Introduction to Algorithms

6.046J/18.401J
ALGORTTIIMS LECTURE 11
R Augmenting Data
Structures

* Dynamic order statistics
* Methodology
e Interval trees

Prof. Charles E. Leiserson

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.1

v Dynamlc order statistics

\
1\\‘ -

OS- SELECT(I S). returns the i1th smallest element
In the dynamic set S.

OS-RANK(X, S): returns the rank of x € Sin the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes In the nodes.

- _ < key)
Notation for nodes: T

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.2

size[x] = size[left[x]] + size[right|x]] + 1

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.3

Selectlon

; \
“‘ ‘ S

Implementatlon trick: Use a sentinel
(dummy record) for niL such that size[NniL] = 0.

OS-SELECT(X, 1) cith smallest element in the
subtree rooted at x

k < size[left[x]] + 1 & k =rank(x)

If 1 =k then return x

if 1<K
then return OS-SeLecT(left[x], 1)
else return OS-SELEcCT(right[x], I — k)

(OS-RANK Is In the textbook.)

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.4

PR

AR A L

Running time = O(h) = O(lg n) for red-black trees.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.5

Data structure maintenance

\
“\‘

Q. Why not keep the ranks themselves
IN the nodes Instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when
Inserting or deleting.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.6

PR

Example of insertion

mwy \ BT

INSERT(“K™) PN
\ 104

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.7

- Handllng rebalancing

Don tforget that RB-INserT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.

 Recolorings: no effect on subtree sizes.
 Rotations: fix up subtree sizes in O(1) time.

Example: & T
15 i> N
T 4 A
8
3 4

7 3
-.RB-INserT and RB-DeLETE still run in O(lg n) time.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.8

] Data-structure augmentation

g

Methodology: (e.g., order-statistics trees)

1. Choose an underlying data structure (red-
black trees).

2. Determine additional information to be
stored In the data structure (subtree sizes).

3. Verify that this information can be
maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.9

""'""" Interval trees

N
VY et

Goal: To maintain a dynamic set of intervals,
such as time intervals.

i = [7, 10]
low[i] = 7 =—— 10 = high[i]
5 e .11 17 e—e 19
4o X 15 o 18 22 e—e 23

Query: For a given query interval i, find an
Interval In the set that overlaps I.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.10

Followmg the methodology

\
1\\‘ —

1. Choose an underlying data structure.
* Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored In the data structure.
e Store In each node x the largest value m[x]
In the subtree rooted at x, as well as the
Interval int[x] corresponding to the key.

INt
m

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.11

“""""',\ Example interval tree

ARV Ve

" high[int[x]]
m[Xx] = max< mlleft[x]]
_ m[right[x]]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.12

Modlfymg operations

ﬁ\‘ \‘

3. Verlfy that this information can be maintained
for modifying operations.
* INSERT: FIX m’s on the way down.
 Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(lg n); DELETE similar.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.13

New operations

4. Develop new dynamic-set operations that use
the information.

; \
“\‘

INTERVAL-SEARCH(I)
X < root
while x = NIL and (low[i] > high[int[x]]
or low[int[x]] > highli])
do = i and int[x] don’t overlap
If left[x] = NIL and low[i] < m[left[x]]
then x <« left[x]
else x «— right[x]
return x

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.14

r‘\i(j

Example 1: INTERVAL-SEARCH([14,16])

; \

X «— root
[14,16] and [17,19] don’t overlap
14 <18 = x « left[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.15

r‘\i(j

Example 1: INTERVAL-SEARCH([14,16])

; \

[14,16] and [5,11] don’t overlap
14 > 8 = x « right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.16

Example 1: INTERVAL-SEARCH([14,16])

[14,16] and [15,18] overlap
return [15,18]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.17

r‘\i(j

Example 2. INTERVAL- -SEARCH([12,14])

; \

X «— root
[12,14] and [17,19] don’t overlap
12 <18 = x « left[X]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.18

‘\i(_-

_~~\ Example 2: INTERVAL-SEARCH([12,14])

\
1\\‘

[12,14] and [5,11] don’t overlap
12 > 8 = x < right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19

‘\i(_-

_~~\ Example 2: INTERVAL-SEARCH([12,14])

\
1\\‘

[12,14] and [15,18] don’t overlap
12 > 10 = X « right[Xx]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.20

r‘\i(j

Example 2. INTERVAL- -SEARCH([12,14])

\

X

X = NIL = no Interval that
overlaps [12,14] exists

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.21

el < Analysis

\
“\‘ —

Tlme = O(h) = O(lg n), since INTERVAL-SEARCH
does constant work at each level as it follows a
simple path down the tree.

List all overlapping intervals:
* Search, list, delete, repeat.

e Insert them all again at the end.
Time = O(k Ig n), where k Is the total number of
overlapping intervals.

This Is an output-sensitive bound.
Best algorithm to date: O(k + Ig n).

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.22

s BT Correctness

Theorem. et L be the set of intervals in the
left subtree of node x, and let R be the set of
Intervals In x’s right subtree.
o If the search goes right, then
{1"eL:1"overlapsi } = .
o If the search goes left, then
{iI"eL:1"overlapsi } =
= {1" e R:1"overlapsi } = U.
In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.23

l""""» Correctness proof

“\‘ :

Proof Suppose first that the search goes right.
o If left][x] = NIL, then we’re done, since L = .

 Otherwise, the code dictates that we must have
low[i] > m[left[x]]. The value m[left[x]]
corresponds to the high endpoint of some
Interval | € L, and no other interval in L can
have a larger high endpoint than high| |].

e,
high[j] = m[leftp]] = = low(i)
* Therefore, {i’ « L : 1" overlaps i } = .

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24

'"'" Proof (continued)

Suppose that the search goes left, and assume that
{I"eL:1"overlapsi } = .
 Then, the code dictates that low[i] < m[left[x]] =
high[j] for some | € L.
e Since | € L, 1t does not overlap I, and hence
highl[i] < low] .
 But, the binary-search-tree property implies that

forall I’ € R, we have low[j] < low[i].
Butthen{I' € R:1"overlapsi } = U.
| J

/
I

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.25

	Introduction to Algorithms�6.046J/18.401J
	Dynamic order statistics
	Example of an OS-tree
	Selection
	Example
	Data structure maintenance
	Example of insertion
	Handling rebalancing
	Data-structure augmentation
	Interval trees
	Following the methodology
	Example interval tree
	Modifying operations
	New operations
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Analysis
	Correctness
	Correctness proof
	Proof (continued)

