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Prof. Erik Demaine 

LECTURE 18  
Shortest Paths II 
• Bellman-Ford algorithm 
• Linear programming and 

difference constraints 
• VLSI layout compaction 

Introduction to Algorithms 
6.046J/18.401J 
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Negative-weight cycles 
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist. 
Example: 

u v 

… 

< 0 
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Negative-weight cycles 
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist. 
Example: 

u v 

… 

< 0 

Bellman-Ford algorithm: Finds all shortest-path 
lengths from a source s ∈ V to all v ∈ V or 
determines that a negative-weight cycle exists. 
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Bellman-Ford algorithm 
d[s] ← 0 
for each v ∈ V – {s} 

do d[v] ← ∞ 

for i ← 1 to | V | – 1 
do for each edge (u, v) ∈ E 

do if d[v] > d[u] + w(u, v) 
then d[v] ← d[u] + w(u, v) 

for each edge (u, v) ∈ E 
do if d[v] > d[u] + w(u, v) 

then report that a negative-weight cycle exists 

initialization 

At the end, d[v] = δ(s, v), if no negative-weight cycles.  
Time = O(V E). 

relaxation 
step 
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Example of Bellman-Ford 
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Example of Bellman-Ford 
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Initialization. 
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Example of Bellman-Ford 
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Example of Bellman-Ford 
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Example of Bellman-Ford 
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Example of Bellman-Ford 
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Example of Bellman-Ford 
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End of pass 2 (and 3 and 4). 
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Correctness 
Theorem.  If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford 
algorithm executes, d[v] = δ(s, v) for all v ∈ V.  
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Correctness 
Theorem.  If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford 
algorithm executes, d[v] = δ(s, v) for all v ∈ V.  
Proof.  Let v ∈ V be any vertex, and consider a shortest 
path p from s to v with the minimum number of edges. 

v
1 v

2 

v
3 

v
k v0 

… 
s 

v 

p: 

Since p is a shortest path, we have 
δ(s, vi) = δ(s, vi–1) + w(vi–1, vi) . 
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Correctness (continued) 
v
1 v

2 

v
3 

v
k v0 

… 
s 

v 

p: 

Initially, d[v0] = 0 = δ(s, v0), and d[v0] is unchanged by 
subsequent relaxations (because of the lemma from 
Shortest Paths I that d[v] ≥ δ(s, v)). 
• After 1 pass through E, we have d[v1] = δ(s, v1). 
• After 2 passes through E, we have d[v2] = δ(s, v2). 
  
• After k passes through E, we have d[vk] = δ(s, vk). 
Since G contains no negative-weight cycles, p is simple.  
Longest simple path has ≤ | V | – 1 edges. 
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Detection of negative-weight 
cycles 

Corollary.  If a value d[v] fails to converge after 
| V | – 1 passes, there exists a negative-weight 
cycle in G reachable from s. 
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Linear programming 

Let A be an m×n matrix, b be an m-vector, and c 
be an n-vector.  Find an n-vector x that maximizes 
cTx subject to Ax ≤ b, or determine that no such 
solution exists. 

. ≤ . maximizing m 

n 

A x ≤ b cT x 
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Linear-programming 
algorithms 

Algorithms for the general problem 
• Simplex methods — practical, but worst-case 

exponential time. 
• Interior-point methods — polynomial time and 

competes with simplex. 
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Linear-programming 
algorithms 

Algorithms for the general problem 
• Simplex methods — practical, but worst-case 

exponential time. 
• Interior-point methods — polynomial time and 

competes with simplex. 

Feasibility problem: No optimization criterion.  
Just find x such that Ax ≤ b. 
• In general, just as hard as ordinary LP. 
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Solving a system of difference 
constraints 

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s.  
Example: 

x1 – x2 ≤ 3 
x2 – x3 ≤ –2 
x1 – x3 ≤ 2 

xj – xi ≤ wij 
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Solving a system of difference 
constraints 

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s.  
Example: 

x1 – x2 ≤ 3 
x2 – x3 ≤ –2 
x1 – x3 ≤ 2 

xj – xi ≤ wij 

Solution: 
x1 = 3 
x2 = 0 
x3 = 2 
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Solving a system of difference 
constraints 

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s.  
Example: 

x1 – x2 ≤ 3 
x2 – x3 ≤ –2 
x1 – x3 ≤ 2 

xj – xi ≤ wij 

Solution: 
x1 = 3 
x2 = 0 
x3 = 2 

Constraint graph: 

vj vi xj – xi ≤ wij 
wij 

(The “A” 
matrix has 
dimensions 
|E | × |V |.) 
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Unsatisfiable constraints 
Theorem.  If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable. 
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Unsatisfiable constraints 
Theorem.  If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable. 
Proof.  Suppose that the negative-weight cycle is 
v1 → v2 →  → vk → v1.  Then, we have 

 x2 – x1 ≤ w12 
 x3 – x2 ≤ w23 
    
 xk – xk–1 ≤ wk–1, k 
 x1 – xk ≤ wk1 
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Unsatisfiable constraints 
Theorem.  If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable. 
Proof.  Suppose that the negative-weight cycle is 
v1 → v2 →  → vk → v1.  Then, we have 

 x2 – x1 ≤ w12 
 x3 – x2 ≤ w23 
    
 xk – xk–1 ≤ wk–1, k 
 x1 – xk ≤ wk1 

Therefore, no 
values for the xi 
can satisfy the 
constraints. 

 0  ≤ weight of cycle 
   < 0 
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Satisfying the constraints 
Theorem.  Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable. 
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Satisfying the constraints 
Theorem.  Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable. 
Proof.  Add a new vertex s to V with a 0-weight edge 
to each vertex vi ∈ V. 

v
1 

v
4 

v
7 

v
9 

v
3 
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Satisfying the constraints 
Theorem.  Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable. 
Proof.  Add a new vertex s to V with a 0-weight edge 
to each vertex vi ∈ V. 

v
1 

v
4 

v
7 

v
9 

v
3 

s 

0 Note: 
No negative-weight 
cycles introduced ⇒ 
shortest paths exist. 
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The triangle inequality gives us δ(s,vj) ≤ δ(s, vi) + wij.  
Since xi = δ(s, vi) and xj = δ(s, vj), the constraint xj – xi 
≤ wij is satisfied. 

Proof (continued) 
Claim: The assignment xi = δ(s, vi) solves the constraints. 

s 

vj 

vi 
δ(s, vi) 

δ(s, vj) wij 

Consider any constraint xj – xi ≤ wij, and consider the 
shortest paths from s to vj and vi: 
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Bellman-Ford and linear 
programming 

Corollary.  The Bellman-Ford algorithm can 
solve a system of m difference constraints on n 
variables in O(m n) time.   
Single-source shortest paths is a simple LP 
problem. 
In fact, Bellman-Ford maximizes x1 + x2 +  + xn 
subject to the constraints xj – xi ≤ wij and xi ≤ 0 
(exercise). 
Bellman-Ford also minimizes maxi{xi} – mini{xi} 
(exercise). 
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Application to VLSI layout 
compaction 

Integrated
-circuit 
features: 

Problem:  Compact (in one dimension) the 
space between the features of a VLSI layout 
without bringing any features too close together. 

minimum separation λ 
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VLSI layout compaction 

1 

x1 x2 

2 

d1 

Constraint: x2 – x1 ≥ d1 + λ 
Bellman-Ford minimizes maxi{xi} – mini{xi}, 
which compacts the layout in the x-dimension. 
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