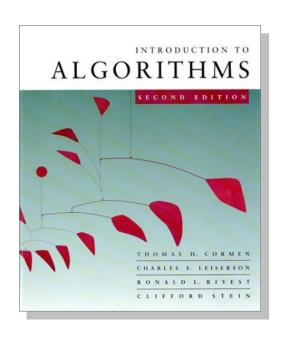
Introduction to Algorithms 6.046J/18.401J

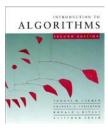


LECTURE 16

Shortest Paths III

- All-pairs shortest paths
- Matrix-multiplication algorithm
- Floyd-Warshall algorithm
- Johnson's algorithm

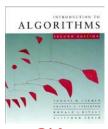
Prof. Erik D. Demaine



Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: O(VE)
- DAG
 - One pass of Bellman-Ford: O(V + E)



Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: *O(VE)*
- DAG
 - One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(VE + V^2 \lg V)$
- General
 - Three algorithms today.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$. Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$. Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2E)$.
- Dense graph $(\Theta(n^2) \text{ edges}) \Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!

Dynamic programming

Consider the $n \times n$ weighted adjacency matrix $A = (a_{ij})$, where $a_{ij} = w(i, j)$ or ∞ , and define $d_{ij}^{(m)} =$ weight of a shortest path from i to j that uses at most m edges.

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for m = 1, 2, ..., n - 1,

$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}.$$

Proof of claim

$$d_{ij}^{(m)} = \min_{k} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

$$\downarrow m - 1 \text{ edges}$$

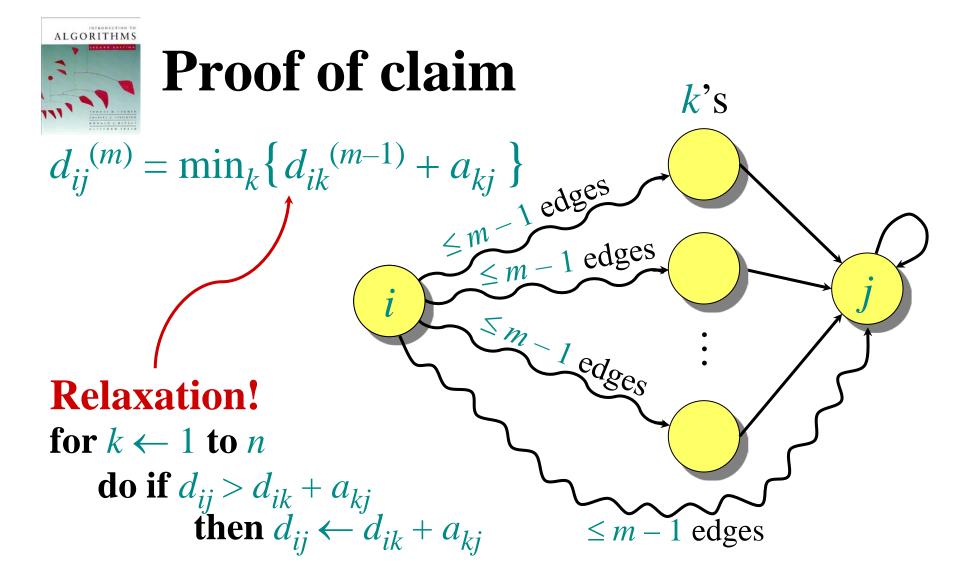
$$\vdots$$

$$\downarrow m - 1 \text{ edges}$$

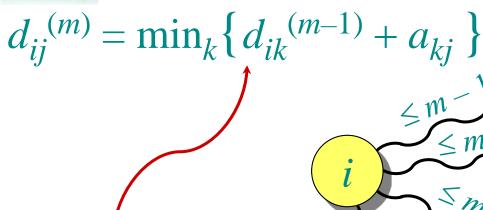
$$\vdots$$

$$\vdots$$

 $\leq m - 1$ edges



Proof of claim

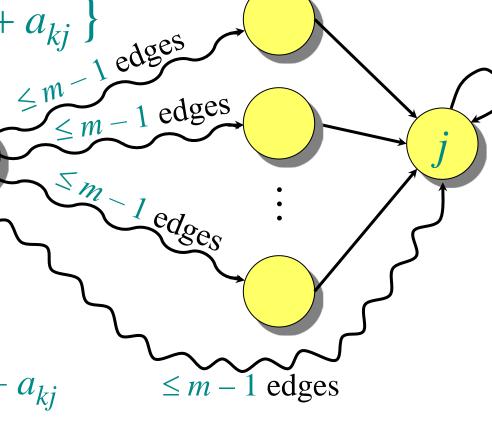


Relaxation!

for $k \leftarrow 1$ to n

do if $d_{ij} > d_{ik} + a_{kj}$ **then** $d_{ii} \leftarrow d$

then $d_{ij} \leftarrow d_{ik} + a_{kj}$



k's

Note: No negative-weight cycles implies

$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = \cdots$$



Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.



Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map "+" \rightarrow "min" and "\" \rightarrow "+"?

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map "+" \rightarrow "min" and "\" \rightarrow "+"?

$$c_{ij} = \min_k \left\{ a_{ik} + b_{kj} \right\}.$$

Thus, $D^{(m)} = D^{(m-1)}$ "x" A.

Identity matrix = I =
$$\begin{bmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{bmatrix} = D^0 = (d_{ij}^{(0)}).$$

Matrix multiplication (continued)

The (min, +) multiplication is *associative*, and with the real numbers, it forms an algebraic structure called a *closed semiring*.

Consequently, we can compute

$$D^{(1)} = D^{(0)} \cdot A = A^{1}$$

$$D^{(2)} = D^{(1)} \cdot A = A^{2}$$

$$\vdots \qquad \vdots$$

$$D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1},$$

yielding $D^{(n-1)} = (\delta(i, j))$.

Time = $\Theta(n \cdot n^3) = \Theta(n^4)$. No better than $n \times B$ -F.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$. Compute $A^2, A^4, ..., A^{2^{\lceil \lg(n-1) \rceil}}$.

 $O(\lg n)$ squarings

Note: $A^{n-1} = A^n = A^{n+1} = \cdots$

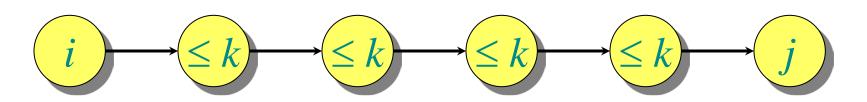
Time = $\Theta(n^3 \lg n)$.

To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

Floyd-Warshall algorithm

Also dynamic programming, but faster!

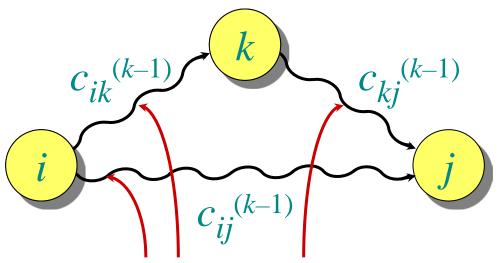
Define $c_{ij}^{(k)}$ = weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1, 2, ..., k\}$.



Thus, $\delta(i, j) = c_{ij}^{(n)}$. Also, $c_{ij}^{(0)} = a_{ij}$.

Floyd-Warshall recurrence

$$c_{ij}^{(k)} = \min \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$$



intermediate vertices in $\{1, 2, ..., k-1\}$

Pseudocode for Floyd-Warshall

```
\begin{array}{c} \text{for } k \leftarrow 1 \text{ to } n \\ \text{do for } i \leftarrow 1 \text{ to } n \\ \text{do for } j \leftarrow 1 \text{ to } n \\ \text{do if } c_{ij} > c_{ik} + c_{kj} \\ \text{then } c_{ij} \leftarrow c_{ik} + c_{kj} \end{array} \right\} \begin{array}{c} relaxation \end{array}
```

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.

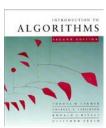
Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

IDEA: Use Floyd-Warshall, but with (\vee, \wedge) instead of (min, +):

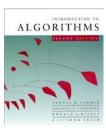
$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}).$$

Time = $\Theta(n^3)$.



Graph reweighting

Theorem. Given a function $h: V \to \mathbb{R}$, reweight each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.



Graph reweighting

Theorem. Given a function $h: V \to \mathbb{R}$, reweight each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

Proof. Let $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ be a path in G. We have $w_h(p) = \sum w_h(v_i, v_{i+1})$ $= \sum (w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}))$ Same $= \sum w(v_i, v_{i+1}) + h(v_1) - h(v_k)$ amount! $= w(p) + h(v_1) - h(v_k).$

Shortest paths in reweighted graphs

Corollary.
$$\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$$
.



Shortest paths in reweighted graphs

Corollary.
$$\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$$
.

IDEA: Find a function $h: V \to \mathbb{R}$ such that $w_h(u, v) \ge 0$ for all $(u, v) \in E$. Then, run Dijkstra's algorithm from each vertex on the reweighted graph.

NOTE: $w_h(u, v) \ge 0$ iff $h(v) - h(u) \le w(u, v)$.

Johnson's algorithm

- 1. Find a function $h: V \to \mathbb{R}$ such that $w_h(u, v) \ge 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints $h(v) h(u) \le w(u, v)$, or determine that a negative-weight cycle exists.
 - Time = O(VE).
- 2. Run Dijkstra's algorithm using w_h from each vertex $u \in V$ to compute $\delta_h(u, v)$ for all $v \in V$.
 - Time = $O(VE + V^2 \lg V)$.
- 3. For each $(u, v) \in V \times V$, compute $\delta(u, v) = \delta_h(u, v) h(u) + h(v)$.
 - Time = $O(V^2)$.

Total time = $O(VE + V^2 \lg V)$.