
September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.1

Prof. Erik Demaine

LECTURE 6
Order Statistics
• Randomized divide and

conquer
• Analysis of expected time
• Worst-case linear-time

order statistics
• Analysis

Introduction to Algorithms
6.046J/18.401J

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.2

Order statistics
Select the i th smallest of n elements (the
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index i th element.
Worst-case running time = Θ(n lg n) + Θ(1)
 = Θ(n lg n),
using merge sort or heapsort (not quicksort).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.3

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ i th smallest of A[p . .
q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r] ≥ A[r]
r p q

k

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.4

Example

pivot
i = 7 6 10 13 5 8 3 2 11

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

2 5 3 6 8 13 10 11
Partition:

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.5

Intuition for analysis

Lucky:
101log 9/10 == nn

CASE 3
T(n) = T(9n/10) + Θ(n)
 = Θ(n)

Unlucky:
T(n) = T(n – 1) + Θ(n)
 = Θ(n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements
are distinct.)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.6

Analysis of expected time

Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator
random variable

Xk = 1 if PARTITION generates a k : n–k–1 split,
0 otherwise.

The analysis follows that of randomized
quicksort, but it’s a little different.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.7

Analysis (continued)

T(n) =

T(max{0, n–1}) + Θ(n) if 0 : n–1 split,
T(max{1, n–2}) + Θ(n) if 1 : n–2 split,
 
T(max{n–1, 0}) + Θ(n) if n–1 : 0 split,

()∑
−

=
Θ+−−=

1

0
)(})1,(max{

n

k
k nknkTX .

To obtain an upper bound, assume that the i th
element always falls in the larger side of the
partition:

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.8

Calculating expectation
()








Θ+−−= ∑

−

=

1

0
)(})1,(max{)]([

n

k
k nknkTXEnTE

Take expectations of both sides.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.9

Calculating expectation
()

()[]∑

∑
−

=

−

=

Θ+−−=









Θ+−−=

1

0

1

0

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

nknkTXE

nknkTXEnTE

Linearity of expectation.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.10

Calculating expectation
()

()[]

[] []∑

∑

∑

−

=

−

=

−

=

Θ+−−⋅=

Θ+−−=









Θ+−−=

1

0

1

0

1

0

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

n

k
k

nknkTEXE

nknkTXE

nknkTXEnTE

Independence of Xk from other random
choices.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.11

Calculating expectation
()

()[]

[] []

[] ∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

Θ+−−=

Θ+−−⋅=

Θ+−−=









Θ+−−=

1

0

1

0

1

0

1

0

1

0

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

Linearity of expectation; E[Xk] = 1/n .

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.12

Calculating expectation
()

()[]

[] []

[]

[]
 

)()(2

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

1

2/

1

0

1

0

1

0

1

0

1

0

nkTE
n

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

n

nk

n

k

n

k

n

k
k

n

k
k

n

k
k

Θ+≤

Θ+−−=

Θ+−−⋅=

Θ+−−=









Θ+−−=

∑

∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−

=

Upper terms
appear twice.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.13

Hairy recurrence

[]
 

)()(2)]([
1

2/
nkTE

n
nTE

n

nk
Θ+= ∑

−

=

Prove: E[T(n)] ≤ c n for constant c > 0 .

Use fact:
 

2
1

2/
8
3nk

n

nk
∑
−

=
≤ (exercise).

• The constant c can be chosen large enough
so that E[T(n)] ≤ c n for the base cases.

(But not quite as hairy as the quicksort one.)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.14

Substitution method

[]
 

)(2)(
1

2/
nck

n
nTE

n

nk
Θ+≤ ∑

−

=

Substitute inductive hypothesis.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.15

Substitution method

[]
 

)(
8
32

)(2)(

2

1

2/

nn
n
c

nck
n

nTE
n

nk

Θ+




≤

Θ+≤ ∑
−

=

Use fact.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.16

Substitution method

Express as desired – residual.

[]
 






 Θ−−=

Θ+




≤

Θ+≤ ∑
−

=

)(
4

)(
8
32

)(2)(

2

1

2/

ncncn

nn
n
c

nck
n

nTE
n

nk

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.17

Substitution method

[]
 

cn

ncncn

nn
n
c

nck
n

nTE
n

nk

≤






 Θ−−=

Θ+




≤

Θ+≤ ∑
−

=

)(
4

)(
8
32

)(2)(

2

1

2/

if c is chosen large enough so
that cn/4 dominates the Θ(n).

,

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.18

Summary of randomized
order-statistic selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: Θ(n2).

Q. Is there an algorithm that runs in linear
time in the worst case?

IDEA: Generate a good pivot recursively.

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.19

Worst-case linear-time order
statistics

if i = k then return x
elseif i < k

then recursively SELECT the i th
 smallest element in the lower part

else recursively SELECT the (i–k)th
 smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

 Same as
RAND-
SELECT

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the  n/5
group medians to be the pivot.

x

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least   n/5 /2 =  n/10 group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least   n/5 /2 =  n/10 group medians.
• Therefore, at least 3  n/10 elements are ≤ x.

(Assume all elements are distinct.)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least   n/5 /2 =  n/10 group medians.
• Therefore, at least 3  n/10 elements are ≤ x.
• Similarly, at least 3  n/10 elements are ≥ x.

(Assume all elements are distinct.)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3  n/10 ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the i th
 smallest element in the lower part

else recursively SELECT the (i–k)th
 smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.29

Solving the recurrence
)(

4
3

5
1)(nnTnTnT Θ+





+





=

if c is chosen large enough to handle both the
Θ(n) and the initial conditions.

cn

ncncn

ncn

ncncnnT

≤






 Θ−−=

Θ+=

Θ++≤

)(
20
1

)(
20
19

)(
4
3

5
1)(

,

Substitution:
T(n) ≤ cn

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.30

Conclusions
• Since the work at each level of recursion

is a constant fraction (19/20) smaller, the
work per level is a geometric series
dominated by the linear work at the root.

• In practice, this algorithm runs slowly,
because the constant in front of n is large.

• The randomized algorithm is far more
practical.

Exercise: Why not divide into groups of 3?

	Introduction to Algorithms�6.046J/18.401J
	Order statistics
	Randomized divide-and-conquer algorithm
	Example
	Intuition for analysis
	Analysis of expected time
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Summary of randomized order-statistic selection
	Worst-case linear-time order statistics
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Analysis
	Analysis
	Analysis
	Minor simplification
	Developing the recurrence
	Solving the recurrence
	Conclusions

