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Prof. Charles E. Leiserson 

LECTURE 11  
Augmenting Data 

Structures 
• Dynamic order statistics 
• Methodology 
• Interval trees 

Introduction to Algorithms 
6.046J/18.401J 
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Dynamic order statistics 

OS-SELECT(i, S): returns the i th smallest element 
in the dynamic set S. 

OS-RANK(x, S): returns the rank of x ∈ S in the 
sorted order of S’s elements. 

IDEA: Use a red-black tree for the set S, but keep 
subtree sizes in the nodes. 

key 
size Notation for nodes: 
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Example of an OS-tree 

M 
9 

C 
5 

A 
1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

size[x] = size[left[x]] + size[right[x]] + 1 
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Selection 

OS-SELECT(x, i)  ⊳ i th smallest element in the 
  subtree rooted at x  

k ← size[left[x]] + 1 ⊳ k = rank(x) 
if  i = k  then return x 
if  i < k   

then return OS-SELECT( left[x], i ) 
else return OS-SELECT( right[x], i – k ) 

Implementation trick: Use a sentinel 
(dummy record) for NIL such that size[NIL] = 0. 

(OS-RANK is in the textbook.) 
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Example 

M 
9 

C 
5 

A 
1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

OS-SELECT(root, 5) 

i = 5 
k = 6 

M 
9 

C 
5 

i = 5 
k = 2 

i = 3 
k = 2 

F 
3 

i = 1 
k = 1 

H 
1 
H 
1 

Running time = O(h) = O(lg n) for red-black trees. 
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Data structure maintenance 
Q. Why not keep the ranks themselves 

in the nodes instead of subtree sizes? 

A. They are hard to maintain when the 
red-black tree is modified. 

Modifying operations: INSERT and DELETE. 
Strategy: Update subtree sizes when 
inserting or deleting. 
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Example of insertion 

M 
9 

C 
5 

A 
1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

INSERT(“K”) 
M 
10 

C 
6 

F 
4 

H 
2 

K 
1 
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Handling rebalancing 
Don’t forget that RB-INSERT and RB-DELETE may 
also need to modify the red-black tree in order to 
maintain balance. 
• Recolorings: no effect on subtree sizes. 
• Rotations: fix up subtree sizes in O(1) time. 

Example: 

C 
11 

E 
16 

7 3 

4 

C 
16 

E 
8 7 

3 4 

∴RB-INSERT and RB-DELETE still run in O(lg n) time. 
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Data-structure augmentation 
Methodology: (e.g., order-statistics trees) 
1. Choose an underlying data structure (red-

black trees). 
2. Determine additional information to be 

stored in the data structure (subtree sizes). 
3. Verify that this information can be 

maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations). 

4. Develop new dynamic-set operations that use 
the information (OS-SELECT and OS-RANK). 

These steps are guidelines, not rigid rules. 
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Interval trees 
Goal: To maintain a dynamic set of intervals, 
such as time intervals. 

low[i] = 7 10 = high[i] 

i = [7, 10] 

5 
4 15 22 

17 11 
8 18 

19 
23 

Query:  For a given query interval i, find an 
interval in the set that overlaps i. 
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Following the methodology 

1. Choose an underlying data structure. 
• Red-black tree keyed on low (left) endpoint. 

int 
m 

2. Determine additional information to be 
stored in the data structure. 
• Store in each node x the largest value m[x] 

in the subtree rooted at x, as well as the 
interval int[x] corresponding to the key. 
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17,19 
23 

Example interval tree 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

m[x] = max 
high[int[x]] 
m[left[x]] 
m[right[x]] 
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Modifying operations 
3. Verify that this information can be maintained 

for modifying operations. 
• INSERT: Fix m’s on the way down. 

6,20 
30 

11,15 
19 

 
19 

 
14 

 
30 

11,15 
30 

6,20 
30 

 
30 

 
14 

 
19 

 
• Rotations — Fixup = O(1) time per rotation: 

Total INSERT time = O(lg n); DELETE similar. 
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New operations 
4. Develop new dynamic-set operations that use 

the information. 
INTERVAL-SEARCH(i) 

x ← root 
while x ≠ NIL and (low[i] > high[int[x]]  
   or low[int[x]] > high[i])
 do ⊳ i and int[x] don’t overlap 
  if left[x] ≠ NIL and low[i] ≤ m[left[x]] 

then x ← left[x] 
else x ← right[x] 

return x 
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Example 1: INTERVAL-SEARCH([14,16]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

x ← root 
[14,16] and [17,19] don’t overlap  
14 ≤ 18 ⇒ x ← left[x] 
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Example 1: INTERVAL-SEARCH([14,16]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

 
[14,16] and [5,11] don’t overlap  
14 > 8 ⇒ x ← right[x] 
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Example 1: INTERVAL-SEARCH([14,16]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

 
[14,16] and [15,18] overlap  
return [15,18] 
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Example 2: INTERVAL-SEARCH([12,14]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

x ← root 
[12,14] and [17,19] don’t overlap  
12 ≤ 18 ⇒ x ← left[x] 
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Example 2: INTERVAL-SEARCH([12,14]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

 
[12,14] and [5,11] don’t overlap  
12 > 8 ⇒ x ← right[x] 



October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.20 

Example 2: INTERVAL-SEARCH([12,14]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

 
[12,14] and [15,18] don’t overlap  
12 > 10 ⇒ x ← right[x] 
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Example 2: INTERVAL-SEARCH([12,14]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 
 
x = NIL ⇒ no interval that 
overlaps [12,14] exists 



October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.22 

Analysis 
Time = O(h) = O(lg n), since INTERVAL-SEARCH 
does constant work at each level as it follows a 
simple path down the tree. 
List all overlapping intervals: 
• Search, list, delete, repeat. 
• Insert them all again at the end. 

This is an output-sensitive bound. 
Best algorithm to date: O(k + lg n). 

Time = O(k lg n), where k is the total number of 
overlapping intervals. 
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Correctness 
Theorem.  Let L be the set of intervals in the 
left subtree of node x, and let R be the set of 
intervals in x’s right subtree. 
• If the search goes right, then 

 { i ′ ∈ L : i ′ overlaps i } = ∅. 
• If the search goes left, then 
  {i ′ ∈ L : i ′ overlaps i } = ∅ 

⇒ {i ′ ∈ R : i ′ overlaps i } = ∅. 
In other words, it’s always safe to take only 1 
of the 2 children: we’ll either find something, 
or nothing was to be found. 
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Correctness proof 
Proof. Suppose first that the search goes right.   
• If left[x] = NIL, then we’re done, since L = ∅.  
• Otherwise, the code dictates that we must have 

low[i] > m[left[x]].  The value m[left[x]] 
corresponds to the high endpoint of some 
interval  j ∈ L, and no other interval in L can 
have a larger high endpoint than high[ j]. 

 
high[ j] = m[left[x]]  

i 
low(i) 

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅. 

j 
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Proof (continued) 
Suppose that the search goes left, and assume that 

{i ′ ∈ L : i ′ overlaps i } = ∅. 
• Then, the code dictates that low[i] ≤ m[left[x]] = 

high[ j] for some  j ∈ L. 
• Since  j ∈ L, it does not overlap i, and hence 

high[i] < low[ j]. 
• But, the binary-search-tree property implies that 

for all i ′ ∈ R, we have low[ j] ≤ low[i ′]. 
• But then {i ′ ∈ R : i ′ overlaps i } = ∅. 

 
i j 

i ′ 
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