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LECTURE 8  
Hashing II 
• Universal hashing 
• Universality theorem 
• Constructing a set of 

universal hash functions 
• Perfect hashing 

Introduction to Algorithms 
6.046J/18.401J 
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A weakness of hashing 
Problem: For any hash function h, a set 
of keys exists that can cause the average 
access time of a hash table to skyrocket. 

IDEA: Choose the hash function at random, 
independently of the keys. 
• Even if an adversary can see your code, 

he or she cannot find a bad set of keys, 
since he or she doesn’t know exactly 
which hash function will be chosen. 

• An adversary can pick all keys from 
{k ∈ U : h(k) = i} for some slot i. 
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Universal hashing 
Definition.  Let U be a universe of keys, and 
let H   be a finite collection of hash functions, 
each mapping U to {0, 1, …, m–1}.  We say 
H   is universal if for all x, y ∈ U, where x ≠ y, 
we have |{h ∈ H  : h(x) = h(y)}| ≤ |H | / m. 

That is, the chance 
of a collision 
between x and y is 
≤ 1/m if we choose h 
randomly from H. 

H  {h : h(x) = h(y)} 

|H | 
m 



October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4 

Universality is good 

Theorem.  Let h be a hash function chosen 
(uniformly) at random from a universal set H  
of hash functions.  Suppose h is used to hash 
n arbitrary keys into the m slots of a table T.  
Then, for a given key x, we have 

E[#collisions with x] < n/m. 
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Proof of theorem 

Proof.  Let Cx be the random variable denoting 
the total number of collisions of keys in T with 
x, and let  

cxy = 1  if h(x) = h(y), 
0  otherwise. 

Note:  E[cxy] = 1/m and ∑
−∈

=
}{xTy
xyx cC . 
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Proof (continued) 
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Proof (continued) 

∑

∑

−∈

−∈

=












=

}{

}{

][

][

xTy
xy

xTy
xyx

cE

cECE

• Linearity of 
expectation. 

• Take expectation 
of both sides. 



October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8 

Proof (continued) 
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Proof (continued) 
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• Algebra. . 



October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10 

REMEMBER 
THIS! 

Constructing a set of 
universal hash functions 

Let m be prime.  Decompose key k into r + 1 
digits, each with value in the set {0, 1, …, m–1}. 
That is, let k = 〈k0, k1, …, kr〉, where 0 ≤ ki < m. 
Randomized strategy: 
Pick a = 〈a0, a1, …, ar〉 where each ai is chosen 
randomly from {0, 1, …, m–1}. 

mkakh
r

i
iia mod)(

0
∑
=

=Define . 

How big is H  = {ha}?   |H | = mr + 1. 

Dot product, 
modulo m 
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Universality of dot-product 
hash functions 

Theorem. The set H  = {ha} is universal. 

Proof.  Suppose that  x = 〈x0, x1, …, xr〉 and y = 
〈y0, y1, …, yr〉 be distinct keys.  Thus, they differ 
in at least one digit position, wlog position 0.  
For how many ha ∈ H  do x and y collide? 

)(mod
00

myaxa
r

i
ii

r

i
ii ∑∑

==
≡ . 

We must have ha(x) = ha(y), which implies that 
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Proof (continued) 
Equivalently, we have 

)(mod0)(
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or 
)(mod0)()(
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i
iii ≡−+− ∑
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iii∑
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−−≡−

which implies that 

, 

. 
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Fact from number theory 

Theorem.  Let m be prime.  For any z ∈ Zm 
such that z ≠ 0, there exists a unique z–1 ∈ Zm 
such that 

z · z–1 ≡ 1     (mod m). 

Example:  m = 7. 

z 

z–1 

1    2    3    4    5    6 

1    4    5    2    3    6 
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Back to the proof 
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We have 

and since x0 ≠ y0 , an inverse (x0 – y0 )–1 must exist, 
which implies that 

, 

)(mod)()( 1
00

1
0 myxyxaa

r

i
iii

−

=
−⋅








−−≡ ∑ . 

Thus, for any choices of a1, a2, …, ar, exactly 
one choice of a0 causes x and y to collide. 
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Proof (completed) 

Q. How many ha’s cause x and y to collide? 

A. There are m choices for each of a1, a2, …, ar , 
but once these are chosen, exactly one choice 
for a0 causes x and y to collide, namely 

myxyxaa
r

i
iii mod)()( 1

00
1
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−−= −

=
∑ . 

 Thus, the number of ha’s that cause x and y 
to collide is mr · 1 = mr = |H |/m. 
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Perfect hashing 
Given a set of n keys, construct a static hash 
table of size m = O(n) such that SEARCH takes 
Θ(1) time in the worst case. 

IDEA: Two-
level scheme 
with universal 
hashing at 
both levels. 
No collisions 
at level 2! 40 37 22 
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h31(14) = h31(27) = 1 
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Collisions at level 2 
Theorem. Let H  be a class of universal hash 
functions for a table of size m = n2.  Then, if we 
use a random h ∈ H  to hash n keys into the table, 
the expected number of collisions is at most 1/2.   
Proof.  By the definition of universality, the 
probability that 2 given keys in the table collide 
under h is 1/m = 1/n2.  Since there are      pairs 
of keys that can possibly collide, the expected 
number of collisions is 

( )2
n

2
11

2
)1(1

2 22 <⋅−=⋅







n

nn
n
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No collisions at level 2 
Corollary.  The probability of no collisions 
is at least 1/2. 

Thus, just by testing random hash functions 
in H , we’ll quickly find one that works.   

Proof.  Markov’s inequality says that for any 
nonnegative random variable X, we have 

Pr{X ≥ t} ≤ E[X]/t. 
Applying this inequality with t = 1, we find 
that the probability of 1 or more collisions is 
at most 1/2.   
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Analysis of storage 
For the level-1 hash table T, choose m = n, and 
let ni be random variable for the number of keys 
that hash to slot i in T.  By using ni

2 slots for the 
level-2 hash table Si, the expected total storage 
required for the two-level scheme is therefore 

( ) )(
1

0

2 nnE
m

i
i Θ=








Θ∑

−

=
, 

since the analysis is identical to the analysis from 
recitation of the expected running time of bucket 
sort.  (For a probability bound, apply Markov.) 
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