
September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.1

Introduction to Algorithms
6.046J/18.401J

Prof. Charles E. Leiserson

LECTURE 1
Analysis of Algorithms
• Insertion sort
• Asymptotic analysis
• Merge sort
• Recurrences

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.2

Course information

1. Staff
2. Distance learning
3. Prerequisites
4. Lectures
5. Recitations
6. Handouts
7. Textbook

8. Course website
9. Extra help
10. Registration
11. Problem sets
12. Describing algorithms
13. Grading policy
14. Collaboration policy

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.3

Analysis of algorithms

The theoretical study of computer-program
performance and resource usage.

What’s more important than performance?
• modularity
• correctness
• maintainability
• functionality
• robustness

• user-friendliness
• programmer time
• simplicity
• extensibility
• reliability

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.4

Why study algorithms and
performance?

• Algorithms help us to understand scalability.
• Performance often draws the line between what

is feasible and what is impossible.
• Algorithmic mathematics provides a language

for talking about program behavior.
• Performance is the currency of computing.
• The lessons of program performance generalize

to other computing resources.
• Speed is fun!

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.5

The problem of sorting

Input: sequence 〈a1, a2, …, an〉 of numbers.

Example:
Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Output: permutation 〈a'1, a'2, …, a'n〉 such
that a'1 ≤ a'2 ≤ … ≤ a'n .

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.6

Insertion sort
INSERTION-SORT (A, n) ⊳ A[1 . . n]
 for j ← 2 to n
 do key ← A[j]
 i ← j – 1
 while i > 0 and A[i] > key
 do A[i+1] ← A[i]
 i ← i – 1
 A[i+1] = key

“pseudocode”

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.7

Insertion sort
INSERTION-SORT (A, n) ⊳ A[1 . . n]
 for j ← 2 to n
 do key ← A[j]
 i ← j – 1
 while i > 0 and A[i] > key
 do A[i+1] ← A[i]
 i ← i – 1
 A[i+1] = key

“pseudocode”

sorted

i j

key
A:

1 n

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.8

Example of insertion sort
8 2 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.9

Example of insertion sort
8 2 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.10

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.11

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.12

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.13

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.14

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.15

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.16

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.17

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.18

Example of insertion sort
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.19

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

• Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.20

Kinds of analyses
Worst-case: (usually)

• T(n) = maximum time of algorithm
on any input of size n.

Average-case: (sometimes)
• T(n) = expected time of algorithm

over all inputs of size n.
• Need assumption of statistical

distribution of inputs.
Best-case: (bogus)

• Cheat with a slow algorithm that
works fast on some input.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.21

Machine-independent time

What is insertion sort’s worst-case time?
• It depends on the speed of our computer:

• relative speed (on the same machine),
• absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.22

Θ-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

Math:
Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n)
for all n ≥ n0 }

Engineering:

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.23

Asymptotic performance

n

T(n)

n0

• We shouldn’t ignore
asymptotically slower
algorithms, however.

• Real-world design
situations often call for a
careful balancing of
engineering objectives.

• Asymptotic analysis is a
useful tool to help to
structure our thinking.

When n gets large enough, a Θ(n2) algorithm
always beats a Θ(n3) algorithm.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.24

Insertion sort analysis
Worst case: Input reverse sorted.

()∑
=

Θ=Θ=
n

j
njnT

2

2)()(

Average case: All permutations equally likely.

()∑
=

Θ=Θ=
n

j
njnT

2

2)2/()(

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

[arithmetic series]

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.25

Merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.26

Merging two sorted arrays

20

13

7

2

12

11

9

1

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.27

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.28

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.29

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.30

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.31

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.32

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.33

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.34

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.35

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.36

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.37

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.38

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = Θ(n) to merge a total
of n elements (linear time).

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.39

Analyzing merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)
Abuse

Sloppiness: Should be T(n/2) + T(n/2) ,
but it turns out not to matter asymptotically.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.40

Recurrence for merge sort

T(n) =
Θ(1) if n = 1;
2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base
case when T(n) = Θ(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

• CLRS and Lecture 2 provide several ways
to find a good upper bound on T(n).

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.41

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.42

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.43

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.44

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.45

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.46

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.47

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.48

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.49

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

…

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.50

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)

…

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.51

Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

h = lg n

cn

cn

cn

#leaves = n Θ(n)
Total = Θ(n lg n)

…

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.52

Conclusions

• Θ(n lg n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically

beats insertion sort in the worst case.
• In practice, merge sort beats insertion

sort for n > 30 or so.
• Go test it out for yourself!

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.1

Introduction to Algorithms
6.046J/18.401J

Prof. Erik Demaine

LECTURE 2
Asymptotic Notation
• O-, Ω-, and Θ-notation
Recurrences
• Substitution method
• Iterating the recurrence
• Recursion tree
• Master method

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.2

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.3

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3) (c = 1, n0 = 2)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.4

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions,
not values

(c = 1, n0 = 2)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.5

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions,
not values

funny, “one-way”
equality

(c = 1, n0 = 2)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.6

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.7

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

EXAMPLE: 2n2 ∈ O(n3)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.8

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

EXAMPLE: 2n2 ∈ O(n3)
(Logicians: λn.2n2 ∈ O(λn.n3), but it’s
convenient to be sloppy, as long as we
understand what’s really going on.)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.9

Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.10

Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

f(n) = n3 + O(n2)
means
f(n) = n3 + h(n)
for some h(n) ∈ O(n2) .

EXAMPLE:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.11

Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

n2 + O(n) = O(n2)
means
for any f(n) ∈ O(n):
 n2 + f(n) = h(n)
 for some h(n) ∈ O(n2) .

EXAMPLE:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.12

Ω-notation (lower bounds)

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.13

Ω-notation (lower bounds)

Ω(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.14

Ω-notation (lower bounds)

Ω(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

EXAMPLE:)(lg nn Ω= (c = 1, n0 = 16)

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.15

Θ-notation (tight bounds)

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.16

Θ-notation (tight bounds)

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

EXAMPLE:)(2 22
2
1 nnn Θ=−

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.17

ο-notation and ω-notation

ο(g(n)) = { f(n) : for any constant c > 0,
there is a constant n0 > 0
such that 0 ≤ f(n) < cg(n)
for all n ≥ n0 }

EXAMPLE: (n0 = 2/c)

O-notation and Ω-notation are like ≤ and ≥.
o-notation and ω-notation are like < and >.

2n2 = o(n3)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.18

ο-notation and ω-notation

ω(g(n)) = { f(n) : for any constant c > 0,
there is a constant n0 > 0
such that 0 ≤ cg(n) < f(n)
for all n ≥ n0 }

EXAMPLE:)(lgnn ω= (n0 = 1+1/c)

O-notation and Ω-notation are like ≤ and ≥.
o-notation and ω-notation are like < and >.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

Solving recurrences

• The analysis of merge sort from Lecture 1
required us to solve a recurrence.

• Recurrences are like solving integrals,
differential equations, etc.
Learn a few tricks.

• Lecture 3: Applications of recurrences to
divide-and-conquer algorithms.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

EXAMPLE: T(n) = 4T(n/2) + n
• [Assume that T(1) = Θ(1).]
• Guess O(n3) . (Prove O and Ω separately.)
• Assume that T(k) ≤ ck3 for k < n .
• Prove T(n) ≤ cn3 by induction.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

Example of substitution

3

33

3

3

))2/((
)2/(

)2/(4
)2/(4)(

cn
nnccn

nnc
nnc

nnTnT

≤
−−=

+=
+≤

+=

desired – residual

whenever (c/2)n3 – n ≥ 0, for
example, if c ≥ 2 and n ≥ 1.

desired

residual

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.23

Example (continued)
• We must also handle the initial conditions,

that is, ground the induction with base
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we
pick c big enough.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

Example (continued)
• We must also handle the initial conditions,

that is, ground the induction with base
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we
pick c big enough.

This bound is not tight!

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.25

A tighter upper bound?

We shall prove that T(n) = O(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.26

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.27

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong! We must prove the I.H.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong! We must prove the I.H.

2

2)(
cn

ncn
≤

−−=
for no choice of c > 0. Lose!

[desired – residual]

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.29

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

T(n) = 4T(n/2) + n
 = 4(c1(n/2)2 – c2(n/2)) + n
 = c1n2 – 2c2n + n
 = c1n2 – c2n – (c2n – n)
 ≤ c1n2 – c2n if c2 ≥ 1.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.31

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

Pick c1 big enough to handle the initial conditions.

T(n) = 4T(n/2) + n
 = 4(c1(n/2)2 – c2(n/2)) + n
 = c1n2 – 2c2n + n
 = c1n2 – c2n – (c2n – n)
 ≤ c1n2 – c2n if c2 ≥ 1.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• The recursion-tree method promotes intuition,
however.

• The recursion tree method is good for
generating guesses for the substitution method.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.33

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.34

Example of recursion tree

T(n)
Solve T(n) = T(n/4) + T(n/2) + n2:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35

Example of recursion tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.36

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Example of recursion tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

Solve T(n) = T(n/4) + T(n/2) + n2:
n2

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

2nn2

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

2
16
5 n

2nn2

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

2
16
5 n

2n

2
256
25 n

n2

(n/2)2

…

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.41

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

2
16
5 n

2n

2
256
25 n

() ()() 1 3
16
52

16
5

16
52 ++++n

…

Total =
= Θ(n2)

n2

(n/2)2

geometric series

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.43

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba
(by an nε factor).

 Solution: T(n) = Θ(nlogba) .

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.44

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba
(by an nε factor).

 Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n) .

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.45

Three common cases (cont.)
Compare f (n) with nlogba:
3. f (n) = Ω(nlogba + ε) for some constant ε > 0.

• f (n) grows polynomially faster than nlogba (by
an nε factor),

 and f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.

 Solution: T(n) = Θ(f (n)) .

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.46

Examples

 EX. T(n) = 4T(n/2) + n
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
 CASE 1: f (n) = O(n2 – ε) for ε = 1.
 ∴ T(n) = Θ(n2).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.47

Examples

 EX. T(n) = 4T(n/2) + n
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
 CASE 1: f (n) = O(n2 – ε) for ε = 1.
 ∴ T(n) = Θ(n2).

EX. T(n) = 4T(n/2) + n2
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
 CASE 2: f (n) = Θ(n2lg0n), that is, k = 0.
 ∴ T(n) = Θ(n2lg n).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.48

Examples

 EX. T(n) = 4T(n/2) + n3
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
 CASE 3: f (n) = Ω(n2 + ε) for ε = 1
 and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
 ∴ T(n) = Θ(n3).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.49

Examples

 EX. T(n) = 4T(n/2) + n3
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
 CASE 3: f (n) = Ω(n2 + ε) for ε = 1
 and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
 ∴ T(n) = Θ(n3).

EX. T(n) = 4T(n/2) + n2/lg n
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lg n.
 Master method does not apply. In particular,

for every constant ε > 0, we have nε = ω(lg n).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.50

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.51

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a

f (n)

a f (n/b)

a2 f (n/b2)

…

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.52

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.53

nlogbaΤ (1)

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

#leaves = ah
 = alogbn
 = nlogba

…

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.54

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight.

Θ(nlogba)

…

nlogbaΤ (1)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.55

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 2: (k = 0) The weight
is approximately the same on
each of the logbn levels.

Θ(nlogbalg n)

…

nlogbaΤ (1)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.56

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight.

nlogbaΤ (1)

Θ(f (n))

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.1

Introduction to Algorithms
6.046J/18.401J

Prof. Erik D. Demaine

LECTURE 3
Divide and Conquer
• Binary search
• Powering a number
• Fibonacci numbers
• Matrix multiplication
• Strassen’s algorithm
• VLSI tree layout

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.2

The divide-and-conquer
design paradigm

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.3

Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.4

Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + Θ(n)

subproblems
subproblem size

work dividing
and combining

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.5

Master theorem (reprise)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε), constant ε > 0
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0
⇒ T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε), constant ε > 0,
and regularity condition

⇒ T(n) = Θ(f (n)) .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.6

Master theorem (reprise)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε), constant ε > 0
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0
⇒ T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε), constant ε > 0,
and regularity condition

⇒ T(n) = Θ(f (n)) .
Merge sort: a = 2, b = 2 ⇒ nlogba = nlog22 = n

 ⇒ CASE 2 (k = 0) ⇒ T(n) = Θ(n lg n) .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.7

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.8

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.9

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.10

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.11

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.12

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.13

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.14

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

subproblems
subproblem size

work dividing
and combining

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.15

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(lg n) .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.16

Powering a number

Problem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.17

Powering a number

Problem: Compute a n, where n ∈ N.

a
n =

a
n/2 ⋅ a

n/2 if n is even;
a

(n–1)/2 ⋅ a
(n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

Naive algorithm: Θ(n).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.18

Powering a number

Problem: Compute a n, where n ∈ N.

a
n =

a
n/2 ⋅ a

n/2 if n is even;
a

(n–1)/2 ⋅ a
(n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

T(n) = T(n/2) + Θ(1) ⇒ T(n) = Θ(lg n) .

Naive algorithm: Θ(n).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2
 if n ≥ 2.

1 if n = 1;

0 1 1 2 3 5 8 13 21 34 

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2
 if n ≥ 2.

1 if n = 1;

0 1 1 2 3 5 8 13 21 34 

Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51(+

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

Computing Fibonacci
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Θ(n).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

Computing Fibonacci
numbers

Naive recursive squaring:
Fn = φ n/ rounded to the nearest integer. 5

• Recursive squaring: Θ(lg n) time.
• This method is unreliable, since floating-point

arithmetic is prone to round-off errors.

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Θ(n).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.23

Recursive squaring
n

FF
FF

nn

nn





=






−

+

01
11

1

1Theorem: .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

Recursive squaring
n

FF
FF

nn

nn





=






−

+

01
11

1

1Theorem: .

Algorithm: Recursive squaring.
Time = Θ(lg n) .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.25

Recursive squaring
n

FF
FF

nn

nn





=






−

+

01
11

1

1Theorem: .

Proof of theorem. (Induction on n.)

Base (n = 1): .
1

01
11

01

12





=





FF
FF

Algorithm: Recursive squaring.
Time = Θ(lg n) .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.26

Recursive squaring

.

.

Inductive step (n ≥ 2):

n

n
FF
FF

FF
FF

nn

nn

nn

nn






=






⋅
−






=






⋅





=






−−

−

−

+

01
11

01
111

01
11

01
11

21

1

1

1

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.27

Matrix multiplication



















⋅



















=



















nnnn

n

n

nnnn

n

n

nnnn

n

n

bbb

bbb
bbb

aaa

aaa
aaa

ccc

ccc
ccc

























21

22221

11211

21

22221

11211

21

22221

11211

∑
=

⋅=
n

k
kjikij bac

1

Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28

Standard algorithm

for i ← 1 to n
 do for j ← 1 to n
 do cij ← 0
 for k ← 1 to n
 do cij ← cij + aik⋅ bkj

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.29

Standard algorithm

for i ← 1 to n
 do for j ← 1 to n
 do cij ← 0
 for k ← 1 to n
 do cij ← cij + aik⋅ bkj

Running time = Θ(n3)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = ae + bg
s = af + bh
t = ce + dg
u = cf + dh

8 mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.31

Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = ae + bg
s = af + bh
t = ce + dh
u = cf + dg

8 mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices ^

recursive

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + Θ(n2)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.33

Analysis of D&C algorithm

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3).

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + Θ(n2)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.34

Analysis of D&C algorithm

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3).

No better than the ordinary algorithm.

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + Θ(n2)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.36

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

r = P5 + P4 – P2 + P6
 = (a + d) (e + h)
 + d (g – e) – (a + b) h
 + (b – d) (g + h)
 = ae + ah + de + dh
 + dg –de – ah – bh
 + bg + bh – dg – dh
 = ae + bg

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.41

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.43

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.44

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ≥ 32 or so.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.45

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).

Best to date (of theoretical interest only): Θ(n2.376).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ≥ 32 or so.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.46

VLSI layout
Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.47

VLSI layout
Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

H(n)

W(n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.48

VLSI layout
Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

H(n)

W(n)

H(n) = H(n/2) + Θ(1)
 = Θ(lg n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.49

VLSI layout
Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

H(n)

W(n)

H(n) = H(n/2) + Θ(1)
 = Θ(lg n)

W(n) = 2 W(n/2) + Θ(1)
 = Θ(n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.50

VLSI layout
Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

H(n)

W(n)

H(n) = H(n/2) + Θ(1)
 = Θ(lg n)

W(n) = 2 W(n/2) + Θ(1)
 = Θ(n)

Area = Θ(n lg n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.51

H-tree embedding
L(n)

L(n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.52

H-tree embedding
L(n)

L(n)

L(n/4) L(n/4) Θ(1)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.53

H-tree embedding
L(n)

L(n)

L(n/4) L(n/4) Θ(1)

L(n) = 2 L(n/4) + Θ(1)
 = Θ() n

Area = Θ(n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.54

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

• The divide-and-conquer strategy often leads
to efficient algorithms.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.1

Prof. Charles E. Leiserson

LECTURE 4
Quicksort
• Divide and conquer
• Partitioning
• Worst-case analysis
• Intuition
• Randomized quicksort
• Analysis

Introduction to Algorithms
6.046J/18.401J

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.2

Quicksort

• Proposed by C.A.R. Hoare in 1962.
• Divide-and-conquer algorithm.
• Sorts “in place” (like insertion sort, but not

like merge sort).
• Very practical (with tuning).

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.3

Divide and conquer
Quicksort an n-element array:
1. Divide: Partition the array into two subarrays

around a pivot x such that elements in lower
subarray ≤ x ≤ elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

≤ x x ≥ x

Key: Linear-time partitioning subroutine.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.4

x

Running time
= O(n) for n
elements.

Partitioning subroutine
PARTITION(A, p, q) ⊳ A[p . . q]

x ← A[p] ⊳ pivot = A[p]
i ← p
for j ← p + 1 to q

do if A[j] ≤ x
then i ← i + 1
 exchange A[i] ↔ A[j]

exchange A[p] ↔ A[i]
return i

≤ x ≥ x ?
p i q j

Invariant:

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.5

Example of partitioning

i j
6 10 13 5 8 3 2 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.6

Example of partitioning

i j
6 10 13 5 8 3 2 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.7

Example of partitioning

i j
6 10 13 5 8 3 2 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.8

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.9

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.10

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.12

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.13

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.14

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.15

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.16

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i
2 5 3 6 8 13 10 11

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.17

Pseudocode for quicksort
QUICKSORT(A, p, r)

if p < r
then q ← PARTITION(A, p, r)

QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.18

Analysis of quicksort

• Assume all input elements are distinct.
• In practice, there are better partitioning

algorithms for when duplicate input
elements may exist.

• Let T(n) = worst-case running time on
an array of n elements.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.19

Worst-case of quicksort

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has no elements.

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=
Θ+−+Θ=
Θ+−+=

(arithmetic series)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.20

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.21

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.22

cn
T(0) T(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.23

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.24

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.25

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)



()2

1
nk

n

k
Θ=








Θ ∑

=

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.26

cn
Θ(1) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

Θ(1) c(n–2)

Θ(1)

Θ(1)



()2

1
nk

n

k
Θ=








Θ ∑

=

T(n) = Θ(n) + Θ(n2)
 = Θ(n2)

h = n

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.27

Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + Θ(n)
 = Θ(n lg n) (same as merge sort)

What if the split is always 10
9

10
1 : ?

() ())()(10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence?

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.28

Analysis of “almost-best” case
)(nT

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.29

Analysis of “almost-best” case
cn

()nT 10
1 ()nT 10

9

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.30

Analysis of “almost-best” case
cn

cn10
1 cn10

9

()nT 100
1 ()nT 100

9 ()nT 100
9 ()nT 100

81

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.31

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

Θ(1)

log10/9n

cn

cn

cn

…

O(n) leaves

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.32

log10
n

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

Θ(1)

log10/9n

cn

cn

cn

T(n) ≤ cn log10/9n + Ο(n)

…

cn log10n ≤

O(n) leaves

Θ(n lg n)
Lucky!

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.33

More intuition
Suppose we alternate lucky, unlucky,
lucky, unlucky, lucky, ….

L(n) = 2U(n/2) + Θ(n) lucky
U(n) = L(n – 1) + Θ(n) unlucky

Solving:
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n)
 = 2L(n/2 – 1) + Θ(n)
 = Θ(n lg n)

How can we make sure we are usually lucky?
Lucky!

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.34

Randomized quicksort
IDEA: Partition around a random element.
• Running time is independent of the input

order.
• No assumptions need to be made about

the input distribution.
• No specific input elicits the worst-case

behavior.
• The worst case is determined only by the

output of a random-number generator.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.35

Randomized quicksort
analysis

Let T(n) = the random variable for the running
time of randomized quicksort on an input of size
n, assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator
random variable

Xk = 1 if PARTITION generates a k : n–k–1 split,
0 otherwise.

E[Xk] = Pr{Xk = 1} = 1/n, since all splits are
equally likely, assuming elements are distinct.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.36

Analysis (continued)

T(n) =

T(0) + T(n–1) + Θ(n) if 0 : n–1 split,
T(1) + T(n–2) + Θ(n) if 1 : n–2 split,
 
T(n–1) + T(0) + Θ(n) if n–1 : 0 split,

()∑
−

=

Θ+−−+=
1

0
)()1()(

n

k
k nknTkTX

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.37

Calculating expectation
()








Θ+−−+= ∑

−

=

1

0
)()1()()]([

n

k
k nknTkTXEnTE

Take expectations of both sides.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.38

Calculating expectation
()

()[]∑

∑
−

=

−

=

Θ+−−+=









Θ+−−+=

1

0

1

0

)()1()(

)()1()()]([

n

k
k

n

k
k

nknTkTXE

nknTkTXEnTE

Linearity of expectation.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.39

Calculating expectation
()

()[]

[] []∑

∑

∑

−

=

−

=

−

=

Θ+−−+⋅=

Θ+−−+=









Θ+−−+=

1

0

1

0

1

0

)()1()(

)()1()(

)()1()()]([

n

k
k

n

k
k

n

k
k

nknTkTEXE

nknTkTXE

nknTkTXEnTE

Independence of Xk from other random
choices.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.40

Calculating expectation
()

()[]

[] []

[] [] ∑∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−

=

Θ+−−+=

Θ+−−+⋅=

Θ+−−+=









Θ+−−+=

1

0

1

0

1

0

1

0

1

0

1

0

)(1)1(1)(1

)()1()(

)()1()(

)()1()()]([

n

k

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knTE
n

kTE
n

nknTkTEXE

nknTkTXE

nknTkTXEnTE

Linearity of expectation; E[Xk] = 1/n .

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.41

Calculating expectation
()

()[]

[] []

[] []

[])()(2

)(1)1(1)(1

)()1()(

)()1()(

)()1()()]([

1

1

1

0

1

0

1

0

1

0

1

0

1

0

nkTE
n

n
n

knTE
n

kTE
n

nknTkTEXE

nknTkTXE

nknTkTXEnTE

n

k

n

k

n

k

n

k

n

k
k

n

k
k

n

k
k

Θ+=

Θ+−−+=

Θ+−−+⋅=

Θ+−−+=









Θ+−−+=

∑

∑∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−

=

−

=

Summations have
identical terms.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.42

Hairy recurrence

[])()(2)]([
1

2
nkTE

n
nTE

n

k
Θ+= ∑

−

=

(The k = 0, 1 terms can be absorbed in the Θ(n).)

Prove: E[T(n)] ≤ a n lg n for constant a > 0 .

Use fact: 2
1

2
8
12

2
1 lglg nnnkk

n

k
∑

−

=
−≤ (exercise).

• Choose a large enough so that a n lg n
dominates E[T(n)] for sufficiently small n ≥ 2.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.43

Substitution method

[])(lg2)(
1

2
nkak

n
nTE

n

k
Θ+≤ ∑

−

=

Substitute inductive hypothesis.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.44

Substitution method

[]

)(
8
1lg

2
12

)(lg2)(

22

1

2

nnnn
n
a

nkak
n

nTE
n

k

Θ+




 −≤

Θ+≤ ∑
−

=

Use fact.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.45

Substitution method

[]






 Θ−−=

Θ+




 −≤

Θ+≤ ∑
−

=

)(
4

lg

)(
8
1lg

2
12

)(lg2)(

22

1

2

nannan

nnnn
n
a

nkak
n

nTE
n

k

Express as desired – residual.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.46

Substitution method

[]

nan

nannan

nnnn
n
a

nkak
n

nTE
n

k

lg

)(
4

lg

)(
8
1lg

2
12

)(lg2)(

22

1

2

≤






 Θ−−=

Θ+




 −=

Θ+≤ ∑
−

=

if a is chosen large enough so that
an/4 dominates the Θ(n).

,

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.47

Quicksort in practice

• Quicksort is a great general-purpose
sorting algorithm.

• Quicksort is typically over twice as fast
as merge sort.

• Quicksort can benefit substantially from
code tuning.

• Quicksort behaves well even with
caching and virtual memory.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.1

Prof. Erik Demaine

LECTURE 5
Sorting Lower Bounds
• Decision trees
Linear-Time Sorting
• Counting sort
• Radix sort
Appendix: Punched cards

Introduction to Algorithms
6.046J/18.401J

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.2

How fast can we sort?
All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.
• E.g., insertion sort, merge sort, quicksort,

heapsort.
The best worst-case running time that we’ve
seen for comparison sorting is O(n lg n) .

Is O(n lg n) the best we can do?

Decision trees can help us answer this question.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.3

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai > aj.

Sort 〈a1, a2, …, an〉

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.4

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai > aj.

9 ≥ 4 Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.5

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai > aj.

9 ≥ 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.6

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai > aj.

4 ≤ 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.7

Decision-tree example

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to
indicate that the ordering aπ(1) ≤ aπ(2) ≤  ≤ aπ(n) has been
established.

4 ≤ 6 ≤ 9

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.8

Decision-tree model
A decision tree can model the execution of
any comparison sort:
• One tree for each input size n.
• View the algorithm as splitting whenever

it compares two elements.
• The tree contains the comparisons along

all possible instruction traces.
• The running time of the algorithm = the

length of the path taken.
• Worst-case running time = height of tree.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.9

Lower bound for decision-
tree sorting

Theorem. Any decision tree that can sort n
elements must have height Ω(n lg n) .
Proof. The tree must contain ≥ n! leaves, since
there are n! possible permutations. A height-h
binary tree has ≤ 2h leaves. Thus, n! ≤ 2h .
 ∴ h ≥ lg(n!) (lg is mono. increasing)
 ≥ lg ((n/e)n) (Stirling’s formula)
 = n lg n – n lg e
 = Ω(n lg n) .

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.10

Lower bound for comparison
sorting

Corollary. Heapsort and merge sort are
asymptotically optimal comparison sorting
algorithms.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.11

Sorting in linear time

Counting sort: No comparisons between elements.
• Input: A[1 . . n], where A[j]∈{1, 2, …, k} .
• Output: B[1 . . n], sorted.
• Auxiliary storage: C[1 . . k] .

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.12

Counting sort
for i ← 1 to k

do C[i] ← 0
for j ← 1 to n

do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|
for i ← 2 to k

do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|
for j ← n downto 1

do B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.13

Counting-sort example

A: 4 1 3 4 3

B:

1 2 3 4 5

C:
1 2 3 4

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.14

Loop 1

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 0
1 2 3 4

for i ← 1 to k
do C[i] ← 0

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.15

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 0 0 0 1
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.16

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 0 1
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.17

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 1
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.18

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 1 2
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.19

Loop 2

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.20

Loop 3

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2
1 2 3 4

C': 1 1 2 2

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.21

Loop 3

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2
1 2 3 4

C': 1 1 3 2

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.22

Loop 3

A: 4 1 3 4 3

B:

1 2 3 4 5

C: 1 0 2 2
1 2 3 4

C': 1 1 3 5

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.23

Loop 4

A: 4 1 3 4 3

B: 3

1 2 3 4 5

C: 1 1 3 5
1 2 3 4

C': 1 1 2 5

for j ← n downto 1
do B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.24

Loop 4

A: 4 1 3 4 3

B: 3 4

1 2 3 4 5

C: 1 1 2 5
1 2 3 4

C': 1 1 2 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.25

Loop 4

A: 4 1 3 4 3

B: 3 3 4

1 2 3 4 5

C: 1 1 2 4
1 2 3 4

C': 1 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.26

Loop 4

A: 4 1 3 4 3

B: 1 3 3 4

1 2 3 4 5

C: 1 1 1 4
1 2 3 4

C': 0 1 1 4

for j ← n downto 1
do B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.27

Loop 4

A: 4 1 3 4 3

B: 1 3 3 4 4

1 2 3 4 5

C: 0 1 1 4
1 2 3 4

C': 0 1 1 3

for j ← n downto 1
do B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.28

Analysis
for i ← 1 to k

do C[i] ← 0

Θ(n)

Θ(k)

Θ(n)

Θ(k)

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1

for i ← 2 to k
do C[i] ← C[i] + C[i–1]

for j ← n downto 1
do B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

Θ(n + k)

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.29

Running time

If k = O(n), then counting sort takes Θ(n) time.
• But, sorting takes Ω(n lg n) time!
• Where’s the fallacy?

Answer:
• Comparison sorting takes Ω(n lg n) time.
• Counting sort is not a comparison sort.
• In fact, not a single comparison between

elements occurs!

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.30

Stable sorting

Counting sort is a stable sort: it preserves
the input order among equal elements.

A: 4 1 3 4 3

B: 1 3 3 4 4

Exercise: What other sorts have this property?

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.31

Radix sort

• Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See
Appendix .)

• Digit-by-digit sort.
• Hollerith’s original (bad) idea: sort on

most-significant digit first.
• Good idea: Sort on least-significant digit

first with auxiliary stable sort.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.32

Operation of radix sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.33

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.34

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

 Two numbers that differ in

digit t are correctly sorted.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.35

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

 Two numbers that differ in

digit t are correctly sorted.
 Two numbers equal in digit t

are put in the same order as
the input ⇒ correct order.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.36

Analysis of radix sort
• Assume counting sort is the auxiliary stable sort.
• Sort n computer words of b bits each.
• Each word can be viewed as having b/r base-2r

digits.
Example: 32-bit word

8 8 8 8

r = 8 ⇒ b/r = 4 passes of counting sort on
base-28 digits; or r = 16 ⇒ b/r = 2 passes of
counting sort on base-216 digits.

How many passes should we make?

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.37

Analysis (continued)
Recall: Counting sort takes Θ(n + k) time to
sort n numbers in the range from 0 to k – 1.
If each b-bit word is broken into r-bit pieces,
each pass of counting sort takes Θ(n + 2r) time.
Since there are b/r passes, we have

()




 +Θ= rn

r
bbnT 2),(.

Choose r to minimize T(n, b):
• Increasing r means fewer passes, but as

r > lg n, the time grows exponentially. >

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.38

Choosing r
()





 +Θ= rn

r
bbnT 2),(

Minimize T(n, b) by differentiating and setting to 0.
Or, just observe that we don’t want 2r > n, and
there’s no harm asymptotically in choosing r as
large as possible subject to this constraint.

 >

Choosing r = lg n implies T(n, b) = Θ(b n/lg n) .

• For numbers in the range from 0 to n
d – 1, we

have b = d lg n ⇒ radix sort runs in Θ(d n) time.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.39

Conclusions

Example (32-bit numbers):
• At most 3 passes when sorting ≥ 2000 numbers.
• Merge sort and quicksort do at least lg 2000 =

11 passes.

In practice, radix sort is fast for large inputs, as
well as simple to code and maintain.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
quicksort fares better on modern processors,
which feature steep memory hierarchies.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.40

Appendix: Punched-card
technology

• Herman Hollerith (1860-1929)
• Punched cards
• Hollerith’s tabulating system
• Operation of the sorter
• Origin of radix sort
• “Modern” IBM card
• Web resources on punched-card

technology
Return to last
slide viewed.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.41

Herman Hollerith
(1860-1929)

• The 1880 U.S. Census took almost
 10 years to process.
• While a lecturer at MIT, Hollerith
 prototyped punched-card technology.
• His machines, including a “card sorter,” allowed

the 1890 census total to be reported in 6 weeks.
• He founded the Tabulating Machine Company in

1911, which merged with other companies in 1924
to form International Business Machines.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.42

Punched cards
• Punched card = data record.
• Hole = value.
• Algorithm = machine + human operator.

Replica of punch
card from the
1900 U.S. census.
[Howells 2000]

http://www.oz.net/%7Emarkhow/writing/holl.htm

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.43

Hollerith’s
tabulating
system
•Pantograph card
punch

•Hand-press reader
•Dial counters
•Sorting box

Figure from
[Howells 2000].

http://www.oz.net/%7Emarkhow/writing/holl.htm

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.44

Operation of the sorter
• An operator inserts a card into

the press.
• Pins on the press reach through

the punched holes to make
electrical contact with mercury-
filled cups beneath the card.

• Whenever a particular digit
value is punched, the lid of the
corresponding sorting bin lifts.

• The operator deposits the card
into the bin and closes the lid.

• When all cards have been processed, the front panel is opened, and
the cards are collected in order, yielding one pass of a stable sort.

Hollerith Tabulator, Pantograph, Press, and Sorter

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.45

Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
into the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the last
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be
a folk invention originated by machine operators.

http://theory.lcs.mit.edu/classes/6.046/fall01/Hollerith%20patent%201889.pdf

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.46

“Modern” IBM card

So, that’s why text windows have 80 columns!

Produced by
the WWW
Virtual Punch-
Card Server.

• One character per column.

http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.47

Web resources on punched-
card technology

• Doug Jones’s punched card index
• Biography of Herman Hollerith
• The 1890 U.S. Census
• Early history of IBM
• Pictures of Hollerith’s inventions
• Hollerith’s patent application (borrowed

from Gordon Bell’s CyberMuseum)
• Impact of punched cards on U.S. history

http://www.cs.uiowa.edu/%7Ejones/cards/index.html
http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Mathematicians/Hollerith.html
http://www.oz.net/%7Emarkhow/writing/holl.htm
http://www.glencoe.com/norton/n-instructor-/updates/1999/51099-2.html
http://sln.fi.edu/qa00/attic4
http://theory.lcs.mit.edu/classes/6.046/fall01/Hollerith%20patent%201889.pdf
http://research.microsoft.com/users/GBell/CyberMuseumPubs.htm
http://www.whitehouse.gov/president

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.1

Prof. Erik Demaine

LECTURE 6
Order Statistics
• Randomized divide and

conquer
• Analysis of expected time
• Worst-case linear-time

order statistics
• Analysis

Introduction to Algorithms
6.046J/18.401J

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.2

Order statistics
Select the i th smallest of n elements (the
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index i th element.
Worst-case running time = Θ(n lg n) + Θ(1)
 = Θ(n lg n),
using merge sort or heapsort (not quicksort).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.3

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ i th smallest of A[p . .
q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r] ≥ A[r]
r p q

k

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.4

Example

pivot
i = 7 6 10 13 5 8 3 2 11

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

2 5 3 6 8 13 10 11
Partition:

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.5

Intuition for analysis

Lucky:
101log 9/10 == nn

CASE 3
T(n) = T(9n/10) + Θ(n)
 = Θ(n)

Unlucky:
T(n) = T(n – 1) + Θ(n)
 = Θ(n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements
are distinct.)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.6

Analysis of expected time

Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator
random variable

Xk = 1 if PARTITION generates a k : n–k–1 split,
0 otherwise.

The analysis follows that of randomized
quicksort, but it’s a little different.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.7

Analysis (continued)

T(n) =

T(max{0, n–1}) + Θ(n) if 0 : n–1 split,
T(max{1, n–2}) + Θ(n) if 1 : n–2 split,
 
T(max{n–1, 0}) + Θ(n) if n–1 : 0 split,

()∑
−

=
Θ+−−=

1

0
)(})1,(max{

n

k
k nknkTX .

To obtain an upper bound, assume that the i th
element always falls in the larger side of the
partition:

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.8

Calculating expectation
()








Θ+−−= ∑

−

=

1

0
)(})1,(max{)]([

n

k
k nknkTXEnTE

Take expectations of both sides.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.9

Calculating expectation
()

()[]∑

∑
−

=

−

=

Θ+−−=









Θ+−−=

1

0

1

0

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

nknkTXE

nknkTXEnTE

Linearity of expectation.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.10

Calculating expectation
()

()[]

[] []∑

∑

∑

−

=

−

=

−

=

Θ+−−⋅=

Θ+−−=









Θ+−−=

1

0

1

0

1

0

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

n

k
k

nknkTEXE

nknkTXE

nknkTXEnTE

Independence of Xk from other random
choices.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.11

Calculating expectation
()

()[]

[] []

[] ∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

Θ+−−=

Θ+−−⋅=

Θ+−−=









Θ+−−=

1

0

1

0

1

0

1

0

1

0

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

Linearity of expectation; E[Xk] = 1/n .

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.12

Calculating expectation
()

()[]

[] []

[]

[]
 

)()(2

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

1

2/

1

0

1

0

1

0

1

0

1

0

nkTE
n

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

n

nk

n

k

n

k

n

k
k

n

k
k

n

k
k

Θ+≤

Θ+−−=

Θ+−−⋅=

Θ+−−=









Θ+−−=

∑

∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−

=

Upper terms
appear twice.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.13

Hairy recurrence

[]
 

)()(2)]([
1

2/
nkTE

n
nTE

n

nk
Θ+= ∑

−

=

Prove: E[T(n)] ≤ c n for constant c > 0 .

Use fact:
 

2
1

2/
8
3nk

n

nk
∑
−

=
≤ (exercise).

• The constant c can be chosen large enough
so that E[T(n)] ≤ c n for the base cases.

(But not quite as hairy as the quicksort one.)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.14

Substitution method

[]
 

)(2)(
1

2/
nck

n
nTE

n

nk
Θ+≤ ∑

−

=

Substitute inductive hypothesis.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.15

Substitution method

[]
 

)(
8
32

)(2)(

2

1

2/

nn
n
c

nck
n

nTE
n

nk

Θ+




≤

Θ+≤ ∑
−

=

Use fact.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.16

Substitution method

Express as desired – residual.

[]
 






 Θ−−=

Θ+




≤

Θ+≤ ∑
−

=

)(
4

)(
8
32

)(2)(

2

1

2/

ncncn

nn
n
c

nck
n

nTE
n

nk

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.17

Substitution method

[]
 

cn

ncncn

nn
n
c

nck
n

nTE
n

nk

≤






 Θ−−=

Θ+




≤

Θ+≤ ∑
−

=

)(
4

)(
8
32

)(2)(

2

1

2/

if c is chosen large enough so
that cn/4 dominates the Θ(n).

,

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.18

Summary of randomized
order-statistic selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: Θ(n2).

Q. Is there an algorithm that runs in linear
time in the worst case?

IDEA: Generate a good pivot recursively.

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.19

Worst-case linear-time order
statistics

if i = k then return x
elseif i < k

then recursively SELECT the i th
 smallest element in the lower part

else recursively SELECT the (i–k)th
 smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

 Same as
RAND-
SELECT

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the  n/5
group medians to be the pivot.

x

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least   n/5 /2 =  n/10 group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least   n/5 /2 =  n/10 group medians.
• Therefore, at least 3  n/10 elements are ≤ x.

(Assume all elements are distinct.)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis

lesser

greater

x

At least half the group medians are ≤ x, which
is at least   n/5 /2 =  n/10 group medians.
• Therefore, at least 3  n/10 elements are ≤ x.
• Similarly, at least 3  n/10 elements are ≥ x.

(Assume all elements are distinct.)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3  n/10 ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the i th
 smallest element in the lower part

else recursively SELECT the (i–k)th
 smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.29

Solving the recurrence
)(

4
3

5
1)(nnTnTnT Θ+





+





=

if c is chosen large enough to handle both the
Θ(n) and the initial conditions.

cn

ncncn

ncn

ncncnnT

≤






 Θ−−=

Θ+=

Θ++≤

)(
20
1

)(
20
19

)(
4
3

5
1)(

,

Substitution:
T(n) ≤ cn

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.30

Conclusions
• Since the work at each level of recursion

is a constant fraction (19/20) smaller, the
work per level is a geometric series
dominated by the linear work at the root.

• In practice, this algorithm runs slowly,
because the constant in front of n is large.

• The randomized algorithm is far more
practical.

Exercise: Why not divide into groups of 3?

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

Prof. Charles E. Leiserson

LECTURE 7
Hashing I
• Direct-access tables
• Resolving collisions by

chaining
• Choosing hash functions
• Open addressing

Introduction to Algorithms
6.046J/18.401J

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

Symbol-table problem

Symbol table S holding n records:

key[x]
record

x

Other fields
containing
satellite data

Operations on S:
• INSERT(S, x)
• DELETE(S, x)
• SEARCH(S, k)

How should the data structure S be organized?

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Direct-access table

IDEA: Suppose that the keys are drawn from
the set U ⊆ {0, 1, …, m–1}, and keys are
distinct. Set up an array T[0 . . m–1]:

T[k] = x if x ∈ K and key[x] = k,
NIL otherwise.

Then, operations take Θ(1) time.
Problem: The range of keys can be large:
• 64-bit numbers (which represent

18,446,744,073,709,551,616 different keys),
• character strings (even larger!).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

As each key is inserted, h maps it to a slot of T.

Hash functions
Solution: Use a hash function h to map the
universe U of all keys into
{0, 1, …, m–1}:

U

S
k1

k2 k3

k4

k5

0

m–1

h(k1)
h(k4)

h(k2)

h(k3)

When a record to be inserted maps to an already
occupied slot in T, a collision occurs.

T

 = h(k5)

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

Resolving collisions by
chaining

• Link records in the same slot into a list.

h(49) = h(86) = h(52) = i

T

i
49 86 52

Worst case:
• Every key

hashes to the
same slot.

• Access time =
Θ(n) if |S| = n

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

Average-case analysis of chaining

We make the assumption of simple uniform
hashing:
• Each key k ∈ S is equally likely to be hashed

to any slot of table T, independent of where
other keys are hashed.

Let n be the number of keys in the table, and
let m be the number of slots.
Define the load factor of T to be

α = n/m
 = average number of keys per slot.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

Search cost
The expected time for an unsuccessful
search for a record with a given key is
= Θ(1 + α).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

Search cost
The expected time for an unsuccessful
search for a record with a given key is
= Θ(1 + α).

apply hash function
and access slot

search
the list

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Search cost
The expected time for an unsuccessful
search for a record with a given key is
= Θ(1 + α).

apply hash function
and access slot

search
the list

Expected search time = Θ(1) if α = O(1),
or equivalently, if n = O(m).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

Search cost
The expected time for an unsuccessful
search for a record with a given key is
= Θ(1 + α).

apply hash function
and access slot

search
the list

Expected search time = Θ(1) if α = O(1),
or equivalently, if n = O(m).
A successful search has same asymptotic
bound, but a rigorous argument is a little
more complicated. (See textbook.)

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Choosing a hash function

The assumption of simple uniform hashing
is hard to guarantee, but several common
techniques tend to work well in practice as
long as their deficiencies can be avoided.

Desirata:
• A good hash function should distribute the

keys uniformly into the slots of the table.
• Regularity in the key distribution should

not affect this uniformity.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

h(k)

Division method
Assume all keys are integers, and define

h(k) = k mod m.

Extreme deficiency: If m = 2r, then the hash
doesn’t even depend on all the bits of k:
• If k = 10110001110110102 and r = 6, then

h(k) = 0110102 .

Deficiency: Don’t pick an m that has a small
divisor d. A preponderance of keys that are
congruent modulo d can adversely affect
uniformity.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
in the computing environment.
Annoyance:
• Sometimes, making the table size a prime is

inconvenient.
But, this method is popular, although the next
method we’ll see is usually superior.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

Multiplication method

Assume that all keys are integers, m = 2r, and our
computer has w-bit words. Define

h(k) = (A·k mod 2w) rsh (w – r),
where rsh is the “bitwise right-shift” operator and
A is an odd integer in the range 2w–1 < A < 2w.
• Don’t pick A too close to 2w–1 or 2w.
• Multiplication modulo 2w is fast compared to

division.
• The rsh operator is fast.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

4

0

3 5
2 6

1 7

Modular wheel

Multiplication method
example

h(k) = (A·k mod 2w) rsh (w – r)
Suppose that m = 8 = 23 and that our computer
has w = 7-bit words:

1 0 1 1 0 0 1
× 1 1 0 1 0 1 1

1 0 0 1 0 1 0 0 1 1 0 0 1 1

= A
= k

h(k) A .
2A

.

3A .

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

Resolving collisions by open
addressing

No storage is used outside of the hash table itself.
• Insertion systematically probes the table until an

empty slot is found.
• The hash function depends on both the key and

probe number:
h : U × {0, 1, …, m–1} → {0, 1, …, m–1}.

• The probe sequence 〈h(k,0), h(k,1), …, h(k,m–1)〉
should be a permutation of {0, 1, …, m–1}.

• The table may fill up, and deletion is difficult (but
not impossible).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

204 204

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

481

T
0

m–1

collision

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1) collision 586

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1)

insertion 496

2. Probe h(496,2)

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

Example of open addressing

Search for key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1)

496

2. Probe h(496,2)

Search uses the same probe
sequence, terminating suc-
cessfully if it finds the key
and unsuccessfully if it encounters an empty slot.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

Probing strategies

Linear probing:
Given an ordinary hash function h′(k), linear
probing uses the hash function

h(k,i) = (h′(k) + i) mod m.
This method, though simple, suffers from primary
clustering, where long runs of occupied slots build
up, increasing the average search time. Moreover,
the long runs of occupied slots tend to get longer.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

Probing strategies

Double hashing
Given two ordinary hash functions h1(k) and h2(k),
double hashing uses the hash function

h(k,i) = (h1(k) + i⋅ h2(k)) mod m.
This method generally produces excellent results,
but h2(k) must be relatively prime to m. One way
is to make m a power of 2 and design h2(k) to
produce only odd numbers.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

Analysis of open addressing

We make the assumption of uniform hashing:
• Each key is equally likely to have any one of

the m! permutations as its probe sequence.

Theorem. Given an open-addressed hash
table with load factor α = n/m < 1, the
expected number of probes in an unsuccessful
search is at most 1/(1–α).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

Proof of the theorem
Proof.
• At least one probe is always necessary.
• With probability n/m, the first probe hits an

occupied slot, and a second probe is necessary.
• With probability (n–1)/(m–1), the second probe

hits an occupied slot, and a third probe is
necessary.

• With probability (n–2)/(m–2), the third probe
hits an occupied slot, etc.

Observe that α=<
−
−

m
n

im
in for i = 1, 2, …, n.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

Proof (continued)

Therefore, the expected number of probes is














 





 







+−
+

−
−+

−
−++ 

1
11

2
21

1
111

nmm
n

m
n

m
n

()()()()

α

α

ααα
αααα

−
=

=

++++≤
++++≤

∑
∞

=

1
1

1
1111

0

32

i

i





.

The textbook has a
more rigorous proof
and an analysis of
successful searches.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

Implications of the theorem

• If α is constant, then accessing an open-
addressed hash table takes constant time.

• If the table is half full, then the expected
number of probes is 1/(1–0.5) = 2.

• If the table is 90% full, then the expected
number of probes is 1/(1–0.9) = 10.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

Prof. Charles E. Leiserson

LECTURE 8
Hashing II
• Universal hashing
• Universality theorem
• Constructing a set of

universal hash functions
• Perfect hashing

Introduction to Algorithms
6.046J/18.401J

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

A weakness of hashing
Problem: For any hash function h, a set
of keys exists that can cause the average
access time of a hash table to skyrocket.

IDEA: Choose the hash function at random,
independently of the keys.
• Even if an adversary can see your code,

he or she cannot find a bad set of keys,
since he or she doesn’t know exactly
which hash function will be chosen.

• An adversary can pick all keys from
{k ∈ U : h(k) = i} for some slot i.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Universal hashing
Definition. Let U be a universe of keys, and
let H be a finite collection of hash functions,
each mapping U to {0, 1, …, m–1}. We say
H is universal if for all x, y ∈ U, where x ≠ y,
we have |{h ∈ H : h(x) = h(y)}| ≤ |H | / m.

That is, the chance
of a collision
between x and y is
≤ 1/m if we choose h
randomly from H.

H {h : h(x) = h(y)}

|H |
m

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

Universality is good

Theorem. Let h be a hash function chosen
(uniformly) at random from a universal set H
of hash functions. Suppose h is used to hash
n arbitrary keys into the m slots of a table T.
Then, for a given key x, we have

E[#collisions with x] < n/m.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

Proof of theorem

Proof. Let Cx be the random variable denoting
the total number of collisions of keys in T with
x, and let

cxy = 1 if h(x) = h(y),
0 otherwise.

Note: E[cxy] = 1/m and ∑
−∈

=
}{xTy
xyx cC .

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

Proof (continued)












= ∑

−∈ }{
][

xTy
xyx cECE • Take expectation

of both sides.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

Proof (continued)

∑

∑

−∈

−∈

=












=

}{

}{

][

][

xTy
xy

xTy
xyx

cE

cECE

• Linearity of
expectation.

• Take expectation
of both sides.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

Proof (continued)

∑

∑

∑

−∈

−∈

−∈

=

=












=

}{

}{

}{

/1

][

][

xTy

xTy
xy

xTy
xyx

m

cE

cECE

• E[cxy] = 1/m.

• Linearity of
expectation.

• Take expectation
of both sides.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Proof (continued)

m
n

m

cE

cECE

xTy

xTy
xy

xTy
xyx

1

/1

][

][

}{

}{

}{

−=

=

=












=

∑

∑

∑

−∈

−∈

−∈
• Take expectation

of both sides.

• Linearity of
expectation.

• E[cxy] = 1/m.

• Algebra. .

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

REMEMBER
THIS!

Constructing a set of
universal hash functions

Let m be prime. Decompose key k into r + 1
digits, each with value in the set {0, 1, …, m–1}.
That is, let k = 〈k0, k1, …, kr〉, where 0 ≤ ki < m.
Randomized strategy:
Pick a = 〈a0, a1, …, ar〉 where each ai is chosen
randomly from {0, 1, …, m–1}.

mkakh
r

i
iia mod)(

0
∑
=

=Define .

How big is H = {ha}? |H | = mr + 1.

Dot product,
modulo m

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Universality of dot-product
hash functions

Theorem. The set H = {ha} is universal.

Proof. Suppose that x = 〈x0, x1, …, xr〉 and y =
〈y0, y1, …, yr〉 be distinct keys. Thus, they differ
in at least one digit position, wlog position 0.
For how many ha ∈ H do x and y collide?

)(mod
00

myaxa
r

i
ii

r

i
ii ∑∑

==
≡ .

We must have ha(x) = ha(y), which implies that

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

Proof (continued)
Equivalently, we have

)(mod0)(
0

myxa
r

i
iii ≡−∑

=

or
)(mod0)()(

1
000 myxayxa

r

i
iii ≡−+− ∑

=

)(mod)()(
1

000 myxayxa
r

i
iii∑

=
−−≡−

which implies that

,

.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Fact from number theory

Theorem. Let m be prime. For any z ∈ Zm
such that z ≠ 0, there exists a unique z–1 ∈ Zm
such that

z · z–1 ≡ 1 (mod m).

Example: m = 7.

z

z–1

1 2 3 4 5 6

1 4 5 2 3 6

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

Back to the proof

)(mod)()(
1

000 myxayxa
r

i
iii∑

=
−−≡−

We have

and since x0 ≠ y0 , an inverse (x0 – y0)–1 must exist,
which implies that

,

)(mod)()(1
00

1
0 myxyxaa

r

i
iii

−

=
−⋅








−−≡ ∑ .

Thus, for any choices of a1, a2, …, ar, exactly
one choice of a0 causes x and y to collide.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

Proof (completed)

Q. How many ha’s cause x and y to collide?

A. There are m choices for each of a1, a2, …, ar ,
but once these are chosen, exactly one choice
for a0 causes x and y to collide, namely

myxyxaa
r

i
iii mod)()(1

00
1

0 







−⋅








−−= −

=
∑ .

 Thus, the number of ha’s that cause x and y
to collide is mr · 1 = mr = |H |/m.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

Perfect hashing
Given a set of n keys, construct a static hash
table of size m = O(n) such that SEARCH takes
Θ(1) time in the worst case.

IDEA: Two-
level scheme
with universal
hashing at
both levels.
No collisions
at level 2! 40 37 22

0
1
2
3
4
5
6

26

m a 0 1 2 3 4 5 6 7 8

14 27

S4

S6

S1

4 31

1 00

9 86

T

h31(14) = h31(27) = 1

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

Collisions at level 2
Theorem. Let H be a class of universal hash
functions for a table of size m = n2. Then, if we
use a random h ∈ H to hash n keys into the table,
the expected number of collisions is at most 1/2.
Proof. By the definition of universality, the
probability that 2 given keys in the table collide
under h is 1/m = 1/n2. Since there are pairs
of keys that can possibly collide, the expected
number of collisions is

()2
n

2
11

2
)1(1

2 22 <⋅−=⋅







n

nn
n

n .

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

No collisions at level 2
Corollary. The probability of no collisions
is at least 1/2.

Thus, just by testing random hash functions
in H , we’ll quickly find one that works.

Proof. Markov’s inequality says that for any
nonnegative random variable X, we have

Pr{X ≥ t} ≤ E[X]/t.
Applying this inequality with t = 1, we find
that the probability of 1 or more collisions is
at most 1/2.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Analysis of storage
For the level-1 hash table T, choose m = n, and
let ni be random variable for the number of keys
that hash to slot i in T. By using ni

2 slots for the
level-2 hash table Si, the expected total storage
required for the two-level scheme is therefore

())(
1

0

2 nnE
m

i
i Θ=








Θ∑

−

=
,

since the analysis is identical to the analysis from
recitation of the expected running time of bucket
sort. (For a probability bound, apply Markov.)

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

Prof. Erik Demaine

LECTURE 9
Randomly built binary

search trees
• Expected node depth
• Analyzing height
 Convexity lemma
 Jensen’s inequality
 Exponential height

• Post mortem

Introduction to Algorithms
6.046J/18.401J

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

3

Binary-search-tree sort
T ← ∅ ⊳ Create an empty BST
for i = 1 to n

do TREE-INSERT(T, A[i])
Perform an inorder tree walk of T.

Example:
A = [3 1 8 2 6 7 5] 8 1

2 6
5 7

Tree-walk time = O(n),
but how long does it
take to build the BST?

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Analysis of BST sort
BST sort performs the same comparisons as
quicksort, but in a different order!

3 1 8 2 6 7 5

1 2 8 6 7 5

2 6 7 5

7 5

The expected time to build the tree is asymptot-
ically the same as the running time of quicksort.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

Node depth
The depth of a node = the number of comparisons
made during TREE-INSERT. Assuming all input
permutations are equally likely, we have

()

)(lg

)lg(1

 nodeinsert toscomparison#1
1

nO

nnO
n

iE
n

n

i

=

=









= ∑

=

Average node depth

.

(quicksort analysis)

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

Expected tree height
But, average node depth of a randomly built
BST = O(lg n) does not necessarily mean that its
expected height is also O(lg n) (although it is).

Example.

≤ lg n
nh =

)(lg
2

lg1

nO

nnnn
n

=






 ⋅+⋅≤Ave. depth

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

Height of a randomly built
binary search tree

• Prove Jensen’s inequality, which says that
f(E[X]) ≤ E[f(X)] for any convex function f and
random variable X.

• Analyze the exponential height of a randomly
built BST on n nodes, which is the random
variable Yn = 2Xn, where Xn is the random
variable denoting the height of the BST.

• Prove that 2E[Xn] ≤ E[2Xn] = E[Yn] = O(n3),
and hence that E[Xn] = O(lg n).

Outline of the analysis:

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

Convex functions
A function f : R → R is convex if for all
α,β ≥ 0 such that α + β = 1, we have

f(αx + βy) ≤ α f(x) + β f(y)
for all x,y ∈ R.

αx + βy

αf(x) + βf(y)

f(αx + βy)

x y

f(x)

f(y)
f

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

Convexity lemma

Lemma. Let f : R → R be a convex function,
and let α1, α2 , …, αn be nonnegative real
numbers such that ∑k αk = 1. Then, for any
real numbers x1, x2, …, xn, we have

)(
11

∑∑
==

≤






 n

k
kk

n

k
kk xfxf αα

Proof. By induction on n. For n = 1, we have
α1 = 1, and hence f(α1x1) ≤ α1f(x1) trivially.

.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Proof (continued)









−

−+=






 ∑∑
−

==

1

11 1
)1(
n

k
k

n

k
nnn

n

k
kk xxfxf

α
αααα

Inductive step:

Algebra.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

Proof (continued)









−

−+≤









−

−+=








∑

∑∑
−

=

−

==
1

1

1

11

1
)1()(

1
)1(

n

k
k

n

k
nnn

n

k
k

n

k
nnn

n

k
kk

xfxf

xxfxf

α
ααα

α
αααα

Inductive step:

Convexity.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Proof (continued)

∑

∑

∑∑

−

=

−

=

−

==

−
−+≤









−

−+≤









−

−+=








1

1

1

1

1

11

)(
1

)1()(

1
)1()(

1
)1(

n

k
k

n

k
nnn

n

k
k

n

k
nnn

n

k
k

n

k
nnn

n

k
kk

xfxf

xfxf

xxfxf

α
ααα

α
ααα

α
αααα

Inductive step:

Induction.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

Proof (continued)

)(

)(
1

)1()(

1
)1()(

1
)1(

1

1

1

1

1

1

11

∑

∑

∑

∑∑

=

−

=

−

=

−

==

=

−
−+≤









−

−+≤









−

−+=








n

k
kk

n

k
k

n

k
nnn

n

k
k

n

k
nnn

n

k
k

n

k
nnn

n

k
kk

xf

xfxf

xfxf

xxfxf

α

α
ααα

α
ααα

α
αααα

Inductive step:

Algebra. .

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Convexity lemma: infinite case

Lemma. Let f : R → R be a convex function,
and let α1, α2 , …, be nonnegative real numbers
such that ∑k αk = 1. Then, for any real
numbers x1, x2, …, we have

)(
11

∑∑
∞

=

∞

=

≤








k
kk

k
kk xfxf αα

assuming that these summations exist.

,

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

Convexity lemma: infinite case

Proof. By the convexity lemma, for any n ≥ 1,

)(
1

1
1

1

∑
∑

∑
∑ =

=
=

=

≤











 n

k
kn

i i

k
n

k
kn

i i

k xfxf
α

α
α

α .

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

Convexity lemma: infinite case

Proof. By the convexity lemma, for any n ≥ 1,

)(
1

1
1

1

∑
∑

∑
∑ =

=
=

=

≤











 n

k
kn

i i

k
n

k
kn

i i

k xfxf
α

α
α

α .

Taking the limit of both sides
(and because the inequality is not strict):

)(1lim1lim
1

1
1

1

∑
∑

∑
∑ =

=
∞→

=
=

∞→
≤












 n

k
kkn

i i
n

n

k
kkn

i i
n

xfxf α
α

α
α

→ 1 ∑
∞

=

→
1k

kk xα → 1 ∑
∞

=

→
1

)(
k

kk xfα

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

Jensen’s inequality
Lemma. Let f be a convex function, and let X
be a random variable. Then, f (E[X]) ≤ E[f (X)].









=⋅= ∑

∞

−∞=k
kXkfXEf }Pr{])[(

Proof.

Definition of expectation.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

Jensen’s inequality

∑

∑
∞

−∞=

∞

−∞=

=⋅≤









=⋅=

k

k

kXkf

kXkfXEf

}Pr{)(

}Pr{])[(
Proof.

Convexity lemma (infinite case).

Lemma. Let f be a convex function, and let X
be a random variable. Then, f (E[X]) ≤ E[f (X)].

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

Jensen’s inequality

)]([

}Pr{)(

}Pr{])[(

XfE

kXkf

kXkfXEf

k

k

=

=⋅≤









=⋅=

∑

∑
∞

−∞=

∞

−∞=

.

Proof.

Tricky step, but true—think about it.

Lemma. Let f be a convex function, and let X
be a random variable. Then, f (E[X]) ≤ E[f (X)].

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Analysis of BST height
Let Xn be the random variable denoting
the height of a randomly built binary
search tree on n nodes, and let Yn = 2Xn

be its exponential height.
If the root of the tree has rank k, then

Xn = 1 + max{Xk–1, Xn–k} ,
since each of the left and right subtrees
of the root are randomly built. Hence,
we have

Yn = 2· max{Yk–1, Yn–k} .

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

Analysis (continued)

Define the indicator random variable Znk as

Znk = 1 if the root has rank k,
0 otherwise.

Thus, Pr{Znk = 1} = E[Znk] = 1/n, and

()∑
=

−−⋅=
n

k
knknkn YYZY

1
1 },max{2 .

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

Exponential height recurrence
[] ()








⋅= ∑

=
−−

n

k
knknkn YYZEYE

1
1 },max{2

Take expectation of both sides.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

Exponential height recurrence
[] ()

()[]∑

∑

=
−−

=
−−

⋅=









⋅=

n

k
knknk

n

k
knknkn

YYZE

YYZEYE

1
1

1
1

},max{2

},max{2

Linearity of expectation.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

Exponential height recurrence
[] ()

()[]

∑

∑

∑

=
−−

=
−−

=
−−

⋅=

⋅=









⋅=

n

k
knknk

n

k
knknk

n

k
knknkn

YYEZE

YYZE

YYZEYE

1
1

1
1

1
1

}],[max{][2

},max{2

},max{2

Independence of the rank of the root
from the ranks of subtree roots.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

Exponential height recurrence
[] ()

()[]

∑

∑

∑

∑

=
−−

=
−−

=
−−

=
−−

+≤

⋅=

⋅=









⋅=

n

k
knk

n

k
knknk

n

k
knknk

n

k
knknkn

YYE
n

YYEZE

YYZE

YYZEYE

1
1

1
1

1
1

1
1

][2

}],[max{][2

},max{2

},max{2

The max of two nonnegative numbers
is at most their sum, and E[Znk] = 1/n.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

Exponential height recurrence
[] ()

()[]

∑

∑

∑

∑

∑

−

=

=
−−

=
−−

=
−−

=
−−

=

+≤

⋅=

⋅=









⋅=

1

0

1
1

1
1

1
1

1
1

][4

][2

}],[max{][2

},max{2

},max{2

n

k
k

n

k
knk

n

k
knknk

n

k
knknk

n

k
knknkn

YE
n

YYE
n

YYEZE

YYZE

YYZEYE

Each term appears
twice, and reindex.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

Solving the recurrence
Use substitution to
show that E[Yn] ≤ cn3
for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

[] ∑
−

=
=

1

0
][4

n

k
kn YE

n
YE

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.27

Solving the recurrence
Use substitution to
show that E[Yn] ≤ cn3
for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

[]

∑

∑
−

=

−

=

≤

=

1

0

3

1

0

4

][4

n

k

n

k
kn

ck
n

YE
n

YE

Substitution.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.28

Solving the recurrence
Use substitution to
show that E[Yn] ≤ cn3
for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

[]

∫

∑

∑

≤

≤

=

−

=

−

=

n

n

k

n

k
kn

dxx
n
c

ck
n

YE
n

YE

0
3

1

0

3

1

0

4

4

][4

Integral method.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.29

Solving the recurrence
Use substitution to
show that E[Yn] ≤ cn3
for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

[]






=

≤

≤

=

∫

∑

∑
−

=

−

=

4
4

4

4

][4

4
0

3

1

0

3

1

0

n
n
c

dxx
n
c

ck
n

YE
n

YE

n

n

k

n

k
kn

Solve the integral.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.30

Solving the recurrence
Use substitution to
show that E[Yn] ≤ cn3
for some positive
constant c, which we
can pick sufficiently
large to handle the
initial conditions.

[]

3

4
0

3

1

0

3

1

0

4
4

4

4

][4

cn

n
n
c

dxx
n
c

ck
n

YE
n

YE

n

n

k

n

k
kn

=






=

≤

≤

=

∫

∑

∑
−

=

−

=

. Algebra.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.31

The grand finale

2E[Xn] ≤ E[2Xn]
Putting it all together, we have

Jensen’s inequality, since
f(x) = 2x is convex.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.32

The grand finale

2E[Xn] ≤ E[2Xn]
 = E[Yn]

Putting it all together, we have

Definition.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.33

The grand finale

2E[Xn] ≤ E[2Xn]
 = E[Yn]
 ≤ cn3 .

Putting it all together, we have

What we just showed.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.34

The grand finale

2E[Xn] ≤ E[2Xn]
 = E[Yn]
 ≤ cn3 .

Putting it all together, we have

Taking the lg of both sides yields
 E[Xn] ≤ 3 lg n +O(1) .

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.35

Post mortem

Q. Does the analysis have to be this hard?

Q. Why bother with analyzing exponential
height?

Q. Why not just develop the recurrence on
Xn = 1 + max{Xk–1, Xn–k}

 directly?

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.36

Post mortem (continued)
A. The inequality

max{a, b} ≤ a + b .
 provides a poor upper bound, since the RHS

approaches the LHS slowly as |a – b| increases.
The bound

max{2a, 2b} ≤ 2a + 2b
 allows the RHS to approach the LHS far more

quickly as |a – b| increases. By using the
convexity of f(x) = 2x via Jensen’s inequality,
we can manipulate the sum of exponentials,
resulting in a tight analysis.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.37

Thought exercises

• See what happens when you try to do the
analysis on Xn directly.

• Try to understand better why the proof
uses an exponential. Will a quadratic do?

• See if you can find a simpler argument.
(This argument is a little simpler than the
one in the book—I hope it’s correct!)

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

Prof. Erik Demaine

LECTURE 10
Balanced Search Trees
• Red-black trees
• Height of a red-black tree
• Rotations
• Insertion

Introduction to Algorithms
6.046J/18.401J

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

Balanced search trees
Balanced search tree: A search-tree data
structure for which a height of O(lg n) is
guaranteed when implementing a dynamic
set of n items.

Examples:

• AVL trees
• 2-3 trees
• 2-3-4 trees
• B-trees
• Red-black trees

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Red-black trees

This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a

descendant leaf have the same number
of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

Example of a red-black tree

h = 4

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

Example of a red-black tree

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

Example of a red-black tree

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2. The root and leaves (NIL’s) are black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

Example of a red-black tree

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

3. If a node is red, then its parent is black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

Example of a red-black tree

4. All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).

8 11

10

18

26

22

3

7

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

Proof. (The book uses induction. Read carefully.)

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h′ of leaves.

INTUITION:
• Merge red nodes

into their black
parents.

h′

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

Proof (continued)

h′

h

• We have
 h′ ≥ h/2, since
 at most half
 the leaves on any path

are red.
• The number of leaves

in each tree is n + 1
 ⇒ n + 1 ≥ 2h'

 ⇒ lg(n + 1) ≥ h' ≥ h/2
 ⇒ h ≤ 2 lg(n + 1).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(lg n) time on a red-black
tree with n nodes.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:
• the operation itself,
• color changes,
• restructuring the links of the tree via

“rotations”.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

Rotations

A

B

α β
γ

RIGHT-ROTATE(B)

B

A

γ β
α

LEFT-ROTATE(A)

Rotations maintain the inorder ordering of keys:
• a ∈ α, b ∈ β, c ∈ γ ⇒ a ≤ A ≤ b ≤ B ≤ c.
A rotation can be performed in O(1) time.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Insertion into a red-black tree

8

10

18

26

22

7
Example:

3

11

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

Insertion into a red-black tree

8 11

10

18

26

22

7

15

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.

3

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

Insertion into a red-black tree

8 11

10

18

26

22

7

15

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

3

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

Insertion into a red-black tree

8

11

10

18

26

22

7

15

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

3

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

8 11

10

18

26

22

7

15

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

3

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

Pseudocode
RB-INSERT(T, x)

TREE-INSERT(T, x)
color[x] ← RED ⊳ only RB property 3 can be violated
while x ≠ root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
 then 〈Case 1〉
 else if x = right[p[x]]
 then 〈Case 2〉 ⊳ Case 2 falls into Case 3
 〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
color[root[T]] ← BLACK

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

Case 1

B

C

D A

x
y

(Or, children of
A are swapped.)

B

C

D A

new x

Push C’s black onto
A and D, and recurse,
since C’s parent may
be red.

Recolor

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.27

Case 2

B

C

A

x

y
LEFT-ROTATE(A)

A

C

B

x

y

Transform to Case 3.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.28

Case 3

A

C

B

x

y
RIGHT-ROTATE(C)

A

B

C

Done! No more
violations of RB
property 3 are
possible.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.29

Analysis

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.
RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.1

Prof. Charles E. Leiserson

LECTURE 11
Augmenting Data

Structures
• Dynamic order statistics
• Methodology
• Interval trees

Introduction to Algorithms
6.046J/18.401J

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.2

Dynamic order statistics

OS-SELECT(i, S): returns the i th smallest element
in the dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

key
size Notation for nodes:

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.3

Example of an OS-tree

M
9

C
5

A
1

F
3

N
1

Q
1

P
3

H
1

D
1

size[x] = size[left[x]] + size[right[x]] + 1

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.4

Selection

OS-SELECT(x, i) ⊳ i th smallest element in the
 subtree rooted at x

k ← size[left[x]] + 1 ⊳ k = rank(x)
if i = k then return x
if i < k

then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i – k)

Implementation trick: Use a sentinel
(dummy record) for NIL such that size[NIL] = 0.

(OS-RANK is in the textbook.)

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.5

Example

M
9

C
5

A
1

F
3

N
1

Q
1

P
3

H
1

D
1

OS-SELECT(root, 5)

i = 5
k = 6

M
9

C
5

i = 5
k = 2

i = 3
k = 2

F
3

i = 1
k = 1

H
1
H
1

Running time = O(h) = O(lg n) for red-black trees.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.6

Data structure maintenance
Q. Why not keep the ranks themselves

in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when
inserting or deleting.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.7

Example of insertion

M
9

C
5

A
1

F
3

N
1

Q
1

P
3

H
1

D
1

INSERT(“K”)
M
10

C
6

F
4

H
2

K
1

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.8

Handling rebalancing
Don’t forget that RB-INSERT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.

Example:

C
11

E
16

7 3

4

C
16

E
8 7

3 4

∴RB-INSERT and RB-DELETE still run in O(lg n) time.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.9

Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-

black trees).
2. Determine additional information to be

stored in the data structure (subtree sizes).
3. Verify that this information can be

maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.10

Interval trees
Goal: To maintain a dynamic set of intervals,
such as time intervals.

low[i] = 7 10 = high[i]

i = [7, 10]

5
4 15 22

17 11
8 18

19
23

Query: For a given query interval i, find an
interval in the set that overlaps i.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.11

Following the methodology

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

int
m

2. Determine additional information to be
stored in the data structure.
• Store in each node x the largest value m[x]

in the subtree rooted at x, as well as the
interval int[x] corresponding to the key.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.12

17,19
23

Example interval tree

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

m[x] = max
high[int[x]]
m[left[x]]
m[right[x]]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.13

Modifying operations
3. Verify that this information can be maintained

for modifying operations.
• INSERT: Fix m’s on the way down.

6,20
30

11,15
19

19

14

30

11,15
30

6,20
30

30

14

19

• Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(lg n); DELETE similar.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.14

New operations
4. Develop new dynamic-set operations that use

the information.
INTERVAL-SEARCH(i)

x ← root
while x ≠ NIL and (low[i] > high[int[x]]
 or low[int[x]] > high[i])
 do ⊳ i and int[x] don’t overlap
 if left[x] ≠ NIL and low[i] ≤ m[left[x]]

then x ← left[x]
else x ← right[x]

return x

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.15

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

x ← root
[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ x ← left[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.16

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

[14,16] and [5,11] don’t overlap
14 > 8 ⇒ x ← right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.17

Example 1: INTERVAL-SEARCH([14,16])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

[14,16] and [15,18] overlap
return [15,18]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.18

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

x ← root
[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ x ← left[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ x ← right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.20

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ x ← right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.21

Example 2: INTERVAL-SEARCH([12,14])

17,19
23

5,11
18

4,8
8

15,18
18

7,10
10

22,23
23

x

x = NIL ⇒ no interval that
overlaps [12,14] exists

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.22

Analysis
Time = O(h) = O(lg n), since INTERVAL-SEARCH
does constant work at each level as it follows a
simple path down the tree.
List all overlapping intervals:
• Search, list, delete, repeat.
• Insert them all again at the end.

This is an output-sensitive bound.
Best algorithm to date: O(k + lg n).

Time = O(k lg n), where k is the total number of
overlapping intervals.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.23

Correctness
Theorem. Let L be the set of intervals in the
left subtree of node x, and let R be the set of
intervals in x’s right subtree.
• If the search goes right, then

 { i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, then
 {i ′ ∈ L : i ′ overlaps i } = ∅

⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.
In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24

Correctness proof
Proof. Suppose first that the search goes right.
• If left[x] = NIL, then we’re done, since L = ∅.
• Otherwise, the code dictates that we must have

low[i] > m[left[x]]. The value m[left[x]]
corresponds to the high endpoint of some
interval j ∈ L, and no other interval in L can
have a larger high endpoint than high[j].


high[j] = m[left[x]]

i
low(i)

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.

j

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.25

Proof (continued)
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] =

high[j] for some j ∈ L.
• Since j ∈ L, it does not overlap i, and hence

high[i] < low[j].
• But, the binary-search-tree property implies that

for all i ′ ∈ R, we have low[j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.


i j

i ′

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.1

Prof. Erik D. Demaine

LECTURE 12
Skip Lists
• Data structure
• Randomized insertion
• With-high-probability bound
• Analysis
• Coin flipping

Introduction to Algorithms
6.046J/18.401J

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.2

Skip lists

• Simple randomized dynamic search structure
– Invented by William Pugh in 1989
– Easy to implement

• Maintains a dynamic set of n elements in
O(lg n) time per operation in expectation and
with high probability
– Strong guarantee on tail of distribution of T(n)
– O(lg n) “almost always”

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.3

One linked list

Start from simplest data structure:
(sorted) linked list

• Searches take Θ(n) time in worst case
• How can we speed up searches?

14 23 34 42 50 59 66 72 79

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.4

Two linked lists

Suppose we had two sorted linked lists
(on subsets of the elements)

• Each element can appear in one or both lists
• How can we speed up searches?

14 23 34 42 50 59 66 72 79

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.5

Two linked lists as a subway

IDEA: Express and local subway lines
(à la New York City 7th Avenue Line)

• Express line connects a few of the stations
• Local line connects all stations
• Links between lines at common stations

14 23 34 42 50 59 66 72 79

14 34 42 72

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.6

Searching in two linked lists

SEARCH(x):
• Walk right in top linked list (L1)

until going right would go too far
• Walk down to bottom linked list (L2)
• Walk right in L2 until element found (or not)

14 23 34 42 50 59 66 72 79

14 34 42 72

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.7

Searching in two linked lists

EXAMPLE: SEARCH(59)

14 23 34 42 50 59 66 72 79

14 34 42 72 14 34 42

Too far:
59 < 72

42 50 59

72

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.8

Design of two linked lists
QUESTION: Which nodes should be in L1?
• In a subway, the “popular stations”
• Here we care about worst-case performance
• Best approach: Evenly space the nodes in L1
• But how many nodes should be in L1?

14 23 34 42 50 59 66 72 79

14 34 42 72 14 34 42

42 50 59

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.9

Analysis of two linked lists
ANALYSIS:
• Search cost is roughly
• Minimized (up to

constant factors) when terms are equal
•

14 23 34 42 50 59 66 72 79

14 34 42 72 14 34 42

42 50 59

1

2
1 L

L
L +

nLnLL =⇒== 12
2

1

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.10

Analysis of two linked lists
ANALYSIS:
• ,
• Search cost is roughly

14 23 34 42 50 59 66 72 79

14 42 66

n
n

nn
L
L

L 2
1

2
1 =+=+

nL =1 nL =2

n n n

n

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.11

More linked lists
What if we had more sorted linked lists?
• 2 sorted lists ⇒
• 3 sorted lists ⇒
• k sorted lists ⇒
• lg n sorted lists ⇒

14 23 34 42 50 59 66 72 79

14 42 66

n⋅2

n n n

n

33 n⋅
k nk ⋅

nnn n lg2lg lg =⋅

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.12

lg n linked lists
lg n sorted linked lists are like a binary tree

(in fact, level-linked B+-tree; see Problem Set 5)

14 23 34 42 50 59 66 72 79

14 34 66 50 79

14 50 79

14 79

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.13

Searching in lg n linked lists
EXAMPLE: SEARCH(72)

14 23 34 42 50 59 66 72 79

14 34 66 50 79

14 50 79

14 79 14 79

14 50 79

50 66 79

66 72

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.14

Skip lists
Ideal skip list is this lg n linked list structure
Skip list data structure maintains roughly this

structure subject to updates (insert/delete)

14 23 34 42 50 59 66 72 79

14 34 66 50 79

14 50 79

14 79

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.15

INSERT(x)

To insert an element x into a skip list:
• SEARCH(x) to see where x fits in bottom list
• Always insert into bottom list

INVARIANT: Bottom list contains all elements

• Insert into some of the lists above…

QUESTION: To which other lists should we add x?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.16

INSERT(x)
QUESTION: To which other lists should we add x?
IDEA: Flip a (fair) coin; if HEADS,

 promote x to next level up and flip again
• Probability of promotion to next level = 1/2
• On average:

– 1/2 of the elements promoted 0 levels
– 1/4 of the elements promoted 1 level
– 1/8 of the elements promoted 2 levels
– etc.

Approx.
balance

d?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.17

Example of skip list

EXERCISE: Try building a skip list from scratch
by repeated insertion using a real coin

Small change:
• Add special −∞

value to every list
⇒ can search with
the same algorithm −∞ 23 34 42 50

−∞ 34 50

−∞ 50

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.18

Skip lists

A skip list is the result of insertions (and
deletions) from an initially empty structure
(containing just −∞)

• INSERT(x) uses random coin flips to decide
promotion level

• DELETE(x) removes x from all lists containing it

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19

Skip lists

A skip list is the result of insertions (and
deletions) from an initially empty structure
(containing just −∞)

• INSERT(x) uses random coin flips to decide
promotion level

• DELETE(x) removes x from all lists containing it
How good are skip lists? (speed/balance)
• INTUITIVELY: Pretty good on average
• CLAIM: Really, really good, almost always

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.20

With-high-probability theorem
THEOREM: With high probability, every search

 in an n-element skip list costs O(lg n)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.21

With-high-probability theorem
THEOREM: With high probability, every search

 in a skip list costs O(lg n)
• INFORMALLY: Event E occurs with high

probability (w.h.p.) if, for any α ≥ 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 − O(1/nα)
– In fact, constant in O(lg n) depends on α

• FORMALLY: Parameterized event Eα occurs
with high probability if, for any α ≥ 1, there is
an appropriate choice of constants for which
Eα occurs with probability at least 1 − cα/nα

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.22

With-high-probability theorem
THEOREM: With high probability, every search

 in a skip list costs O(lg n)
• INFORMALLY: Event E occurs with high

probability (w.h.p.) if, for any α ≥ 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 − O(1/nα)

• IDEA: Can make error probability O(1/nα)
very small by setting α large, e.g., 100

• Almost certainly, bound remains true for entire
execution of polynomial-time algorithm

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.23

Boole’s inequality / union bound

Recall:

BOOLE’S INEQUALITY / UNION BOUND:
For any random events E1, E2, …, Ek ,
 Pr{E1 ∪ E2 ∪ … ∪ Ek}
 ≤ Pr{E1} + Pr{E2} + … + Pr{Ek}

Application to with-high-probability events:

If k = nO(1), and each Ei occurs with high
probability, then so does E1 ∩ E2 ∩ … ∩ Ek

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24

Analysis Warmup
LEMMA: With high probability,

n-element skip list has O(lg n) levels
PROOF:
• Error probability for having at most c lg n levels

 = Pr{more than c lg n levels}
 ≤ n ∙ Pr{element x promoted at least c lg n times}
 (by Boole’s Inequality)
 = n ∙ (1/2c lg n)
 = n ∙ (1/nc)
 = 1/nc − 1

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.25

Analysis Warmup
LEMMA: With high probability,

n-element skip list has O(lg n) levels
PROOF:
• Error probability for having at most c lg n levels

 ≤ 1/nc − 1

• This probability is polynomially small,
i.e., at most nα for α = c − 1.

• We can make α arbitrarily large by choosing the
constant c in the O(lg n) bound accordingly.

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.26

Proof of theorem
THEOREM: With high probability, every search

 in an n-element skip list costs O(lg n)
COOL IDEA: Analyze search backwards—leaf to root
• Search starts [ends] at leaf (node in bottom level)
• At each node visited:

– If node wasn’t promoted higher (got TAILS here),
then we go [came from] left

– If node was promoted higher (got HEADS here),
then we go [came from] up

• Search stops [starts] at the root (or −∞)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.27

Proof of theorem
THEOREM: With high probability, every search

 in an n-element skip list costs O(lg n)
COOL IDEA: Analyze search backwards—leaf to root
PROOF:
• Search makes “up” and “left” moves

until it reaches the root (or −∞)
• Number of “up” moves < number of levels

 ≤ c lg n w.h.p. (Lemma)
• ⇒ w.h.p., number of moves is at most the number

of times we need to flip a coin to get c lg n HEADs

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.28

Coin flipping analysis
CLAIM: Number of coin flips until c lg n HEADs

 = Θ(lg n) with high probability
PROOF:
Obviously Ω(lg n): at least c lg n
Prove O(lg n) “by example”:
• Say we make 10 c lg n flips
• When are there at least c lg n HEADs?
(Later generalize to arbitrary values of 10)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.29

Coin flipping analysis
CLAIM: Number of coin flips until c lg n HEADs

 = Θ(lg n) with high probability
PROOF:
• Pr{exactly c lg n HEADs} =

• Pr{at most c lg n HEADs} ≤

ncnc

nc
nc lg9lg

2
1

2
1

lg
lg10







⋅






⋅









orders HEADs TAILs
nc

nc
nc lg9

2
1

lg
lg10







⋅









overestimate
on orders

TAILs

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.30

Coin flipping analysis (cont’d)
• Recall bounds on :

• Pr{at most c lg n HEADs}

nc

nc
nc lg9

2
1

lg
lg10







⋅








≤









x
y xx

x
ye

x
y

x
y







≤








≤








ncnc

nc
nce

lg9lg

2
1

lg
lg10







⋅








≤

() ncnce lg9lg 210 −=
ncnce lg9lg)10lg(22 −⋅=

nce lg]9)10[lg(2 ⋅−=
αn/1= for [] ce ⋅−=)10lg(9α

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.31

Coin flipping analysis (cont’d)
• Pr{at most c lg n HEADs} ≤ 1/nα for α = [9−lg(10e)]c
• KEY PROPERTY: α → ∞ as 10 → ∞, for any c
• So set 10, i.e., constant in O(lg n) bound,

large enough to meet desired α

This completes the proof of the coin-flipping claim
and the proof of the theorem.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.1

Prof. Charles E. Leiserson

LECTURE 13
Amortized Analysis
• Dynamic tables
• Aggregate method
• Accounting method
• Potential method

Introduction to Algorithms
6.046J/18.401J

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.2

How large should a hash
table be?

Problem: What if we don’t know the proper size
in advance?

Goal: Make the table as small as possible, but
large enough so that it won’t overflow (or
otherwise become inefficient).

IDEA: Whenever the table overflows, “grow” it
by allocating (via malloc or new) a new, larger
table. Move all items from the old table into the
new one, and free the storage for the old table.

Solution: Dynamic tables.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.3

Example of a dynamic table

1. INSERT 1

2. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.4

1

Example of a dynamic table

1. INSERT
2. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.5

1
2

Example of a dynamic table

1. INSERT
2. INSERT

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.6

Example of a dynamic table

1. INSERT
2. INSERT

1
2

3. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.7

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.8

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.9

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT 4

3
2
1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.10

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.11

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.12

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.13

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

6. INSERT 6
5. INSERT 5

4
3
2
1

7 7. INSERT

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.14

Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion is
Θ(n). Therefore, the worst-case time for n
insertions is n · Θ(n) = Θ(n2).

WRONG! In fact, the worst-case cost for
n insertions is only Θ(n) ≪ Θ(n2).

Let’s see why.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.15

Tighter analysis

 i 1 2 3 4 5 6 7 8 9 10
 sizei 1 2 4 4 8 8 8 8 16 16
 ci 1 2 3 1 5 1 1 1 9 1

Let ci = the cost of the i th insertion

= i if i – 1 is an exact power of 2,
1 otherwise.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.16

Tighter analysis

Let ci = the cost of the i th insertion

= i if i – 1 is an exact power of 2,
1 otherwise.

 i 1 2 3 4 5 6 7 8 9 10
 sizei 1 2 4 4 8 8 8 8 16 16
 1 1 1 1 1 1 1 1 1 1
 1 2 4 8 ci

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.17

Tighter analysis (continued)

 

)(
3

2

)1lg(

0

1

n
n

n

c

n

j

j

n

i
i

Θ=
≤

+≤

=

∑

∑
−

=

=
Cost of n insertions

.

Thus, the average cost of each dynamic-table
operation is Θ(n)/n = Θ(1).

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.18

Amortized analysis
An amortized analysis is any strategy for
analyzing a sequence of operations to
show that the average cost per operation is
small, even though a single operation
within the sequence might be expensive.

Even though we’re taking averages, however,
probability is not involved!
• An amortized analysis guarantees the

average performance of each operation in
the worst case.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.19

Types of amortized analyses
Three common amortization arguments:
• the aggregate method,
• the accounting method,
• the potential method.
We’ve just seen an aggregate analysis.
The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.20

Accounting method
• Charge i th operation a fictitious amortized cost
ĉi, where $1 pays for 1 unit of work (i.e., time).

• This fee is consumed to perform the operation.
• Any amount not immediately consumed is stored

in the bank for use by subsequent operations.
• The bank balance must not go negative! We

must ensure that

∑∑
==

≤
n

i
i

n

i
i cc

11
ˆ

 for all n.
• Thus, the total amortized costs provide an upper

bound on the total true costs.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.21

$0 $0 $0 $0 $2 $2

Example:
$2 $2

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.22

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

$0 $0 $0 $0 $0 $0 $0 $0

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.23

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

$0 $0 $0 $0 $0 $0 $0 $0 $2 $2 $2

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.24

Accounting analysis
(continued)

Key invariant: Bank balance never drops below 0.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

 i 1 2 3 4 5 6 7 8 9 10
 sizei 1 2 4 4 8 8 8 8 16 16
 ci 1 2 3 1 5 1 1 1 9 1
 ĉi 2 3 3 3 3 3 3 3 3 3
 banki 1 2 2 4 2 4 6 8 2 4

*

*Okay, so I lied. The first operation costs only $2, not $3.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.25

Potential method
IDEA: View the bank account as the potential
energy (à la physics) of the dynamic set.
Framework:
• Start with an initial data structure D0.
• Operation i transforms Di–1 to Di.
• The cost of operation i is ci.
• Define a potential function Φ : {Di} → R,
 such that Φ(D0) = 0 and Φ(Di) ≥ 0 for all i.
• The amortized cost ĉi with respect to Φ is

defined to be ĉi = ci + Φ(Di) – Φ(Di–1).

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.26

Understanding potentials
ĉi = ci + Φ(Di) – Φ(Di–1)

potential difference ∆Φi

• If ∆Φi > 0, then ĉi > ci. Operation i stores
work in the data structure for later use.

• If ∆Φi < 0, then ĉi < ci. The data structure
delivers up stored work to help pay for
operation i.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.27

The amortized costs bound
the true costs

The total amortized cost of n operations is

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

Summing both sides.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.28

The amortized costs bound
the true costs

The total amortized cost of n operations is

()

)()(

)()(ˆ

0
1

1
1

1

DDc

DDcc

n

n

i
i

n

i
iii

n

i
i

Φ−Φ+=

Φ−Φ+=

∑

∑∑

=

=
−

=

The series telescopes.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.29

The amortized costs bound
the true costs

The total amortized cost of n operations is

()

∑

∑

∑∑

=

=

=
−

=

≥

Φ−Φ+=

Φ−Φ+=

n

i
i

n

n

i
i

n

i
iii

n

i
i

c

DDc

DDcc

1

0
1

1
1

1

)()(

)()(ˆ

since Φ(Dn) ≥ 0 and
 Φ(D0) = 0.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.30

Potential analysis of table
doubling

Define the potential of the table after the ith
insertion by Φ(Di) = 2i – 2lg i. (Assume that
2lg 0 = 0.)
Note:
• Φ(D0) = 0,
• Φ(Di) ≥ 0 for all i.
Example:

• • • • • • Φ = 2·6 – 23 = 4

$0 $0 $0 $0 $2 $2 accounting method) (

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.31

Calculation of amortized costs

The amortized cost of the i th insertion is
ĉi = ci + Φ(Di) – Φ(Di–1)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.32

Calculation of amortized costs

The amortized cost of the i th insertion is
ĉi = ci + Φ(Di) – Φ(Di–1)

i if i – 1 is an exact power of 2,
1 otherwise; =

+ (2i – 2lg i) – (2(i –1) – 2lg (i–1))

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.33

Calculation of amortized costs

The amortized cost of the i th insertion is
ĉi = ci + Φ(Di) – Φ(Di–1)

i if i – 1 is an exact power of 2,
1 otherwise; =

+ (2i – 2lg i) – (2(i –1) – 2lg (i–1))

+ 2 – 2lg i + 2lg (i–1) .

i if i – 1 is an exact power of 2,
1 otherwise; =

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.34

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.35

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.36

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.37

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.38

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

Case 2: i – 1 is not an exact power of 2.
ĉi = 1 + 2 – 2lg i + 2lg (i–1)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.39

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

Case 2: i – 1 is not an exact power of 2.
ĉi = 1 + 2 – 2lg i + 2lg (i–1)
 = 3 (since 2lg i = 2lg (i–1))

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.40

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

Case 2: i – 1 is not an exact power of 2.
ĉi = 1 + 2 – 2lg i + 2lg (i–1)
 = 3

Therefore, n insertions cost Θ(n) in the worst case.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.41

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

Case 2: i – 1 is not an exact power of 2.
ĉi = 1 + 2 – 2lg i + 2lg (i–1)
 = 3

Therefore, n insertions cost Θ(n) in the worst case.
Exercise: Fix the bug in this analysis to show that
the amortized cost of the first insertion is only 2.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.42

Conclusions
• Amortized costs can provide a clean abstraction

of data-structure performance.
• Any of the analysis methods can be used when

an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest or most precise.

• Different schemes may work for assigning
amortized costs in the accounting method, or
potentials in the potential method, sometimes
yielding radically different bounds.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.1

Prof. Charles E. Leiserson

LECTURE 14
Competitive Analysis
• Self-organizing lists
• Move-to-front heuristic
• Competitive analysis of

MTF

Introduction to Algorithms
6.046J/18.401J

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.2

Self-organizing lists
List L of n elements
•The operation ACCESS(x) costs rankL(x) =
distance of x from the head of L.

•L can be reordered by transposing adjacent
elements at a cost of 1.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.3

Self-organizing lists
List L of n elements
•The operation ACCESS(x) costs rankL(x) =
distance of x from the head of L.

•L can be reordered by transposing adjacent
elements at a cost of 1.

12 3 50 14 17 4 L

Example:

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.4

Self-organizing lists
List L of n elements
•The operation ACCESS(x) costs rankL(x) =
distance of x from the head of L.

•L can be reordered by transposing adjacent
elements at a cost of 1.

12 3 50 14 17 4 L

Accessing the element with key 14 costs 4.

Example:

12 3 50 14

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.5

Self-organizing lists
List L of n elements
•The operation ACCESS(x) costs rankL(x) =
distance of x from the head of L.

•L can be reordered by transposing adjacent
elements at a cost of 1.

12 3 50 14 17 4 L

Transposing 3 and 50 costs 1.

Example:

3 50

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.6

On-line and off-line problems

Definition. A sequence S of
operations is provided one at a
time. For each operation, an
on-line algorithm A must execute
the operation immediately
without any knowledge of future
operations (e.g., Tetris).
An off-line algorithm may see
the whole sequence S in advance.

Goal: Minimize the total cost CA(S).
The game of Tetris

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.7

Worst-case analysis of self-
organizing lists

An adversary always accesses the tail
(nth) element of L. Then, for any on-line
algorithm A, we have

CA(S) = Ω(|S|⋅ n)
in the worst case.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.8

Average-case analysis of self-
organizing lists

Suppose that element x is accessed with
probability p(x). Then, we have

∑
∈

⋅=
Lx

LA xxpSC)(rank)()]([E ,

which is minimized when L is sorted in
decreasing order with respect to p.

Heuristic: Keep a count of the number of
times each element is accessed, and
maintain L in order of decreasing count.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.9

The move-to-front heuristic

Practice: Implementers discovered that the
move-to-front (MTF) heuristic empirically
yields good results.
IDEA: After accessing x, move x to the head
of L using transposes:

cost = 2 ⋅ rankL(x) .

The MTF heuristic responds well to locality
in the access sequence S.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.10

Competitive analysis

Definition. An on-line algorithm A is
α-competitive if there exists a constant k
such that for any sequence S of operations,

CA(S) ≤ α ⋅ COPT(S) + k ,
where OPT is the optimal off-line algorithm
(“God’s algorithm”).

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.11

MTF is O(1)-competitive
Theorem. MTF is 4-competitive for self-
organizing lists.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.12

MTF is O(1)-competitive
Theorem. MTF is 4-competitive for self-
organizing lists.
Proof. Let Li be MTF’s list after the ith access,
and let Li* be OPT’s list after the ith access.
Let ci = MTF’s cost for the ith operation
 = 2 ⋅ rankLi–1

(x) if it accesses x;
 ci* = OPT’s cost for the ith operation
 = rankLi–1*(x) + ti ,
where ti is the number of transposes that OPT
performs.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.13

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.14

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Example.

E C A D B Li

C A B D E Li*

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.15

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Example.

E C A D B Li

C A B D E Li*

Φ(Li) = 2 ⋅ |{…}|

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.16

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Example.

E C A D B Li

C A B D E Li*

Φ(Li) = 2 ⋅ |{(E,C), …}|

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.17

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Example.

E C A D B Li

C A B D E Li*

Φ(Li) = 2 ⋅ |{(E,C), (E,A), …}|

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.18

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Example.

E C A D B Li

C A B D E Li*

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), …}|

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.19

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Example.

E C A D B Li

C A B D E Li*

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), …}|

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.20

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Example.

E C A D B Li

C A B D E Li*

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), (D,B)}|

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.21

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Example.

E C A D B Li

C A B D E Li*

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), (D,B)}|
 = 10 .

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.22

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.23

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Note that
• Φ(Li) ≥ 0 for i = 0, 1, …,
• Φ(L0) = 0 if MTF and OPT start with the

same list.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.24

Potential function
Define the potential function Φ:{Li} → R by

Φ(Li) = 2 ⋅ |{(x, y) : x Li
 y and y Li* x}|

 = 2 ⋅ # inversions .
Note that
• Φ(Li) ≥ 0 for i = 0, 1, …,
• Φ(L0) = 0 if MTF and OPT start with the

same list.
How much does Φ change from 1 transpose?
• A transpose creates/destroys 1 inversion.
• ∆Φ = ±2 .

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.25

What happens on an access?
Suppose that operation i accesses element x,
and define

A ∪ B x C ∪ D

A ∪ C x B ∪ D

Li–1

Li–1*

A = {y ∈ Li–1 : y Li–1
x and y Li–1* x},

B = {y ∈ Li–1 : y Li–1
x and y Li–1* x},

C = {y ∈ Li–1 : y Li–1
x and y Li–1* x},

D = {y ∈ Li–1 : y Li–1
x and y Li–1* x}.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.26

What happens on an access?
A ∪ B x C ∪ D

A ∪ C x B ∪ D

Li–1

Li–1*

r = rankLi–1
(x)

r* = rankLi–1* (x)

We have r = |A| + |B| + 1 and r* = |A| + |C| + 1.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.27

What happens on an access?
A ∪ B x C ∪ D

A ∪ C x B ∪ D

Li–1

Li–1*

We have r = |A| + |B| + 1 and r* = |A| + |C| + 1.

r = rankLi–1
(x)

r* = rankLi–1* (x)

When MTF moves x to the front, it creates |A|
inversions and destroys |B| inversions. Each
transpose by OPT creates ≤ 1 inversion. Thus,
we have

Φ(Li) – Φ(Li–1) ≤ 2(|A| – |B| + ti) .

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.28

Amortized cost

ĉi = ci + Φ(Li) – Φ(Li–1)

The amortized cost for the ith operation of
MTF with respect to Φ is

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.29

Amortized cost

ĉi = ci + Φ(Li) – Φ(Li–1)
 ≤ 2r + 2(|A| – |B| + ti)

The amortized cost for the ith operation of
MTF with respect to Φ is

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.30

Amortized cost

ĉi = ci + Φ(Li) – Φ(Li–1)
 ≤ 2r + 2(|A| – |B| + ti)
 = 2r + 2(|A| – (r – 1 – |A|) + ti)

The amortized cost for the ith operation of
MTF with respect to Φ is

(since r = |A| + |B| + 1)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.31

Amortized cost

ĉi = ci + Φ(Li) – Φ(Li–1)
 ≤ 2r + 2(|A| – |B| + ti)
 = 2r + 2(|A| – (r – 1 – |A|) + ti)
 = 2r + 4|A| – 2r + 2 + 2ti

The amortized cost for the ith operation of
MTF with respect to Φ is

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.32

Amortized cost

ĉi = ci + Φ(Li) – Φ(Li–1)
 ≤ 2r + 2(|A| – |B| + ti)
 = 2r + 2(|A| – (r – 1 – |A|) + ti)
 = 2r + 4|A| – 2r + 2 + 2ti
 = 4|A| + 2 + 2ti

The amortized cost for the ith operation of
MTF with respect to Φ is

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.33

Amortized cost

ĉi = ci + Φ(Li) – Φ(Li–1)
 ≤ 2r + 2(|A| – |B| + ti)
 = 2r + 2(|A| – (r – 1 – |A|) + ti)
 = 2r + 4|A| – 2r + 2 + 2ti
 = 4|A| + 2 + 2ti
 ≤ 4(r* + ti)

The amortized cost for the ith operation of
MTF with respect to Φ is

(since r* = |A| + |C| + 1 ≥ |A| + 1)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.34

Amortized cost

ĉi = ci + Φ(Li) – Φ(Li–1)
 ≤ 2r + 2(|A| – |B| + ti)
 = 2r + 2(|A| – (r – 1 – |A|) + ti)
 = 2r + 4|A| – 2r + 2 + 2ti
 = 4|A| + 2 + 2ti
 ≤ 4(r* + ti)
 = 4ci*.

The amortized cost for the ith operation of
MTF with respect to Φ is

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.35

The grand finale

∑
=

=
S

i
icSC

1
MTF)(

Thus, we have

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.36

The grand finale

()∑

∑

=
−

=

Φ−Φ+=

=

S

i
iii

S

i
i

LLc

cSC

1
1

1
MTF

)()(ˆ

)(

Thus, we have

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.37

The grand finale

()

)()(4

)()(ˆ

)(

0
1

1
1

1
MTF

S

S

i
i

S

i
iii

S

i
i

LL*c

LLc

cSC

Φ−Φ+









≤

Φ−Φ+=

=

∑

∑

∑

=

=
−

=

Thus, we have

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.38

The grand finale

()

)(4

)()(4

)()(ˆ

)(

OPT

0
1

1
1

1
MTF

SC

LL*c

LLc

cSC

S

S

i
i

S

i
iii

S

i
i

⋅≤

Φ−Φ+









≤

Φ−Φ+=

=

∑

∑

∑

=

=
−

=

Thus, we have

since Φ(L0) = 0 and Φ(L|S|) ≥ 0.
,

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.39

Addendum

If we count transpositions that move x toward the
front as “free” (models splicing x in and out of L
in constant time), then MTF is 2-competitive.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.40

Addendum

If we count transpositions that move x toward the
front as “free” (models splicing x in and out of L
in constant time), then MTF is 2-competitive.

What if L0 ≠ L0*?
• Then, Φ(L0) might be Θ(n2) in the worst case.
• Thus, CMTF(S) ≤ 4 ⋅ COPT(S) + Θ(n2), which is

still 4-competitive, since n2 is constant as
|S| → ∞.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.1

Prof. Charles E. Leiserson

LECTURE 15
Dynamic Programming
• Longest common

subsequence
• Optimal substructure
• Overlapping subproblems

Introduction to Algorithms
6.046J/18.401J

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
 = exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:
1 2 i m

1 2 j n

x:

y:
=





November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof. Case x[i] = y[j]:
1 2 i m

1 2 j n

x:

y:
=





November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, | w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with | w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, | w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with | w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j) // ignoring base cases
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{ LCS(x, y, i–1, j),
 LCS(x, y, i, j–1)}

return c[i, j]

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j) // ignoring base cases
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{ LCS(x, y, i–1, j),
 LCS(x, y, i, j–1)}

return c[i, j]

Worse case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 7, n = 6: 7,6

6,6 7,5

6,5

5,5 6,4

6,5

5,5 6,4

5,6

4,6 5,5

7,4

6,4 7,3

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree

Height = m + n ⇒ work potentially exponential.

m = 7, n = 6: 7,6

6,6 7,5

6,5

5,5 6,4

6,5

5,5 6,4

5,6

4,6 5,5

7,4

6,4 7,3

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

same
subproblem

,
but we’re solving subproblems already solved!

Recursion tree

Height = m + n ⇒ work potentially exponential. Height = m + n ⇒ work potentially exponential.

m = 7, n = 6: 7,6

6,6 7,5

6,5

5,5 6,4

6,5

5,5 6,4

5,6

4,6 5,5

7,4

6,4 7,3

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only m n.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.
LCS(x, y, i, j)

if c[i, j] = NIL
then if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{ LCS(x, y, i–1, j),
 LCS(x, y, i, j–1)}

same
as
before

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.27

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

Time = Θ(m n) = constant work per table entry.
Space = Θ(m n).

LCS(x, y, i, j)
if c[i, j] = NIL

then if x[i] = y[j]
then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{ LCS(x, y, i–1, j),
 LCS(x, y, i, j–1)}

same
as
before

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.28

0 0 0 0 0
0 0 1 1 1

0 0 0
1 1 1

0 0 1 1 1 2 2 D 2
0 0 1 2 2 2 2 C 2
0 1 1 2 2 2 3 A 3
0 1 2 2 3 3 3 B 4
0 1 2 2 3 3

A

Dynamic-programming
algorithm

IDEA:
Compute the
table bottom-up.

A B C B D B

B

A 4 4

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.29

0 0 0 0 0
0 0 1 1 1

0 0 0
1 1 1

0 0 1 1 1 2 2 D 2
0 0 1 2 2 2 2 C 2
0 1 1 2 2 2 3 A 3
0 1 2 2 3 3 3 B 4
0 1 2 2 3 3

A

Dynamic-programming
algorithm

IDEA:
Compute the
table bottom-up.

A B C B D B

B

A 4 4

Time = Θ(m n).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.30

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 2 2 D 2
0 0 1 2 2 2 2 C 2
0 1 1 2 2 2 3 A 3
0 1 2 2 3 3 3 B 4
0 1 2 2 3 3

A

Dynamic-programming
algorithm

IDEA:
Compute the
table bottom-up.

A B C B D B

B

A 4 4

Time = Θ(m n).
Reconstruct
LCS by tracing
backwards.

0
A

4

0
B

B
1

C

C

2
B

B

3

A

A

D
1

A
2

D

3

B

4

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.31

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 2 2 D 2
0 0 1 2 2 2 2 C 2
0 1 1 2 2 2 3 A 3
0 1 2 2 3 3 3 B 4
0 1 2 2 3 3

A

Dynamic-programming
algorithm

IDEA:
Compute the
table bottom-up.

A B C B D B

B

A 4 4

Time = Θ(m n).
Reconstruct
LCS by tracing
backwards.

0
A

4

0
B

B
1

C

C

2
B

B

3

A

A

D
1

A
2

D

3

B

4
Space = Θ(m n).
Exercise:
O(min{m, n}).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.1

Prof. Charles E. Leiserson

LECTURE 16
Greedy Algorithms (and

Graphs)
• Graph representation
• Minimum spanning trees
• Optimal substructure
• Greedy choice
• Prim’s greedy MST

algorithm

Introduction to Algorithms
6.046J/18.401J

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.2

Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.
In either case, we have | E | = O(V 2). Moreover,
if G is connected, then | E | ≥ | V | – 1, which
implies that lg | E | = Θ(lg V).
(Review CLRS, Appendix B.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.3

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.4

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

2 1

3 4

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(V 2) storage
⇒ dense
representation.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.5

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.6

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, | Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.7

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, | Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).
Handshaking Lemma: ∑v∈V degree(v) = 2 | E | for
undirected graphs ⇒ adjacency lists use Θ(V + E)
storage — a sparse representation.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.8

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E → R.
• For simplicity, assume that all edge weights are
 distinct. (CLRS covers the general case.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.9

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E → R.
• For simplicity, assume that all edge weights are
 distinct. (CLRS covers the general case.)

∑
∈

=
Tvu

vuwTw
),(

),()(.

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.10

Example of MST

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.11

Example of MST

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.12

Optimal substructure

MST T:
(Other edges of G
are not shown.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.13

u

v
Remove any edge (u, v) ∈ T.

Optimal substructure

MST T:
(Other edges of G
are not shown.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.14

u

v
Remove any edge (u, v) ∈ T.

Optimal substructure

MST T:
(Other edges of G
are not shown.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.15

u

v
Remove any edge (u, v) ∈ T. Remove any edge (u, v) ∈ T. Then, T is partitioned
into two subtrees T1 and T2.

T1

T2
u

v

Optimal substructure

MST T:
(Other edges of G
are not shown.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.16

u

v
Remove any edge (u, v) ∈ T. Remove any edge (u, v) ∈ T. Then, T is partitioned
into two subtrees T1 and T2.

T1

T2
u

v

Optimal substructure

MST T:
(Other edges of G
are not shown.)

Theorem. The subtree T1 is an MST of G1 = (V1, E1),
the subgraph of G induced by the vertices of T1:

V1 = vertices of T1,
E1 = { (x, y) ∈ E : x, y ∈ V1 }.

Similarly for T2.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.17

Proof of optimal substructure

w(T) = w(u, v) + w(T1) + w(T2).
Proof. Cut and paste:

If T1′ were a lower-weight spanning tree than T1 for
G1, then T ′ = {(u, v)} ∪ T1′ ∪ T2 would be a
lower-weight spanning tree than T for G.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.18

Proof of optimal substructure

w(T) = w(u, v) + w(T1) + w(T2).
Proof. Cut and paste:

If T1′ were a lower-weight spanning tree than T1 for
G1, then T ′ = {(u, v)} ∪ T1′ ∪ T2 would be a
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
•Yes.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.19

Proof of optimal substructure

w(T) = w(u, v) + w(T1) + w(T2).
Proof. Cut and paste:

If T1′ were a lower-weight spanning tree than T1 for
G1, then T ′ = {(u, v)} ∪ T1′ ∪ T2 would be a
lower-weight spanning tree than T for G.

Great, then dynamic programming may work!
•Yes, but MST exhibits another powerful property
which leads to an even more efficient algorithm.

Do we also have overlapping subproblems?
•Yes.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.20

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.21

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem. Let T be the MST of G = (V, E),
and let A ⊆ V. Suppose that (u, v) ∈ E is the
least-weight edge connecting A to V – A.
Then, (u, v) ∈ T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.22

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u

v

(u, v) = least-weight edge
connecting A to V – A

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.23

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u

Consider the unique simple path from u to v in T.

(u, v) = least-weight edge
connecting A to V – A

v

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.24

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u
(u, v) = least-weight edge
connecting A to V – A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.25

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T ′:

u
(u, v) = least-weight edge
connecting A to V – A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.
A lighter-weight spanning tree than T results.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.26

Prim’s algorithm
IDEA: Maintain V – A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ← V
key[v] ← ∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
 then key[v] ← w(u, v) ⊳ DECREASE-KEY
 π[v] ← u

At the end, {(v, π[v])} forms the MST.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.27

Example of Prim’s algorithm

∈ A
∈ V – A

∞

∞ ∞

∞ 0

∞

∞

∞

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.28

Example of Prim’s algorithm

∈ A
∈ V – A

∞

∞ ∞

∞ 0

∞

∞

∞

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.29

Example of Prim’s algorithm

∈ A
∈ V – A

∞

∞ 7

∞ 0

10

∞

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.30

Example of Prim’s algorithm

∈ A
∈ V – A

∞

∞ 7

∞ 0

10

∞

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.31

Example of Prim’s algorithm

∈ A
∈ V – A

12

5 7

∞ 0

10

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.32

Example of Prim’s algorithm

∈ A
∈ V – A

12

5 7

∞ 0

10

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.33

Example of Prim’s algorithm

∈ A
∈ V – A

6

5 7

14 0

8

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.34

Example of Prim’s algorithm

∈ A
∈ V – A

6

5 7

14 0

8

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.35

Example of Prim’s algorithm

∈ A
∈ V – A

6

5 7

14 0

8

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.36

Example of Prim’s algorithm

∈ A
∈ V – A

6

5 7

3 0

8

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.37

Example of Prim’s algorithm

∈ A
∈ V – A

6

5 7

3 0

8

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.38

Example of Prim’s algorithm

∈ A
∈ V – A

6

5 7

3 0

8

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.39

Example of Prim’s algorithm

∈ A
∈ V – A

6

5 7

3 0

8

9

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.40

Q ← V
key[v] ← ∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
 for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
 then key[v] ← w(u, v)
 π[v] ← u

Analysis of Prim

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.41

Q ← V
key[v] ← ∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
 for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
 then key[v] ← w(u, v)
 π[v] ← u

Analysis of Prim

Θ(V)
total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.42

Q ← V
key[v] ← ∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
 for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
 then key[v] ← w(u, v)
 π[v] ← u

Analysis of Prim

|V |
times

Θ(V)
total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.43

Q ← V
key[v] ← ∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
 for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
 then key[v] ← w(u, v)
 π[v] ← u

Analysis of Prim

degree(u)
times

|V |
times

Θ(V)
total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.44

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

Q ← V
key[v] ← ∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
 for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
 then key[v] ← w(u, v)
 π[v] ← u

Analysis of Prim

degree(u)
times

|V |
times

Θ(V)
total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.45

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

Q ← V
key[v] ← ∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
 for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
 then key[v] ← w(u, v)
 π[v] ← u

Analysis of Prim

degree(u)
times

|V |
times

Θ(V)
total

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.46

Analysis of Prim (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.47

Analysis of Prim (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.48

Analysis of Prim (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.49

Analysis of Prim (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)
binary
heap O(lg V) O(lg V) O(E lg V)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.50

Analysis of Prim (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)
binary
heap O(lg V) O(lg V) O(E lg V)

Fibonacci
heap

O(lg V)
amortized

O(1)
amortized

O(E + V lg V)
worst case

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.51

MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (see CLRS,

Ch. 21).
• Running time = O(E lg V).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.52

MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (see CLRS,

Ch. 21).
• Running time = O(E lg V).

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• O(V + E) expected time.

November 14, 2005 L17.1 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Introduction to Algorithms
6.046J/18.401J

Prof. Erik Demaine

LECTURE 17
Shortest Paths I
• Properties of shortest paths
• Dijkstra’s algorithm
• Correctness
• Analysis
• Breadth-first search

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.2

Paths in graphs

Consider a digraph G = (V, E) with edge-weight
function w : E → R. The weight of path p = v1 →
v2 →  → vk is defined to be

∑
−

=
+=

1

1
1),()(

k

i
ii vvwpw .

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.3

Paths in graphs

Consider a digraph G = (V, E) with edge-weight
function w : E → R. The weight of path p = v1 →
v2 →  → vk is defined to be

∑
−

=
+=

1

1
1),()(

k

i
ii vvwpw .

v
1 v

2

v
3 v

4

v
5

4 –2 –5 1

Example:

w(p) = –2

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.4

Shortest paths

A shortest path from u to v is a path of
minimum weight from u to v. The shortest-
path weight from u to v is defined as
δ(u, v) = min{w(p) : p is a path from u to v}.

Note: δ(u, v) = ∞ if no path from u to v exists.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.5

Well-definedness of shortest
paths

If a graph G contains a negative-weight cycle,
then some shortest paths do not exist.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.6

Well-definedness of shortest
paths

If a graph G contains a negative-weight cycle,
then some shortest paths do not exist.

Example:

u v

…

< 0

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.7

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.8

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.9

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.10

Triangle inequality

Theorem. For all u, v, x ∈ V, we have
δ(u, v) ≤ δ(u, x) + δ(x, v).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.11

Triangle inequality

Theorem. For all u, v, x ∈ V, we have
δ(u, v) ≤ δ(u, x) + δ(x, v).

u

Proof.

x

v δ(u, v)

δ(u, x) δ(x, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.12

Single-source shortest paths
(nonnegative edge weights)

Problem. Assume that w(u, v) ≥ 0 for all (u, v)
∈ E. (Hence, all shortest-path weights must
exist.) From a given source vertex s ∈ V, find
the shortest-path weights δ(s, v) for all v ∈ V.
IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step, add to S the vertex v ∈ V – S

whose distance estimate from s is minimum.
3. Update the distance estimates of vertices

adjacent to v.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.13

Dijkstra’s algorithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S,
 keyed on d[v]

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.14

Dijkstra’s algorithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S,
 keyed on d[v]
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.15

Dijkstra’s algorithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞
S ← ∅
Q ← V ⊳ Q is a priority queue maintaining V – S,
 keyed on d[v]
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)

relaxation
step

Implicit DECREASE-KEY

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.16

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2

Graph with
nonnegative
edge weights:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.17

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2

Initialize:

A B C D E Q:
0 ∞ ∞ ∞ ∞

S: {}

0

∞

∞ ∞

∞

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.18

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A }

0

∞

∞ ∞

∞ “A” ← EXTRACT-MIN(Q):

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.19

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A }

0

10

3 ∞

∞

10 3

Relax all edges leaving A:

∞ ∞

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.20

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A, C }

0

10

3 ∞

∞

10 3

“C” ← EXTRACT-MIN(Q):

∞ ∞

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.21

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A, C }

0

7

3 5

11

10 3
7 11 5

Relax all edges leaving C:

∞ ∞

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.22

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A, C, E }

0

7

3 5

11

10 3
7 11 5

“E” ← EXTRACT-MIN(Q):

∞ ∞

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.23

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A, C, E }

0

7

3 5

11

10 3 ∞ ∞
7 11 5
7 11

Relax all edges leaving E:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.24

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B }

0

7

3 5

11

10 3 ∞ ∞
7 11 5
7 11

“B” ← EXTRACT-MIN(Q):

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.25

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B }

0

7

3 5

9

10 3 ∞ ∞
7 11 5
7 11

Relax all edges leaving B:

9

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.26

Example of Dijkstra’s
algorithm

A

B D

C E

10

3

1 4 7 9 8

2

2 A B C D E Q:
0 ∞ ∞ ∞ ∞

S: { A, C, E, B, D }

0

7

3 5

9

10 3 ∞ ∞
7 11 5
7 11

9

“D” ← EXTRACT-MIN(Q):

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.27

Correctness — Part I
Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V,
and this invariant is maintained over any sequence
of relaxation steps.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.28

Correctness — Part I
Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V,
and this invariant is maintained over any sequence
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for
which d[v] < δ(s, v), and let u be the vertex that
caused d[v] to change: d[v] = d[u] + w(u, v). Then,

d[v] < δ(s, v) supposition
 ≤ δ(s, u) + δ(u, v) triangle inequality
 ≤ δ(s,u) + w(u, v) sh. path ≤ specific path
 ≤ d[u] + w(u, v) v is first violation

Contradiction.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.29

Correctness — Part II
Lemma. Let u be v’s predecessor on a shortest
path from s to v. Then, if d[u] = δ(s, u) and edge
(u, v) is relaxed, we have d[v] = δ(s, v) after the
relaxation.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.30

Correctness — Part II
Lemma. Let u be v’s predecessor on a shortest
path from s to v. Then, if d[u] = δ(s, u) and edge
(u, v) is relaxed, we have d[v] = δ(s, v) after the
relaxation.
Proof. Observe that δ(s, v) = δ(s, u) + w(u, v).
Suppose that d[v] > δ(s, v) before the relaxation.
(Otherwise, we’re done.) Then, the test d[v] >
d[u] + w(u, v) succeeds, because d[v] > δ(s, v) =
δ(s, u) + w(u, v) = d[u] + w(u, v), and the
algorithm sets d[v] = d[u] + w(u, v) = δ(s, v).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.31

Correctness — Part III
Theorem. Dijkstra’s algorithm terminates with
d[v] = δ(s, v) for all v ∈ V.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.32

Correctness — Part III
Theorem. Dijkstra’s algorithm terminates with
d[v] = δ(s, v) for all v ∈ V.
Proof. It suffices to show that d[v] = δ(s, v) for every v
∈ V when v is added to S. Suppose u is the first vertex
added to S for which d[u] > δ(s, u). Let y be the first
vertex in V – S along a shortest path from s to u, and
let x be its predecessor:

s

x y

u

S, just before
adding u.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.33

Correctness — Part III
(continued)

Since u is the first vertex violating the claimed
invariant, we have d[x] = δ(s, x). When x was
added to S, the edge (x, y) was relaxed, which
implies that d[y] = δ(s, y) ≤ δ(s, u) < d[u]. But,
d[u] ≤ d[y] by our choice of u. Contradiction.

s

x y

u S

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.34

Analysis of Dijkstra
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.35

Analysis of Dijkstra

|V |
times

while Q ≠ ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.36

Analysis of Dijkstra

degree(u)
times

|V |
times

while Q ≠ ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.37

Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

while Q ≠ ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.38

Analysis of Dijkstra

degree(u)
times

|V |
times

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.
Time = Θ(V·TEXTRACT-MIN + E·TDECREASE-KEY)

Note: Same formula as in the analysis of Prim’s
minimum spanning tree algorithm.

while Q ≠ ∅
do u ← EXTRACT-MIN(Q)

S ← S ∪ {u}
for each v ∈ Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.39

Analysis of Dijkstra
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.40

Analysis of Dijkstra
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.41

Analysis of Dijkstra
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)
binary
heap O(lg V) O(lg V) O(E lg V)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.42

Analysis of Dijkstra
(continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)
binary
heap O(lg V) O(lg V) O(E lg V)

Fibonacci
heap

O(lg V)
amortized

O(1)
amortized

O(E + V lg V)
worst case

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.43

Unweighted graphs

Suppose that w(u, v) = 1 for all (u, v) ∈ E.
Can Dijkstra’s algorithm be improved?

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.44

Unweighted graphs

• Use a simple FIFO queue instead of a priority
queue.

Suppose that w(u, v) = 1 for all (u, v) ∈ E.
Can Dijkstra’s algorithm be improved?

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.45

Unweighted graphs

while Q ≠ ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

 then d[v] ← d[u] + 1
 ENQUEUE(Q, v)

• Use a simple FIFO queue instead of a priority
queue.

Breadth-first search

Suppose that w(u, v) = 1 for all (u, v) ∈ E.
Can Dijkstra’s algorithm be improved?

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.46

Unweighted graphs

while Q ≠ ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

 then d[v] ← d[u] + 1
 ENQUEUE(Q, v)

• Use a simple FIFO queue instead of a priority
queue.

Analysis: Time = O(V + E).

Breadth-first search

Suppose that w(u, v) = 1 for all (u, v) ∈ E.
Can Dijkstra’s algorithm be improved?

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.47

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.48

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a

0

0

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.49

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d

0

1

1

1 1

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.50

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e

0

1

1

2 2

1 2 2

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.51

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e

0

1

1

2 2

2 2

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.52

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e

0

1

1

2 2

2

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.53

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e g i

0

1

1

2 2

3

3

3 3

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.54

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e g i f

0

1

1

2 2

3

3

4

3 4

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.55

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e g i f h

0

1

1

2 2

3

3

4 4

4 4

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.56

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e g i f h

0

1

1

2 2

3

3

4 4

4

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.57

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e g i f h

0

1

1

2 2

3

3

4 4

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.58

Example of breadth-first
search

a

b

c

d

e
g

i

f h

Q: a b d c e g i f h

0

1

1

2 2

3

3

4 4

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.59

Correctness of BFS

Key idea:
The FIFO Q in breadth-first search mimics
the priority queue Q in Dijkstra.
• Invariant: v comes after u in Q implies that

d[v] = d[u] or d[v] = d[u] + 1.

while Q ≠ ∅
do u ← DEQUEUE(Q)

for each v ∈ Adj[u]
do if d[v] = ∞

 then d[v] ← d[u] + 1
 ENQUEUE(Q, v)

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.1

Prof. Erik Demaine

LECTURE 18
Shortest Paths II
• Bellman-Ford algorithm
• Linear programming and

difference constraints
• VLSI layout compaction

Introduction to Algorithms
6.046J/18.401J

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.2

Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

u v

…

< 0

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.3

Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

u v

…

< 0

Bellman-Ford algorithm: Finds all shortest-path
lengths from a source s ∈ V to all v ∈ V or
determines that a negative-weight cycle exists.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.4

Bellman-Ford algorithm
d[s] ← 0
for each v ∈ V – {s}

do d[v] ← ∞

for i ← 1 to | V | – 1
do for each edge (u, v) ∈ E

do if d[v] > d[u] + w(u, v)
then d[v] ← d[u] + w(u, v)

for each edge (u, v) ∈ E
do if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

initialization

At the end, d[v] = δ(s, v), if no negative-weight cycles.
Time = O(V E).

relaxation
step

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.5

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.6

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

Initialization.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

1

2

3
4

5

7

8

Order of edge relaxation.

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.8

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.9

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.10

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3

∞

0 ∞

∞ ∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.11

∞ −1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0 ∞

∞ ∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.12

∞ 4

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.13

4

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14

4 2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.15

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.16

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0 ∞

∞

1

2

3
4

5

7

8

End of pass 1.

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.17

∞ 1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.18

1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

∞

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.19

∞ 1

1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.20

1

1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.21

1

1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.22

1

1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.23

1

1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.24

1 −2

1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.25

−2

1

2

−1

Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3
0

1

2

3
4

5

7

8

6

End of pass 2 (and 3 and 4).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.26

Correctness
Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = δ(s, v) for all v ∈ V.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.27

Correctness
Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = δ(s, v) for all v ∈ V.
Proof. Let v ∈ V be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.

v
1 v

2

v
3

v
k v0

…
s

v

p:

Since p is a shortest path, we have
δ(s, vi) = δ(s, vi–1) + w(vi–1, vi) .

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.28

Correctness (continued)
v
1 v

2

v
3

v
k v0

…
s

v

p:

Initially, d[v0] = 0 = δ(s, v0), and d[v0] is unchanged by
subsequent relaxations (because of the lemma from
Shortest Paths I that d[v] ≥ δ(s, v)).
• After 1 pass through E, we have d[v1] = δ(s, v1).
• After 2 passes through E, we have d[v2] = δ(s, v2).
 
• After k passes through E, we have d[vk] = δ(s, vk).
Since G contains no negative-weight cycles, p is simple.
Longest simple path has ≤ | V | – 1 edges.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.29

Detection of negative-weight
cycles

Corollary. If a value d[v] fails to converge after
| V | – 1 passes, there exists a negative-weight
cycle in G reachable from s.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.30

Linear programming

Let A be an m×n matrix, b be an m-vector, and c
be an n-vector. Find an n-vector x that maximizes
cTx subject to Ax ≤ b, or determine that no such
solution exists.

. ≤ . maximizing m

n

A x ≤ b cT x

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.31

Linear-programming
algorithms

Algorithms for the general problem
• Simplex methods — practical, but worst-case

exponential time.
• Interior-point methods — polynomial time and

competes with simplex.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.32

Linear-programming
algorithms

Algorithms for the general problem
• Simplex methods — practical, but worst-case

exponential time.
• Interior-point methods — polynomial time and

competes with simplex.

Feasibility problem: No optimization criterion.
Just find x such that Ax ≤ b.
• In general, just as hard as ordinary LP.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.33

Solving a system of difference
constraints

Linear programming where each row of A contains
exactly one 1, one –1, and the rest 0’s.
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.34

Solving a system of difference
constraints

Linear programming where each row of A contains
exactly one 1, one –1, and the rest 0’s.
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

Solution:
x1 = 3
x2 = 0
x3 = 2

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.35

Solving a system of difference
constraints

Linear programming where each row of A contains
exactly one 1, one –1, and the rest 0’s.
Example:

x1 – x2 ≤ 3
x2 – x3 ≤ –2
x1 – x3 ≤ 2

xj – xi ≤ wij

Solution:
x1 = 3
x2 = 0
x3 = 2

Constraint graph:

vj vi xj – xi ≤ wij
wij

(The “A”
matrix has
dimensions
|E | × |V |.)

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.36

Unsatisfiable constraints
Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.37

Unsatisfiable constraints
Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is
v1 → v2 →  → vk → v1. Then, we have

 x2 – x1 ≤ w12
 x3 – x2 ≤ w23
 
 xk – xk–1 ≤ wk–1, k
 x1 – xk ≤ wk1

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.38

Unsatisfiable constraints
Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is
v1 → v2 →  → vk → v1. Then, we have

 x2 – x1 ≤ w12
 x3 – x2 ≤ w23
 
 xk – xk–1 ≤ wk–1, k
 x1 – xk ≤ wk1

Therefore, no
values for the xi
can satisfy the
constraints.

 0 ≤ weight of cycle
 < 0

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.39

Satisfying the constraints
Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.40

Satisfying the constraints
Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.
Proof. Add a new vertex s to V with a 0-weight edge
to each vertex vi ∈ V.

v
1

v
4

v
7

v
9

v
3

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.41

Satisfying the constraints
Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.
Proof. Add a new vertex s to V with a 0-weight edge
to each vertex vi ∈ V.

v
1

v
4

v
7

v
9

v
3

s

0 Note:
No negative-weight
cycles introduced ⇒
shortest paths exist.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.42

The triangle inequality gives us δ(s,vj) ≤ δ(s, vi) + wij.
Since xi = δ(s, vi) and xj = δ(s, vj), the constraint xj – xi
≤ wij is satisfied.

Proof (continued)
Claim: The assignment xi = δ(s, vi) solves the constraints.

s

vj

vi
δ(s, vi)

δ(s, vj) wij

Consider any constraint xj – xi ≤ wij, and consider the
shortest paths from s to vj and vi:

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.43

Bellman-Ford and linear
programming

Corollary. The Bellman-Ford algorithm can
solve a system of m difference constraints on n
variables in O(m n) time.
Single-source shortest paths is a simple LP
problem.
In fact, Bellman-Ford maximizes x1 + x2 +  + xn
subject to the constraints xj – xi ≤ wij and xi ≤ 0
(exercise).
Bellman-Ford also minimizes maxi{xi} – mini{xi}
(exercise).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.44

Application to VLSI layout
compaction

Integrated
-circuit
features:

Problem: Compact (in one dimension) the
space between the features of a VLSI layout
without bringing any features too close together.

minimum separation λ

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.45

VLSI layout compaction

1

x1 x2

2

d1

Constraint: x2 – x1 ≥ d1 + λ
Bellman-Ford minimizes maxi{xi} – mini{xi},
which compacts the layout in the x-dimension.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.1

Prof. Erik D. Demaine

LECTURE 16
Shortest Paths III
• All-pairs shortest paths
• Matrix-multiplication

algorithm
• Floyd-Warshall algorithm
• Johnson’s algorithm

Introduction to Algorithms
6.046J/18.401J

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.2

Shortest paths
Single-source shortest paths
• Nonnegative edge weights
Dijkstra’s algorithm: O(E + V lg V)

• General
 Bellman-Ford algorithm: O(VE)

• DAG
One pass of Bellman-Ford: O(V + E)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.3

Shortest paths
Single-source shortest paths
• Nonnegative edge weights
Dijkstra’s algorithm: O(E + V lg V)

• General
 Bellman-Ford algorithm: O(VE)

• DAG
One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths
• Nonnegative edge weights
Dijkstra’s algorithm |V| times: O(VE + V 2 lg V)

• General
 Three algorithms today.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.4

All-pairs shortest paths

Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E → R.
Output: n × n matrix of shortest-path lengths
δ(i, j) for all i, j ∈ V.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.5

All-pairs shortest paths

Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E → R.
Output: n × n matrix of shortest-path lengths
δ(i, j) for all i, j ∈ V.
IDEA:
• Run Bellman-Ford once from each vertex.
• Time = O(V 2E).
• Dense graph (Θ(n2) edges) ⇒ Θ(n 4) time in

the worst case.
Good first try!

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.6

Dynamic programming
Consider the n × n weighted adjacency matrix
A = (aij), where aij = w(i, j) or ∞, and define

dij
(0) = 0 if i = j,

∞ if i ≠ j;

Claim: We have

and for m = 1, 2, …, n – 1,
dij

(m) = mink{dik
(m–1) + akj }.

dij
(m) = weight of a shortest path from

 i to j that uses at most m edges.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7

Proof of claim
dij

(m) = mink{dik
(m–1) + akj }

i j i


k’s

≤ m – 1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.8

Proof of claim
dij

(m) = mink{dik
(m–1) + akj }

i j i


k’s

≤ m – 1 edges

Relaxation!
for k ← 1 to n

do if dij > dik + akj
then dij ← dik + akj

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.9

Proof of claim
dij

(m) = mink{dik
(m–1) + akj }

i j i


k’s

≤ m – 1 edges

Relaxation!
for k ← 1 to n

do if dij > dik + akj
then dij ← dik + akj

Note: No negative-weight cycles implies
δ(i, j) = dij

(n–1) = dij
(n) = dij

(n+1) = 

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.10

Matrix multiplication
Compute C = A · B, where C, A, and B are n × n
matrices:

∑
=

=
n

k
kjikij bac

1
.

Time = Θ(n3) using the standard algorithm.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.11

Matrix multiplication
Compute C = A · B, where C, A, and B are n × n
matrices:

∑
=

=
n

k
kjikij bac

1
.

Time = Θ(n3) using the standard algorithm.
What if we map “+” → “min” and “·” → “+”?

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.12

Matrix multiplication
Compute C = A · B, where C, A, and B are n × n
matrices:

∑
=

=
n

k
kjikij bac

1
.

Time = Θ(n3) using the standard algorithm.
What if we map “+” → “min” and “·” → “+”?

cij = mink {aik + bkj}.
Thus, D(m) = D(m–1) “×” A.

Identity matrix = I =
















∞∞∞
∞∞∞
∞∞∞
∞∞∞

0
0

0
0

= D0 = (dij
(0)).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.13

Matrix multiplication
(continued)

The (min, +) multiplication is associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.
Consequently, we can compute

 D(1) = D(0) · A = A1

 D(2) = D(1) · A = A2

  
 D(n–1) = D(n–2) · A = An–1 ,

yielding D(n–1) = (δ(i, j)).
Time = Θ(n·n3) = Θ(n4). No better than n × B-F.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14

Improved matrix
multiplication algorithm

Repeated squaring: A2k = Ak × Ak.
Compute A2, A4, …, A2lg(n–1) .

O(lg n) squarings

Time = Θ(n3 lg n).

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional
time.

Note: An–1 = An = An+1 = .

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.15

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define cij
(k) = weight of a shortest path from i

to j with intermediate vertices
belonging to the set {1, 2, …, k}.

i ≤ k ≤ k ≤ k ≤ k j

Thus, δ(i, j) = cij
(n). Also, cij

(0) = aij .

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.16

Floyd-Warshall recurrence
cij

(k) = min {cij
(k–1), cik

(k–1) + ckj
(k–1)}

i j

k

i
cij

(k–1)

cik
(k–1) ckj

(k–1)

intermediate vertices in {1, 2, …, k − 1}

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.17

Pseudocode for Floyd-
Warshall

for k ← 1 to n
do for i ← 1 to n

do for j ← 1 to n
do if cij > cik + ckj

then cij ← cik + ckj relaxation

Notes:
• Okay to omit superscripts, since extra relaxations

can’t hurt.
• Runs in Θ(n3) time.
• Simple to code.
• Efficient in practice.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.18

Transitive closure of a
directed graph

Compute tij = 1 if there exists a path from i to j,
0 otherwise.

IDEA: Use Floyd-Warshall, but with (∨, ∧) instead
of (min, +):

tij(k) = tij(k–1) ∨ (tik(k–1) ∧ tkj
(k–1)).

Time = Θ(n3).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.19

Graph reweighting
Theorem. Given a function h : V → R, reweight each
edge (u, v) ∈ E by wh(u, v) = w(u, v) + h(u) – h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.20

Graph reweighting

Proof. Let p = v1 → v2 →  → vk be a path in G. We
have

()

)()()(

)()(),(

)()(),(

),()(

1

1

1

1
1

1

1
11

1

1
1

k

k

k

i
ii

k

i
iiii

k

i
iihh

vhvhpw

vhvhvvw

vhvhvvw

vvwpw

−+=

−+=

−+=

=

∑

∑

∑

−

=
+

−

=
++

−

=
+

.

Theorem. Given a function h : V → R, reweight each
edge (u, v) ∈ E by wh(u, v) = w(u, v) + h(u) – h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

Same
amount!

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.21

Shortest paths in reweighted
graphs

Corollary. δh(u, v) = δ(u, v) + h(u) – h(v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.22

Shortest paths in reweighted
graphs

Corollary. δh(u, v) = δ(u, v) + h(u) – h(v).

IDEA: Find a function h : V → R such that
wh(u, v) ≥ 0 for all (u, v) ∈ E. Then, run
Dijkstra’s algorithm from each vertex on the
reweighted graph.
NOTE: wh(u, v) ≥ 0 iff h(v) – h(u) ≤ w(u, v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.23

Johnson’s algorithm
1. Find a function h : V → R such that wh(u, v) ≥ 0 for

all (u, v) ∈ E by using Bellman-Ford to solve the
difference constraints h(v) – h(u) ≤ w(u, v), or
determine that a negative-weight cycle exists.
• Time = O(V E).

2. Run Dijkstra’s algorithm using wh from each vertex
u ∈ V to compute δh(u, v) for all v ∈ V.
• Time = O(V E + V 2 lg V).

3. For each (u, v) ∈ V × V, compute
δ(u, v) = δh(u, v) – h(u) + h(v) .

• Time = O(V 2).
Total time = O(V E + V 2 lg V).

Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 12
Prof. Erik Demaine

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.2

Computational geometry
Algorithms for solving “geometric problems”
in 2D and higher.
Fundamental objects:

point line segment line
Basic structures:

polygon point set

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.3

Computational geometry
Algorithms for solving “geometric problems”
in 2D and higher.
Fundamental objects:

point line segment line
Basic structures:

convex hull triangulation

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.4

Orthogonal range searching

Input: n points in d dimensions
• E.g., representing a database of n records
 each with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)
• Report on the points inside the box:

• Are there any points?
• How many are there?
• List the points.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.5

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box
Goal: Preprocess points into a data structure
 to support fast queries

• Primary goal: Static data structure
• In 1D, we will also obtain a
 dynamic data structure
 supporting insert and delete

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.6

1D range searching
In 1D, the query is an interval:

First solution using ideas we know:
• Interval trees

• Represent each point x by the interval [x, x].
• Obtain a dynamic structure that can list
 k answers in a query in O(k lg n) time.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.7

1D range searching
In 1D, the query is an interval:

Second solution using ideas we know:
• Sort the points and store them in an array

• Solve query by binary search on endpoints.
• Obtain a static structure that can list
 k answers in a query in O(k + lg n) time.

Goal: Obtain a dynamic structure that can list
k answers in a query in O(k + lg n) time.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.8

1D range searching
In 1D, the query is an interval:

New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:
 Store points in the leaves of the tree.
• Internal nodes store copies of the leaves
 to satisfy binary search property:

• Node x stores in key[x] the maximum
 key of any leaf in the left subtree of x.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.9

Example of a 1D range tree

1

6 8 12 14

17

26 35 41 42

43

59 61

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.10

Example of a 1D range tree

12 1

6 8 12 14

17

26 35 41 42

43

59 61

6 26 41 59

1 14 35 43

42 8

17
x

≤ x > x

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.11

12

8 12 14

17

26 35 41

26

14

Example of a 1D range query

1

6 42

43

59 61

6 41 59

1

12

8 12 14

17

26 35 41

26

14 35 43

42 8

17

RANGE-QUERY([7, 41])

x

≤ x > x

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.12

General 1D range query
root

split node

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.13

Pseudocode, part 1:
Find the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]
while w is not a leaf and (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
then w ← left[w]
else w ← right[w]

⊳ w is now the split node
[traverse left and right from w and report relevant subtrees]

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.14

Pseudocode, part 2: Traverse
left and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node]
⊳ w is now the split node
if w is a leaf
 then output the leaf w if x1 ≤ key[w] ≤ x2
 else v ← left[w] ⊳ Left traversal

 while v is not a leaf
do if x1 ≤ key[v]
 then output the subtree rooted at right[v]
 v ← left[v]
 else v ← right[v]

 output the leaf v if x1 ≤ key[v] ≤ x2
 [symmetrically for right traversal]

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.15

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented
by O(lg n) subtrees found in O(lg n) time.
Thus:

• Can test for points in interval in O(lg n) time.
• Can count points in interval in O(lg n) time
 if we augment the tree with subtree sizes.
• Can report the first k points in
 interval in O(k + lg n) time.

Space: O(n)
Preprocessing time: O(n lg n)

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.16

2D range trees
Store a primary 1D range tree for all the points
based on x-coordinate.
Thus in O(lg n) time we can find O(lg n) subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.17

2D range trees
Idea: In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.18

Analysis of 2D range trees
Query time: In O((lg n)2) time, we can represent
the answer to range query by O((lg n)2) subtrees.
Total cost for reporting k points: O(k + (lg n)2).

Preprocessing time: O(n lg n)

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n lg n).

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.19

d-dimensional range trees (d ≥ 2)

Query time: O(k + (lg n)d) to report k points.
Space: O(n (lg n)d – 1)
Preprocessing time: O(n (lg n)d – 1)

Each node of the secondary y-structure stores
a tertiary z-structure representing the points
in the subtree rooted at the node, etc.

Best data structure to date:
Query time: O(k + (lg n)d – 1) to report k points.
Space: O(n (lg n / lg lg n)d – 1)
Preprocessing time: O(n (lg n)d – 1)

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.20

Primitive operations:
Crossproduct

Given two vectors v1 = (x1, y1) and v2 = (x2, y2),
is their counterclockwise angle θ

• convex (< 180º),
• reflex (> 180º), or
• borderline (0 or 180º)?

v1

v2
θ v2

v1

θ
convex reflex

Crossproduct v1 × v2 = x1 x2 – y1 y2
 = |v1| |v2| sin θ .
Thus, sign(v1 × v2) = sign(sin θ) > 0 if θ convex,
 < 0 if θ reflex,
 = 0 if θ borderline.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.21

Primitive operations:
Orientation test

Given three points p1, p2, p3 are they
• in clockwise (cw) order,
• in counterclockwise (ccw) order, or
• collinear?

(p2 – p1) × (p3 – p1)
 > 0 if ccw
 < 0 if cw
 = 0 if collinear p1

p3

p2
cw p1

p2

p3

ccw

p1

p2

p3

collinear

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.22

Primitive operations:
Sidedness test

Given three points p1, p2, p3 are they
• in clockwise (cw) order,
• in counterclockwise (ccw) order, or
• collinear?

Let L be the oriented line from p1 to p2.
Equivalently, is the point p3

• right of L,
• left of L, or
• on L?

p1

p3

p2
cw p1

p2

p3

ccw

p1

p2

p3

collinear

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.23

Line-segment intersection
Given n line segments, does any pair intersect?
Obvious algorithm: O(n2).

a

b

c

d
e

f

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.24

Sweep-line algorithm
• Sweep a vertical line from left to right
 (conceptually replacing x-coordinate with time).
• Maintain dynamic set S of segments
 that intersect the sweep line, ordered
 (tentatively) by y-coordinate of intersection.
• Order changes when

• new segment is encountered,
• existing segment finishes, or
• two segments cross

• Key event points are therefore segment endpoints.

segment
endpoints

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.25

a

b

c

d
e

f

a
a
b b b b b b f f f f

c
a

c
a d d e d b e e
d

c c d b d d d
e e e b

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.26

Sweep-line algorithm
 Process event points in order by sorting segment
 endpoints by x-coordinate and looping through:

• For a left endpoint of segment s:
• Add segment s to dynamic set S.
• Check for intersection between s
 and its neighbors in S.

• For a right endpoint of segment s:
• Remove segment s from dynamic set S.
• Check for intersection between
 the neighbors of s in S.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.27

Analysis

Use red-black tree to store dynamic set S.
Total running time: O(n lg n).

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.28

Correctness
Theorem: If there is an intersection,
the algorithm finds it.
Proof: Let X be the leftmost intersection point.
Assume for simplicity that

• only two segments s1, s2 pass through X, and
• no two points have the same x-coordinate.

At some point before we reach X,
s1 and s2 become consecutive in the order of S.
Either initially consecutive when s1 or s2 inserted,
 or became consecutive when another deleted.

	01-Analysis-of-Algorithms
	Introduction to Algorithms�6.046J/18.401J
	Course information
	Analysis of algorithms
	Why study algorithms and performance?
	The problem of sorting
	Insertion sort
	Insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Running time
	Kinds of analyses
	Machine-independent time
	Q-notation
	Asymptotic performance
	Insertion sort analysis
	Merge sort
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Analyzing merge sort
	Recurrence for merge sort
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Conclusions

	02-Asymptotic-Notation-and-Recurrences
	Introduction to Algorithms�6.046J/18.401J
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Set definition of O-notation
	Set definition of O-notation
	Set definition of O-notation
	Macro substitution
	Macro substitution
	Macro substitution
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (tight bounds)
	-notation (tight bounds)
	o-notation and -notation
	o-notation and -notation
	Solving recurrences
	Substitution method
	Substitution method
	Example of substitution
	Example (continued)
	Example (continued)
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound!
	A tighter upper bound!
	A tighter upper bound!
	Recursion-tree method
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	The master method
	Three common cases
	Three common cases
	Three common cases (cont.)
	Examples
	Examples
	Examples
	Examples
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem

	03-Divide-and-Conquer
	Introduction to Algorithms�6.046J/18.401J
	The divide-and-conquer design paradigm
	Merge sort
	Merge sort
	Master theorem (reprise)
	Master theorem (reprise)
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Recurrence for binary search
	Recurrence for binary search
	Powering a number
	Powering a number
	Powering a number
	Fibonacci numbers
	Fibonacci numbers
	Computing Fibonacci numbers
	Computing Fibonacci numbers
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Matrix multiplication
	Standard algorithm
	Standard algorithm
	Divide-and-conquer algorithm
	Divide-and-conquer algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s algorithm
	Strassen’s algorithm
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	H-tree embedding
	H-tree embedding
	H-tree embedding
	Conclusion

	04-Quicksort
	Introduction to Algorithms�6.046J/18.401J
	Quicksort
	Divide and conquer
	Partitioning subroutine
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Pseudocode for quicksort
	Analysis of quicksort
	Worst-case of quicksort
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Best-case analysis
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	More intuition
	Randomized quicksort
	Randomized quicksort analysis
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Quicksort in practice

	05-Linear-Time-Sorting
	Introduction to Algorithms�6.046J/18.401J
	How fast can we sort?
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree model
	Lower bound for decision-tree sorting
	Lower bound for comparison sorting
	Sorting in linear time
	Counting sort
	Counting-sort example
	Loop 1
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 3
	Loop 3
	Loop 3
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Analysis
	Running time
	Stable sorting
	Radix sort
	Operation of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Analysis of radix sort
	Analysis (continued)
	Choosing r
	Conclusions
	Appendix: Punched-card technology
	Herman Hollerith�(1860-1929)
	Punched cards
	Hollerith’s tabulating system
	Operation of the sorter
	Origin of radix sort
	“Modern” IBM card
	Web resources on punched-card technology

	06-Order-Statistics
	Introduction to Algorithms�6.046J/18.401J
	Order statistics
	Randomized divide-and-conquer algorithm
	Example
	Intuition for analysis
	Analysis of expected time
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Summary of randomized order-statistic selection
	Worst-case linear-time order statistics
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Analysis
	Analysis
	Analysis
	Minor simplification
	Developing the recurrence
	Solving the recurrence
	Conclusions

	07-Hashing-I
	Introduction to Algorithms�6.046J/18.401J
	Symbol-table problem
	Direct-access table
	Hash functions
	Resolving collisions by chaining
	Average-case analysis of chaining
	Search cost
	Search cost
	Search cost
	Search cost
	Choosing a hash function
	Division method
	Division method (continued)
	Multiplication method
	Multiplication method example
	Resolving collisions by open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Probing strategies
	Probing strategies
	Analysis of open addressing
	Proof of the theorem
	Proof (continued)
	Implications of the theorem

	08-Hashing-II
	Introduction to Algorithms�6.046J/18.401J
	A weakness of hashing
	Universal hashing
	Universality is good
	Proof of theorem
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Constructing a set of universal hash functions
	Universality of dot-product hash functions
	Proof (continued)
	Fact from number theory
	Back to the proof
	Proof (completed)
	Perfect hashing
	Collisions at level 2
	No collisions at level 2
	Analysis of storage

	09-Randomly-Built-BST
	Introduction to Algorithms�6.046J/18.401J
	Binary-search-tree sort
	Analysis of BST sort
	Node depth
	Expected tree height
	Height of a randomly built binary search tree
	Convex functions
	Convexity lemma
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Jensen’s inequality
	Jensen’s inequality
	Jensen’s inequality
	Analysis of BST height
	Analysis (continued)
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Post mortem
	Post mortem (continued)
	Thought exercises

	10-Balanced-Search-Trees
	Introduction to Algorithms�6.046J/18.401J
	Balanced search trees
	Red-black trees
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Proof (continued)
	Query operations
	Modifying operations
	Rotations
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Pseudocode
	Graphical notation
	Case 1
	Case 2
	Case 3
	Analysis

	11-Augmenting Data Structures
	Introduction to Algorithms�6.046J/18.401J
	Dynamic order statistics
	Example of an OS-tree
	Selection
	Example
	Data structure maintenance
	Example of insertion
	Handling rebalancing
	Data-structure augmentation
	Interval trees
	Following the methodology
	Example interval tree
	Modifying operations
	New operations
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Analysis
	Correctness
	Correctness proof
	Proof (continued)

	12-Skip-Lists
	Introduction to Algorithms�6.046J/18.401J
	Skip lists
	One linked list
	Two linked lists
	Two linked lists as a subway
	Searching in two linked lists
	Searching in two linked lists
	Design of two linked lists
	Analysis of two linked lists
	Analysis of two linked lists
	More linked lists
	lg n linked lists
	Searching in lg n linked lists
	Skip lists
	INSERT(x)
	INSERT(x)
	Example of skip list
	Skip lists
	Skip lists
	With-high-probability theorem
	With-high-probability theorem
	With-high-probability theorem
	Boole’s inequality / union bound
	Analysis Warmup
	Analysis Warmup
	Proof of theorem
	Proof of theorem
	Coin flipping analysis
	Coin flipping analysis
	Coin flipping analysis (cont’d)
	Coin flipping analysis (cont’d)

	13-Amortized-Analysis
	Introduction to Algorithms�6.046J/18.401J
	How large should a hash table be?
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Worst-case analysis
	Tighter analysis
	Tighter analysis
	Tighter analysis (continued)
	Amortized analysis
	Types of amortized analyses
	Accounting method
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis (continued)
	Potential method
	Understanding potentials
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	Potential analysis of table doubling
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Conclusions

	14-Competitive-Analysis
	Introduction to Algorithms�6.046J/18.401J
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	On-line and off-line problems
	Worst-case analysis of self-organizing lists
	Average-case analysis of self-organizing lists
	The move-to-front heuristic
	Competitive analysis
	MTF is O(1)-competitive
	MTF is O(1)-competitive
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	What happens on an access?
	What happens on an access?
	What happens on an access?
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Addendum
	Addendum

	15-Dynamic-Programming
	Introduction to Algorithms�6.046J/18.401J
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1
	Recursive algorithm for LCS
	Recursive algorithm for LCS
	Recursion tree
	Recursion tree
	Recursion tree
	Dynamic-programming hallmark #2
	Dynamic-programming hallmark #2
	Memoization algorithm
	Memoization algorithm
	Memoization algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm

	16-Greedy-Algorithms
	Introduction to Algorithms�6.046J/18.401J
	Graphs (review)
	Adjacency-matrix representation
	Adjacency-matrix representation
	Adjacency-list representation
	Adjacency-list representation
	Adjacency-list representation
	Minimum spanning trees
	Minimum spanning trees
	Example of MST
	Example of MST
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Hallmark for “greedy” algorithms
	Hallmark for “greedy” algorithms
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	MST algorithms
	MST algorithms

	17-Shortest-Paths-I
	Introduction to Algorithms�6.046J/18.401J
	Paths in graphs
	Paths in graphs
	Shortest paths
	Well-definedness of shortest paths
	Well-definedness of shortest paths
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Triangle inequality
	Triangle inequality
	Single-source shortest paths�(nonnegative edge weights)
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Correctness — Part I
	Correctness — Part I
	Correctness — Part II
	Correctness — Part II
	Correctness — Part III
	Correctness — Part III
	Correctness — Part III (continued)
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Correctness of BFS

	18-Shortest-Paths-II
	Introduction to Algorithms�6.046J/18.401J
	Negative-weight cycles
	Negative-weight cycles
	Bellman-Ford algorithm
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Correctness
	Correctness
	Correctness (continued)
	Detection of negative-weight cycles
	Linear programming
	Linear-programming algorithms
	Linear-programming algorithms
	Solving a system of difference constraints
	Solving a system of difference constraints
	Solving a system of difference constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Satisfying the constraints
	Satisfying the constraints
	Satisfying the constraints
	Proof (continued)
	Bellman-Ford and linear programming
	Application to VLSI layout compaction
	VLSI layout compaction

	19-Shortest-Paths-III
	Introduction to Algorithms�6.046J/18.401J
	Shortest paths
	Shortest paths
	All-pairs shortest paths
	All-pairs shortest paths
	Dynamic programming
	Proof of claim
	Proof of claim
	Proof of claim
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication (continued)
	Improved matrix multiplication algorithm
	Floyd-Warshall algorithm
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall
	Transitive closure of a directed graph
	Graph reweighting
	Graph reweighting
	Shortest paths in reweighted graphs
	Shortest paths in reweighted graphs
	Johnson’s algorithm

	XX-Computational-Geometry
	Introduction to Algorithms�6.046J/18.401J/SMA5503�
	Computational geometry
	Computational geometry
	Orthogonal range searching
	Orthogonal range searching
	1D range searching
	1D range searching
	1D range searching
	Example of a 1D range tree
	Example of a 1D range tree
	Example of a 1D range query
	General 1D range query
	Pseudocode, part 1:�Find the split node
	Pseudocode, part 2: Traverse left and right from split node
	Analysis of 1D-RANGE-QUERY
	2D range trees
	2D range trees
	Analysis of 2D range trees
	d-dimensional range trees (d  2)
	Primitive operations: Crossproduct
	Primitive operations:�Orientation test
	Primitive operations:�Sidedness test
	Line-segment intersection
	Sweep-line algorithm
	Slide Number 25
	Sweep-line algorithm
	Analysis
	Correctness

