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v Dynamlc order statistics
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OS- SELECT(I S). returns the i1th smallest element
In the dynamic set S.

OS-RANK(X, S): returns the rank of x € Sin the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes In the nodes.

- _ < key)
Notation for nodes: T

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.2




size[x] = size[left[x]] + size[right|x]] + 1
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Selectlon
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Implementatlon trick: Use a sentinel
(dummy record) for niL such that size[NniL] = 0.

OS-SELECT(X, 1) cith smallest element in the
subtree rooted at x

k < size[left[x]] + 1 & k =rank(x)

If 1 =k then return x

if 1<K
then return OS-SeLecT(left[x], 1)
else return OS-SELEcCT(right[x], I — k)

(OS-RANK Is In the textbook.)
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Running time = O(h) = O(lg n) for red-black trees.
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Data structure maintenance

\
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Q. Why not keep the ranks themselves
IN the nodes Instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when
Inserting or deleting.
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Example of insertion

mwy \ BT

INSERT(“K™) PN
\ 104
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- Handllng rebalancing

Don tforget that RB-INserT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.

 Recolorings: no effect on subtree sizes.
 Rotations: fix up subtree sizes in O(1) time.

Example: & T
15 i> N
T 4 A
8
3 4

7 3
-.RB-INserT and RB-DeLETE still run in O(lg n) time.
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] Data-structure augmentation

g

Methodology: (e.g., order-statistics trees)

1. Choose an underlying data structure (red-
black trees).

2. Determine additional information to be
stored In the data structure (subtree sizes).

3. Verify that this information can be
maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.
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""'""" Interval trees

N
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Goal: To maintain a dynamic set of intervals,
such as time intervals.

i = [7, 10]
low[i] = 7 =—— 10 = high[i]
5 e .11 17 e—e 19
4o X 15 o 18 22 e—e 23

Query: For a given query interval i, find an
Interval In the set that overlaps I.
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Followmg the methodology

\
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1. Choose an underlying data structure.
* Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored In the data structure.
e Store In each node x the largest value m[x]
In the subtree rooted at x, as well as the
Interval int[x] corresponding to the key.

INt
m
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“""""',\ Example interval tree

ARV Ve

" high[int[x]]
m[Xx] = max< mlleft[x]]
_ m[right[x]]
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Modlfymg operations

ﬁ\‘ \‘

3. Verlfy that this information can be maintained
for modifying operations.
* INSERT: FIX m’s on the way down.
 Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(lg n); DELETE similar.
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New operations

4. Develop new dynamic-set operations that use
the information.

; \
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INTERVAL-SEARCH(I)
X < root
while x = NIL and (low[i] > high[int[x]]
or low[int[x]] > highli])
do = i and int[x] don’t overlap
If left[x] = NIL and low[i] < m[left[x]]
then x <« left[x]
else x «— right[x]
return x
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Example 1: INTERVAL-SEARCH([14,16])

; \

X «— root
[14,16] and [17,19] don’t overlap
14 <18 = x « left[x]
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Example 1: INTERVAL-SEARCH([14,16])

; \

[14,16] and [5,11] don’t overlap
14 > 8 = x « right[x]
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Example 1: INTERVAL-SEARCH([14,16])

[14,16] and [15,18] overlap
return [15,18]
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Example 2. INTERVAL- -SEARCH([12,14])

; \

X «— root
[12,14] and [17,19] don’t overlap
12 <18 = x « left[X]
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_~~\ Example 2: INTERVAL-SEARCH([12,14])
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[12,14] and [5,11] don’t overlap
12 > 8 = x < right[x]
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_~~\ Example 2: INTERVAL-SEARCH([12,14])
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[12,14] and [15,18] don’t overlap
12 > 10 = X « right[Xx]
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Example 2. INTERVAL- -SEARCH([12,14])

\

X

X = NIL = no Interval that
overlaps [12,14] exists
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el < Analysis
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Tlme = O(h) = O(lg n), since INTERVAL-SEARCH
does constant work at each level as it follows a
simple path down the tree.

List all overlapping intervals:
* Search, list, delete, repeat.

e Insert them all again at the end.
Time = O(k Ig n), where k Is the total number of
overlapping intervals.

This Is an output-sensitive bound.
Best algorithm to date: O(k + Ig n).
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s BT Correctness

Theorem. et L be the set of intervals in the
left subtree of node x, and let R be the set of
Intervals In x’s right subtree.
o If the search goes right, then
{1"eL:1"overlapsi } = .
o If the search goes left, then
{iI"eL:1"overlapsi } =
= {1" e R:1"overlapsi } = U.
In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.
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l""""» Correctness proof
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Proof Suppose first that the search goes right.
o If left][x] = NIL, then we’re done, since L = .

 Otherwise, the code dictates that we must have
low[i] > m[left[x]]. The value m[left[x]]
corresponds to the high endpoint of some
Interval | € L, and no other interval in L can
have a larger high endpoint than high| |].

e,
high[ j] = m[leftp]] = = low(i)
* Therefore, {i’ « L : 1" overlaps i } = .
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'"'" Proof (continued)

Suppose that the search goes left, and assume that
{I"eL:1"overlapsi } = .
 Then, the code dictates that low[i] < m[left[x]] =
high[ j] for some | € L.
e Since | € L, 1t does not overlap I, and hence
highl[i] < low] .
 But, the binary-search-tree property implies that

forall I’ € R, we have low[ j] < low[i].
Butthen{I' € R:1"overlapsi } = U.
| J

/
I
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