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Prof. Charles E. Leiserson 

LECTURE 14  
Competitive Analysis 
• Self-organizing lists 
• Move-to-front heuristic 
• Competitive analysis of 

MTF 

Introduction to Algorithms 
6.046J/18.401J 
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Self-organizing lists 
List L of n elements 
•The operation ACCESS(x) costs rankL(x) = 
distance of x from the head of L. 

•L can be reordered by transposing adjacent 
elements at a cost of 1. 
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Self-organizing lists 
List L of n elements 
•The operation ACCESS(x) costs rankL(x) = 
distance of x from the head of L. 

•L can be reordered by transposing adjacent 
elements at a cost of 1. 

12 3 50 14 17 4 L 

Example: 
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Self-organizing lists 
List L of n elements 
•The operation ACCESS(x) costs rankL(x) = 
distance of x from the head of L. 

•L can be reordered by transposing adjacent 
elements at a cost of 1. 

12 3 50 14 17 4 L 

Accessing the element with key 14 costs 4. 

Example: 

12 3 50 14 
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Self-organizing lists 
List L of n elements 
•The operation ACCESS(x) costs rankL(x) = 
distance of x from the head of L. 

•L can be reordered by transposing adjacent 
elements at a cost of 1. 

12 3 50 14 17 4 L 

Transposing 3 and 50 costs 1. 

Example: 

3 50 
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On-line and off-line problems 

Definition. A sequence S of 
operations is provided one at a 
time.  For each operation, an  
on-line algorithm A must execute 
the operation immediately 
without any knowledge of future 
operations (e.g., Tetris). 
An off-line algorithm may see 
the whole sequence S in advance.  

Goal: Minimize the total cost CA(S). 
The game of Tetris 
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Worst-case analysis of self-
organizing lists 

An adversary always accesses the tail 
(nth) element of L.  Then, for any on-line 
algorithm A, we have 

CA(S) = Ω(|S|⋅ n)  
in the worst case. 
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Average-case analysis of self-
organizing lists 

Suppose that element x is accessed with 
probability p(x).  Then, we have 

∑
∈

⋅=
Lx

LA xxpSC )(rank)()]([E , 

which is minimized when L is sorted in 
decreasing order with respect to p. 

Heuristic: Keep a count of the number of 
times each element is accessed, and 
maintain L in order of decreasing count. 
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The move-to-front heuristic 

Practice: Implementers discovered that the 
move-to-front (MTF) heuristic empirically 
yields good results. 
IDEA: After accessing x, move x to the head 
of L using transposes: 

cost = 2 ⋅ rankL(x) . 

The MTF heuristic responds well to locality 
in the access sequence S. 
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Competitive analysis 

Definition. An on-line algorithm A is  
α-competitive if there exists a constant k 
such that for any sequence S of operations, 

CA(S) ≤ α ⋅ COPT(S) + k , 
where OPT is the optimal off-line algorithm 
(“God’s algorithm”). 
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MTF is O(1)-competitive 
Theorem. MTF is 4-competitive for self-
organizing lists. 
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MTF is O(1)-competitive 
Theorem. MTF is 4-competitive for self-
organizing lists. 
Proof.  Let Li be MTF’s list after the ith access, 
and let Li* be OPT’s list after the ith access. 
Let ci = MTF’s cost for the ith operation 
  = 2 ⋅ rankLi–1

(x) if it accesses x; 
 ci* = OPT’s cost for the ith operation 
  = rankLi–1*(x) + ti , 
where ti is the  number of transposes that OPT 
performs. 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{…}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), …}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), …}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), …}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), …}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), (D,B)}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), (D,B)}| 
 = 10 . 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Note that 
• Φ(Li) ≥ 0 for i = 0, 1, …, 
• Φ(L0) = 0 if MTF and OPT start with the 

same list. 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Note that 
• Φ(Li) ≥ 0 for i = 0, 1, …, 
• Φ(L0) = 0 if MTF and OPT start with the 

same list. 
How much does Φ change from 1 transpose? 
• A transpose creates/destroys 1 inversion. 
• ∆Φ = ±2 . 
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What happens on an access? 
Suppose that operation i accesses element x, 
and define 

A ∪ B x C ∪ D 

A ∪ C x B ∪ D 

Li–1 

Li–1* 

A = {y ∈ Li–1 : y Li–1
x and y Li–1* x}, 

B = {y ∈ Li–1 : y Li–1
x and y Li–1* x}, 

C = {y ∈ Li–1 : y Li–1
x and y Li–1* x}, 

D = {y ∈ Li–1 : y Li–1
x and y Li–1* x}. 
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What happens on an access? 
A ∪ B x C ∪ D 

A ∪ C x B ∪ D 

Li–1 

Li–1* 

r = rankLi–1
(x) 

r* = rankLi–1* (x) 

We have r = |A| + |B| + 1 and r* = |A| + |C| + 1. 
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What happens on an access? 
A ∪ B x C ∪ D 

A ∪ C x B ∪ D 

Li–1 

Li–1* 

We have r = |A| + |B| + 1 and r* = |A| + |C| + 1. 

r = rankLi–1
(x) 

r* = rankLi–1* (x) 

When MTF moves x to the front, it creates |A| 
inversions and destroys |B| inversions.  Each 
transpose by OPT creates ≤ 1 inversion.  Thus, 
we have 

Φ(Li) – Φ(Li–1) ≤ 2(|A| – |B| + ti) .  
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 

The amortized cost for the ith operation of 
MTF with respect to Φ is 

(since r = |A| + |B| + 1) 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 
 = 2r + 4|A| – 2r + 2 + 2ti  

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 
 = 2r + 4|A| – 2r + 2 + 2ti  
 = 4|A| + 2 + 2ti  

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 
 = 2r + 4|A| – 2r + 2 + 2ti  
 = 4|A| + 2 + 2ti  
 ≤ 4(r* + ti) 

The amortized cost for the ith operation of 
MTF with respect to Φ is 

(since r* = |A| + |C| + 1 ≥ |A| + 1) 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 
 = 2r + 4|A| – 2r + 2 + 2ti  
 = 4|A| + 2 + 2ti  
 ≤ 4(r* + ti) 
 = 4ci*. 

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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The grand finale 

∑
=

=
S

i
icSC

1
MTF )(

Thus, we have 
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The grand finale 
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The grand finale 
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Thus, we have 
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The grand finale 
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Thus, we have 

since Φ(L0) = 0 and Φ(L|S|) ≥ 0. 
, 
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Addendum 

If we count transpositions that move x toward the 
front as “free” (models splicing x in and out of L 
in constant time), then MTF is 2-competitive. 



November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.40 

Addendum 

If we count transpositions that move x toward the 
front as “free” (models splicing x in and out of L 
in constant time), then MTF is 2-competitive. 

What if L0 ≠ L0*? 
• Then, Φ(L0) might be Θ(n2) in the worst case. 
• Thus, CMTF(S) ≤ 4 ⋅ COPT(S) + Θ(n2), which is 

still 4-competitive, since n2 is constant as  
|S| → ∞. 
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