on 
the asymptotic solution to the recurrence. 

• CLRS and Lecture 2 provide several ways 
to find a good upper bound on T(n). 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n) 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n/2) T(n/2) 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

T(n/4) T(n/4) T(n/4) T(n/4) 

cn/2 cn/2 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 
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Recursion tree 
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Recursion tree 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 
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Θ(1) 

h = lg n 

cn 

cn 

cn 

#leaves = n Θ(n) 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 
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Θ(1) 

h = lg n 

cn 

cn 

cn 

#leaves = n Θ(n) 
Total = Θ(n lg n) 

…
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Conclusions 

•  Θ(n lg n) grows more slowly than Θ(n2). 
• Therefore, merge sort asymptotically 

beats insertion sort in the worst case. 
• In practice, merge sort beats insertion 

sort for n > 30 or so. 
• Go test it out for yourself! 
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