Introduction to Algorithms
6.046J/18.401)

L ECTURE 16
— Shortest Paths 111
ko * All-pairs shortest paths

e Matrix-multiplication
algorithm

 Floyd-Warshall algorithm
 Johnson’s algorithm

ALGORITHMS

Prof. Erik D. Demaine

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.1

- BT Shortest paths

Slngle source shortest paths
e Nonnegative edge weights

* Dijkstra’s algorithm: O(E + V Ig V)
 General

+ Bellman-Ford algorithm: O(VE)

* DAG
+ One pass of Bellman-Ford: O(V + E)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.2

- BT Shortest paths

Slngle source shortest paths
e Nonnegative edge weights
+ Dijkstra’s algorithm: O(E + V Ig V)
e General
+ Bellman-Ford algorithm: O(VE)
* DAG
+ One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths
e Nonnegative edge weights
+ Dijkstra’s algorithm |V| times: O(VE + V2 lg V)
e General
+ Three algorithms today.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.3

'""' AII -pairs shortest paths

Input: Digraph G = (V, E), where V = {1, 2,
., N}, with edge-weight functionw : E - R.

Output: n x n matrix of shortest-path lengths
o(l,]) foralli,] € V.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.4

"”"" AII -pairs shortest paths

Input Digraph G = (V, E), where V = {1, 2,
, N}, with edge-weight function w : E — R.

Output: n x n matrix of shortest-path lengths
o(l,]) foralli,] € V.

IDEA:

* Run Bellman-Ford once from each vertex.

e Time = O(V°E).

 Dense graph (®(n?) edges) = ©(n*) time in
the worst case.

Good first try!

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.5

;""""":;? Dynamic programming
Consider the n x n weighted adjacency matrix

A = (&;;), where a; = w(l, J) or o, and define

d;i(™ = welght of a shortest path from
| to | that uses at most m edges.

Claim: We have
4,0= {0 ifi=],
o If1#];
and form=1,2n-1,
d;;(™ = mlnk{d (MD) + 3, }.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.6

ALGORITHMS

<m -1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7

Proof of claim

‘“ K’s
di;™ = min {d ™ + a; }
Relaxation!

fork <« 1ton
do if d;; > dj, + ay
then dlj < dik + akj <m-1 edgeS

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.8

‘“ K’s
di;™ = min {d ™ + a; }

Relaxation!
fork <« 1ton
do if d;; > dj, + ay
then d;j < iy + &y <m -1 edges

Note: No negative-weight cycles implies
8('! J) - dij (-1) = dij (n) = dij (n+1) = ...

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.9

B Matrix multiplication

Compute C=A - B, where C, A,and B aren xn

matrices: "
Cij — Zaikbkj .
k=1

Time = ®(n?) using the standard algorithm.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.10

B0 Matrix multiplication

N
“\‘

Compute C=A-B,whereC, A,andBarenxn

matrices: "
Cij — Zaikbkj .
k=1

Time = ®(n?) using the standard algorithm.
What if we map “+” — “min” and “-” — “+7?

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.11

— BT Matrix multiplication
Compute C=A-B,whereC, A,and Baren xn

matrices:
— Z aikbkj .
k=1

Time = ®(n?) using the standard algorithm

What if we map “+” — “min” and “-” — “+7?
CIJ N mink {aik T bkj}-

Thus, DM = DM=1) > A

(0 o0 00m0)

Identity matrix = 1 = | %75 % =D = (d;().
| 00 00 00 O)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.12

@ Matrix multiplication
S

~=* (continued)

The (min, +) multiplication Is associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.

Consequently, we can compute

DO = DO.A = Al
D@ = DM .A = A2

DO-1) = p(-2) . A= AML.
yielding DY = (§(i, j)).
Time = ®(n-n®) = ®(n*). No better than n x B-F.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.13

m Improved matrix
= multiplication algorithm

Repeated squaring: A%< = Ak x Ak,
Compute A%, A%, ... a2 190-D1
—

hd .
O(lg n) squarings
Note: A™1 =AM =AML= ...
Time = ©(n3lg n).

_/

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional

time.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14

F™1 Floyd-Warshall algorithm
Also dynamic programming, but faster!
Define c;;(¥) = weight of a shortest path from i

J
J to | with intermediate vertices
belonging to the set {1, 2, ..., k}.

Thus, (i, J) = ¢;". Also, ¢;{”) = a; .

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.15

Intermediate vertices in {1, 2, ..., k— 1}

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.16

=« Pseudocode for Floyd-
> Warshall

fork<«1ton
dofori<« 1ton
doforj<« 1ton
do If ¢;; > Cy, + Cy

then Cij < Cik + ij

} relaxation

Notes:

» Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in ®(n?) time.

e SiImple to code.

o Efficient In practice.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.17

@ Transitive closure of a
«> " directed graph

1 1f there exists a path from | to |,

Compute G = 1 5 Stherwise.

IDEA: Use Floyd-Warshall, but with (v, A) Instead
of (min, +):

100 = 6D v (D A (D).

Time = O(n3).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.18

Graph reweighting

Theorem Given a function h : V — R, reweight each
edge (u,v) € E by w,(u, v) =w(u, v) + h(u) h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.19

Graph reweighting

; \
“\‘

Theorem Given a function h : V — R, reweight each
edge (u,v) € E by w,(u, v) =w(u, v) + h(u) h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

Proof. Letp=v, > Vv, — --- —> v, beapathin G. We
have

k-1
Wy (p) — Z; Wh (Vi ’Vi+1)
k-1
= Zi (W(v; Vi) +h(vi)=h(viy))
k1
= 2w i0) + h(y) ~h(y,) _ Same

amount!
= w(p) + h(v,) —h(v,).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.20

w= Shortest paths in reweighted
graphs

Corollary. 6,(u, v) = d(u, v) + h(u) — h(v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.21

@ Shortest paths in reweighted
«2 " graphs

Corollary. 6,(u, v) = d(u, v) + h(u) — h(v).

IDEA: Find a function h : V — R such that
W, (u, v) = 0 for all (u, v) € E. Then, run
Dijkstra’s algorithm from each vertex on the
reweighted graph.

NoTe: w,(u, v) = 0 Iff h(v) — h(u) < w(u, v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.22

vy e Johnson’s algorithm
1. Flnd a function h : V — R such that w,(u, v) > 0 for
all (u, v) € E by using Bellman-Ford to solve the
difference constraints h(v) — h(u) < w(u, v), or
determine that a negative-weight cycle exists.
* Time = O(VE).

2. Run Dijkstra’s algorithm using w, from each vertex
u e Vto compute 6, (u, v) forall v e V.
e Time=0O(VE+VZ?IgV).

3. Foreach (u,v) € V xV, compute
o(u, V) = d,(u, v) —h(u) + h(v) .
e Time = O(V?).
Total time = O(VE + V2 lIg V).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.23

	Introduction to Algorithms�6.046J/18.401J
	Shortest paths
	Shortest paths
	All-pairs shortest paths
	All-pairs shortest paths
	Dynamic programming
	Proof of claim
	Proof of claim
	Proof of claim
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication (continued)
	Improved matrix multiplication algorithm
	Floyd-Warshall algorithm
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall
	Transitive closure of a directed graph
	Graph reweighting
	Graph reweighting
	Shortest paths in reweighted graphs
	Shortest paths in reweighted graphs
	Johnson’s algorithm

