
October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.1

Prof. Charles E. Leiserson

LECTURE 11
Augmenting Data

Structures
• Dynamic order statistics
• Methodology
• Interval trees

Introduction to Algorithms
6.046J/18.401J

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.2

Dynamic order statistics

OS-SELECT(i, S): returns the i th smallest element
in the dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

key
size Notation for nodes:

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.3

Example of an OS-tree

M
9

C
5

A
1

F
3

N
1

Q
1

P
3

H
1

D
1

size[x] = size[left[x]] + size[right[x]] + 1

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.4

Selection

OS-SELECT(x, i) ⊳ i th smallest element in the
 subtree rooted at x

k ← size[left[x]] + 1 ⊳ k = rank(x)
if i = k then return x
if i < k

then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i – k)

Implementation trick: Use a sentinel
(dummy record) for NIL such that size[NIL] = 0.

(OS-RANK is in the textbook.)

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.5

Example

M
9

C
5

A
1

F
3

N
1

Q
1

P
3

H
1

D
1

OS-SELECT(root, 5)

i = 5
k = 6

M
9

C
5

i = 5
k = 2

i = 3
k = 2

F
3

i = 1
k = 1

H
1
H
1

Running time = O(h) = O(lg n) for red-black trees.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.6

Data structure maintenance
Q. Why not keep the ranks themselves

in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when
inserting or deleting.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.7

Example of insertion

M
9

C
5

A
1

F
3

N
1

Q
1

P
3

H
1

D
1

INSERT(“K”)
M
10

C
6

F
4

H
2

K
1

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.8

Handling rebalancing
Don’t forget that RB-INSERT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.

Example:

C
11

E
16

7 3

4

C
16

E
8 7

3 4

∴RB-INSERT and RB-DELETE still run in O(lg n) time.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.9

Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-

black trees).
2. Determine additional information to be

stored in the data structure (subtree sizes).
3. Verify that this information can be

maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.10

Interval trees
Goal: To maintain a dynamic set of intervals,
such as time intervals.

low[i] = 7 10 = high[i]

i = [7, 10]

5
4 15 22

17 11
8 18

19
23

Query: For a given query interval i, find an
interval in the set that overlaps i.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.11

Following the methodology

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

int
m

2. Determine additional information to be
stored in the data structure.
• Store in each node x the largest value m[x]

in the subtree rooted at x, as well as the
interval int[x] corresponding to the key.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.12

17,19
23

Example interval tree

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

m[x] = max
high[int[x]]
m[left[x]]
m[right[x]]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.13

Modifying operations
3. Verify that this information can be maintained

for modifying operations.
• INSERT: Fix m’s on the way down.

6,20
30

11,15
19

19

14

30

11,15
30

6,20
30

30

14

19

• Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(lg n); DELETE similar.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.14

New operations
4. Develop new dynamic-set operations that use

the information.
INTERVAL-SEARCH(i)

x ← root
while x ≠ NIL and (low[i] > high[int[x]]
 or low[int[x]] > high[i])
 do ⊳ i and int[x] don’t overlap
 if left[x] ≠ NIL and low[i] ≤ m[left[x]]

then x ← left[x]
else x ← right[x]

return x

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.15

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

x ← root
[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ x ← left[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.16

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

[14,16] and [5,11] don’t overlap
14 > 8 ⇒ x ← right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.17

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

[14,16] and [15,18] overlap
return [15,18]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.18

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

x ← root
[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ x ← left[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ x ← right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.20

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ x ← right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.21

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

x = NIL ⇒ no interval that
overlaps [12,14] exists

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.22

Analysis
Time = O(h) = O(lg n), since INTERVAL-SEARCH
does constant work at each level as it follows a
simple path down the tree.
List all overlapping intervals:
• Search, list, delete, repeat.
• Insert them all again at the end.

This is an output-sensitive bound.
Best algorithm to date: O(k + lg n).

Time = O(k lg n), where k is the total number of
overlapping intervals.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.23

Correctness
Theorem. Let L be the set of intervals in the
left subtree of node x, and let R be the set of
intervals in x’s right subtree.
• If the search goes right, then

 { i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, then
 {i ′ ∈ L : i ′ overlaps i } = ∅

⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.
In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24

Correctness proof
Proof. Suppose first that the search goes right.
• If left[x] = NIL, then we’re done, since L = ∅.
• Otherwise, the code dictates that we must have

low[i] > m[left[x]]. The value m[left[x]]
corresponds to the high endpoint of some
interval j ∈ L, and no other interval in L can
have a larger high endpoint than high[j].


high[j] = m[left[x]]

i
low(i)

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.

j

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.25

Proof (continued)
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] =

high[j] for some j ∈ L.
• Since j ∈ L, it does not overlap i, and hence

high[i] < low[j].
• But, the binary-search-tree property implies that

for all i ′ ∈ R, we have low[j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.


i j

i ′

	Introduction to Algorithms�6.046J/18.401J
	Dynamic order statistics
	Example of an OS-tree
	Selection
	Example
	Data structure maintenance
	Example of insertion
	Handling rebalancing
	Data-structure augmentation
	Interval trees
	Following the methodology
	Example interval tree
	Modifying operations
	New operations
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Analysis
	Correctness
	Correctness proof
	Proof (continued)

