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Prof. Erik Demaine 

LECTURE 9  
Randomly built binary 

search trees 
• Expected node depth 
• Analyzing height 
 Convexity lemma 
 Jensen’s inequality 
 Exponential height 

• Post mortem 

Introduction to Algorithms 
6.046J/18.401J 
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3 

Binary-search-tree sort 
T ← ∅  ⊳ Create an empty BST 
for i = 1 to n 

do TREE-INSERT(T, A[i]) 
Perform an inorder tree walk of T. 

Example: 
A = [3 1 8 2 6 7 5] 8 1 

2 6 
5 7 

Tree-walk time = O(n), 
but how long does it 
take to build the BST? 
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Analysis of BST sort 
BST sort performs the same comparisons as 
quicksort, but in a different order! 

3  1  8  2  6  7  5 

1  2 8  6  7  5 

2 6 7 5 

7 5 

The expected time to build the tree is asymptot-
ically the same as the running time of quicksort. 
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Node depth 
The depth of a node = the number of comparisons 
made during TREE-INSERT.  Assuming all input 
permutations are equally likely, we have 

( )

)(lg

)lg(1

 nodeinsert   toscomparison#1
1

nO

nnO
n

iE
n

 
n

i

=

=









= ∑

=

Average node depth 

. 

(quicksort analysis) 
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Expected tree height 
But, average node depth of a randomly built 
BST = O(lg n) does not necessarily mean that its 
expected height is also O(lg n) (although it is). 

Example. 
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Height of a randomly built 
binary search tree 

• Prove Jensen’s inequality, which says that 
f(E[X]) ≤ E[f(X)] for any convex function f and 
random variable X.   

• Analyze the exponential height of a randomly 
built BST on n nodes, which is the random 
variable Yn = 2Xn, where Xn is the random 
variable denoting the height of the BST. 

• Prove that 2E[Xn] ≤ E[2Xn ] = E[Yn] = O(n3), 
and hence that E[Xn] = O(lg n). 

Outline of the analysis: 
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Convex functions 
A function f : R → R is convex if for all 
α,β ≥ 0 such that α + β = 1, we have 

f(αx + βy) ≤ α f(x) + β f(y) 
for all x,y ∈ R. 

αx + βy 

αf(x) + βf(y) 

f(αx + βy) 

x y 

f(x) 

f(y) 
f 
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Convexity lemma 

Lemma. Let f : R → R be a convex function, 
and let α1, α2 , …, αn be nonnegative real 
numbers such that ∑k αk = 1.  Then, for any 
real numbers x1, x2, …, xn, we have 
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Proof.  By induction on n.  For n = 1, we have 
α1 = 1, and hence f(α1x1) ≤ α1f(x1) trivially. 

. 
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Proof (continued) 
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Inductive step: 

Algebra. 
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Proof (continued) 
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Inductive step: 

Convexity. 
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Proof (continued) 
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Inductive step: 

Induction. 
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Proof (continued) 
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Inductive step: 

Algebra. . 
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Convexity lemma: infinite case 

Lemma. Let f : R → R be a convex function, 
and let α1, α2 , …, be nonnegative real numbers 
such that ∑k αk = 1.  Then, for any real 
numbers x1, x2, …, we have 
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assuming that these summations exist. 

, 
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Convexity lemma: infinite case 

Proof. By the convexity lemma, for any n ≥ 1, 
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Convexity lemma: infinite case 

Proof. By the convexity lemma, for any n ≥ 1, 
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Taking the limit of both sides 
(and because the inequality is not strict): 
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Jensen’s inequality 
Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].   









=⋅= ∑

∞

−∞=k
kXkfXEf }Pr{])[(

Proof. 

Definition of expectation. 
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Jensen’s inequality 
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Convexity lemma (infinite case). 

Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].   
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Jensen’s inequality 
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Proof. 

Tricky step, but true—think about it. 

Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].   
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Analysis of BST height 
Let Xn be the random variable denoting 
the height of a randomly built binary 
search tree on n nodes, and let Yn = 2Xn 

be its exponential height. 
If the root of the tree has rank k, then  

Xn = 1 + max{Xk–1, Xn–k} ,  
since each of the left and right subtrees 
of the root are randomly built.  Hence, 
we have 

Yn = 2· max{Yk–1, Yn–k} . 
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Analysis (continued) 

Define the indicator random variable Znk as 

Znk = 1 if the root has rank k, 
0 otherwise. 

Thus, Pr{Znk = 1} = E[Znk] = 1/n, and 
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Exponential height recurrence 
[ ] ( )








⋅= ∑

=
−−

n

k
knknkn YYZEYE

1
1 },max{2

Take expectation of both sides. 
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Exponential height recurrence 
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Linearity of expectation. 
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Exponential height recurrence 
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Independence of the rank of the root 
from the ranks of subtree roots. 
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Exponential height recurrence 
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The max of two nonnegative numbers 
is at most their sum, and E[Znk] = 1/n. 
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Exponential height recurrence 
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Each term appears 
twice, and reindex. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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Substitution. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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Integral method. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 
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. Algebra. 
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The grand finale 

2E[Xn] ≤ E[2Xn ] 
Putting it all together, we have 

Jensen’s inequality, since 
f(x) = 2x is convex. 
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The grand finale 

2E[Xn] ≤ E[2Xn ] 
 = E[Yn] 

Putting it all together, we have 

Definition. 
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The grand finale 

2E[Xn] ≤ E[2Xn ] 
 = E[Yn] 
 ≤ cn3 . 

Putting it all together, we have 

What we just showed. 
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The grand finale 

2E[Xn] ≤ E[2Xn ] 
 = E[Yn] 
 ≤ cn3 . 

Putting it all together, we have 

Taking the lg of both sides yields 
 E[Xn] ≤ 3 lg n +O(1) . 
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Post mortem 

Q. Does the analysis have to be this hard?  

Q. Why bother with analyzing exponential 
height? 

Q. Why not just develop the recurrence on 
Xn = 1 + max{Xk–1, Xn–k} 

 directly? 
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Post mortem (continued) 
A. The inequality 

max{a, b} ≤ a + b . 
 provides a poor upper bound, since the RHS 

approaches the LHS slowly as |a – b| increases.  
The bound  

max{2a, 2b} ≤ 2a + 2b 
 allows the RHS to approach the LHS far more 

quickly as |a – b| increases.  By using the 
convexity of f(x) = 2x via Jensen’s inequality, 
we can manipulate the sum of exponentials, 
resulting in a tight analysis. 
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Thought exercises 

• See what happens when you try to do the 
analysis on Xn directly. 

• Try to understand better why the proof 
uses an exponential.  Will a quadratic do? 

• See if you can find a simpler argument.  
(This argument is a little simpler than the 
one in the book—I hope it’s correct!) 
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