Introduction to Algorithms
6.046J/18.401)

ECTURE 15
Dynamic Programming

e Longest common
subsequence

\ —= .
- \ﬂ\‘ * Optimal substructure
 Overlapping subproblems

ALGORITHMS

Prof. Charles E. Leiserson

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.1

Dynamlc programming

“\‘ \‘

De5|gn technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find
a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamlc programming

“\‘ \‘

De5|gn technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamlc programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

x A B C B D A B

v B D C A B A

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

=71 Dynamic programming

==
1\\‘ \‘ e

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

xx A B C B D A B BCBA =
| \ | g LCS(X, y)
y B D C A B A J - |
functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

“"“:"' Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

e . Brute-force LCS algorithm

\
“\‘

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

Analysis
» Checking = O(n) time per subsequence.

* 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

Worst-case running time = O(n2")

= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

=™ Towards a better algorithm

\
“\‘ ,.

Slmpllflcatlon.

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

=™ Towards a better algorithm

\
“\‘ ,.

Slmpllflcatlon.

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s]|.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

B™ Towards a better algorithm

Slmpllflcatlon:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s]|.

Strategy: Consider prefixes of x and .

e Define c[i,] = |[LCS(x[1..1], y[1..]])]|.

* Then, c[m, n] = [LCS(x, y)|.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

o c[i-1, j-1] + 1 if x[i] = y[j],
cl1, 1] = { max{c[i-1, j], c[i, j-1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

7 Recursive formulation

Theorem
o c[i-1, -1] +1 I x[1] = y[j].
cli, 1] = { max{c[i-1, j], c[i, j-1]} otherwise.

Proof. Case x[i] = y[J]

1 2 m

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

77 Recursive formulation

Theorem
o c[i-1, j-1] + 1 if x[i] = y[il,
cli, J] = { maX{C[i—l il, c[i, j—l]} otherwise.
Proof. Case x[i] =y[J]

1 2 m

y N - 17
Letz[1..k]=LCS(x[1..1],y[1l..]]),wherec]l,|]

= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 .. k=1]1sCSof x|1..1-1]and y[1 .. J-1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

F'% Proof (continued)

Claim: z[1..k=-1]=LCS(x[1..1-1], y[1..]-1]).
Suppose w iIs a longer CS of x[1 . . 1-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x[1 .. 1]Jand y[1..]]

with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

F"% Proof (continued)

Claim: z[1..k=-1]=LCS(x[1..1-1], y[1..]-1]).
Suppose w iIs a longer CS of x[1 . . 1-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x[1 .. 1]Jand y[1..]]

with |w || z[k] | > k. Contradiction, proving the
claim.
Thus, c[i-1, J]-1] = k-1, which implies that c[i, |]
=c[i-1, j-1] + 1.

Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

w== Dynamic-programming

‘\ /

«>" hallmark #1

o0

© Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

w Dynamlc programming
~ " hallmark #1

o0

© Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.

—/

If z = LCS(X, y), then any prefix of z Is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

¥ Recursive algorithm for LCS

LCS(x, vy, 1,]) /lignoring base cases
I x[i] =y[]]
then c[i, J] « LCS(x, vy, I-1,]-1) + 1
else c[i, j] <« max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}
return cli, ||

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

m Recurswe algorithm for LCS

\

LCS(x, vy, 1,]) /lignoring base cases
I x[i] =y[]]
then c[i, J] « LCS(x, vy, I-1,]-1) + 1
else c[i, j] <« max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}
return cli, ||

Worse case: x[i] # y[]], In which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

15
65 14
1) () (3 Gf G (Y ky (3

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

(15
@ m+n
(15) () (55) (62 (5) (4 (64 (73

\4

Height = m + n = work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursmn tree

.\‘ \

m:7,n:6: (7,6) t
@ subspa;rgt()elem @

D ® (65 14 ™
(15) (5) (55) (64) () (64) (64) (73,

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

@ Dynamic-programming
« " hallmark #?2

o0

(O Overlapping subproblems
A recursive solution contains a
“small”” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

w== Dynamic-programming

‘\ %

«>" hallmark #2
0

(O Overlapping subproblems
A recursive solution contains a
“small”” number of distinct
subproblems repeated many times.

—/

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

- ¥ Memoization algorithm

Mem0|zat|on After computing a solution to a
subproblem, store it Iin a table. Subsequent calls
check the table to avoid redoing work.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

'“"' Memoization algorithm

¥
“\‘

I\/Iem0|zat|on After computing a solution to a
subproblem, store It in a table. Subsequent calls

check the table to avoid redoing work.

LCS(x, v, 1,])
If c[l, J]] = NIL
then if x[i] = y|[j]

'\

then c[i, j] < LCS(x, y, i-1, j-1) + 1 | Same
else c[i, j] < max{ LCS(x, v, i-1, J), >ngore

LCS(x, v, i, j—1)}/

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

¥ Memoization algorithm

¥
“\‘

I\/Iem0|zat|on After computing a solution to a
subproblem, store It in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, v, I,])
if c[i, j] = NIL
then if x[i] = y|[j]
then cfi, j] < LCS(x, vy, i-1, j-1) + 1 | Same
else c[i, j] < max{LCS(x, y, i1, j), (&
. before
LCS(x, v, i, j-1)}
/

Time = ®(mn) = constant work per table entry.
Space = ®(mn).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.27

'\

IDEA:
Compute the

table bottom-up. o

November 7, 2005

D
C
A
B

A

w== Dynamic-programming
" algorithm

A B CB D A B
001040101040
NN \
O0/1/1(141(1)1
014112)|2)|2
0 1\2 21222
10122 2\3 3
NN \
12]2[3/3,3/4
1122|3344

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.28

IDEA:
Compute the

table bottom-up. o

Time = ©(mn).

November 7, 2005

o > O O

w== Dynamic-programming
" algorithm

A B CB D A B
001040101040
NN \
O0/1/1(141(1)1
014112)|2)|2
0 1\2 21222
10122 2\3 3
NN \
12]2[3/3,3/4
1122|3344

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.29

w== Dynamic-programming

~=" algorithm

IDEA: B C B A

Compute the 0,040/ 0/0]0/040

table bottom-up. BloloF1l1M111 1\1

Time = ©(mn). olol1l1]1l2]2]2

Reconstruct N

LCS by tracing CLOJ01t121212]2]|”

backwards. 0/1|1112]|2]2 3\3
B 012 2/3|3 3|4
A 011|223 |34 4

November 7, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.30

m— Dynamic-programming

=" algorithm

IDEA:

Compute the

table bottom-up. 5

Time = ®(mn).

Reconstruct

LLCS by tracing C

/

backwards.

Space = ®(mn). B

Exercise:
O(min{m, n}).

November 7, 2005

N[N R PP, | O T

N ITNDINDNIND - R O 0

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.31

	Introduction to Algorithms�6.046J/18.401J
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1
	Recursive algorithm for LCS
	Recursive algorithm for LCS
	Recursion tree
	Recursion tree
	Recursion tree
	Dynamic-programming hallmark #2
	Dynamic-programming hallmark #2
	Memoization algorithm
	Memoization algorithm
	Memoization algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm

