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Prof. Erik Demaine 

LECTURE 6  
Order Statistics 
• Randomized divide and 

conquer 
• Analysis of expected time 
• Worst-case linear-time 

order statistics 
• Analysis 

Introduction to Algorithms 
6.046J/18.401J 
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Order statistics 
Select the i th smallest of n elements (the 
element with rank i). 
• i = 1: minimum; 
• i = n: maximum; 
• i = (n+1)/2 or (n+1)/2: median. 

Naive algorithm: Sort and index i th element. 
Worst-case running time = Θ(n lg n) + Θ(1) 
 = Θ(n lg n), 
using merge sort or heapsort (not quicksort). 
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Randomized divide-and-
conquer algorithm 

RAND-SELECT(A, p, q, i) ⊳ i th smallest of A[ p . . 
q]  
if  p = q  then return A[ p] 
r ← RAND-PARTITION(A, p, q) 
k ← r – p + 1 ⊳ k = rank(A[r]) 
if  i = k  then return A[ r] 
if  i < k   

then return RAND-SELECT( A, p, r – 1, i ) 
else return RAND-SELECT( A, r + 1, q, i – k ) 

≤ A[r] ≥ A[r] 
r p q 

k 
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Example 

pivot 
i = 7 6 10 13 5 8 3 2 11 

k = 4 

Select the 7 – 4 = 3rd smallest recursively. 

Select the i = 7th smallest: 

2 5 3 6 8 13 10 11 
Partition: 
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Intuition for analysis 

Lucky: 
101log 9/10 == nn

CASE 3 
T(n) = T(9n/10) + Θ(n) 
 = Θ(n) 

Unlucky: 
T(n) = T(n – 1) + Θ(n) 
 = Θ(n2) 

arithmetic series 

Worse than sorting! 

(All our analyses today assume that all elements 
are distinct.) 
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Analysis of expected time 

Let T(n) = the random variable for the running 
time of RAND-SELECT on an input of size n, 
assuming random numbers are independent. 
For k = 0, 1, …, n–1, define the indicator 
random variable 

Xk =  1 if PARTITION generates a k : n–k–1 split, 
0 otherwise. 

The analysis follows that of randomized 
quicksort, but it’s a little different. 
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Analysis (continued) 

T(n) =  

T(max{0, n–1}) + Θ(n) if 0 : n–1 split, 
T(max{1, n–2}) + Θ(n) if 1 : n–2 split, 
  
T(max{n–1, 0}) + Θ(n) if n–1 : 0 split, 

( )∑
−

=
Θ+−−=

1

0
)(})1,(max{

n

k
k nknkTX . 

To obtain an upper bound, assume that the i th 
element always falls in the larger side of the 
partition: 
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Calculating expectation 
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Take expectations of both sides. 
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Calculating expectation 
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Linearity of expectation. 
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Calculating expectation 
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Independence of Xk from other random 
choices. 



September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.11 

Calculating expectation 
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Linearity of expectation; E[Xk] = 1/n . 



September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.12 

Calculating expectation 
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Upper terms 
appear twice. 
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Hairy recurrence 
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Prove: E[T(n)] ≤ c n  for constant c > 0 . 

Use fact:  
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• The constant c can be chosen large enough 
so that E[T(n)] ≤ c n for the base cases. 

(But not quite as hairy as the quicksort one.) 
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Substitution method 
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Substitute inductive hypothesis. 
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Substitution method 
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Substitution method 

Express as desired – residual. 
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Substitution method 
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if c is chosen large enough so 
that cn/4 dominates the Θ(n). 

, 
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Summary of randomized 
order-statistic selection 

• Works fast: linear expected time. 
• Excellent algorithm in practice. 
• But, the worst case is very bad: Θ(n2). 

Q. Is there an algorithm that runs in linear 
time in the worst case? 

IDEA: Generate a good pivot recursively. 

A. Yes, due to Blum, Floyd, Pratt, Rivest, 
and Tarjan [1973]. 
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Worst-case linear-time order 
statistics 

if  i = k then return x 
elseif  i < k  

then recursively SELECT the i th 
 smallest element in the lower part 

else recursively SELECT the (i–k)th 
 smallest element in the upper part 

SELECT(i, n) 
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote. 
2. Recursively SELECT the median x of the n/5 

group medians to be the pivot. 
3. Partition around the pivot x.  Let k = rank(x). 
4.   

 Same as 
RAND-
SELECT 
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Choosing the pivot 
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Choosing the pivot 

1. Divide the n elements into groups of 5. 
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Choosing the pivot 

lesser 

greater 

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote. 
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Choosing the pivot 

lesser 

greater 

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote. 

2. Recursively SELECT the median x of the  n/5 
group medians to be the pivot. 

x 
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Analysis 

lesser 

greater 

x 

At least half the group medians are ≤ x, which 
is at least   n/5 /2 =  n/10 group medians.  
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Analysis 

lesser 

greater 

x 

At least half the group medians are ≤ x, which 
is at least   n/5 /2 =  n/10 group medians. 
• Therefore, at least 3  n/10 elements are ≤ x. 

(Assume all elements are distinct.) 
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Analysis 

lesser 

greater 

x 

At least half the group medians are ≤ x, which 
is at least   n/5 /2 =  n/10 group medians. 
• Therefore, at least 3  n/10 elements are ≤ x. 
• Similarly, at least 3  n/10 elements are ≥ x. 

(Assume all elements are distinct.) 
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Minor simplification 
• For n ≥ 50, we have 3  n/10 ≥ n/4. 
• Therefore, for n ≥ 50 the recursive call to 

SELECT in Step 4 is executed recursively 
on ≤ 3n/4 elements. 

• Thus, the recurrence for running time 
can assume that Step 4 takes time 
T(3n/4) in the worst case. 

• For n < 50, we know that the worst-case 
time is T(n) = Θ(1). 
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Developing the recurrence 

if  i = k then return x 
elseif  i < k  

then recursively SELECT the i th 
 smallest element in the lower part 

else recursively SELECT the (i–k)th 
 smallest element in the upper part 

SELECT(i, n) 
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote. 
2. Recursively SELECT the median x of the n/5 

group medians to be the pivot. 
3. Partition around the pivot x.  Let k = rank(x). 
4.   

 

T(n) 

Θ(n) 

T(n/5) 
Θ(n) 

T(3n/4) 
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Solving the recurrence 
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Substitution: 
T(n) ≤ cn 
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Conclusions 
• Since the work at each level of recursion 

is a constant fraction (19/20) smaller, the 
work per level is a geometric series 
dominated by the linear work at the root. 

• In practice, this algorithm runs slowly, 
because the constant in front of n is large. 

• The randomized algorithm is far more 
practical. 

Exercise: Why not divide into groups of 3? 
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