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=4+ Analysis of algorithms

) s

The theoretical study of computer-program
performance and resource usage.

What’s more important than performance?

e modularity e user-friendliness
e correctness  programmer time
e maintainability < simplicity

e functionality o extensibility

* robustness e reliability
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o= Why study algorithms and
w7 performance?

. Algorlthms help us to understand scalability.

 Performance often draws the line between what
Is feasible and what Is impossible.

 Algorithmic mathematics provides a language
for talking about program behavior.

 Performance is the currency of computing.

 The lessons of program performance generalize
to other computing resources.

 Speed Is fun!
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""""g\ The problem of sorting

)

Input: sequence (a,, a,, ..., a,) of numbers.

Output: permutation (a';, a’,, ..., a',) such

Example:
Input: 8 2 4 9 3 6

Output: 2 3 46 8 9
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Insertion sort

[ INSERTION-SORT (A, n) & A[1..n]

forj«<—2ton
do key «— A |]
i—j-1

pseudocode < while i > 0 and A[i] > key

do Ali+1] « Ali]
[—1-1

\ A[i+1] = key
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Insertion sort

[ INSERTION-SORT (A, n) & A[1..n]

forj«<—2ton
do key «— A |]
[<—j—1

while 1 = 0 and A[i] > key
do A[i+1] « A[i]

i—i—-1
\ Ali+1] = key
1 | J n
A: ? :| |
-
key

sorted
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ALGORIT

=~ Example of insertion sort

8§ 2 4 9 3 6
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ALGORIT

"*~’~"-"‘ Example of insertion sort

“\‘

3 2 4 9 3 6
N
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."-;'—ﬁ",'f Example of insertion sort
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""\"\'," Example of insertion sort
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"""3\ Example of insertion sort
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""""g\ Example of insertion sort

wY
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~ 4+ Example of insertion sort

(
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~ 4+ Example of insertion sort

(
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~ 4+ Example of insertion sort

(
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~ 4~ Example of insertion sort

(
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M(;mi'”

— Runnlng time

1\\‘ =

 The running time depends on the input: an
already sorted sequence Is easier to sort.

 Parameterize the running time by the size of
the Input, since short sequences are easier to
sort than long ones.

* Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.
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- "' Kinds of analyses

1\\‘ -

Worst -case: (usually)

* T(n) = maximum time of algorithm
on any Input of size n.

Average-case: (sometimes)

* T(n) = expected time of algorithm
over all inputs of size n.

* Need assumption of statistical
distribution of Inputs.

Best-case: (bogus)

 Cheat with a slow algorithm that
works fast on some input.
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- "' Machine-independent time

Y e -

What Is insertion sort’s worst-case time?

* It depends on the speed of our computer:
e relative speed (on the same machine),
* absolute speed (on different machines).

BIG IDEA:
* Ignore machine-dependent constants.
 Look at growth of T(n) as n — oo,

“Asymptotic Analysis”

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.21



ALGORITHM

=71 ®-notation

'\\“ e

S

Math:
A(g(n)) ={ f (n) : there exist positive constants c., ¢,, and

nysuchthat 0 <c,g(n) <f(n)<c,g(n)
foralln>n,}
Engineering:
* Drop low-order terms; ignore leading constants.
e Example: 3n3+ 90n? — 5n + 6046 = ©(n3)
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" Asymptotic performance

Y e -

When n gets large enough, a ®(n?) algorithm
always beats a ®(n?) algorithm.

 \We shouldn’t ignore
asymptotically slower
algorithms, however.

 Real-world design
situations often call for a
careful balancing of
engineering objectives.

« Asymptotic analysis Is a

- . useful tool to help to

n Mo structure our thinking.
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.5"—"%"" Insertion sort analysis

Y e

Worst case: Input reverse sorted.
T(n) = Z@(J) —©(n2) [arithmetic series]

Average case: All permutations equally likely.
n
T(n)= Y 0(j/2)=06(n2)
j=2
Is Insertion sort a fast sorting algorithm?

e Moderately so, for small n.
 Not at all, for large n.
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)

""""g\ Merge sort

MERGE-SORT A[l .. n]|
1. If n=1, done.

2. Recursively sort A[ 1. .[n/21]
and A[[n/21+1..n].

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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ALGORITH

‘" Merging two sorted arrays

1\\‘ -

20 12
13 11
7 9
2 1

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.26



" Merging two sorted arrays

Y e -

20 12
13 11
7 9

'

1
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ALGORITH

— I\/Ierglng two sorted arrays

1\\‘ -

20 12 20 12
13 11 13 11
7 9 7 9

2 2

1
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" I\/Ierglng two sorted arrays

1\\‘ -

20 12 20 12
13 11 13 11
7 9 7 9

9

1 2
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ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12
13 11 13 11 13 11
7 9 7 9 7 9

9

1 2
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ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12
13 11 13 11 13 11
7 9 7 9 9

9

1 2 7
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ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11
7 9 7 9 9 9

9

1 2 7
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ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11

7 9 7 9 9

9

1 2 7 9
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ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 11

7 9 7 9 9

9

1 2 7 9
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ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 @

7 9 7 9 9

9

1 2 7 9 11
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ALGORITH

u—-m

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 @ 13

7 9 7 9 9

9

1 2 7 9 11
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ALGORITH

u—-m

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 | 20 12 || 20 12 | 20 12 | 20 12 20@
13 11 | 13 11 | 13 11 || 13 11 13 13

7 9 7 9 9

1 2 7 9 11 12
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ALGORITH

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 | 20 12 || 20 12 | 20 12 | 20 12 20@
13 11 | 13 11 | 13 11 || 13 11 13 13

7 9 7 9 9

1 2 7 9 11 12

Time = ®(n) to merge a total
of n elements (linear time).
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'"""3\ Analyzing merge sort

)

T(n) MERGE-SORT A[l . . n]
/ O(1) 1. If n=1, done.

2T(n/2)| 2. Recursively sort A[ 1../n/21]
Abuse and A[[n/21+1..n7.

/®(”) 3. “Merge” the 2 sorted lists

Sloppiness: Should be T([n/21) + T(In/2]),
but it turns out not to matter asymptotically.
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~ .+~ Recurrence for merge sort

o [e@)ifn=1;
(n) = {2T(n/2) + @) ifn> 1.

« We shall usually omit stating the base
case when T(n) = ®(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

* CLRS and Lecture 2 provide several ways
to find a good upper bound on T(n).
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'“" Recursmn tree

“\‘

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.
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"""' Recursmn tree

“\‘

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.
T(n)
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= .« Recursion tree

WY

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

- ch —
T(n/2) T(n/2)
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~ 4~ Recursion tree
Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.
ch

\
cn/2 cn/2

/. /. O\
T(/4)  T(n/4) T(n/4)  T(n/4)
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: Recursion tree

-
W,
A

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

ch
\
cn/2 cn/2
/ VAN

cn/4 cn/4 cn/4 cn/4
/

o(1)
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=~ < Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.
ch

\
cn/2 cn/2

) /N /N
h=1Ign 4 cn/4 cn/4 cn/4
/

o(1)
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h=lgn o
/

o(1)

September 7, 2005

cn/2 cn/2
/ VAN

cn/4 cn/4 cn/4
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cn/2 cn/2 cn
RN N

h=lgn o cn/4 cn/4 cn/4
/

o(1)
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N=1gn cn4
/

o(1)

September 7, 2005

o -~ cn
cn/2 CNJ2 e cn
VAN VAN
cn/4 cn/4 cn/4 - cn
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N=1gn cn4
/

September 7, 2005

e -~ cn
cn/2 cn/2 e cn
VAN VAN
cn/4 cn/4 cn/4 - cn
"""""" #leaves = n l @(n)
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h=lgn o
/

September 7, 2005

CN e ch
\

cn/2 cn/2 cn
VAN VAN

cn/4 cn/4 cn/4 - cn
------------ #leaves = n l O(n)

Total = ©®(n lg n)
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.-" " Conclusions

1\\‘ -

e ®O(n lg n) grows more slowly than ®(n?).

* Therefore, merge sort asymptotically
beats Insertion sort in the worst case.

* In practice, merge sort beats insertion
sort for n > 30 or so.

 Go test it out for yourself!
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Introduction to Algorithms
6.046J/18.401)

LECTURE 2
Asymptotic Notation

* O-, QO-, and ®-notation
\ ﬁ Recurrences

 Substitution method

e Iterating the recurrence
e Recursion tree

e Master method

ALGORITHMS

Prof. Erik Demaine
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~ &+ Asymptotic notation

O-notation (upper bounds):

"We write f(n) = O(g(n)) if there
exist constants ¢ > 0, n, > 0 such
Jhat 0 <f(n) <cg(n) for all n > n,,. y

~

September 12, 2005
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}\.

~ 4~ Asymptotic notation

O-notation (upper bounds):

"We write f(n) = O(g(n)) if there
exist constants ¢ > 0, n, > 0 such
Jhat 0 <f(n) <cg(n) for all n > n,,. y

~

ExamvpLe: 2n% = O(n?)

September 12, 2005
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.-i:',\'f"_' Asymptotic notation

O-notation (upper bounds):

"We write f(n) = O(g(n)) if there
exist constants ¢ > 0, n, > 0 such
Jhat 0 <f(n) <cg(n) for all n > n,,. y

ExamvmpLe: 2n=0(n%) (c=1,n,=2)

/

functions,
not values
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i-;';'_"_' Asymptotic notation

O-notation (upper bounds):

"We write f(n) = O(g(n)) if there
exist constants ¢ > 0, n, > 0 such
Jhat 0 <f(n) <cg(n) for all n > n,,. y

ExamvpLe: 2n=0(n%) (c=1,n,=2)

_ / funny, “one-way™
functions, equality
not values
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!\',\"" Set definition of O-notation

( O(g(n)) = { f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < f(n) < cg(n)
foralln>n, }

\_ /
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""" Set definition of O-notation

/ O(g(n)) = { f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < f(n) < cg(n)
foralln>n, }

o

ExampLE: 2n? € O(n?)

/
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- "' Set definition of O-notation

/ O(g(n)) = { f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < f(n) < cg(n)
foralln>n, }

\_

ExampLE: 2n? € O(n?)

(Logicians: An.2n* € O(An.n?), but it’s
convenient to be sloppy, as long as we
understand what’s really going on.)

/
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- ." Macro substitution

Y e -

Convention: A set in a formula represents
an anonymous function in the set.
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'*"""' Macro substitution

‘\“ :

Convention: A set in a formula represents
an anonymous function in the set.

ExampLe:  f(n) =n3 + O(n?)
means
f(n) = n3 + h(n)
for some h(n) € O(n?) .
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=+ Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

ExampLe:  n2+ O(n) = O(n?)
means
for any f(n) € O(n):
n¢ + f(n) = h(n)
for some h(n) € O(n?) .
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ALGORITHMS

~ 4~ Q-notation (lower bounds)

VY i

O-notation Is an upper-bound notation. It
makes no sense to say f(n) is at least O(n?).
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“ .+ Q-notation (lower bounds)

O-notation Is an upper-bound notation. It
makes no sense to say f(n) is at least O(n?).

¢ Q(g(n)) ={ f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < cg(n) < f(n)
foralln>n, }

- /
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ALGORITHMS

-y

-

)|

QQ-notation (lower bounds)

| :
1\\‘ o

O-notation Is an upper-bound notation. It
makes no sense to say f(n) is at least O(n?).

¢ Q(g(n)) ={ f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < cg(n) < f(n)
foralln>n, }

o
ExampLe: /n=Q(lgn) (c=1,n,=16)
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'“\"'," ®-notation (tight bounds)

ALG
W,
Y

- eEm)=0Em) N QEM)
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¥7% @-notation (tight bounds)

v \‘

- eEm)=0Em) N QEM)

EXAMPLE: %nz —2n=0(n°)
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~ &+ o-notation and w-notation

O-notation and Q-notation are like < and >.
o-notation and m-notation are like < and >.

“o(g(n)) = { f(n) : for any constant ¢ > 0,
there Is a constant n, > 0
such that O < f(n) < cg(n)
foralln>n, }

.

~

/

ExampLE: 2n?=0(n%) (n,=2/c)
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~ 4~ o-notation and ®-notation

O-notation and Q-notation are like < and >.
o-notation and m-notation are like < and >.

Ca(g(n)) = { f(n) : for any constant ¢ >0,
there Is a constant n, > 0
such that O < cg(n) < f(n)
foralln>n, } Y

N
ExampLe: \/n =w(lgn) (n, = 1+1/c)
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ALGORI

" Solvmg recurrences

1\\‘ =

* The analysis of merge sort from Lecture 1
required us to solve a recurrence.

 Recurrences are like solving integrals,
differential equations, etc.

o Learn a few tricks.

e Lecture 3: Applications of recurrences to
divide-and-conquer algorithms.
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- Substltutlon method

“\‘

The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.
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=~ Substitution method

The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

ExampPLE: T(n) =4T(n/2) +n
e [Assume that T(1) = ©(1).]
* Guess O(n?) . (Prove O and Q) separately.)

e Assume that T(k) <ck*fork<n.
* Prove T(n) < cn® by induction.
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Example Of SU bStitUtiOn

Y
1\\‘ \‘ ik

.'-“'

T(n)=4T(n/2)+n
<4c(n/2)3 +n
=(c/2)n3+n
=cn3 —((c/2)n3 —n) — desired — residual
< cn3 — desired

whenever (c/2)n®—n >0, for

example, if ¢ > 2 antbe 1,
residual
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,; Example (continued)

)

* \We must also handle the initial conditions,
that Is, ground the induction with base
cases.

» Base: T(n) = ®(1) for all n <ng,, where n,
IS a sultable constant.

e For 1 <n <ng we have “O(1)” < cn?, if we
pick c big enough.
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.;—'«' Example (continued)

* We must also handle the initial conditions,
that Is, ground the induction with base
cases.

» Base: T(n) = ®(1) for all n <ng,, where n,
IS a suitable constant.

e For 1 <n <ng we have “O(1)” < cn?, if we
pick c big enough.

This bound is not tight!
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;".‘"“ < A tighter upper bound?

Y e

We shall prove that T(n) = O(n?).
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~ 4~ Atighter upper bound?

We shall prove that T(n) = O(n?).

Assume that T(k) < ck? for k < n:
T(n)=4T(n/2)+n

£4C(n/2)2 +N

=cn® +n

= 0(n%)
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"'"*,\ A tighter upper bound?

We shall prove that T(n) = O(n?).

Assume that T(k) < ck? for k < n:
T(n)=4T(n/2)+n

£4C(n/2)2 +N

=cn® +n

= OX) Wrong! We must prove the I.H.
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""""\\ A tighter upper bound?

We shall prove that T(n) = O(n?).

Assume that T(k) < ck? for k < n:
T(n)=4T(n/2)+n
< 4c3(n/2)2 +N
=cn® +n
= OX) Wrong! We must prove the I.H.
=cn2 —(—n) [ desired —residual ]
<cn4 for no choice of ¢ > 0. Lose!
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,E. A tighter upper bound!

ARV Ve

IDEA: Strengthen the inductive hypothesis.
e Subtract a low-order term.

Inductive hypothesis: T(k) < ¢,k? — ¢,k for k <n.
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ALG

"'"'*,\ A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
e Subtract a low-order term.

Inductive hypothesis: T(k) < ¢,k? — ¢,k for k <n.
T(n) =4T(n/2) +n
= 4(c,(n/2)? - c,(n/2)) + n
=CcN°—2c,n+n
=¢,N*—c,n—(c,n—n)
<c¢n?—c,n ifc, > 1.
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."-;'—3_ A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
e Subtract a low-order term.

Inductive hypothesis: T(k) < ¢,k? — ¢,k for k <n.
T(n) =4T(n/2) +n
= 4(c,(n/2)? - c,(n/2)) + n
=CcN°—2c,n+n
=¢,N*—c,n—(c,n—n)
<c¢n?—c,n ifc, > 1.
Pick c, big enough to handle the initial conditions.
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M(;mi'”

" Recursmn tree method

1\\‘ =

« A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

 The recursion-tree method promotes intuition,
however.

 The recursion tree method Is good for
generating guesses for the substitution method.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32



"""" Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + nZ:
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"'""' Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n:
T(n)
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~ .+ Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

2
— ; ™~
T(n/4) T(n/2)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35



R
Solve T(n) = T(n/4) + T(n/2) + nZ:
2
/ ’ \

(n/4)? (n/2)?

/. /. O\
T(n/16) T(n/8) T(n/8)  T(n/4)
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= o~ Example of recursion tree
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R
Solve T(n) = T(n/4) + T(n/2) + n?:
2
/n \
(n/4)? (n/2)?
AN RN
(n/16)?  (n/8)%  (n/8)?  (n/4)?
o)
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= o~ Example of recursion tree
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(n/4)? (n/2)?
AN VN
(n/16)>  (n/8)? (n/8)?  (n/4)?

o(1)
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(n/4)- (N/2)2 e n2
7N /N

(n/16)?  (n/8)%  (n/8)?  (n/4)?

o(1)
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A E—— N2
/ \
(n/4)? (n/2)2 2.0
/N VRN o5
(n/16)>  (n/8)>  (n/8)? (n/4)? 256 n2
/

o(1)
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A E—— n2
(n/4)? (N/2)2 s 16"
RN 7\ 25
(n/16)>  (n/8)>  (n/8)2  (n/4)?—— Sgen?
/ =
0(1 _ 2 3
(1) Total =n (1+16+(1%) +(156) +)

=®(n%) geometric series
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."—'«" The master method

Y e

The master method applies to recurrences of
the form

T(n) =aT(n/b) +f(n),

wherea>1,b>1, and f I1s asymptotically
positive.
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"”""' Th ree cCOmmon cases

“\‘

Compare f(n) with n'o%ba:
1. f(n) = O(n'92-2) for some constant ¢ > 0.

* f(n) grows polynomially slower than n'ed?
(by an n@ factor).

Solution: T(n) = ®(n'o%a)
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Compare f(n) with n'ogba;
1. f(n) = O(n'o%a-¢) for some constant ¢ > 0.

* f(n) grows polynomially slower than n'ed?
(by an n@ factor).

Solution: T(n) = ®(n'o%a)
2. f(n) = ®(n'°%2 |gkn) for some constant k > 0.

e f(n) and n'°%2 grow at similar rates.
Solution: T(n) = ®(n'o%a |gk+in)
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== Three common cases (cont.)

Compare f(n) with n'ogba;

3. f(n) = Q(n'o%a+*2) for some constant ¢ > 0.

* f(n) grows polynomially faster than n'o%? (by
an n¢ factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) =O(f(n)).
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= Examples

Ex. T(n) =4T(n/2) +n
a=4,b=2=nlogwa=n? f(n) =n.
Case 1: f(n) = O(n?-¢) for g = 1.
- T(n) = O(n?).
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Ex. T(n) =4T(n/2) +n
a=4,b=2=nlogwa=n? f(n) =n.
Case 1: f(n) = O(n?-¢) for g = 1.
- T(n) = B(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2=nlga=n? f(n) =n?
Case 2: f(n) = ®(n?lg®n), that is, k = 0.
- T(n) = ©(n?lgn).
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e Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nlga=n? f(n) =ns
Case 3:f(n)=Q(n**¢) fore =1
and 4(n/2)? < cn?(reg. cond.) for c = 1/2.
- T(n) = O(nd).
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=t Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nlga=n? f(n) =ns
Case 3:f(n)=Q(n**¢) fore =1
and 4(n/2)? < cn?(reg. cond.) for c = 1/2.
- T(n) = O(nd).

Ex. T(n) =4T(n/2) + n4/lgn
a=4,b=2= nlda=n2 f(n) =n?lgn.
Master method does not apply. In particular,
for every constant € > 0, we have n® =w(lgn).
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.~ ldea of master theorem

Recursion tree:
f(n) .
P e N
f(n/b) f(n/b) --- f(n/b)
P N

f(n/b?) f(n/b?) --- f(n/b?)
/

(1)
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Recursion tree:
f(n)—7r———— f(n)

AN NCY
f(nib) f(n/b) -+ f(n/b)——af(n/b)

@

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/

()
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Recursion tree:
| f(n)—7r———— f(n)

&
f(n/b) f(n/b) - f(n/b)——af(n/b)
h =loggn /\/\_)\a

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/

()

\4
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Recursion tree:
| f(n)—7r———— f(n)

AN NCY
f(nib) f(n/b) -+ f(n/b)——af(n/b)

h =loggn /\/‘_)\a

f(n/b2) f(n/b?) - f(n/b?) e a2f (n/b?)
/
" #leaves = a" _
’ = glogbn
| TQA) e nlogba 77(1)

= nlogha
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f(/b) f(n/b) -~ f(n/b)——af(n/b)
h =log,n /\/‘)\a

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/

" (CASE 1: The weight increases
/- |geometrically from the root to the
| 7(1) |leaves. The leaves hold a constant [ n'°%277(1)

fraction of the total weight.
@(nlogba)
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Recursion tree:
| f(n)—7r———— f(n)

AN NCY
f(nib) f(n/b) - f(n/b)—af(n/b)

h =loggn /\/‘_)\a

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/
/: (CASE 2: (k = 0) The weight ;
______ Is approximately the sameon|
V) each of the log,n levels. nee27(1)
®(n'o923]g n)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.55



~ 4~ ldea of master theorem

Recursion tree:
t f(n) g f(n)

&
f(n/b) f(n/b) - f(n/b)-—af(n/b)
h =loggn /\/‘)\a

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/

* (CASE 3: The weight decreases
/- |geometrically from the root to the
| 7(1) |leaves. The root holds a constant | n'°%277(1)

fraction of the total weight.
O(t(n))
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Introduction to Algorithms
6.046J/18.401)

ECTURE 3
Divide and Conquer

» Binary search
Coay e Powering a number

 Fibonacci numbers

« Matrix multiplication
e Strassen’s algorithm
* VLSI tree layout

ALGORITHMS

Prof. Erik D. Demaine
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o The divide-and-conquer
~ design paradigm

1. Divide the problem (instance)
Into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
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- """ Merge sort

Y e

1. Divide: Trivial.
2. Conguer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.3



.~"—'-" "' Merge sort

Y e

1. Divide: Trivial.
2. Conguer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) =2T(n/2) + ®(N)

# subproblems work dividing
subproblem size and combining
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~ &~ Master theorem (reprise)
: T(n) = aT(n/b) + f(n)

Cask 1: f(n) = O(n'e9a-¢2) constant € > 0
= T(n) = ©(n'o%a)

Cask 2: f(n) = ©(n'°%2 |gkn), constant k > 0
= T(n) = O(n'°o%a |gk+1n)

Case 3: f(n) = Q(n'o9a +2) constant € > 0,
and regularity condition
= T(n) = O(f(n)) .
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.+ Master theorem (reprise)
| T(n) = aT(n/b) + f(n)
Cask 1: f(n) = O(n'e9a-¢2) constant € > 0
= T(n) = ®(n'o9pa)
Cask 2: f(n) = ©(n'°%2 |gkn), constant k > 0
= T(n) = O(n'o%p2 |gk+in)

Case 3: f(n) = Q(n'o9a +2) constant € > 0,
and regularity condition
= T(n) = O(f(n)) .

Merge sort: a=2,b =2 = n'o%a = nlog22 = p
= CAsE2 (k=0) = T(n)=0(nlgn).
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~ &~ Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.
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.-"' " Binary search

“\‘

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15
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.-"' " Binary search

“\‘

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15
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.-"' "' Binary search

Y e

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15
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.-"' "' Binary search

Y e

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15
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.-"' "' Binary search

Y e

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15
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.-"' "' Binary search

Y e

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15
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-

= 4~ Recurrence for binary search

T(n) =1T(n/2) +B(1)

# subproblems work dividing
subproblem size and combining
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!\',\"" Recurrence for binary search

T(n) =1T(n/2) +B(1)

# subproblems work dividing
subproblem size and combining

nlogbd = nlogzl = n0 =1 = Case 2 (k = 0)
= T(n) =O(gn) .
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'“" Powerlng a number

“\‘

Problem: Compute a", where n  \.

Naive algorithm: ®(n).
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Powering a number

,
WY

Problem: Compute a", where n  \.
Naive algorithm: ®(n).

Divide-and-conguer algorithm:

- anz. gniz if nis even;
a(m-D2.g(-D2. 5 if nis odd.
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~ .~ Powering a number
Problem: Compute a", where n  \.
Naive algorithm: ®(n).

Divide-and-conguer algorithm:

an=-Dz.g=-02. 3 ifnis odd.

T(n) =T(n/2) + ®(1) = T(n) =6(lgn).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
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AN =
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- Fibonacclt numbers

Y
1\\‘ \‘ ik

._.N. =

Recursive definition:

0 if n=0;
F =<1 ifn=1;
ko +F, 1fn>2

0 1 1 2 3 5 8 1321 34 ---
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= 4~ FIbonacci numbers

Recursive definition:

0 if n=0;
F =<1 ifn=1;
ko +F, 1fn>2

0 1 1 2 3 5 8 1321 34 ---

Naive recursive algorithm: Q(¢")
(exponential time), where ¢ =(1+/5)/2
IS the golden ratio.
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i Computlng Fibonacci
« " numbers

Bottom-up:

* Compute F, F,, F,, ..., F, In order, forming
each number by summing the two previous.

e Running time: ®(n).
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i Computlng Fibonacci
« " numbers

Bottom-up:

* Compute F, F,, F,, ..., F, In order, forming
each number by summing the two previous.

e Running time: ®(n).
Nailve recursive squaring:

F. = ¢"/\/5 rounded to the nearest integer.
 Recursive squaring: ®(lg n) time.

 This method Is unreliable, since floating-point
arithmetic Is prone to round-off errors.
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Recursive squaring

- e
Theorem: LT - L
I:n I:n—l
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""""g\ Recursive squaring

)

Theorem: LT :_1 L
I:n I:n—l_ _1 O_

Algorithm: Recursive squaring.
Time =0O(lgn).
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~ 4~ Recursive squaring

Theorem: LT :_1 L
I:n I:n—l_ _l O_

Algorithm: Recursive squaring.
Time =O(lgn).

Proof of theorem. (Induction on n.)

T 41l
F» F 1 1
Base (n=1): | ¢ '|= .
F F|] |1 0
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September 14, 2005

Inductive ste

Fn +1 I:n

0 (N = 2):

Fn I:n -1

Fn

- Fn -1

1

O_
.
O_

~ .~ Recursive squaring

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
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Matrix multiplication

Input: A =[a;], B =[b;]. } L
Output: C = [c;] = A-B. ,)J=1,2,...,n.

(Ciy Cpp - Cin | @&y & =+ &y | [byg b - by,

Co1 Co2 =+ Con | |32 @ -+ Apn | |Da1 bpp -+ Dop

Ch1 Ch2 - Cpyp dn1 Apo ot dpp _bnl bn2 bnn

n
Cij = 2. aik - by
k=1
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"""",\ Standard algorithm

\

-
)

fori< 1ton
do forj« 1ton
do ¢ < 0
fork <« 1ton
do Cj; < Cjj + &y Dy,
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"""",\ Standard algorithm

\
)

fori< 1ton
do forj« 1ton
do ¢ < 0
fork <« 1ton
do Cj; < Cjj + &y Dy,

Running time = ©(n3)
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""" Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r s ab e f

|
777777777777 —

,,,,,,,,,,,,,,,

t u cd g h

r —ae+bhg
s =af +bh | 8 mults of (n/2)x(n/2) submatrices

t =ce+dg g 4 adds of (n/2)x(n/2) submatrices

u=cf +dh_
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""" Divide-and-conquer algorithm

IDEA:

nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r s ab e f

|
777777777777 —

,,,,,,,,,,,,,,,

t u cd g h

r —ae+bhg
s =af +bh
t =ce+dh
u=cf +dg_

CcC = A - B

recursive
SLmuIts of (n/2)x(n/2) submatrices
4 adds of (n/2)x(n/2) submatrices
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‘ AnaIyS|s of D&C algorithm

“\‘

T(n) =8T(n/2) + ©(n?)

G |
# submatrices work adding

. submatrices
submatrix size
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‘\

\
‘\‘

AnaIyS|s of D&C algorithm
T(n) =8T(n/2) + ©(n?)

G |
# submatrices work adding

. submatrices
submatrix size

niodbd = nlog28 = n3 = Case 1 = T(n) = O(nd).
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\
N

""% Analysis of D&C algorithm

.

T(n) =8T(n/2) + ©(n?)

G |
# submatrices work adding

. submatrices
submatrix size

niodbd = nlog28 = n3 = Case 1 = T(n) = O(nd).

No better than the ordinary algorithm.
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.-" "" Strassen’s 1dea

“\‘

. Multlply 2x2 matrices with only 7 recursive mults.
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- Strassen’s 1dea

Y
1\\‘ \‘ ik

._.N. =

* Multiply 2x2 matrices with only 7 recursive mults.

=(a+b)-h

d-(g-e)
@a+d)-(e+h)
(b-d)-(g+h
@a-c)-(e+f)
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St Strassen’s idea

> =a.(f-h) =P +P,—P,+P,
=(a+b)-h s =P, +P,
=(c+d)-e t =P;+P,
U=Ps+P —P3-P;

=(@+d)- (e +h)
=(b-)- (g +1)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37



= 1 Strassen’s idea

= X
WY e

* Multiply 2x2 matrices with only 7 recursive mults.

> =a.(f-h) =P +P,—P,+P,
=(a+b)-h s =P, +P,
=(c+d)-e t =P;+P,
U=Ps+P —P3-P;

=(@+d)-(e+h)
=(b-d)-(g+h) |’ mults, 18 adds/subs.

=(a—c) (e+f) Note: No reliance on
commutativity of mult!
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“ &~ Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P, =a-(f-h) r=P.+P,—P,+P;
,=(a+Db)-h =(a+d)(e+h)
P3=(c+d)-e td(g-e)-(a+b)h
°,=d-(g-¢) +(b-d)(g+h)
P.=(a+d)-(e+h) = ae + ah + de + dh
Pc=(b-d)-(g+h) + dg —de — ah — bh
2o =(a-c)-(e+f1) + bg + bh —dg - dh
= ae + bg
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. Strassen’s algorithm

1 Divide: Partition A and B Into
(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.
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"*'*’”’"J Strassen’s algorithm

1 Divide: Partition A and B Into
(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) = 7T(n/2) + ©(n?)
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"<~ Analysis of Strassen

T(n) = 7T(n/2) + ©(n?)
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.~ Analysis of Strassen
T(n) = 7T(n/2) + ®(n2)

n'odbd = nlog2’ ~ n28l — Case 1 = T(n) = O(n'97),
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‘ =~ Analysis of Strassen

“\‘

T(n) = 7T(n/2) + ©(n?)
n'ogba = nlog2” » n28l = Case 1 = T(n) = O(n'97).

The number 2.81 may not seem much smaller than
3, but because the difference Is In the exponent, the
Impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.
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‘ =~ Analysis of Strassen

“\‘

T(n) = 7T(n/2) + ©(n?)
n'ogbd = nlog2’ ~ n28l — Case 1 = T(n) = O(n'97"),
The number 2.81 may not seem much smaller than
3, but because the difference Is In the exponent, the
Impact on running time is significant. In fact,

Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.

Best to date (of theoretical interest only): ®(n2:376),
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" VLSI layout

1\\‘ -

Problem Embed a complete binary tree
with n leaves in a grid using minimal area.
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“ 4~ VLSI layout
TR

Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

W(n)
l i i
H(In) . .
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" VLSI layout

Y e

Problem Embed a complete binary tree
with n leaves in a grid using minimal area.

W(n)
I i i
H(In) -, L

H(n) = H(n/2) + ©(1)
= 0®(lg n)
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.-";';'\','f VLSI layout

Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

W(n)
l i i
H(In) . .

H(n) =H(n/2) + ©(1) W(n) =2W(n/2) + 6(1)
= 0®(lg n) = O(n)
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.-";'E"\','f VLSI layout

Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

W(n)
l i i
H(In) . .

H(n) =H(n/2) + ®(1) W(n) =2W(n/2) + (1)
= 0®(lg n) = O(n)
Area = ®(n lg n)
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— H -tree embedding

Y e

L(n)

L(n)
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=~ H-tree embedding

L(n)

L(n)

L(n/4) ©(1) L(n/4)
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=~ H-tree embedding

L(n)

L(n) =2L(n/4) + ©(1)
= ®(/n)

L(n)

Area = O(n)

L(n/4) ©(1) L(n/4)
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ALGORIT

" Conclusmn

1\\‘ =

 Divide and conquer Is just one of several
powerful techniques for algorithm design.

 Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

 The divide-and-conquer strategy often leads
to efficient algorithms.
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 \Worst-case analysis

e Intuition
« Randomized quicksort
* Analysis

ALGORITHMS

Prof. Charles E. Leiserson
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ALGORI

W Qumksort

1\\‘ =

* Proposed by C.A.R. Hoare in 1962.
 Divide-and-conquer algorithm.

e Sorts “In place” (like insertion sort, but not
like merge sort).

 Very practical (with tuning).
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.-"' "' Divide and conquer

Y e

chksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements in upper subarray.

< X X > X

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.
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Partitioning subroutine

— ‘- __

PARTlTlON(A p,q) = A[p..(d] -
X < AlLp] > pivot = A[p] [ Running time
| <D = O(n) for n
forj«<p+ltog elements.

doif A[]] <x
then 1« i1+1
exchange Ali] <> Al |]
exchange Al p] <> Ali]
return |

Invariant: | x <X > X ?
p i J g
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~ .~ Example of partitioning

6 [10[13] 5 [8[3 ]2 [11]

]
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~ .~ Example of partitioning

6 [10[13] 5 [8[3 ]2 [11]

]
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~ .~ Example of partitioning

6 [10[13] 5 [8[3 ]2 [11]

| ]
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,;, Example of partitioning

10
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' Example of partitioning

10

ks

11

13

10

11

September 21, 2005

10

13

]

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.12



,“ Example of partitioning

10

ks
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10

11

10

13

11

September 21, 2005

13

10

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.13



,“ Example of partitioning

10

ks
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11
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,“ Example of partitioning

10

ks

11
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10

11
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,“ Example of partitioning

10

ks

5

3

11

13

10

3

11

10

13

11

2
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11
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1

Pseudocode for quicksort

QUICKSORT(A, p, I)
ifp<r
then g <— PARTITION(A, p, I)
QUICKSORT(A, p, g-1)
QUICKSORT(A, g+1, 1)

Initial call: QuicksorT(A, 1, n)
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" Analy3|s of quicksort

1\\‘ =

» Assume all input elements are distinct.

* In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

 Let T(n) = worst-case running time on
an array of n elements.
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”'\"" Worst-case of quicksort

* Input sorted or reverse sorted.
e Partition around min or max element.
 One side of partition always has no elements.

T(n)=TO)+T(n-1)+6(n)
=OQ)+T(n-1)+06(n)
=T(n-1)+0O(n)
=0(n2) (arithmetic series)
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=1 Worst-case recursion tree

T(n) =T(0) + T(n-1) + cn

AR :
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~I'-l_1? Worst-case recursion tree
T(n) = T(0) + T(n—1) + cn
T(n)
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ALGORITHM

.""""-j;,j Worst-case recursion tree
T(n) = T(0) + T(n—1) + cn

Cch
TN
T(0) T(n-1)
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~ .+ Worst-case recursion tree
T(n) = T(0) + T(n—1) + cn

cn
TN
T(0) c(n-1)
TN
T(0) T(n-2)
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~ .+ Worst-case recursion tree
~ T()=T(0) + T(n-1) +cn
CN
<
T(0) c(n-1)
< N
T(0) c(n-2)
an
T -
~
6(1)
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~ .+ Worst-case recursion tree
T(n) = T(0) + T(n—1) + cn

cn n
T(O{ C\(n—l) / @[k kj = @(nz)
RS =1

T(0) c(n-2)
7
TO) -
~
O(1)
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B Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn

4 Ccn n
o) ci-1) ({Zk] =6(n?)
RS k=1
O(1) c(n-2)
h=n S T(n) = O(n) + O(n?)
e1) - = O(n?)
~
O(1)
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Best -case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

T(n) =2T(n/2) + B(n)
=0®(nlgn) (same as merge sort)

9

What if the split Is always To ‘107

T(n)=T(in)+T(2n)+O(n)
What is the solution to this recurrence?
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= 4~ Analysis of “almost-best™ case

T(n)
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.5"—"%"" Analysis of “almost-best™ case

Y e

T(lo)/ \(10 °n)
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<~ Analysis of “almost-best” case

’J
V|
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~ .~ Analysis of “almost-best™ case

CN oSS - mmmmmmmm e cn
/ \
- CIN SN Ao chn
AN 7 N\ o9
10Ocn 1gocn 1800” 1%100n X-------- cn

/ /NN T\

@(’i) O(n) leaves l

..\

A(1)
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1 9 9 81
100/Cn 100 cn 100 cn 100 CN -X-------- cn

7\ 7\ \

@(’i) O(n) leaves l ."\

®(nlgn) O(1)

Lucky! cnlog,,n <T(n) <cnlogyen + O(N)
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ALGORITHMS

~ .+ More Intuition

Suppose we alternate lucky, unlucky,

luc

Ky, unlucky, lucky, ....
_(n) =2U(n/2) + ®(n) lucky

Jn)=L(n-1) + O(n) unlucky

Solving:
L(n) =2(L(n/2-1) + ®(n/2)) + B(n)

=2L(n/2 - 1) + B(n)
=0 lgn) Lucky!

How can we make sure we are usually lucky?

September
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ALGORIT

- Randomlzed quicksort

1\\‘ =

IDEA: Partition around a random element.

e Running time is independent of the input
order.

* No assumptions need to be made about
the input distribution.

* No specific input elicits the worst-case
behavior.

* The worst case Is determined only by the
output of a random-number generator.
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== Randomized quicksort
~ analysis
Let T(n) = the random variable for the running

time of randomized quicksort on an input of size
n, assuming random numbers are independent.

Fork=0,1, ..., n=1, define the indicator
random variable

“ - { 1 if PARTITION generates a k : n—k—1 split,
<~ L0 otherwise.

E[X,] = Pr{X,=1} = 1/n, since all splits are
equally likely, assuming elements are distinct.
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71 Analysis (continued)

" T(0) + T(n=1) + ®(n) if 0:n-1 split,
T(1) + T(n=2) + ®(n) 1f 1:n-2 split,

. T(n—l.) + T(0) + ®(n) 1f n—1:0 split,

3 X, (T(K)+T (n—k —1) +©(n))
k=0
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"*'*’”’"J Calculating expectation

“\‘

n-1
E[T(n)]= {ZXK(T(k)+T(n—k—1)+®(n))

k=0

Take expectations of both sides.
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=« Calculating expectation
E[T(n)]= EerXk(T(k) +T(n—-k-1) +®(n))}
k=0
= nfE[xk(T(k) +T(n—k-1)+6O(n))]
k=0

Linearity of expectation.
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=« Calculating expectation

E[T(n)]= EerXK(T (K)+T(n—k-1)+ @(n))}
k=0

nN—

1E[Xk(T(k) +T(n—k—-1)+0O(n))]
0

SN

- fE[xk]- E[T (k) +T(n—k —1) + ©(n)]
k=0

Independence of X, from other random
choices.
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"<+ Calculating expectation

E[T(n)]= EerXK(T (K)+T(n—k-1)+ @(n))}

k=0

[ (TK)+T(n-k -1) +06(n))]

[ J-E[TK)+T(n—k 1) +0O(n)]

\ =

Z @)+ L S -k-0]+ L Tom)

Ny—o Ny—o

Linearity of expectation; E[X,| = 1/n.
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- Calculating expectation

Y
1\\‘ \‘ ik

.'-“'

n-1

Err<n>]:E{zkakmm—k—1>+@<n>>

k=0

= Y E[X (T(K)+T(n—k—-1)+©O(n))]

= Y E[X, ] E[T(K) +T(n—k —1) + ©(n)]

n—1 n-1 n-1
LS E[T)]+L S E[T(n-k-1]+1 S o(Nn)
Ny o M=o Ny =0
:2n§E[T(k)]+ ®(n)  Summations have
=1 identical terms.
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YRITHMS

~ 4~ Halry recurrence

.

"™ A T

n—1
ET(n)]=2 X E[T(K)]+ ©(n)
k=2

(The k =0, 1 terms can be absorbed in the ®(n).)

Prove: E[T(n)] <anlgn for constanta > 0.

» Choose a large enough so that anlgn
dominates E[T(n)] for sufficiently small n > 2.

n—1
Use fact: ) klgk <inZlgn—1n2 (exercise).
k=2
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= Substltutlon method

E[T (n)]< 2 nZ ak Igk + ©(n)

Substitute inductive hypothesis.

September 21, 2005
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Use fact.
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~ .~ Substitution method

n-1
E[T(n)]< 2 aklgk + ©(n)
Ng=2
<28 lp2gp 1n2j+®(n)

Express as desired — residual.
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Substitution method
E[T ()] sZnZ ak Igk + ©(n)

_2a(l.» 12)
nZlgn—=n¢4 |+ O(n
n(Z J 8 (n)

—anlgn —(a4”—®(n))

<anlgn,

If a IS chosen large enough so that
an/4 dominates the ®(n).
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ALGORI

W chksort In practice

1\\‘ =

 Quicksort Is a great general-purpose
sorting algorithm.

 Quicksort is typically over twice as fast
as merge sort.

 Quicksort can benefit substantially from
code tuning.

 Quicksort behaves well even with
caching and virtual memory.
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\ m Linear-Time Sorting
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 Radix sort
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— How fast can we sort?

1\\‘ -

AII the sorting algorithms we have seen so far

are comparison sorts: only use comparisons to
determine the relative order of elements.

 E.Q., Insertion sort, merge sort, quicksort,
heapsort.

The best worst-case running time that we’ve
seen for comparison sorting i1s O(nlgn).

Is O(nlgn) the best we can do?

Decision trees can help us answer this question.
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”"" « Decision-tree example

“\‘

Sort <a1, Ay, ..y

Each internal node is labeled i) for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if a; <
* The right subtree shows subsequent comparisons if a; > a;.
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"'"'*,\ Decision-tree example

=(9,4,6):

Each internal node is labeled i) for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if a; < a;.
* The right subtree shows subsequent comparisons if a; > a;.
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"'"'*,\ Decision-tree example

=(9,4,6):

Each internal node is labeled i) for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if a; < a;.
* The right subtree shows subsequent comparisons if a; > a;.
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"'"'*,\ Decision-tree example

=(9,4,6):

Each internal node is labeled i) for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if a; < a;.
* The right subtree shows subsequent comparisons if a; > a;.
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Sort <a11 a21 a3>
=(9,4,06):

Each leaf contains a permutation {rt(1), ©(2),..., m(n)) to
Indicate that the ordering a, ) <a,, < --- <a,, has been
established.
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NS | Decision-tree model

A decision tree can model the execution of
any comparison sort:

 One tree for each input size n.

 View the algorithm as splitting whenever
It compares two elements.

 The tree contains the comparisons along
all possible instruction traces.

* The running time of the algorithm = the
length of the path taken.

 Worst-case running time = height of tree.
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m L_ower bound for decision-
- tree sorting

Theorem. Any decision tree that can sort n
elements must have height Q(nlgn).

Proof. The tree must contain > n! leaves, since
there are n! possible permutations. A height-h
binary tree has < 2" leaves. Thus, n! < 2",

. h >1g(n!) (Ig I1s mono. Increasing)
> 1g ((n/e)™) (Stirling’s formula)
=nlgn-nlge

=Q(nlgn).

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.9



ha L_ower bound for comparison
~7 sorting

Corollary. Heapsort and merge sort are
asymptotically optimal comparison sorting
algorithms.
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"'"*,\ Sorting In linear time

Counting sort: No comparisons between elements.

e Input: A[1..n], where A[]]le{1, 2, ..., k}.
e Output: B[1 .. n], sorted.
 Auxiliary storage: C[1 .. K].
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~ &~ Counting sort
fori< 1tok

do C[i] <~ 0
forj<« 1ton

do C[A[JII <~ C[A[JII+1 = C[i] = [{key = 1}]
fori< 2tok

do C[i] « C[i] + C[i-1] = CJi] = |{key <i}]
for | <~ ndownto 1

do B[C[A[J]I] <- AL}

CIALJ]] « C[A[J]] -1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.12



ALGORITHMS

September 26, 2005

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L5.13



fori< 1tok
do C[i] <0
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forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]
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forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]
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forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]
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forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]
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forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]
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fori <« 2tok
do C[i] <« C[i] + C[i-1]

> C[i] = [{key < i}
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fori <« 2tok
do C[i] <« C[i] + C[i-1]

> C[i] = [{key < i}
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fori <« 2tok
do C[i] <« C[i] + C[i-1]

> C[i] = [{key < i}
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for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1
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for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1
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for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1
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for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1
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B:13344I C:101 1|3

for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1
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\ Analysis

OKk) -~
®n) -

k) -

O(n) <

O(n + k)

" fori< 1tok
. doC[i]«0
forj <« 1ton

L doCIA[j]] « CIA[j]] +1
" fori<2tok
L. doCJi] « C[i] + C[i-1]
] for | «— ndownto 1
do B[C[A[]]]] <= AL
. CIALIIl <« CIA[J]] -1
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.!‘*"'—'ﬁ" "' Running time

Y e

If k = O(n), then counting sort takes ®(n) time.
 But, sorting takes C2(nlgn) time!
* Where’s the fallacy?

Answer:
e Comparison sorting takes Q(nlgn) time.
e Counting sort Is not a comparison sort,

* In fact, not a single comparison between
elements occurs!
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= Stable sorting

Counting sort is a stable sort: It preserves
the input order among equal elements.

Al 411343

B:13344I

Exercise: What other sorts have this property?
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- "' Radix sort

Y e -

 Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See
Appendix [@).)

* Digit-by-digit sort.

 Hollerith’s original (bad) idea: sort on
most-significant digit first.

» Good Idea: Sort on least-significant digit
first with auxiliary stable sort.
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329
457
657
839
436
720
355

720
3955
430
457
657
329
839

(20
329
430
839
355
45 /1
657

: Operation of radix sort

329
355
430
45 7
657
(20
839

N

September 26, 2005
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Al

Induction on digit position

* Assume that the numbers
are sorted by their low-order
{— 1 digits.

e Sorton digit t

September 26, 2005

~ 4~ Correctness of radix sort

720
329
430
839
355
457
657

329
355
436
45 7
657
(20
839

__
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ALGORIT

)

Induction on digit position

e Assume that the numbers
are sorted by their low-order

{— 1 digits.
e Sorton digit t

= Two numbers that differ In
digit t are correctly sorted.

= 4~ Correctness of radix sort

720 329
329 355
436 436
839 45 7
355 657
457 (20
657 839

__
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ALGORITHM

wY

Induction on digit position

e Assume that the numbers
are sorted by their low-order
{— 1 digits.

e Sorton digit t

= Two numbers that differ In
digit t are correctly sorted.

= Two numbers equal in digit t
are put in the same order as
the input = correct order.

~ 4~ Correctness of radix sort

720 329
329 355
436—>4360

839 457
355/657
457 (20

657 839

__
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“ 4~ Analysis of radix sort

Y N\ o

e Assume counting sort is the auxiliary stable sort.
 Sort n computer words of b bits each.

 Each word can be viewed as having b/r base-2'
digits. s 8 8 8

Example: 32-bit word
r =8 = b/r = 4 passes of counting sort on
base-28 digits; or r = 16 = b/r = 2 passes of
counting sort on base-21° digits.

How many passes should we make?
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S AnaIyS|s (continued)

VY s

Recall Counting sort takes ©(n + k) time to
sort n numbers in the range from O to k — 1.

If each b-bit word is broken into r-bit pieces,
each pass of counting sort takes ®(n + 2") time.
Since there are b/r passes, we have

T(n,b) :®(E(n+2r)) |

Choose r to minimize T(n, b):
e Increasing r means fewer passes, but as
r >>|g n, the time grows exponentially.
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."—'«" Choosing r

T(n,b) = @(b (n +2 ))

r
Minimize T(n, b) by differentiating and setting to O.

Or, just observe that we don’t want 2" > n, and
there’s no harm asymptotically in choosing r as
large as possible subject to this constraint.

Choosing r = Ign implies T(n,b) = ®(bn/lgn).

 For numbers in the range from 0 to n% - 1, we
have b = d Ig n = radix sort runs in ®(dn) time.
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> "' Conclusions

1\\‘ -

In practlce, radix sort Is fast for large Iinputs, as
well as simple to code and maintain.

Example (32-bit numbers):
* At most 3 passes when sorting > 2000 numbers.

» Merge sort and quicksort do at least | Ig 2000 | =
11 passes.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
quicksort fares better on modern processors,
which feature steep memory hierarchies.
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\ Appendix: Punched-card
~* technology

e Herman Hollerith (1860-1929)

* Punched cards

 Hollerith’s tabulating system
 Operation of the sorter

 Origin of radix sort

e “Modern” IBM card

* Web resources on punched-card geum to jast
technolo_qy slide viewed.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.40




w# Herman Hollerith
~37 (1860-1929)

e The 1880 U.S. Census took almost
10 years to process.

* While a lecturer at MIT, Hollerith
prototyped punched-card technology.

* His machines, including a “card sorter,” allowed
the 1890 census total to be reported in 6 weeks.

 He founded the Tabulating Machine Company In
1911, which merged with other companies in 1924
to form International Business Machines.
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ALGORITHMS

.-" ." Punched cards

“\‘

e Punched card = data record.
 Hole = value.
 Algorithm = machine + human operator.
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Replica of punch
card from the
1900 U.S. census.

[Howells 2000]
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http://www.oz.net/%7Emarkhow/writing/holl.htm

THE FIRST

ALGORITHMS HOLLERITH
Ll ical
[P Ty —— CENSUS COUNTING MACHINE
T 1890
\ N\ \‘
WY el

Hollerith’s
tabulating

system

 Pantograph card
punch

*Hand-press reader
Dial counters
Sorting box

IIIIIIIII

Figure from
[Howells 2000].
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AL (_.(}RIIIIM

— Operatlon of the sorter

“\‘

« An operator inserts a card into
the press.

* Pins on the press reach through
the punched holes to make
electrical contact with mercury-
filled cups beneath the card.

* Whenever a particular digit | ]
value Is punched, the lid of the
corresponding sorting bin lifts.

 The operator deposits the card

Hollerith Tabulator, Pantograph, Press, and Sorter

Into the bin and closes the lid. /

* When all cards have been processed, the front panel is opened, and
the cards are collected in order, yielding one pass of a stable sort.
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'“" Orlgln of radix sort

“\‘

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
Into the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the last
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be
a folk invention originated by machine operators.
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http://theory.lcs.mit.edu/classes/6.046/fall01/Hollerith%20patent%201889.pdf

(J(}RIIIIMN

”"'," “Modern” IBM card

WY e

* One character per column.

812345673 2ABCDEFGHI JELMHOPRRS TUMHEYZ IMTRODUCTIOHN TO ALGORITHHMS
L] | 101l in 11
innnnnnna (| | i 1mm 1
| [alalapap=Tsl=paa g e a Tapalat=pap=YaT=hatatale] | | | | 0 | ) Qsf=dsl=ds] [sl=f=] [=) [=Qal=f=] [=Ysf=isi=f=l=f=) [=)=] [alsf=)sf=Ysf=)sf=f=l==]s]=]=]
IRi1111111@1I111111 1111111111111 11111111111111111111111 0111111111111 111111111111

] (i) WA AN W N A N A A NN YA [ N PrOduced by
332023333332 023333233C03232333 0233323333232 3232332232033 32233333333333333333 the WWW
4444044444444 0444444440444444404444444444444Q04444444444444444404444444444444444 V”.tual PunCh'
55555055555555055555555M3555555055555555055555555555555555555555555555555555555

LTSNS [VSTYYonet s [RUonatoversy [SUyop-tone] FEUYn-tobetotoraysy [Svets) [ns) [ARars) [yttt oy oy orey Yo Y o o Yy Card Server

CEE G oA o o I O A O A U A A A A A AT
gagogeaslscscgesslecseseceMe08e88505558558580888858588885858580855858888585858888
EEEEEEEEF] EEEEEFEF] FEEFEFER EREEFERE] EEE EEL EEFER] ERERFERERFE] | R

So, that’s why text windows have 80 columns!
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e Web resources on punched-
~* card technology

* Doug Jones’s punched card index

 Biography of Herman Hollerith

e The 1890 U.S. Census

e Early history of IBM

e Pictures of Hollerith’s inventions

 Hollerith’s patent application (borrowed
from Gordon Bell’s CyberMuseum)

 Impact of punched cards on U.S. history
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Introduction to Algorithms

6.046J/18.401J
sicoiitiivs | | LECTUREG
R en— Order Statistics
.~ | *Randomized divide and
\ ﬁ—\‘ conquer

 Analysis of expected time

* Worst-case linear-time
order statistics

* Analysis

Prof. Erik Demaine
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.**"—"ﬁ' "' Order statistics

Y e

Select the ith smallest of n elements (the
element with rank 1).

e | = 1: minimum;
° | = N: maximum;
i =L(n+1)/2]or| (n+1)/2 |: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = ®(n lg n) + ©(1)
= 0O(n Ig n),

using merge sort or heapsort (not quicksort).
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w== Randomized divide-and-
.‘.'—\ -
«> " conguer algorithm

RAND-SELECT(A, p, 0,1) o ith smallest of A[p..

q]
If p=q then return A|p]

r < RAND-PARTITION(A, p, Q)

K«—r—-p+1 > Kk = rank(A[r])
If 1 =k then return A[r]
if 1<k

then return RAND-SELECT(A, p, r—1,1)
else ret1 |, 2 RAND-SELECT(A, r + 1, ¢, 1 — k)

< Alr] > Alr] l
p r 4
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“ Example
Select the 1 = 7th smallest:

6 110(13| 5|8 | 3| 2 |11 1 =7
nIvot

Partition:
2 5136 |8 13|10 11 k=4

(. J
Y

Select the 7 — 4 = 3rd smallest recursively.
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""\"\'," Intuition for analysis

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) = T(9n/10) + O(n) n'0%10/91 = n0 =1
= O(n) CASE 3
Unlucky:
T(n)=T(nh-1) + ©(n) arithmetic series
= O(n?)

Worse than sorting!
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- Analy3|s of expected time

1\\‘ -

The analy3|s follows that of randomized
quicksort, but it’s a little different.

Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.

Fork=0,1, ... n=1, define the indicator
random variable

“ - { 1 if PARTITION generates a k : n—k—1 split,
< |0 otherwise.
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"'""" +~ Analysis (continued)

To obtain an upper bound, assume that the ith
element always falls in the larger side of the

partition:
" T(max{0, n-1}) + ©(n) if 0:n-1 split,
T(n) =< T(max{1l, n-2}) + ®(n) 1f 1:n-2 split,

_T(max{n-1, 0}) + ®(n) 1f n—1:0 split,

nlek (T (max{k,n —k —13) + ©(n)).
k=0
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.-":'5' Calculating expectation

Y
n—1

E[T(n)]=E| > X, (T (max{k,n—k —1}) + ©(n))

k=0

Take expectations of both sides.
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""""\\ Calculating expectation
.

E[T(n)] = E{ > X (T (max{k,n—k —1}) + ®(n))

k=0

— nz_:lE[Xk(T (max{k,n —k —1}) + ©(n))]
k=0

Linearity of expectation.
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=« Calculating expectation

E[T (n)] = E{nzlxk(T (max{k,n—k —1}) + @(n))}
k=0
= rilE[Xk(T (max{k,n —k —1}) + ©(n))|]

k=0
= nz_:lE[Xk]- E[T (max{k,n—k -1}) + ©(n)]
k=0

Independence of X, from other random
choices.
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= Calculating expectation

E[T(n)] = nz_:lxk(T (max{k,n -k —1}) + ®(n))
k=0

- Z_: E[ X (T (max{k,n —k —1}) + ©(n))]
k=0

— nz_: E[Xy |- E[T (max{k,n -k —=1}) + ©(n)]
k=0

n_

1 Z [T (max{k,n —k —1})]+ ﬁ nf@(n)
k=0

Linearity of expectation; E[X,| = 1/n.
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.~ Calculating expectation
n-1

E[T(n)]=E| > X, (T (max{k,n—k —1}) + ©(n))
k=0

Ir]Z_SLE[XK(T (max{k,n—k —1}) + ©(n))]

0
1

=S5 N
|l

E[X, |- E[T (max{k,n—k —1}) + ®(n)]

|
:3 WA 7?

O
Z [T (max{k,n—k -1)]+1 nf@(n)
k=0 nk=0

ﬁk Z/E[T(k)]+®(”) Upper terms
R appear twice.
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=~ Hairy recurrence
(But not quite as hairy as the quicksort one.)
E[T(n)]= Z E[T (k)]+©(n)
M= = n/2]

Prove: E[T(n)] < cn for constant ¢ > 0.

* The constant c can be chosen large enough
so that E[T(n)] < cn for the base cases.

Use fact: Zk < n (exercise).
k=/n/2|
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""\',"' Substitution method
4
E[T (n)]< 2 ank +O(n)
Me=ln/2.

Substitute inductive hypothesis.
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~ 4~ Substitution method

-1
E[T ()] 32 ch+@(n)
M= =n/2]
2c(3 .2
sn(sn )+(~)(n)

Use fact.
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Substitution method
= -1
E[T(n)] 32 ch+®(n)
E

< ch(gnz) +0(n)

= Cch— (Cz? = @(n))

Express as desired — residual.
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~,\ Substitution method
.
E[T ()] 32 ch+@(n)
N={n/2]
2C( 312
Sn(sn )+®(n)
_~n_CN
=Cn (4 @(n))
<cn,

If ¢ 1S chosen large enough so
that cn/4 dominates the ®(n).
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w= Summary of randomized
~>' - order-statistic selection

» Works fast: linear expected time.
 Excellent algorithm in practice.
e But, the worst case is very bad: ®(n?).

Q. Is there an algorithm that runs in linear
time In the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good pivot recursively.
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m Worst-case linear-time order

~ - gtatistics
SELECT(I, n)

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SeLecT the median x of the | n/5 ]
group medians to be the pivot.

3. Partition around the pivot x. Let k = rank(x).

4.1f 1 =k then return x
elseif 1<k Same as
then recursively SeLecT the ith > RAND-
smallest element in the lower part SELECT
else recursively SeLecT the (i—k)th
smallest element in the upper part
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ALGORITHMS

&+ Choosing the pivot
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ALGORITHMS

Choosing the pivot

® e ¢ ¢ ¢ ¢ ¢ ¢ o
@ e & ¢ ¢ ¢ ¢ ¢ o
® e ¢ ¢ ¢ ¢ ¢ ¢ o
® e ¢ ¢ ¢ ¢ ¢ ¢ o
® 6 ¢ ¢ ¢ ¢ ¢ o

1. Divide the n elements into groups of 5.
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G

'"""3\ Choosing the pivot

-
)

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote. I

greater
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"-*-'-;"""; Choosing the pivot

(o (s (9 (3 (s (s

\
)

e
® ®© 6 O

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote.

2. Recursively SeLecT the median x of the | n/5._
group medians to be the pivot. greater
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:ﬁ Analysis

(o (s (9 (3 (s (s

>
® ®© 6 O

At least half the group medians are < x, which  lesser
is at least | | n/5] /2= n/10] group medians. I

greater
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I Ana|y3|5 (Assume all elements are distinct.)

it

At least half the group medians are < x, which  lesser
is at least | | n/5] /2= n/10] group medians. I

» Therefore, at least 3| n/10 | elements are < x.

greater

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25



ALGORITHMS

“\‘

Ana|y3|5 (Assume all elements are distinct.)

('(' | .@%

At least half the group medians are < x, which  lesser
is at least | | n/5] /2= n/10] group medians. I

e Therefore, at least 3| n/10_| elements are < x.
e Similarly, at least 3| n/10 | elements are > x.  greater
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= 4~ Minor simplification

Ry

« For n > 50, we have 3| n/10 | > n/4.

e Therefore, for n > 50 the recursive call to
SELECT In Step 4 Is executed recursively
on < 3n/4 elements.

 Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) In the worst case.

e For n <50, we know that the worst-case
time 1s T(n) = G(1).
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T(n)

e(n) <

- " Developing the recurrence

SELECT(I, Nn)

" 1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

-2, Recursively SeLecT the median x of the | n/5 ]

T(n/5) =
O(n)

T(3n/4) <

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).

(4. if i =kthen return x
elseif 1 <k
then recursively SELEcT the ith
smallest element in the lower part
else recursively SELecT the (i—k)th

-

X smallest element in the upper part
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~ 4~ Solving the recurrence
T (n) =T(én)+TG’rn)+ O(n)

Substitution: T(n) < lens3Sen+ O(n)
T(n) <cn S 4

- ey O(n)
20

=Ch — (210 ch— @(n))

<cn |

If ¢ Is chosen large enough to handle both the
®(n) and the initial conditions.
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ALGORI

W Conclusmns

1\\‘ =

. Slnce the work at each level of recursion
IS a constant fraction (19/20) smaller, the
work per level Is a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of n Is large.

* The randomized algorithm is far more
practical.

Exercise: Why not divide into groups of 3?
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L ECTURE 7/
Hashing |
e Direct-access tables

— * Resolving collisions by
‘\‘m chaining

» Choosing hash functions
* Open addressing

ALGORITHMS

Prof. Charles E. Leiserson
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Symbol -table problem

N
“\‘

Symbol table S holding n records:

record _
X — Operations on S:

key[x
I * INSERT(S, X)
Other fields  ~ DELETE(S, X)

. containing  ° SEARCH(S, K)
satellite data

How should the data structure S be organized?
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“\‘ st

.’"‘ Direct-access table

IDEA: Suppose that the keys are drawn from
theset U < {0, 1, ..., m—1}, and keys are
distinct. Setup anarray T[0 .. m-1]:

TIK] = {x if X e Kand key[x] =
NIL  otherwise.
Then, operations take ®(1) time.

Problem: The range of keys can be large:
 64-bit numbers (which represent

18,446,744,073,709,551,616 different keys),
* character strings (even larger!).
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.“\ Hash functions

\
\\“ s

Solution: Use a hash function h to map the
universe U of all keys into T
{0, 1, ..., m-1}: 0

h(ky)
h(k,)
h(k;) = h(ks)
h(ks)
m-1

When a record to be inserted maps to an already
occupied slot Iin T, a collision occurs.
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,... Resolving collisions by

=" chaining

e Link records 1n the same slot Into a list.

T

49

86

52

h(49) = h(86) = h(52) = |

Worst case:

* Every key
hashes to the
same slot.

e Access time =
) If S| =n

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5



=~ Average-case analysis of chaining

We make the assumption of simple uniform
hashing:
e Each key k € S Is equally likely to be hashed

to any slot of table T, independent of where
other keys are hashed.

Let n be the number of keys in the table, and
let m be the number of slots.

Define the load factor of T to be
o =n/m
= average number of keys per slot.
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Search cost

-\
“\‘ s

The expected time for an unsuccessful
search for a record with a given key Is
=0(1 + a).
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”" Search cost

\
“\‘ s

The expected time for an unsuccessful
search for a record with a given key Is
= O(1 + op—__ search

AN the list

apply hash function
and access slot

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
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Search cost

\
m‘ .

The expected time for an unsuccessful
search for a record with a given key Is

= O(1 + op—__ search

AN the list

apply hash function
and access slot

Expected search time = ®(1) if o = O(1),
or equivalently, if n = O(m).
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""'" Search cost
The expected time for an unsuccessful
search for a record with a given key Is

= O(1 + op—__ search

AN the list

apply hash function

and access slot

Expected search time = ®(1) if o = O(1),
or equivalently, if n = O(m).

A successful search has same asymptotic
bound, but a rigorous argument is a little
more complicated. (See textbook.)

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10
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Choosmg a hash function

The assumption of simple uniform hashing
IS hard to guarantee, but several common
techniques tend to work well in practice as
long as their deficiencies can be avoided.

Desirata:

A good hash function should distribute the
keys uniformly into the slots of the table.

* Reqgularity in the key distribution should
not affect this uniformity.
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®71 Division method
Assume all keys are integers, and define
h(k) = k mod m.
Deficiency: Don’t pick an m that has a small
divisor d. A preponderance of keys that are

congruent modulo d can adversely affect
uniformity.

Extreme deficiency: If m = 2", then the hash
doesn’t even depend on all the bits of k:

e If k= 1011000111011010, and r = 6, then
h(k) = 011010, . h(k)
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DIVISIOn method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
In the computing environment.

Annoyance:
e Sometimes, making the table size a prime is
Inconvenient.

But, this method is popular, although the next
method we’ll see Is usually superior.
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— Multiplication method

-
’!\“ st

Assume that all keys are integers, m = 2, and our
computer has w-bit words. Define

h(k) = (A-k mod 2%) rsh (w —r),

where rsh Is the “bitwise right-shift” operator and
A'is an odd integer in the range 2"t < A < 2V,

* Don’t pick A too close to 2" or 2V,

« Multiplication modulo 2" is fast compared to
division.

* The rsh operator Is fast.
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,_ Multiplication method
* example
h(k) = (A-k mod 2%) rsh (w —r)

Suppose that m = 8 = 23 and that our computer
has w = 7-bit words:

1011001 _ 5
X 1101011 —
10010100110011

——

h(k) A

Modular wheel 2A
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e Resolving collisions by open
* addressing

No storage Is used outside of the hash table itself.

* Insertion systematically probes the table until an
empty slot is found.

 The hash function depends on both the key and
probe number:

h:Ux{0,1,....m1}—->{0,1, ..., m—1}.
* The probe sequence (h(k,0), h(k,1), ..., h(k,m-1))
should be a permutation of {0, 1, ..., m-1}.

* The table may fill up, and deletion is difficult (but
not impossible).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16




ALGORI

=71 Example of open addressing

MY =

Insert key k = 496:

T
0. Probe h(496,0) ’
586
\ o
204 collision
481
m-1
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ALGORI

=71 Example of open addressing

MY =

Insert key k = 496: T
0. Probe h(496,0) ’ o
1. Probe h(496,1) e collision
204
481
m-1
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=70 Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
ne h(496,1)

2. Probe h(496,2) \

=

U
q
@)

Insertion

m-1
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m < Example of open addressing

“\‘ st

Search for key k = 496:

0. Probe h(496,0)

1. Probe 1(496,1)\ N
2. Probe q(496,2)\\
Search uses the same probe
seguence, terminating suc-

cessfully If it finds the key
and unsuccessfully If it encounters an empty slot.
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v Probmg strategies

\
“\‘ s

Linear probing:

Given an ordinary hash function h'(k), linear
probing uses the hash function

h(k,i) = (h'(k) + i) mod m.

This method, though simple, suffers from primary
clustering, where long runs of occupied slots build
up, increasing the average search time. Moreover,
the long runs of occupied slots tend to get longer.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21



. Probing strategies

Double hashing

Given two ordinary hash functions h,(k) and h,(k),
double hashing uses the hash function

h(k,i) = (h,(K) + i- h,(k)) mod m.

This method generally produces excellent results,
but h,(k) must be relatively prime to m. One way
IS to make m a power of 2 and design h,(k) to
produce only odd numbers.
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e Analy3|s of open addressing

\
“\‘

We make the assumption of uniform hashing:

 Each key Is equally likely to have any one of
the m! permutations as Its probe sequence.

Theorem. Given an open-addressed hash
table with load factor oo = n/m < 1, the
expected number of probes in an unsuccessful
search Is at most 1/(1-a.).
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B2 Proof of the theorem

Proof.

At least one probe Is always necessary.

* With probability n/m, the first probe hits an
occupied slot, and a second probe Is necessary.

* With probability (n—1)/(m-1), the second probe
hits an occupied slot, and a third probe Is
necessary.

* With probability (n—2)/(m-2), the third probe
hits an occupied slot, etc.

Observethat " ' <" =g fori=1.2. ... n.
m—i m
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1\;‘ \‘ TRerae

proof (

Therefore, the ex

continued)

nected number of probes Is

1+ (1+1
m m-1

gt

<l+al+al+a(---A+a)-))

<1+a+a?

w -
— al

1=0
1
l-«

3

+a®+---

The textbook has a
more rigorous proof
and an analysis of
successful searches.
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B Implications of the theorem

e If o IS constant, then accessing an open-
addressed hash table takes constant time.

o If the table is half full, then the expected
number of probes is 1/(1-0.5) = 2.

o If the table i1s 90% full, then the expected
number of probes is 1/(1-0.9) = 10.
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| ECTURE 8

Hashing |1

.  Universal hashing

: ﬁ{ﬁ\‘ Unlversal!ty theorem

R » Constructing a set of
universal hash functions

e Perfect hashing

ALGORITHMS

Prof. Charles E. Leiserson
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A weakness of hashing

\
“\‘ e

Problem: For any hash function h, a set

of keys exists that can cause the average

access time of a hash table to skyrocket.

* An adversary can pick all keys from
{k € U : h(k) =1} for some slot I.

IDEA: Choose the hash function at random,

Independently of the keys.

 Even If an adversary can see your code,
he or she cannot find a bad set of keys,
since he or she doesn’t know exactly
which hash function will be chosen.
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¥ Universal hashing
Definition. Let U be a universe of keys, and
let H Dbe a finite collection of hash functions,
each mapping Uto {0, 1, ..., m-1}. We say

H 1s universal if for all x, y € U, where x # v,
we have [{h € H : h(x) = h(y)}| < [H|/m.

That Is, the chance

of a collision {h : h(x) = h(y)} H

between x and v IS \

< 1/m 1f we choose h

randomly from H. [H] { P - -
m

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3



=1 Universality is good

-
’!\“ st

Theorem. Let h be a hash function chosen
(uniformly) at random from a universal set H

of hash functions. Suppose h Is used to hash
n arbitrary keys into the m slots of a table T.
Then, for a given key x, we have

E[#collisions with x] < n/m.
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m Proof of theorem

\

Proof. Let C, be the random variable denoting
the total number of collisions of keys in T with

~and let .
s . _ [1ifh()=h(y),
XY | 0 otherwise.

Note: E[c,J]=1/mand C,= > c, .
yeT <{x}
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October 5, 2005

D Cyy » Take expectation
yeT —{x} of both sides.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
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E[C,]=E| D, ¢y » Take expectation

| yeT-{x} | of both sides.
= > E[cy] e Linearity of
yeT —{x} expectation.
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ALGORI

BT Proof (continued)

AR\

E[C,]=E| D, ¢y » Take expectation

yeT{x} | of both sides.
= > E[cy] e Linearity of
yeT —{x} expectation.
= > 1/m * E[c,,] = 1/m.
yel <{x}
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ALGORI

BT Proof (continued)

MY =

E[C,]=E| D, cy » Take expectation

yeT{x} of both sides.
= > E[cy] e Linearity of
yeT —{x} expectation.
= > 1/m * E[c,,] = 1/m.
yel {x}
_n-1 « Algebra.
m
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mw= Constructing a set of

. ~_..~“ universal hash functions

Let m be prime. Decompose key kintor + 1
digits, each with value in the set {0, 1, ..., m-1}.
That s, let k = (kg, ky, ..., k), where 0 <k, <m.
Randomized strategy:

Pick a = (a,, a,, ..., a,) where each a; Is chosen
randomly from {0, 1, ..., m-1}.

)
_ - M Dot product,
Define h, (k) = i%&h Ki mod m. modulo m

How bigisH ={h_}? |H|=m""" *’%EI%!EMBER
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m Unlversallty of dot-product
" hash functions

Theorem. The set H = {h_} Is universal.

Proof. Suppose that x = (X,, X, ..., X,y andy =
Vo, Y1, ---, Y, De distinct keys. Thus, they differ
In at least one digit position, wlog position O.
For how many h, € H do x and y collide?

We must have h_(x) = h_(y), which implies that
I I
Zaixi Ezai yi (mOd m) .
i=0 i=0
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7 Proof (continued)

Equivalently, we have

Zr:ai (X —Yy;)=0 (modm)
i—0
or

)
a9 (Xo — Yo) + 2_ai(x; —y;)=0 (modm),
i=1
which implies that

a0 (X0 — Yo) ——Za (Xi —Yy;) (modm).
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®T7% Fact from number theory

Theorem. Let m be prime. Foranyz e Z
such that z = 0, there exists a unique z* € Z

such that
z-7z1=1 (mod m).
Example: m=7.
Z 1 2 3 4 5 06
71l 1 4 5 2 3 6
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Back to the proof
We have r
ay(Xp — Yo) = —Z ai (% —y;) (modm),
1=1

and since x, # Y, , an inverse (X, — Y, )~* must exist,
which implies that

= [— 2.8 (X - Yi)j (X = Yo)™  (modm).
-1

Thus, for any choices of a,, a,, ..., a,, exactly
one choice of a, causes x and y to collide.
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B9 Proof (completed)

“\‘ \‘

Q. How many h,’s cause x and y to collide?

A. There are m choices for each of a,, a,, ..., a,,
but once these are chosen, exactly one choice
for a, causes x and y to collide, namely

= [(_Zai (X — Yi)] (X0 — YO)lj mod m.
i1

Thus, the number of h,’s that cause x and y
to collide is m"- 1 = m' = IH |/m.
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Perfect hashing

; \
“\‘

leen a set of n keys, construct a static hash
table of size m = O(n) such that SEARCH takes
®(1) time In the worst case.

.
IDEA: TWoO- ) il
Ieyel sc_heme . T,
with universal -
hashing at 3 s, (14 =hy(27)=1
both levels. 4 {26} S,

- o= N
No collisions g e =
at level 2!

m a 012 3 456 7 8
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. "”""'" Collisions at level 2

Theorem Let H be a class of universal hash
functions for a table of size m = n?. Then, if we
use a random h € H to hash n keys into the table,
the expected number of collisions is at most 1/2.

Proof. By the definition of universality, the
probability that 2 given keys in the table collide
under h is 1/m = 1/n4. Since there are (2) pairs
of keys that can possibly collide, the expected
number of collisions IS

N ~n(n-1) 1 1
— < .
2 n2 2 n2 2
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. "”""'" No collisions at level 2

Corollary The probability of no collisions
IS at least 1/2.

Proof. Markov’s inequality says that for any
nonnegative random variable X, we have

Pr{X >t} < E[X]/.
Applying this inequality with t = 1, we find
that the probability of 1 or more collisions is
at most 1/2.

Thus, just by testing random hash functions
in A, we’ll quickly find one that works.
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Analy3|s of storage

\
“\‘ —

For the level-1 hash table T, choose m =n, and
let n; be random variable for the number of keys
that hash to slot i in T. By using n:? slots for the
level-2 hash table S, the expected total storage
required for the two level scheme Is therefore

E Z@( ) =0(n),
since the analy5|s IS 1dentical to the analysis from
recitation of the expected running time of bucket

sort. (For a probability bound, apply Markov.)
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| ECTURE 9

Randomly built binary
search trees

e » Expected node depth
‘S‘ » Analyzing height

= Convexity lemma
= Jensen’s inequality
= Exponential height
e Post mortem

ALGORITHMS

Prof. Erik Demaine

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1



=71 Binary-search-tree sort

\
Y N

T« O > Create an empty BST
fori=1ton

do TREe-INSERT(T, A[i])
Perform an inorder tree walk of T.

Example:
A=[3182675]

Tree-walk time = O(n),
but how long does it
take to build the BST?
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AnaIyS|s of BST sort

BST sort performs the same comparisons as
quicksort, but in a different order!

\
“\‘

The expected time to build the tree Is asymptot-
Ically the same as the running time of quicksort.
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Node depth

: \
“\‘

The depth of a node = the number of comparisons
made during TRee-INSERT. Assuming all input
permutations are equally likely, we have

Average node depth

N

_ iE > (#comparisons to insert node i)
i<l

— 1O(n Ign) (quicksort analysis)
n

=QO(lgn) .
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”’"!' Expected tree height

\‘
‘\

But average node depth of a randomly built
BST = O(lg n) does not necessarily mean that its
expected height is also O(lg n) (although it is).

Example.

I
<lgn

l
Ave. depth < 1(n lgn+ ﬁzﬁ)
n

=0(lgn)
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«-:-m Height of a randomly built
" binary search tree

Outline of the analysis:

* Prove Jensen’s inequality, which says that
f(E[X]) < E[f(X)] for any convex function f and
random variable X.

» Analyze the exponential height of a randomly
built BST on n nodes, which is the random
variable Y = 2%, where X_ is the random
variable denoting the height of the BST.

e Prove that 250l < E[2%n] = E[Y ] = O(n3),
and hence that E[X.] = O(lg n).
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™ Convex functions
~ Afunction f: R — R is convex if for all
o,3 > 0such that oo + 3 = 1, we have
flax + BY) < o f(x) + B f(y)
forall x,y € R.

af(x) + Bi(y)

(%)

oo+ By) |

X ox+ Py y
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'*"""\ Convexity lemma

-\
“\‘

Lemma. Letf: R — R be a convex function,

and let o, o, , ..., o, be nonnegative real
numbers such that >, o, = 1. Then, for any
real numbers x,, x,, ..., X,, we have

([ Sown < Bt
k=1 k=1

Proof. By inductiononn. Forn =1, we have
o, = 1, and hence (o, x,) < o, f(x,) trivially.
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F"'" Proof (continued)
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Proof (continued)

b
1\\‘ \‘ S

Inductive step:

n n-1 o
f Zakxk = f anxn+(1—an)2 KX,
k=1 k:ll

n—1 o,
<anf(x,)+1—ap)f 21 X,
k=11 &n
Convexity.
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~ 4~ Proof (continued)

Inductive step:

n n-1 o
f[Zaka): f[anxn +(1—0(n)2 « Xk]
k=1 k=1

1-a,

<a f(x)+(1-a )f[nzl “K xj
= Mn n n 1 K

k=11~ Un
Uy

n—1
Sanf(xn)+(1—an)zl .
k=1—  “n

Induction.
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Inductive step:

n n-1 o
fEZakaj: f[anxn +(1—05n)2 “ ij
k=1 k=1

1-a,

<a f(x)+1-a )f(nzl “K x}
= ™n n n 1 K

k=11~ &n

i

n—1
Sanf(xn)+(1—an)zl .
k=1— “n

= Zak f(xg). Algebra.
k=1
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""" ConveX|ty lemma: Infinite case

-\
WYY e

Lemma. Letf: R — R be a convex function,
and let o, o, , ..., be nonnegative real numbers

such that 2., o, = 1. Then, for any real
numbers x,, X,, ..., we have

f(iakxkjgiak F(x.) |

assuming that these summations exist.
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"""" o ConveX|ty lemma.: infinite case

\

Proof. By the convexity lemma, for any n > 1,

(giiﬁ}zszm”
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ConveX|ty lemma: Infinite case

; \
“\‘

Proof. By the convexity lemma, for any n > 1,

(i ay ] zzlk f(xk)'

klZ_ll 1'

Taking the limit of both sides
(and because the inequality Is not strict):

Iimf[ nl Zakkadlm nl Zozkf(xk

N—0o0 Otkl N—>00 akl

Y

—>1 —>Zakxk _>1 _)Zakf(xk)
k=1 =1
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”"'!' Jensen’s inequality

\‘
‘\

Lemma Let f be a convex function, and let X
be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

f(E[X]) = f[ ik-Pr{X :k}]

K=—00

Definition of expectation.
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F'!g' Jensen’s inequality

Lé_'rlhma. Let f be a convex function, and let X
be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

f(E[X]) = f( ik-Pr{X :k}]

K=—o0

< if(k)-Pr{X:k}

K=—00

Convexity lemma (infinite case).
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®7% Jensen’s inequality

Lé_'rlhma. Let f be a convex function, and let X
be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

f(E[X]) = f[ ik-Pr{X =k}j

K=—00

< 3 (K)-Pr{X =k}

K=—00

=E[T(X)].

Tricky step, but true—think about it.
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e < Analysis of BST height

\
1\\‘ —

Let X, be the random variable denoting
the height of a randomly built binary
search tree on n nodes, and let Y, = 2%

be its exponential height.
If the root of the tree has rank k, then
Xn =1+ maX{Xk_l, Xn—k} :

since each of the left and right subtrees
of the root are randomly built. Hence,

we have
Yﬂ =2 maX{Yk_l, Yn—k} :
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FT1 Analysis (continued)

Define the indicator random variable Z ., as

1 if the root has rank K,
0 otherwise.

— <

an -

Thus, Pr{Z, =1} =E[Z,] = 1/n, and
N

Yn — Zznk (2 ' maX{Yk—l’Yn—k}) :
k=1
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Exponentlal height recurrence

-\
“\‘ s

E[Yn ] =E z Znk (2 ' maX{Yk—liYn—k})

k=1

Take expectation of both sides.
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BTX Exponential height recurrence

E[Yn] E zznk(z'maX{Yk—liYn—k})

n
k=1

E [an (2 ' maX{Yk—l 1 Yn—k})]

]
M=

;\_
Il

1

Linearity of expectation.
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\
N

®71 Exponential height recurrence

.

E[Yn] E Zznk(z'maX{Yk—liYn—k})

k=1

E [Z nk (2 ' maX{Yk—l ’ Yn—k })]

1
22 E[an] ' E[maX{Yk—l’Yn—k}]
k=1

]
M=

>~

Independence of the rank of the root
from the ranks of subtree roots.
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\
'\\‘ ‘ TS

F"'"' Exponential height recurrence

N
E[Y,]=E| > Zx z'maX{Yk—LYn—k})
k=1

Z E[an (2 ' maX{Yk—l’Yn—k})]

k=1

N 22 E[an] ' E[maX{Yk—liYn—k}]
k=1

n

2 Z E[Yk—l + Yn—k]

Ny

The max of two nonnegative numbers
Is at most their sum, and E[Z, ] = 1/n.

IN
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=70 Exponential height recurrence

E[Yn ] =E Z Lk (2 ' maX{Yk—LYn—k})

22 E[an] E[maX{Yk —1 Yn k}]
k=1

n
S 22 E[Yk—l +Yn—k]
Ny
4 ”‘1E[Y ] Each term appears
ns twice, and reindex.
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¥ Solving the recurrence

Use substitution to
show that E[Y ] < cn’ EYn]= ’ Z E[Yi]
for some positive

constant c, which we

can pick sufficiently

large to handle the

Initial conditions.
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Solvmg the recurrence

Use substitution to -l
Yo]=4 > ELY,]

show that E[Y ] < cn’

for some positive .

constant c, W_hi_ch we <4 Z ck3
can pick sufficiently N o
large to handle the o
initial conditions. Substitution.
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¥ Solving the recurrence

g

Use substitution to A
show that E[Y,] < cn® EY]=" 2 ElYi]

for some positive

constant c, which we <4 3" ck3
can pick sufficiently N
large to handle the dc N 4
initial conditions. < ¢ xdx

Integral method.
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¥ Solving the recurrence

“\.‘ \‘ :

Use substitution to A
show that E[Y ] < cn’ EYa]=" 2 ElY]

for some positive

constant ¢, which we <4 S
can pick sufficiently Nz
large to handle the Ac (0
initial conditions. < 7€ | xox

:4c(n4j
n\4

Solve the integral.
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Solvmg the recurrence

\
.““ :

Use substltutlon to 4=
show that E[Y ] < cn’ 2 EDY
for some positive
constant ¢, which we <4 3" ck3
can pick sufficiently n

k=0
large to handle the Ac i
initial conditions. < %€ [ x3dx
n 70
:4c(n4)
n\4
=cn®,  Algebra.
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The grand finale

-\
“\‘

Putting it all together, we have
2EDn] < E[2%n]

Jensen’s inequality, since
f(x) = 2% is convex.
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The grand finale

N
“\‘

Putting it all together, we have
2EXnl < E[2%n]
= E[Y,]

Definition.
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N
“\‘

The grand finale

Putting it all together, we have

October 17, 2005

2EDn] < E[2%n]
= E[Y]
<cns,

What we just showed.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
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®7X The grand finale

Putting it all together, we have
2EDn] < E[2%n]
= E[Y,]
<cns.
Taking the |g of both sides yields
E[X ] <3lgn+0(1).
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""" Post mortem

-
“\‘

Q. Does the analysis have to be this hard?

Q. Why bother with analyzing exponential
height?

Q. Why not just develop the recurrence on
Xn =1+ maX{Xk_l, Xn—k}
directly?
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B Post mortem (continued)

A. The inequality
max{a, b} <a+Db.

provides a poor upper bound, since the RHS
approaches the LHS slowly as |a — b| Iincreases.
The bound

max{22, 2P} < 22 4 2D
allows the RHS to approach the LHS far more
quickly as |a — b| increases. By using the
convexity of f(x) = 2% via Jensen’s inequality,
we can manipulate the sum of exponentials,
resulting in a tight analysis.
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Thought exercises

» See what happens when you try to do the
analysis on X, directly.

 Try to understand better why the proof
uses an exponential. Will a quadratic do?

* See If you can find a simpler argument.
(This argument is a little simpler than the
one In the book—I hope Iit’s correct!)
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Introduction to Algorithms
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Balanced Search Trees

* Red-black trees

* Height of a red-black tree

| |
- /Tﬁi‘ e Rotations
e |Insertion

ALGORITHMS

Prof. Erik Demaine
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""" Balanced search trees

-
“\‘

Balanced search tree: A search-tree data
structure for which a height of O(lg n) Is
guaranteed when implementing a dynamic
set of n 1tems.

* AVL trees
e 2-3 trees

Examples: e 2-3-4 trees
e B-trees
» Red-black trees

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
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m Red black trees

\
“\‘

This data structure requires an extra one-
oit color field in each node.

Red-black properties:
1. Every node is either red or black.

2. The root and leaves (N1L’s) are black.
3. If a node Is red, then its parent is black.

4. All simple paths from any node x to a
descendant leaf have the same number
of black nodes = black-height(x).
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Example of a red-black tree

NIL NIL NIL NIL NIL NIL |
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*"&' Example of a red-black tree

\
o e

NIL

NIL NIL NIL NIL NIL NIL

1. Every node Is either red or black.
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Example of a red-black tree

NIL NIL NIL NIL NIL NIL

2. The root and leaves (N1L’s) are black.
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*"&' Example of a red-black tree

\
o e

NIL

NIL NIL NIL NIL NIL NIL

3. If anode Is red, then its parent is black.
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\
.‘\“ :

Example of a red-black tree

bh=0 NIL NIL NIL NIL NIL NIL

4. All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).
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B0 Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.
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B0 Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.
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B0 Height of a red-black tree

AR

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.
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B Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.
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B Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.
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B0 Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION: [

* Merge red nodes hr
Into their black |
parents.

* This process produces a tree in which each node
has 2, 3, or 4 children.

* The 2-3-4 tree has uniform depth h’ of leaves.
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=71 Proof (continued)

* \We have
N> h/2, since
at most half
the leaves on any path
are red.

* The number of leaves
In each treeisn + 1
=n+1>2"
= Ilg(n+1)>h'">h/2
=h<2Ig(n+1).
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. Query operations
Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(lg n) time on a red-black

tree with n nodes.
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I\/Iodlfymg operations

“\‘ \‘

The operations INSERT and DELETE cause
modifications to the red-black tree:

* the operation itself,
e color changes,

o restructuring the links of the tree via
“rotations”.
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*71 Rotations

@ RiGHT-ROTATE(B)

Q I:EFT-ROTATE(A)
A A

Rotations maintain the inorder ordering of keys:
caca,bef,cey =>asA<b<B<ec,

A rotation can be performed in O(1) time.
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Insertlon INto a red-black tree

¥
VY et

IDEA Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
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Insertlon INto a red-black tree

-\
VY et

IDEA Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e [nsert x =15.

 Recolor, moving the
violation up the tree.
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1 Insertion into a red-black tree

\
L
WYY =

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:

e Insert x =15.

 Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
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1 Insertion into a red-black tree

\
L
WYY =

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e [nsert x =15.

 Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
 LEFT-ROTATE(7) and recolor.
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1 Insertion into a red-black tree

\
L
WYY =

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e [nsert x =15.

 Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
 LEFT-ROTATE(7) and recolor.
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Pseudocode

RB-INSERT(T, x)
TREE-INSERT(T, X)
color[x] <~ RED = only RB property 3 can be violated
while x = root[T] and color|p[x]] = RED
do If p[x] = left[p[p[x]]
then y < right[p[p[x]] >y = aunt/uncle of x
If color[y] = RED
then (Case 1)
else if x = right[p[x]]
then (Case 2) © Case 2 falls into Case 3
(Case 3)
else (*“then’ clause with “left” and “right” swapped)
color[root[T]] <« BLACK
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. Graphlcal notation

\
“\‘ s

et Adenote a subtree with a black root.

All A’s have the same black-height.
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(Or, children of Push C’s black onto
A are swapped.) A and D, and recurse,

since C’s parent may
be red.
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LEFT-ROTATE(A)

Transform to Case 3.
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IGHT-ROTATE(C) E

Done! NoO more
violations of RB
property 3 are
possible.
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el Analy3|s

\
“\‘

* GO up the tree performing Case 1, which only
recolors nodes.

o If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.

RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see

textbook).
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Introduction to Algorithms
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ALGORTTIIMS LECTURE 11
R Augmenting Data
Structures

* Dynamic order statistics
* Methodology
e Interval trees
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v Dynamlc order statistics

\
1\\‘ -

OS- SELECT(I S). returns the i1th smallest element
In the dynamic set S.

OS-RANK(X, S): returns the rank of x € Sin the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes In the nodes.

- _ < key)
Notation for nodes: T
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size[x] = size[left[x]] + size[right|x]] + 1
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Selectlon

; \
“‘ ‘ S

Implementatlon trick: Use a sentinel
(dummy record) for niL such that size[NniL] = 0.

OS-SELECT(X, 1) cith smallest element in the
subtree rooted at x

k < size[left[x]] + 1 & k =rank(x)

If 1 =k then return x

if 1<K
then return OS-SeLecT(left[x], 1)
else return OS-SELEcCT(right[x], I — k)

(OS-RANK Is In the textbook.)
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AR A L

Running time = O(h) = O(lg n) for red-black trees.
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Data structure maintenance

\
“\‘

Q. Why not keep the ranks themselves
IN the nodes Instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when
Inserting or deleting.
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Example of insertion

mwy \ BT

INSERT(“K™) PN
\ 104
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- Handllng rebalancing

Don tforget that RB-INserT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.

 Recolorings: no effect on subtree sizes.
 Rotations: fix up subtree sizes in O(1) time.

Example: & T
15 i> N
T 4 A
8
3 4

7 3
-.RB-INserT and RB-DeLETE still run in O(lg n) time.
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] Data-structure augmentation

g

Methodology: (e.g., order-statistics trees)

1. Choose an underlying data structure (red-
black trees).

2. Determine additional information to be
stored In the data structure (subtree sizes).

3. Verify that this information can be
maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.
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""'""" Interval trees

N
VY et

Goal: To maintain a dynamic set of intervals,
such as time intervals.

i = [7, 10]
low[i] = 7 =—— 10 = high[i]
5 e .11 17 e—e 19
4o X 15 o 18 22 e—e 23

Query: For a given query interval i, find an
Interval In the set that overlaps I.
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Followmg the methodology

\
1\\‘ —

1. Choose an underlying data structure.
* Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored In the data structure.
e Store In each node x the largest value m[x]
In the subtree rooted at x, as well as the
Interval int[x] corresponding to the key.

INt
m
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“""""',\ Example interval tree

ARV Ve

" high[int[x]]
m[Xx] = max< mlleft[x]]
_ m[right[x]]
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Modlfymg operations

ﬁ\‘ \‘

3. Verlfy that this information can be maintained
for modifying operations.
* INSERT: FIX m’s on the way down.
 Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(lg n); DELETE similar.
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New operations

4. Develop new dynamic-set operations that use
the information.

; \
“\‘

INTERVAL-SEARCH(I)
X < root
while x = NIL and (low[i] > high[int[x]]
or low[int[x]] > highli])
do = i and int[x] don’t overlap
If left[x] = NIL and low[i] < m[left[x]]
then x <« left[x]
else x «— right[x]
return x
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Example 1: INTERVAL-SEARCH([14,16])

; \

X «— root
[14,16] and [17,19] don’t overlap
14 <18 = x « left[x]
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r‘\i(j

Example 1: INTERVAL-SEARCH([14,16])

; \

[14,16] and [5,11] don’t overlap
14 > 8 = x « right[x]
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Example 1: INTERVAL-SEARCH([14,16])

[14,16] and [15,18] overlap
return [15,18]
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Example 2. INTERVAL- -SEARCH([12,14])

; \

X «— root
[12,14] and [17,19] don’t overlap
12 <18 = x « left[X]
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_~~\ Example 2: INTERVAL-SEARCH([12,14])

\
1\\‘

[12,14] and [5,11] don’t overlap
12 > 8 = x < right[x]
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‘\i(_-

_~~\ Example 2: INTERVAL-SEARCH([12,14])

\
1\\‘

[12,14] and [15,18] don’t overlap
12 > 10 = X « right[Xx]
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Example 2. INTERVAL- -SEARCH([12,14])

\

X

X = NIL = no Interval that
overlaps [12,14] exists
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el < Analysis

\
“\‘ —

Tlme = O(h) = O(lg n), since INTERVAL-SEARCH
does constant work at each level as it follows a
simple path down the tree.

List all overlapping intervals:
* Search, list, delete, repeat.

e Insert them all again at the end.
Time = O(k Ig n), where k Is the total number of
overlapping intervals.

This Is an output-sensitive bound.
Best algorithm to date: O(k + Ig n).
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s BT Correctness

Theorem. et L be the set of intervals in the
left subtree of node x, and let R be the set of
Intervals In x’s right subtree.
o If the search goes right, then
{1"eL:1"overlapsi } = .
o If the search goes left, then
{iI"eL:1"overlapsi } =
= {1" e R:1"overlapsi } = U.
In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.
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l""""» Correctness proof

“\‘ :

Proof Suppose first that the search goes right.
o If left][x] = NIL, then we’re done, since L = .

 Otherwise, the code dictates that we must have
low[i] > m[left[x]]. The value m[left[x]]
corresponds to the high endpoint of some
Interval | € L, and no other interval in L can
have a larger high endpoint than high| |].

e,
high[ j] = m[leftp]] = = low(i)
* Therefore, {i’ « L : 1" overlaps i } = .
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'"'" Proof (continued)

Suppose that the search goes left, and assume that
{I"eL:1"overlapsi } = .
 Then, the code dictates that low[i] < m[left[x]] =
high[ j] for some | € L.
e Since | € L, 1t does not overlap I, and hence
highl[i] < low] .
 But, the binary-search-tree property implies that

forall I’ € R, we have low[ j] < low[i].
Butthen{I' € R:1"overlapsi } = U.
| J

/
I
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/S‘ * With-high-probability bound
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e Sklp lis

\
1\\‘ —

LS

e Simple randomized dynamic search structure

— Invented by
— Easy to imp
e Maintains ac

William Pugh in 1989
ement

ynamic set of n elements In

O(lg n) time

per operation In expectation and

with high probability
— Strong guarantee on tail of distribution of T(n)
— O(lg n) “almost always”
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One linked list

; \
“\‘

Start from simplest data structure:
(sorted) linked list

o Searches take ®(n) time in worst case
 How can we speed up searches?
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Two linked lists

; \
“\‘

Suppose we had two sorted linked lists
(on subsets of the elements)

» Each element can appear in one or both lists
 How can we speed up searches?
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”"‘" Two linked lists as a subway

\

IDEA: EXpress and local subway lines
(a la New York City 7th Avenue Line)

» Express line connects a few of the stations
 Local line connects all stations

e LInks between lines at common stations
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F7% Searching in two linked lists

SEARCH(X):

» Walk right in top linked list (L)
until going right would go too far

» Walk down to bottom linked list (L)
* Walk right in L, until element found (or not)
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S Searching in two linked lists

EXAMPLE: SEARCH(59)
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®7% Design of two linked lists

QUuUESTION: Which nodes should be in L,?

 |In a subway, the “popular stations”

» Here we care about worst-case performance
» Best approach: Evenly space the nodes in L,
» But how many nodes should be in L,?
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=71 Analysis of two linked lists

ANALYSIS: L,
+ Search cost is roughly |L,| -

 Minimized (up to ‘Li‘
constant factors) when terms are equal
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F70 Analysis of two linked lists

ANALYSIS:

Lj=+n, [L[=n

 Search cost Is roughly




| More linked lists

b
1\\‘ \‘ S

What if we had more sorted linked lists?
« 2 sorted lists = 2-\/ﬁ
- 3sorted lists = 3-3/n
- ksorted lists = Kk .%/n

o ———Jp—— ———n
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®71 Ig n linked lists

14

14

A N
EHEHEAE

lg n sorted linked lists are like a binary tree
(in fact, level-linked B*-tree; see Problem Set 5)

aop—79
FSED R0 RE0 SED SED S i)
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1

A

A N =
BB.B

Sklp lists

Ideal skip list Is this Ig n linked list structure

Skip list data structure maintains roughly this
structure subject to updates (insert/delete
J p ( )

B
FSED R0 RE0 SED SED S i)
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. INSERT(X)

\
“\‘

To Insert an element x into a skip list:
e SEARCH(X) to see where x fits In bottom list
o Always Insert into bottom list

INVARIANT: Bottom list contains all elements
e Insert into some of the lists above...

QUuESsTION: To which other lists should we add x?
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INSERT(X)

\
1\\‘ =

QUESTION To which other lists should we add x?

IDEA: Flip a (fair) coin; if HEADS,
promote x to next level up and flip again

 Probability of promotion to next level = 1/2

e On average:
— 1/2 of the elements promoted 0 levels
— 1/4 of the elements promoted 1 level
— 1/8 of the elements promoted 2 levels
— etc.

Approx.
balance
a?
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Example of skip list

; \
“‘ ‘ —

ExeRrcise: Try building a skip list from scratch
by repeated insertion using a real coin

Small change:

e Add special —©
value to every list
—> can search with
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Sklp lists

\
1\\‘ =

A sklp list Is the result of insertions (and

deletions) from an initially empty structure
(containing just —<°)

* INSERT(X) uses random coin flips to decide
promotion level

o DELETE(X) removes x from all lists containing it
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Sklp lists

\
1\\‘ =

A sklp list Is the result of insertions (and
deletions) from an initially empty structure
(containing just —<°)

* INSERT(X) uses random coin flips to decide
promotion level

o DELETE(X) removes x from all lists containing it
How good are skip lists? (speed/balance)

e INTUITIVELY: Pretty good on average
 CLaIM: Really, really good, almost always

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19



" "" « With-high-probability theorem

\
“\‘

THEOREM. With high probability, every search
In an n-element skip list costs O(lg n)
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e " With-high-probability theorem

\
1\\‘ -

THEOREI\/I With high probability, every search
In a skip list costs O(lg n)

* INFORMALLY: Event E occurs with high
probability (w.h.p.) if, for any o > 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 — O(1/n%)

— In fact, constant in O(lg n) depends on «

 FORMALLY: Parameterized event E_ occurs
with high probability if, for any o > 1, there Is
an appropriate choice of constants for which
E, occurs with probability at least 1 —c_/n“
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e " « With-high-probability theorem

THEOREI\/I With high probability, every search
In a skip list costs O(lg n)

* INFORMALLY: Event E occurs with high
probability (w.h.p.) If, for any o > 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 — O(1/n%)

* IDEA: Can make error probability O(1/n%)
very small by setting o large, e.g., 100

* Almost certainly, bound remains true for entire
execution of polynomial-time algorithm
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”f"""" Boole s Inequality / union bound

“\‘ s

RecaH:

BooLE’S INEQUALITY / UNION BOUND:
For any random events E,, E,, ..., E,,
Pr{E,VE, U ... UE}
< Pr{E,} + Pr{E,} + ... + Pr{E,}

Application to with-high-probability events:
If k = n°W, and each E; occurs with high
probability, thenso doesE;, " E, n ... " E,
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m AnaIyS|s Warmup

LEMMA With high probability,
n-element skip list has O(lg n) levels

PROOF:

e Error probability for having at most c Ig n levels
= Pr{more than c Ig n levels}
<n - Pr{element x promoted at least ¢ Ig n times}
(by Boole’s Inequality)
=-n- (1/2(: Ig n)
=n - (1/n%
=1/nc-1
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e AnaIyS|s Warmup

\
“\‘ —

LEMMA: With high probability,
n-element skip list has O(lg n) levels
PROOF:
e Error probability for having at most c Ig n levels
<1/n¢-1
 This probability is polynomially small,
l.e.,atmost n®fora=c— 1.

* \We can make o arbitrarily large by choosing the
constant ¢ in the O(lg n) bound accordingly.
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Proof of theorem

\
“\‘ e

THEOREI\/I With high probability, every search
In an n-element skip list costs O(lg n)

CooL IDEA: Analyze search backwards—Ileaf to root
o Search starts [ends] at leaf (node In bottom level)

e At each node visited:

— If node wasn’t promoted higher (got TAiLs here),
then we go [came from] left

— If node was promoted higher (got HEADS here),
then we go [came from] up

» Search stops [starts] at the root (or —)
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m Proof of theorem

\
“\‘

THEOREI\/I With high probability, every search
In an n-element skip list costs O(lg n)

CooL IDEA: Analyze search backwards—Ileaf to root
PROOF:

o Search makes “up” and “left” moves
until 1t reaches the root (or —«)

e Number of “up” moves < number of levels
<clgnw.h.p. (Lemma)

e = w.h.p., number of moves Is at most the number
of times we need to flip a coin to get ¢ Ig n HEADS
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""”::" Coin flipping analysis
CrLAaimM: Number of coin flips until ¢ Ig n HEADS
= O(lg n) with high probability

PROOF:

Obviously Q2(lg n): at least ¢ Ig n
Prove O(lg n) “by example”:

o Say we make 10 c Ig n flips

 When are there at least ¢ Ig n HEADS?
(Later generalize to arbitrary values of 10)
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=7 Coin flipping analysis

ﬁ\‘ \‘

CLAIM Number of coin flips until ¢ Ig n HEADS
= O(lg n) with high probability

PROOF:

1OC|gn 1 clgn 1 9clgn
* Pr{exactly c lg n HEADS} = clgn ( j (Ej

N J \ J \ J
Y Y Y

orders HEADS TAILS

N |

]_OCl N 9clgn
e Pr{at most c Ig n HEADS} < e
clgn 2
N y O
overestimate Ty s
on orders

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.29




¥71 Coin flipping analysis (cont’d)

. Recall bounds on (yj: (lj < (yj < (eljx
X X X X

10 | Oclgn
e Pr{at most c lg n HEADS } s[ - gnj(ij
clgn 2

10clgn o (1)9“9”
<l e | —
clgn 2
_ (1Oe)clgn 2—9clgn

_ 2 lg(10e)-clgn 2—90 Ign
_ 2[Ig(10e)—9]-c|g n

=1/n” for a=[9-Ig(10e)]-c
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":'”"" Coin flipping analysis (cont’d)

* Pr{at most c Ig n HEADS} < 1/n%for a. = [9—1g(10e)]c
 KEY PROPERTY: 00 — o0 as 10 — oo, for any c

e Soset 10, 1.e., constant in O(lg n) bound,
large enough to meet desired o

This completes the proof of the coin-flipping claim
and the proof of the theorem.
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w== How large should a hash

“\

«2 " table be?

Goal: Make the table as small as possible, but
large enough so that it won’t overflow (or

otherwise become inefficient).
Problem: What if we don’t know the proper size

In advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, “grow” it
by allocating (via mal loc or new) a new, larger
table. Move all items from the old table into the
new one, and free the storage for the old table.
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Example of a dynamic table

1. INSERT
2. INSERT overflow
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Example of a dynamic table

1. INSERT & 1
2. INSERT overflow
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Example of a dynamic table

\‘ \

1. INSERT EI 1
2. INSERT 2
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AIG

Example of a dynamic table

1. INSERT EI 1
2. INSERT 2
3. INSERT overflow
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AIG

Example of a dynamic table

1. INSERT EI 1
2. INSERT 2
3. INSERT overflow
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Example of a dynamic table

.\‘ \

1. INSERT EI 1
2. INSERT 2

3. INSERT
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AIG

Example of a dynamic table

1. INSERT EI 1
2. INSERT 2
3. INSERT 3
4. INSERT 4
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Example of a dynamic table

1. INSERT D 1
2. INSERT 2
3. INSERT 3
4. INSERT 4
5. INSERT overflow
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ALGORITH

F"'" Example of a dynamic table

INSERT D
INSERT
INSERT

INSERT
INSERT overflow

Mwn |k
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Example of a dynamic table

INSERT D
INSERT
INSERT

INSERT
INSERT

A TwWw I |-

1.
2.
3.
4.
D.
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ALGORITH

F"'" Example of a dynamic table

INSERT D
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT

~Njo|lu|~|w|N| e
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B0 Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion IS
®(n). Therefore, the worst-case time for n
insertions is n - ©(n) = G(n?).

WRONG! In fact, the worst-case cost for
n insertions is only ®(n) <« ©(n?).

Let’s see why.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.14



“ 4~ Tighter analysis

Let c; = the cost of the ith insertion

r -

| 1f 1 —11s an exact power of 2,
_1 otherwise.
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F71 Tighter analysis

Let c; = the cost of the ith insertion

r -

| 1f 1 —11s an exact power of 2,
_1 otherwise.
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'""' Tlghter analysis (continued)

“\‘ s

Cost of n insertions = Zci
=1
Llg(n-1)]
<n+ Z 2]
j=0
<3n
=0O(n).

Thus, the average cost of each dynamic-table
operation is ®(n)/n = O(1).
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Amortlzed analysis

\
1\\‘ e

An amortlzed analysis Is any strategy for
analyzing a sequence of operations to
show that the average cost per operation Is
small, even though a single operation
within the sequence might be expensive.

Even though we’re taking averages, however,
probability is not involved!

* An amortized analysis guarantees the
average performance of each operation in
the worst case.
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Types of amortized analyses

Three common amortization arguments:

° 1
° 1
° 1

ne aggregate method,
ne accounting method,

ne potential method.

We’ve just seen an aggregate analysis.

The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.
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- Accountmg method

. Charge | th operation a fictitious amortized cost
., where $1 pays for 1 unit of work (i.e., time).
° This fee Is consumed to perform the operation.
e Any amount not iImmediately consumed Is stored
In the bank for use by subsequent operations.
* The bank balance must not go negative! We

must ensure that ] ]
Y <) 6
for all n. ==

 Thus, the total amortized costs provide an upper
bound on the total true costs.
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@#w Accounting analysis of

=" dynamic tables

Charge an amortized cost of ¢; = $3 for the ith
Insertion.

 $1 pays for the immediate insertion.
 $2 Is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:
$0/$0/$0($0/$2|%$2($2|$20 overflow

L]
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m Accounting analysis of
<* dynamic tables

\‘
Charge an amortized cost of ¢; = $3 for the ith
Insertion.

 $1 pays for the immediate insertion.
 $2 Is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

[ [ [ [ [ [ [ [Ioverflow
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@#w Accounting analysis of

=" dynamic tables

Charge an amortized cost of ¢; = $3 for the ith
Insertion.

 $1 pays for the immediate insertion.
 $2 Is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

L]
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m Accounting analysis
w2 (continued)
Key Invariant: Bank balance never drops below 0.

Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i|1 2 3 4 5 6 7 8 9 10
sizez. | 1 2 4 4 8 8 8 8 16 16
¢ |1 2 3 1 5 1 1 1 9 1

& |23 3 3 3 3 3 3 3 3
pank; | 1 2 2 4 2 4 6 8 2 4

*Okay, so | lied. The first operation costs only $2, not $3.
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Potentlal method

-\
“\‘

IDEA: View the bank account as the potential
energy (a la physics) of the dynamic set.
Framework:

e Start with an initial data structure D,,.

* Operation i transforms D;_, to D;.

* The cost of operation 1 Is c;.
 Define a potential functlon O :{Di} - R,
such that (D ) =0 and ®(D; ) > O for all 1.

* The amortized cost ¢; with respect to @ Is
defined to be ¢; = c; h O(D;) — D(D;_4).
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Understandlng potentials

¢; = c; + O(D;) — O(D;_4)

-~
potential difference A®;

* If AD;> 0, then ¢; > c;. Operation I stores
work in the data structure for later use.

* If AD; <0, then ¢; <c;. The data structure
delivers up stored work to help pay for
operation I.
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W The amortized costs bound
v* the true costs

The total amortized cost of n operations Is
ZC —Z (¢j + @(D;) - ®(Dj4))
i=1

Summing both sides.
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m The amortized costs bound
«2" the true costs

The total amortized cost of n operations Is

N N

6 = (¢ +@(D;) - D(Diy))
1=1 1=1
~ 3¢, + (D,) - (Dy)
1=1

The series telescopes.
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@~ [he amortized costs bound
i g
«2 " the true costs

The total amortized cost of n operations Is

n N

6 = (¢j + @(D;) - D(Diy))
1=1 1=1
~ 3¢, + (D,) - (Dy)
1=1

n
> ZCi since ®(D,) = 0 and
=1 O(Dy) = 0.
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,._ Potential analysis of table
=" doubling

Deflne the potential of the table after the ith

Insertion by ®(D;) = 21 -

Zrlg 0l = =0, )

Note:

- ®(D,) =0,

* ®(D;) = 0 forall I.

Example:

( [s0[$0

$0

October 31, 2005

$0

$2

$2

2197l (Assume that

G=26-23=4

accounting method)
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Calculatlon of amortized costs

¥
“\‘

The amortized cost of the 1th insertion 1s
éi — Ci + CD(DI) —_ CD(DI_]_)
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®71 Calculation of amortized costs

\“ \ rrnsten

The amortized cost of the 1th insertion 1s
éi — Ci + (D(DI) —_ CD(DI_]_)

_ J 1 1fi-11sanexact power of 2, |

1 otherwise;
+ (2| zﬁg I—‘) (2(| 1) zﬂg (i— l)—‘)
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”""",\ Calculation of amortized costs

,

The amortized cost of the 1th insertion 1s
éi — Ci + (D(DI) —_ CD(DI_]_)

(i ifi—1isanexact power of 2, )
1 otherwise;

.|.(2| zrlgﬂ) (2(| ~1) — 2l g (i- lﬂ)

(i ifi—1isan exact power of 2,
1 otherwise;

+ 2 _2lgil 4 2llg (i-1)1

— <

— <
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Case 1:1—11s an exact power of 2.
& = i + 2 _2llgil 4 2llg (i-1)]
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& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
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¥71 Calculation

Case 1:1—1Is an exact power of 2.
& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
=1+2-21+2+1-1
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¥71 Calculation

Case 1:1—1Is an exact power of 2.

& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
=1+2-21+2+1-1
=3
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¥ Calculation

Case 1:1—1Is an exact power of 2.

& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
=1+2-21+2+1-1
=3

Case 2: 1 — 1 Is not an exact power of 2.

G=1+2- Jgil 4 2llg (i-1) |
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=~ Calculation
Case 1: i - 1 is an exact power of 2.
=i+ 2 _2lgil 4 2llg(i-1)]
—|+2 20—1)+ (1-1)
=1+2-21+t2+1-1
=3
Case 2: 1 - 1 is not an exact power of 2.
. =1+ 2— 2rlg il 4 2“9 (i-1) |
=3 (Slnce 2ﬂg i| — 2“9 (i— 1)—|)
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¥ Calculation

Case 1: i — 1 is an exact power of 2.

& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
=1+2-21+2+1-1
=3

Case 2: 1 — 1 Is not an exact power of 2.

&G=1+ 2 _2llgil 4 2llg (i-1) |

=3
Therefore, n insertions cost ®(n) In the worst case.
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Calculatlon

; \
“\‘

Case 1:1- 1 IS an exact power of 2.
=i+ 2 _2lgil 4 2llg(i-1)]
—|+2 20—-1)+(1-1)
=1+2-21+2+1-1
=3
Case 2: 1 — 1 Is not an exact power of 2.
&G=1+ 2 _2llgil 4 2llg (i-1) |
=3
Therefore, n insertions cost ®(n) In the worst case.

Exercise: Fix the bug in this analysis to show that
the amortized cost of the first insertion is only 2.
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Conclusmns

\
“\‘ e

. Amortlzed costs can provide a clean abstraction
of data-structure performance.

* Any of the analysis methods can be used when
an amortized analysis is called for, but each
method has some situations where It is arguably
the simplest or most precise.

* Different schemes may work for assigning
amortized costs In the accounting method, or
potentials in the potential method, sometimes
yielding radically different bounds.
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6.046J/18.401)
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Competitive Analysis
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\ /:\\\‘ * Move-to-front heuristic
« Competitive analysis of
— MTF
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Prof. Charles E. Leiserson
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;uimmm - ] _ _
=« Self-organizing lists

-
ARy

Llst L of n elements

* The operation Access(x) costs rank, (x) =
distance of x from the head of L.

e can be reordered by transposing adjacent
elements at a cost of 1.
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B Self- -organizing lists

Llst L of n elements

* The operation Access(x) costs rank, (x) =
distance of x from the head of L.

e can be reordered by transposing adjacent
elements at a cost of 1.

Example:

{2 3 oI
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BTN Self-organizing lists
Llst L of n elements

* The operation Access(x) costs rank, (x) =
distance of x from the head of L.

e can be reordered by transposing adjacent
elements at a cost of 1.

Example:

 —E-{E) -

Accessing the element with key 14 costs 4.
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BTN Self-organizing lists
Llst L of n elements

* The operation Access(x) costs rank, (x) =
distance of x from the head of L.

e can be reordered by transposing adjacent
elements at a cost of 1.

Example:

 —{2HE-E) -

Transposing 3 and 50 costs 1.
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\
“\‘

e . On-line and off-line problems

Definition. A sequence S of
operations Is provided one at a
time. For each operation, an
on-line algorithm A must execute
the operation immediately
without any knowledge of future
operations (e.g., Tetris).

An off-line algorithm may see
the whole sequence S In advance.

The game of Tetris

Goal: Minimize the total cost C,(S).
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m Worst-case analysis of self-
W« organizing lists

An adversary always accesses the tail

(nth) element of L. Then, for any on-line
algorithm A, we have

CA(S) = Q([S]- n)
IN the worst case.
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m Average-case analysis of self-
w2 organizing lists

Suppose that element x is accessed with
probability p(x). Then, we have

E[CA(S)]= ) p(x)-rank(X).
XelL

which Is minimized when L is sorted In
decreasing order with respect to p.

Heuristic: Keep a count of the number of
times each element is accessed, and
maintain L in order of decreasing count.
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’ "”""'" The move-to-front heuristic

\
“\‘ s

Practice: Implementers discovered that the
move-to-front (MTF) heuristic empirically
yields good results.

IDEA: After accessing x, move x to the head
of L using transposes:

cost = 2 - rank,(x) .

The MTF heuristic responds well to locality
In the access sequence S.
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Competltlve analysis

\
“\‘ s

Definition. An on-line algorithm A is
o.-competitive If there exists a constant k
such that for any sequence S of operations,

CaS) <o~ Copr(S) +K,
where OPT Is the optimal off-line algorithm
(“God’s algorithm™).

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.10



B MTFis O(1)-competitive

“\‘ \‘

Theorem MTF Is 4-competitive for self-
organizing lists.
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B MTFis O(1)-competitive

“\‘ \‘

Theorem MTF Is 4-competitive for self-
organizing lists.

Proof. Let L, be MTF’s list after the ith access,
and let L,* be OPT’s list after the ith access.

Let c; = MTF’s cost for the ith operation

=2 - rank . (x) IT It accesses X;
c;i* = OPT’s cost for the ith operation
= rank, . (x) +1,

where t; IS the “number of transposes that OPT
performs.
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AL

Defme the potential function ®:{L;} — R by

O(Ly) =2-RXy) - x =< yandy < . X}
=2- #mversmns
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Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

0

Clg

£)
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Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

O(Ly)=2-[{...H

o)

0

Clg

£)
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Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

(L) =2-{(EC), ... H

o)

0

Clg

£)
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\ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

o(Ly) =2 - H(EC), (EA), ...}

0

Clg

£)
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\ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

0

Llg

o(Ly) =2 - {(EC), (EA), (ED), ...}

£)
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“ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

i

Clg

£)

o(Ly) =2 - {(EC), (EA), (ED), (EB), ...}
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“ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

@

Llg

£)

(L) =2 - {(EC), (EA), (ED), (E,B), (D.B)}]
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“ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

0

Clg

£)

(L) =2 - H(EC), (EA), (ED), (E,B), (D.B)}]

=10.
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AL

Defme the potential function ®:{L;} — R by

O(Ly) =2-RXy) - x =< yandy < . X}
=2- #mversmns
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=71 Potential function

Define the potential function ®:{L;} — R by
O(L) =2 [{(x, ) :x = yandy < .x}
= 2 - # Inversions .
Note that
ed(L)>=0fori=0,1, ...,

*D(Ly) =0 i1f MTF and OPT start with the
same list.
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m Potentlal function

“\‘

Defme the potential function ®:{L;} — R by

O(Ly) =2-RXy) - x =< yandy < . X}
= 2 - # Inversions .
Note that
ed(L)>=0fori=0,1, ...,
*D(Ly) =0 i1f MTF and OPT start with the
same list.

How much does ® change from 1 transpose?
A transpose creates/destroys 1 inversion.
e AD =+2 .

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.24



1 What happens on an access?

br—a
1\\‘ \‘ ik

Suppose that operation I accesses element x,
and define
A={yelL_,:y <L Xxandy =< .« X},
B={yelL_:y <L Xandy- .« X},
C={yelL_:y =L xandy <. X},
D={yelL_:y =L Xandy - X}.

L., AU B x| CuD |
L. * AuC X BuUD |
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0 What happens on an access?

.-\Li_l A UB X CubD I
r = I’aﬂkLi_l(X)
Li—l* AVC X — I

r* = ran kLi_l* (X)

We haver = [A| + [B| + Land r* = |A| + |C| + 1.
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B What happens on an access?

ﬁ\‘ \‘

L AUB x| _CuD ]
r =ran k'—i—l(x)
L * AuC X BuUD |

r* = ran kLi_l* (X)

We haver = [A| + [B| + Land r* = |A| + |C| + 1.

When MTF moves x to the front, it creates |A|
Inversions and destroys [B| inversions. Each
transpose by OPT creates < 1 inversion. Thus,
we have

O(L;) — O(Liy) <2(JA| - [B| + 1) .
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Amortlzed cost

-\
“\‘ s

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ D(L;) - D(Li_y)
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Amortlzed cost

; \
“‘ ‘ —

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = C;+ O(L;) — d(L;_y)
< 2r + 2(A| - B] + t)
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F"{!' Amortized cost

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ O(Ly) — (L)
<2r+ 2(|A| - |B| + t)
=2r+ 2(|A[ - (r-1-1A]) + 1)
(since r = |A| + |B| + 1)
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=77 Amortized cost

TR \‘

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ d(L;) — (L)
<2r+ 2(|A| - |B| + t)
=2r+ 2(|A[ - (r-1-1A]) + 1)
=2r+4|A|-2r + 2 + 2t
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¥ Amortized cost

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ d(L;) — (L)
<2r+ 2(|A| - |B| + t)
=2r+ 2(|A[ - (r-1-1A]) + 1)
=2r+4|A|-2r + 2 + 2t
= 4|A| + 2 + 2t;
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B Amortized cost

The amortized cost for the ith operation of
MTF with respect to @ Is

¢; = ¢+ O(L) - D(L;y)
<2r+ 2(|A| - |B| + t)
= 2r+2(Al - (r— 1= |A]) +t)
=2r+4|A|-2r + 2 + 2t
= 4|A| + 2 + 2t;
<A4(r* +t)
(since r* = |A|+|C|+ 1> A +1)
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B Amortized cost

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ d(L;) — (L)
<2r+ 2(|A| - |B| + t)
=2r+ 2(|A[ - (r-1-1A]) + 1)
=2r+4|A|-2r + 2 + 2t
= 4|A| + 2 + 2t;
<A4(r* +t)
= 4C.*.
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B The grand finale

; \
“\‘

Thus, we have
S

CuTr(8) =D ¢
i—1
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1 The grand finale

1\\‘ \‘

Thus, we have
S

CuTe(S) =) ¢
i—1
S

=D (G + (L) - (L))
]
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" The grand finale

Thus, we have
S

Cumte(S) = ¢
i1

S

=3 (6 + D(Li_y) - (L))
=1

S
< [Z4ci*] +®O(Ly) —D(Lg))

=1
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T The grand finale
N .'-_I-_‘.hus, we have
Core(S) = ici
.;1

— Z(CI + (D(I—i—l) - (D(Li))
=1

S
<[Z4ci*]+d><Lo>—q><qs>
=1

<4-Cop1(S),
since @(L,) = 0and ©(Lg) = 0.
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Addendum

\
1\\‘ =

If we count transpositions that move x toward the
front as “free” (models splicing x In and out of L
In constant time), then MTF Is 2-competitive.
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Addendum

\
“\‘

If we count transpositions that move x toward the
front as “free” (models splicing x In and out of L
In constant time), then MTF Is 2-competitive.

What if L, = L,*?
 Then, ®(L,) might be ®(n?) in the worst case.
* Thus, C,,1=(S) <4 - Copr(S) + ©(n?), which is

still 4-competitive, since n? is constant as
S| — co.
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ECTURE 15
Dynamic Programming

e Longest common
subsequence

\ —= .
- \ﬂ\‘ * Optimal substructure
 Overlapping subproblems

ALGORITHMS

Prof. Charles E. Leiserson
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Dynamlc programming

“\‘ \‘

De5|gn technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find
a longest subsequence common to them both.
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Dynamlc programming

“\‘ \‘

De5|gn technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3



Dynamlc programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

x A B C B D A B

v B D C A B A
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=71 Dynamic programming

==
1\\‘ \‘ e

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

xx A B C B D A B BCBA =
| \ | g LCS(X, y)
y B D C A B A J - |
functional notation,
but not a function
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“"“:"' Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].
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e . Brute-force LCS algorithm

\
“\‘

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

Analysis
» Checking = O(n) time per subsequence.

* 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

Worst-case running time = O(n2")

= exponential time.
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=™ Towards a better algorithm

\
“\‘ ,.

Slmpllflcatlon.

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.
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=™ Towards a better algorithm

\
“\‘ ,.

Slmpllflcatlon.

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s]|.
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B™ Towards a better algorithm

Slmpllflcatlon:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s]|.

Strategy: Consider prefixes of x and .

e Define c[i, ] = |[LCS(x[1..1], y[1..]])]|.

* Then, c[m, n] = [LCS(x, y)|.
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o c[i-1, j-1] + 1 if x[i] = y[j],
cl1, 1] = { max{c[i-1, j], c[i, j-1]} otherwise.
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7 Recursive formulation

Theorem
o c[i-1, -1] +1 I x[1] = y[j].
cli, 1] = { max{c[i-1, j], c[i, j-1]} otherwise.

Proof. Case x[i] = y[J]

1 2 m
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77 Recursive formulation

Theorem
o c[i-1, j-1] + 1 if x[i] = y[il,
cli, J] = { maX{C[i—l il, c[i, j—l]} otherwise.
Proof. Case x[i] =y[ J]

1 2 m

y N - 17
Letz[1..k]=LCS(x[1..1],y[1l..]]),wherec]l,|]

= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 .. k=1]1sCSof x|1..1-1]and y[1 .. J-1].
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F'% Proof (continued)

Claim: z[1..k=-1]=LCS(x[1..1-1], y[1..]-1]).
Suppose w iIs a longer CS of x[1 . . 1-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x[1 .. 1]Jand y[1..]]

with |w || z[k] | > k. Contradiction, proving the
claim.
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F"% Proof (continued)

Claim: z[1..k=-1]=LCS(x[1..1-1], y[1..]-1]).
Suppose w iIs a longer CS of x[1 . . 1-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x[1 .. 1]Jand y[1..]]

with |w || z[k] | > k. Contradiction, proving the
claim.
Thus, c[i-1, J]-1] = k-1, which implies that c[i, |]
=c[i-1, j-1] + 1.

Other cases are similar.
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w== Dynamic-programming

‘\ /

«>" hallmark #1

o0

© Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.
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w Dynamlc programming
~ " hallmark #1

o0

© Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.

—/

If z = LCS(X, y), then any prefix of z Is
an LCS of a prefix of x and a prefix of y.
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¥ Recursive algorithm for LCS

LCS(x, vy, 1,]) /lignoring base cases
I x[i] =y[]]
then c[i, J] « LCS(x, vy, I-1, ]-1) + 1
else c[i, j] <« max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}
return cli, ||
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m Recurswe algorithm for LCS

\

LCS(x, vy, 1,]) /lignoring base cases
I x[i] =y[]]
then c[i, J] « LCS(x, vy, I-1, ]-1) + 1
else c[i, j] <« max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}
return cli, ||

Worse case: x[i] # y[ ]], In which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.
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(15
@ m+n
(15) () (55) (62 (5) (4 (64 (73

\4

Height = m + n = work potentially exponential.
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Recursmn tree

.\‘ \

m:7,n:6: (7,6) t
@ subspa;rgt()elem @

D ® (65 14 ™
(15) (5) (55) (64) () (64) (64) (73,

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!
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@ Dynamic-programming
« " hallmark #?2

o0

(O Overlapping subproblems
A recursive solution contains a
“small”” number of distinct
subproblems repeated many times.
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w== Dynamic-programming

‘\ %

«>" hallmark #2
0

(O Overlapping subproblems
A recursive solution contains a
“small”” number of distinct
subproblems repeated many times.

—/

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.
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- ¥ Memoization algorithm

Mem0|zat|on After computing a solution to a
subproblem, store it Iin a table. Subsequent calls
check the table to avoid redoing work.
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'“"' Memoization algorithm

¥
“\‘

I\/Iem0|zat|on After computing a solution to a
subproblem, store It in a table. Subsequent calls

check the table to avoid redoing work.

LCS(x, v, 1, ])
If c[l, J]] = NIL
then if x[i] = y|[j]

'\

then c[i, j] < LCS(x, y, i-1, j-1) + 1 | Same
else c[i, j] < max{ LCS(x, v, i-1, J), >ngore

LCS(x, v, i, j—1)}/
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¥ Memoization algorithm

¥
“\‘

I\/Iem0|zat|on After computing a solution to a
subproblem, store It in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, v, I, ])
if c[i, j] = NIL
then if x[i] = y|[j]
then cfi, j] < LCS(x, vy, i-1, j-1) + 1 | Same
else c[i, j] < max{LCS(x, y, i1, j), (&
. before
LCS(x, v, i, j-1)}
/

Time = ®(mn) = constant work per table entry.
Space = ®(mn).
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IDEA:
Compute the

table bottom-up. o

November 7, 2005

D
C
A
B

A

w== Dynamic-programming
" algorithm

A B CB D A B
001040101040
NN \
O0/1/1(141(1)1
014112 )|2)|2
0 1\2 21222
10122 2\3 3
NN \
12]2[3/3,3/4
1122|3344
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IDEA:
Compute the

table bottom-up. o

Time = ©(mn).

November 7, 2005

o > O O

w== Dynamic-programming
" algorithm

A B CB D A B
001040101040
NN \
O0/1/1(141(1)1
014112 )|2)|2
0 1\2 21222
10122 2\3 3
NN \
12]2[3/3,3/4
1122|3344
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w== Dynamic-programming

~=" algorithm

IDEA: B C B A

Compute the 0,040/ 0/0]0/040

table bottom-up. BloloF1l1M111 1\1

Time = ©(mn). olol1l1]1l2]2]2

Reconstruct N

LCS by tracing CLOJ01t121212]2]|”

backwards. 0/1|1112]|2]2 3\3
B 012 2/3|3 3|4
A 011|223 |34 4

November 7, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.30



m— Dynamic-programming

=" algorithm

IDEA:

Compute the

table bottom-up. 5

Time = ®(mn).

Reconstruct

LLCS by tracing C

/

backwards.

Space = ®(mn). B

Exercise:
O(min{m, n}).

November 7, 2005
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Introduction to Algorithms
6.046J/18.401)

ALGORITHMS

0
\
AD

L ECTURE 16

Greedy Algorithms (and
Graphs)

* Minimum spanning trees
» Optimal substructure

: —\‘  Graph representation

 Greedy choice
* Prim’s greedy MST
algorithm

Prof. Charles E. Leiserson
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BTN Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) Is an ordered pair consisting of

e a set \V of vertices (singular: vertex),
caset E — V xV of edges.

In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.

In either case, we have |E| = O(V?). Moreover,
If G Is connected, then [E|>|V|- 1, which
Implies that g |E| = ©(lg V).

(Review CLRS, Appendix B.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.2




wi= Adjacency-matrix
«2Y representation

The adjacency matrix of a graph G = (V, E), where
V=41 2,...,n}isthe matrix A[1..n,1..n]

iven b
SRR E _{1 if (i,j) e E,
1= 0 i) ¢ E
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== Adjacency-matrix
" representation

The adjacency matrix of a graph G = (V, E), where
V=41 2,...,n}isthe matrix A[1..n,1..n]

iven b
S AT _{1 if (i, ]) e E,
1= 0 i) ¢ E

All 2 3 4

110 1 1 0 O(V? storage
210 0 1 O = dense
310 0 0 0 representation.
410 0 10
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¥71 Adjacency-list representation

An adjacency list of a vertex v e V/ is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
@’0 Adj[2] = {3}

Adj[3] = {3
9 @ Adj[4] = {3}
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71 Adjacency-list representation

e

An“adjacency list of a vertex v € V Is the list Adj[V]
of vertices adjacent to v.

Adj[1] = {2, 3}
@’0 Adj[2] = {3}

Adj[3] = {3
9 @ Adj[4] = {3}

For undirected graphs, |Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).
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F""': Adjacency-list representation

An adjacency list of a vertex v € V Is the list Adj[V]
of vertices adjacent to v.

Adj[1] = {2, 3}
@’0 Adj[2] = {3}

Adj[3] = {3
9 @ Adj[4] = {3}

For undirected graphs, |Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).
Handshaking Lemma: 2_,_, degree(v) = 2|E| for

undirected graphs = adjacency lists use O(V + E)
storage — a sparse representation.
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\
“\‘

" ""' I\/Ilnlmum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight functionw : E — R.

 For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)
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=71 Minimum spanning trees

-
’!\“ st

Input: A connected, undirected graph G = (V, E)
with weight functionw : E — R.

 For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

w(T)= > w(u,v).

(u,v)eT
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ALGORITHMS
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ALGORITHMS
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e Optlmal substructure

\
VY s

MST T:

(Other edges of G
are not shown.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.12



. Optlmal substructure

\
“\‘ s

MST T: U

(Other edges of G
are not shown.)

Remove any edge (u, v) € T.
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. Optlmal substructure

\
“\‘ s

MST T: U

(Other edges of G
are not shown.) °

Remove any edge (u, v) € T.
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e Optlmal substructure

\
“\‘ s

MST T: U

(Other edges of G T,
are not shown.) °

T,

V

Remove any edge (u, v) € T. Then, T is partitioned
Into two subtrees T, and T..
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F71 Optimal substructure

\
1\“ \‘ st

MST T:
u T,

(Other edges of G T,
are not shown.) v

Remove any edge (u, v) € T. Then, T is partitioned
Into two subtrees T, and T..

Theorem. The subtree T, iIsan MST of G, = (V,, E,),
the subgraph of G induced by the vertices of T,:

V, = vertices of T,,
E,={(X,y) e E:Xx,yeV,}
Similarly for T,.
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B2 Proof of optimal substructure

Proof. Cut and paste:

w(T) =w(u, v) +w(T,) +w(T,).
If T,”were a lower-weight spanning tree than T, for
G,then T'={(u,v)} U T,”UT,would be a
lower-weight spanning tree than T for G.
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¥ Proof of optimal substructure

Proof. Cut and paste:

w(T) =w(u, v) +w(T,) +w(T,).
If T,”were a lower-weight spanning tree than T, for
G,then T'={(u,v)} U T,”UT,would be a
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
* Yes.
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¥ Proof of optimal substructure
Proof. Cut and paste:

w(T) =w(u, v) +w(T,) +w(T,).
If T,”were a lower-weight spanning tree than T, for

G,then T'={(u,v)} U T,”UT,would be a
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
* Yes.

Great, then dynamic programming may work!
*Yes, but MST exhibits another powerful property
which leads to an even more efficient algorithm.
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o Hallmark for “greedy”
«~> " algorithms

L)

Greedy-choice property
A locally optimal choice
Is globally optimal.

(D
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e Hallmark for “greedy”
= algorithms

L)

Greedy-choice property
A locally optimal choice
Is globally optimal.

(D

—/

Theorem. Let T be the MST of G = (V, E),
and let A — V. Suppose that (u, v) € E Is the
least-weight edge connecting Ato V — A.
hen, (u,v) e T.
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Proof of theorem

.“\

Proof Suppose (u, v) ¢ T. Cut and paste.

(U, v) =

least-weight edge

e cV-A connecting A to V — A
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- ¥ Proof of theorem
Prbof Suppose (u, v) ¢ T. Cut and paste.

T: *

@ € A .
(u, v) = least-weight edge
e cV-A connecting A to V — A

Consider the unique simple path fromutovinT.
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. ¥ Proof of theorem
Prbof Suppose (u, v) ¢ T. Cut and paste.

T: *

Q@ € A
e cV-A

(u, v) = least-weight edge
connecting AtoV - A

Consider the unique simple path fromutovinT.

Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V — A.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.24



. Proof of theorem

L
WYY =

Proof. Suppose (u, v) ¢ T. Cut and paste.

T .\
@ €A /

e cV-A

(u, v) = least-weight edge
connecting AtoV - A

Consider the unique simple path fromutovinT.

Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V — A.

A lighter-weight spanning tree than T results.
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- 7 Prim’s algorithm

IDEA Maintain V — A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.

Q«V
key[v] <~ oo forallv e V
key[s] < O for some arbitrary s € V
while Q # &
do u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v e Q and w(u, v) < key|v]
then key[v] < w(u,v) © DECREASE-KEY
r[v] <« u

At the end, {(v, =[v])} forms the MST.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.26



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.27



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.28



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.29



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.30



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.31



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.32



,i;' Example of Prim’s algorithm

15@
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)0
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Example of Prim’s algorithm

Q@ € A
e cV-A

10

15@
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Example of Prim’s algorithm

Q@ € A
e cV-A

10

15@

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.39



November 9, 2005

B2 Analysis of Prim

Q«V
key[v] <~ oo forall v e V
key[s] «<— O for some arbitrary s € V
while Q = &

do u < EXTRACT-MIN(Q)

for each v € Adj[u]
do if v e Q and w(u, v) < key|V]
then key[v] « w(u, V)
n[v] < u

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.40



= .~ Analysis of Prim
( Q<«V
key[v] <~ oo forall v e V
_ key[s] < O for some arbitrary s € V
while Q # &
do u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v e Q and w(u, v) < key|V]
then key[v] « w(u, V)
n[v] < u

O) J
total
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; \
“\‘ e

O) J
total
g
V]
times<
.

November 9, 2005

m Analysis of Prim

( Q<«V
key[v] <~ oo forall v e V

_ key[s] < O for some arbitrary s € V

while Q # &
do u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v e Q and w(u, v) < key|V]
then key[v] « w(u, V)
n[v] < u

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.42



B2 Analysis of Prim
_

OWV) J key[v] «— s forallv e V

total | ey [s] < 0 for some arbitrary s < v

- while Q # &
do u <— EXTRACT-MIN(Q)

V| ; " for each v € Adj[u]
times | degree(u) ) do if v e Q and w(u, v) < key[V]
times then key[v] <— w(u, v)
L L n[v] <-u
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; \
““ ETTYE TG

(V) _
total
V] {
times | degree(u)
times
N

Analy3|s of Prim

( Q<«V
key[v] <~ oo forall v e V

_ key[s] < O for some arbitrary s € V
4 while Q # &

do u < EXTRACT-MIN(Q)

" for each v € Adj[u]

do if v e Q and w(u, v) < key|V]
then key[v] « w(u, V)

L n[v] < u /

>

Handshaking Lemma = ©O(E) implicit DecreAse-KEY’S.
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; \
“\‘ e

m Analysis of Prim

(Q<«V
OWV) J key[v] «— s forallv e V
total | ey [s] < 0 for some arbitrary s < v
- while Q # &
do u <— EXTRACT-MIN(Q)
V| ; " for each v € Adj[u]
times | degree(u) ) do if v e Q and w(u, v) < key[V]
times then key[v] < w(u, V)
5 _ n[v] < u /

Handshaking Lemma = ©O(E) implicit DecreAse-KEY’S.
Time = O(V) - Teyrractmin T ©(E) Tpecrease-Key

November 9, 2005
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r— Analy3|s of Prim (continued)

®(V) TEXTRACT MIN T ®(E) TDECREASE KEY

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.46



- , 1 Analysis of Prim (continued)

®(V) TEXTRACT MIN T ®(E) TDECREASE KEY

Q TEXTRACT—MIN TDECREASE-KEY Total
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=70 Analysis of Prim (continued)

®(V) TEXTRACT MIN + ®(E) TDECREASE KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array O(V) O(1) O(V?)
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0 Analysis of Prim (continued)

®(V) TEXTRACT MIN + ®(E) TDECREASE KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array O(V) O(1) O(V?)
br']'gggy O(lg V) O(lgV)  O(ElgV)
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F70 Analysis of Prim (continued)

TR \‘

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array O(V) O(1) O(V?)
binar
heapy O(lg V) O(gV)  O(ElgV)
Fibonacci  O(lgV) O(1) O(E+VligV)
heap  amortized amortized worst case
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I\/IST algorithms

N
“\‘

Kruskal’s algorithm (see CLRS):

 Uses the disjoint-set data structure (see CLRS,
Ch. 21).

* Running time = O(E lg V).
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] MST algorithms

\
1\\‘ \‘ o

Kruskal’s algorithm (see CLRS):
 Uses the disjoint-set data structure (see CLRS,

Ch. 21).
* Running time = O(E lg V).

Best to date:

 Karger, Klein, and Tarjan [1993].
e Randomized algorithm.

* O(V + E) expected time.
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Introduction to Algorithms
6.046J/18.401)

LECTURE 1/
Shortest Paths |
* Properties of shortest paths

ALGORITHMS

; @ Dijkstra’s algorithm
e » Correctness
* Analysis

e Breadth-first search

Prof. Erik Demaine
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"""',\ Paths in graphs

Consider a digraph G = (V, E) with edge-weight

functionw : E — R. The weight of pathp =v, —
V, — -+ —V, IS defined to be

k—1
W( p) — ZW(Vi 1Vi+1) -
i=1
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=71 Paths in graphs

Consider a digraph G = (V, E) with edge-weight
functionw : E — R. The weight of pathp =v, —
V, — -+ —V, IS defined to be

k—1
W( p) — ZW(Vi 1Vi+1) -
i=1
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_~~\ Shortest paths

-\
“\‘

A shortest path from u to v Is a path of
minimum weight from u to v. The shortest-
path weight from u to v Is defined as

o(u, v) = min{w(p) : p Is a path from u to v}.

Note: 5(u, v) = oo If no path from u to v exists.
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w= Well-definedness of shortest
« Y paths

If a graph G contains a negative-weight cycle,
then some shortest paths do not exist.
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m Well-definedness of shortest
~2Y paths

If a graph G contains a negative-weight cycle,
then some shortest paths do not exist.

Example:

W—0
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. Optlmal substructure

\
“\‘ s

Theorem. A subpath of a shortest path is a
shortest path.
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Optlmal substructure

; \

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

00000
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Gaen o Optlmal substructure

\
.‘\“ I

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

—y -
-y _’
e -
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; \
“\‘ e

Trlangle Inequality

Theorem. Forall u, v, x € V, we have
o(u, v) <o(u, x) + o(x, v).
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1 Triangle inequality

v \‘

Theorem. Forall u, v, x € V, we have
o(u, v) <o(u, x) + o(x, v).

Proof.
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e Single-source shortest paths
* (nonnegative edge weights)

Problem. Assume that w(u, v) > 0 for all (u, v)
e E. (Hence, all shortest-path weights must
exist.) From a given source vertex s € V, find
the shortest-path weights 6(s, v) forall v € V.

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step, add to S the vertexv € V —S
whose distance estimate from s is minimum.
3. Update the distance estimates of vertices
adjacent to v.
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_‘:\ Dlj kstra’s algorithm
d[s] «~0
foreachv € V —{s}
do d[v] < o
S«
Q«V = Q IS a priority gueue maintaining V — S,
keyed on d[v]
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F"'" Dijkstra’s algorithm

\
“\‘

d[s] «~0
foreachv € V —{s}
do d[v] < o
S«
Q«V = Q IS a priority gueue maintaining V — S,
keyed on d[v]
while Q =
do U «— EXTRACT-MIN(Q)
S« Su{u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, V)
then d[v] <« d[u] + w(u, v)
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Dlj kstra’s algorithm

d[s] «~0
foreachv € V —{s}
do d[v] < o
S«
Q«V = Q IS a priority gueue maintaining V — S,
keyed on d[v]

; \
“\‘

while Q =&
do u <— ExTrRACT-MIN(Q)
S« Su{u}
for each v € Adj[u] _
do if d[v] > d[u] + w(u, V) relaxation
then d[v] < d[u] + w(u, V) step

\ Implicit DECREASE-KEY
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Example of Dijkstra’s
=" algorithm

Graph with
nonnegative
edge weights:
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=« Example of Dijkstra’s
«> " algorithm

Initialize:

Q: A B CDE

0 o o oo o

o0
1 4
00

S:{}
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=« Example of Dijkstra’s
«> " algorithm

“A” ¢~ EXTRACT-MIN(Q): = 9
Oy
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=« Example of Dijkstra’s
«> " algorithm

Relax all edges leaving A: 9
5 D !
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=« Example of Dijkstra’s
«> " algorithm

“C” « EXTRACT-MIN(Q): 10 5,
’S D !

S:{AC}
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=« Example of Dijkstra’s
«> " algorithm

Relax all edges leaving C:
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=« Example of Dijkstra’s
«> " algorithm

“E” <~ EXTRACT-MIN(Q):
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=« Example of Dijkstra’s
«> " algorithm

Relax all edges leaving E: 2

Q: B D
0 o

o0

0 3

=

-
5
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=« Example of Dijkstra’s
«> " algorithm

“B” «— EXTRACT-MIN(Q):

Q: D

2
O
1 4
O
3

0 oo o ®o © 5
1 3 o o
/ 11 5
7 11 S:{ACEB}
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=« Example of Dijkstra’s
«> " algorithm

Relax all edges leaving B: 7

Q: D

0 oo o o o 3 5
1 3 o o
{ 11 5
7 11 S:{A C EB}
9
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=« Example of Dijkstra’s
«> " algorithm

“D” «— EXTRACT-MIN(Q): ’

0 o ow o o 2 5
1 3 o o
{ 11 5
7 11 S:{A,C,E,B,D}
9
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- BT Correctness — Part |

Lemma Initializing d|s] <— 0 and d[v] <— « for all
v € V —{s} establishes d[v] > &(s, v) forall v € V,

and this invariant Is maintained over any sequence
of relaxation steps.
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Correctness — Part |

Lemma. Initializing d|s] <— 0 and d[v] <— « for all
v € V —{s} establishes d[v] > &(s, v) forall v € V,
and this invariant Is maintained over any sequence
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for
which d[v] < o(s, v), and let u be the vertex that
caused d[v] to change: d[v] = d[u] + w(u, v). Then,
d[v] < (s, V) supposition

< 0o(s, u) +o(u, v) triangle inequality

< 0o(s,u) + w(u, v) sh. path < specific path

<d[u] +w(u,v) visfirst violation
Contradiction.
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. BT Correctness — Part I

Lemma et u be v’s predecessor on a shortest
path from s tov. Then, if d[u] = o(s, u) and edge
(u, v) Is relaxed, we have d[v] = (s, v) after the
relaxation.
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B Correctness — Part |1

Lemma. Let u be v’s predecessor on a shortest
path from s tov. Then, if d[u] = o(s, u) and edge
(u, v) Is relaxed, we have d[v] = (s, v) after the
relaxation.

Proof. Observe that 6(s, v) = (s, u) + w(u, V).
Suppose that d[v] > o(s, v) before the relaxation.
(Otherwise, we’re done.) Then, the test d|[v] >
dlu] + w(u, v) succeeds, because d[v] > 5(s, V) =
o(s, u) + w(u, v) = dfu] + w(u, v), and the
algorithm sets d[v] = d[u] + w(u, v) = &(s, V).
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- BT Correctness — Part 111

Theorem Dijkstra’s algorithm terminates with
dfv] =o(s, v) forall v e V.
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-—; | Correctness — Part 11

-
“\‘

Theorem Dijkstra’s algorithm terminates with
dlv] =o(s, v) forall v € V.

Proof. It suffices to show that d[v] = (s, v) for every v
e V when v is added to S. Suppose u is the first vertex
added to S for which d[u] > (s, u). Let y be the first

vertex in V — S along a shortest path from s to u, and
let x be Its predecessor:

s M
S, Just before
adding u.
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m Correctness — Part 111
Y (continued)

- (u,
(s Q’ﬂ

Since u Is the first vertex violating the claimed
Invariant, we have d[x] = (s, x). When x was
added to S, the edge (x, y) was relaxed, which

Implies that d[y] = 6(s, y) < 6(s, u) < d[u]. But,
dfu] < d[y] by our choice of u. Contradiction.
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1\ Analysis of Dijkstra

; \
“\‘ e

while Q =
do u «— ExTRACT-MIN(Q)
S« Su{u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, V)
then d[v] <— d[u] + w(u, v)
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1\ Analysis of Dijkstra

s while Q =&
do u «— ExTRACT-MIN(Q)
|V| S« Sy {U}
fimes 3 for each v e Adj[u]
do if d[v] > d[u] + w(u, V)
: then d[v] <— d[u] + w(u, v)
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o whil

V] J
UMES | degree(u) _
times
N

eQ 2z

S« Su{u}
" foreach v e Ad
do if d[v] > ¢
then d

—_— Analysis of Dijkstra
do u <~ ExTrRACT-MIN(Q)

J[u]

[u] +w(u, v)

V] « d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.36



; \
“\‘

V]
times

<

N

while Q =
do u «— ExTRACT-MIN(Q)

degree(u) _
times

—

S« Su{u}
" for each v e Ad
do if d[v] > ¢

AnaIyS|s of Dijkstra

J[u]

[u] +w(u, v)

then d

V] « d[u] + w(u, v)

Handshaking Lemma = ©O(E) implicit Decrease-KEY'’s.

November 14, 2005
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“\‘

V]
times

<

-

N

while Q =
do u «— ExTRACT-MIN(Q)

degree(u) _
times

—

S« Su{u}
" for each v e Ad
do if d[v] > ¢

_“\ AnaIyS|s of Dijkstra

J[u]

[u] +w(u, v)

then d

V] « d[u] + w(u, v)

Handshaking Lemma = ©O(E) implicit Decrease-KEY'’s.

Ime =

®(V'TE><TRACT-M|N T E'TDECREASE-KEY)

Note: Same formula as In the analysis of Prim’s
minimum spanning tree algorithm.

November 14, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.38



== Analysis of Dijkstra
~2T (continued)

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q  TextractMiN TDecrease-key  Total
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s Anal ysS Is of Dijkstra

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q  TextractMiN TDecrease-key  Total

array O(V) O(1) O(V?)
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== Analysis of Dijkstra
«> " (continued)

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q  TextractMiN TDecrease-key  Total

array O(V) O(1) O(V?)
br']gggy O(lg V) O(lgV)  O(ElgV)
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s== Analysis of Dijkstra

oAy
N

~2" (continued)

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array O(V) O(1) O(V?)
binar
heapy O(lg V) O(gV)  O(ElgV)
Fibonacci  O(lgV) O(1) O(E+VligV)
heap  amortized amortized  worst case
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Unwelghted graphs

\‘ \

Suppose that w(u, v) = 1 for all (u, v)
Can Dijkstra’s algorithm be |mproved?
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e Unweighted graphs

\
1\\‘ -

Suppose that w(u, v) = 1 for all (u, v)
Can Dijkstra’s algorithm be |mproved?

» Use a simple FIFO queue Instead of a priority
queue.
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- Unwelghted graphs
Suppose that w(u, v) = 1 for all (u, v)
Can Dijkstra’s algorithm be |mproved?

» Use a simple FIFO queue Instead of a priority
queue.

Breadth-first search
while Q =
do u < DeQUEUE(Q)
for each v € Adj[u]
do if d[v] =
then d[v] < d[u] + 1
ENQUEUE(Q, V)
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Unwelghted graphs
Suppose that w(u, v) =1 for all (u, v)
Can Dijkstra’s algorithm be |mproved’>

» Use a simple FIFO queue Instead of a priority
queue.

Breadth-first search
while Q =
do u < DeQUEUE(Q)
for each v € Adj[u]
do if d[v] =«
then d[v] < d[u] + 1
ENQUEUE(Q, V)
Analysis: Time = O(V + E).
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== Example of breadth-first
«" search




== Example of breadth-first
«" search




w== Example of breadth-first
~2T search




w== Example of breadth-first
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w== Example of breadth-first
~2T search




== Example of breadth-first
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w== Example of breadth-first
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w== Example of breadth-first
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w== Example of breadth-first
~2T search




w== Example of breadth-first
~2T search




w== Example of breadth-first
~2T search




== Example of breadth-first
«" search




”"‘" Correctness of BFS

\
‘\‘

1

while Q =
do u < DeQUEUE(Q)
for each v € Adj[u]
do if d[v] = o
then d[v] < d[u] + 1
ENQUEUE(Q, V)

Key idea:
The FIFO Q In breadth-first search mimics
the priority queue Q in Dijkstra.

 Invariant: v comes after u in Q implies that
d[v] =d[u] or d[v] = d[u] + 1.
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Introduction to Algorithms
6.046J/18.401)

L ECTURE 18
Shortest Paths 11
.| * Bellman-Ford algorithm

* Linear programming and
difference constraints

* VLSI layout compaction

ALGORITHMS

Prof. Erik Demaine
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Negatlve welght cycles

Recall If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

O=n®
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- Negatlve welight cycles

Recall If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

O=n®

Bellman-Ford algorithm: Finds all shortest-path
lengths from a sources € Vtoallv e Vor
determines that a negative-weight cycle exists.
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Bellman Ford algorithm

; \
“\‘

d[s] «0 )
foreachv € V—-{s} ~ initialization
do d[v] < o )
fori« 1to|V|-
do for each edge (u, v) € E
do if d[v] > d[u] + w(u, v) relaxation

then d[v] < d[u] + w(u, V) | step
for each edge (u,v) € E
do if d[v] > d[u] + w(u, v)
then report that a negative-weight cycle exists
At the end, d[v] = &(s, V), If no negative-weight cycles.
Time = O(VE).
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*"'" Example of Bellman-Ford

\
'\\‘ ‘ TS
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Example of Bellman-Forad

; \
““

Initialization.
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Example of Bellman-Forad

; \

Order of edge relaxation.
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ALGORITHMS
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ALGORITHMS
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ALGORITHMS
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ALGORITHMS
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*\ Example of Bellman-Ford

; \
“\‘ e
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*\ Example of Bellman-Ford

; \
“\‘ e
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*\ Example of Bellman-Ford

; \
“\‘ e
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Example of Bellman-Forad

; \
““

End of pass 1.
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*\ Example of Bellman-Ford

; \
“\‘ e
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*\ Example of Bellman-Ford

; \
“\‘ e
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*\ Example of Bellman-Ford

; \
“\‘ e
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*\ Example of Bellman-Ford

; \
“\‘ e
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=71 Example of Bellman-Ford

End of pass 2 (and 3 and 4).
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- BT Correctness

Theorem If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = (s, v) forall v € V.
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— BT Correctness

Theorem If G = (V, E) contains no negative-
welght cycles, then after the Bellman-Ford
algorithm executes, d[v] = (s, v) forall v € V.

Proof. Letv € V be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.

V

p/®

Since p Is a shortest path, we have
o(S, Vi) = (S, Vi_y) + W(Vi_y, Vi) .
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Correctness (continued)
V

/@

Initially, d[v,] = 0 =25(s, vy), and d[v,] is unchanged by
subsequent relaxations (because of the lemma from
Shortest Paths | that d[v] = &(s, V)).

» After 1 pass through E, we have d[v,] = 5(s, v,).
» After 2 passes through E, we have d[v,] = 6(s, v,).

o After k passes through E, we have d[v, | = (s, v, ).

Since G contains no negative-weight cycles, p Is simple.
Longest simple path has < |V| — 1 edges.
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e Detection of negative-weight
«> " cycles

Corollary. If a value d|[v] fails to converge after
V| — 1 passes, there exists a negative-weight
cycle in G reachable from s.
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¥ Linear programming

ﬁ\‘ \‘

Let A be an mxn matrix, b be an m-vector, and c
be an n-vector. Find an n-vector x that maximizes
c'x subject to Ax < b, or determine that no such

solution exists.
n

m < maximizing —— -

A X < Db c' X
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e Linear-programming
«> " algorithms

Algorithms for the general problem

« Simplex methods — practical, but worst-case
exponential time.

* Interior-point methods — polynomial time and
competes with simplex.
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e Linear-programming
«> " algorithms

Algorithms for the general problem
« Simplex methods — practical, but worst-case

exponential time.

* Interior-point methods — polynomial time and
competes with simplex.

Feasibility problem: No optimization criterion.
Just find x such that Ax < b.
* In general, just as hard as ordinary LP.
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m Solvmg a system of difference
«2Y constraints

Llnear programming where each row of A contains
exactly one 1, one —1, and the rest 0’s.

Example:
X=Xy £ 3
Xpg=Xg <=2 X=X S W
X —Xq <2

\

_/
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m Solvmg a system of difference
« Y constraints

Llnear programming where each row of A contains
exactly one 1, one —1, and the rest 0’s.

Example: Solution:
I

X=Xy £ 3 Xy =

Xo =X <=2 Xj — Xj < W Xy =

X —Xq <2 X3 =

_/
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m Solving a system of difference
«9 Y constraints

Linear programming where each row of A contains
exactly one 1, one —1, and the rest 0’s.

Example: Solution:
X=Xy £ 3 : Xy =
Xo =X <=2 Xj — Xj < W Xy =
X1 —X3<2 X3 =
Constraint graph: (The *A”
matrix has

W
X — X: < W @ . @ dimensions
Ty e[V
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Unsatlsflable constraints

\
“\‘ e

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.
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Unsatisfiable constraints

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle Is
V, —>V, —> -+ =V, — V,. Then, we have

Xo— Xp SWyp

X = X1 S Wq i
Xp = X S Wy
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""'" Unsatisfiable constraints

\‘

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle Is
V, —>V, —> -+ =V, — V,. Then, we have

Xo—= X1 =Wy

— <
X3 = X ,—W23 Therefore, no

X — X . <W values for the x;
K k-1 k=1, k - h
X, — X, < Wiy can satisfy the
_ constraints.
0 < weight of cycle
<0
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Satlsfymg the constraints

“\‘ \‘

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.
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Satlsfymg the constraints

\‘ \‘

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the

constraints are satisfiable.
Proof. Add a new vertex s to VV with a O-weight edge

to each vertex v, € V.
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ey, Satlsfymg the constraints

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the

constraints are satisfiable.
Proof. Add a new vertex s to VV with a O-weight edge

to each vertex v, € V.

V
0 v Note:

R&Y No negative-weight
S ' cycles introduced =
V') shortest paths exist.
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*"i' Proof (continued)

-\
“\‘

Clalm' The assignment x; = 6(s, v;) solves the constraints.

Consider any constraint x; — x; < w;;, and consider the
shortest paths from s to v, and %

IJ’

The triangle inequality gives us 5(s,v;) < (s, v;) + wj;.
Since x; = o(s, v;) and x; = 6(s, V), the constraint x; — x
< Ww; IS satlsfled
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m Bellman-Ford and linear
w2 programming

Corollary. The Bellman-Ford algorithm can
solve a system of m difference constraints on n
variables in O(mn) time.

Single-source shortest paths is a simple LP
problem.

In fact, Bellman-Ford maximizes x, + x, + --- +x,
subject to the constraints x; — x; < w; and X: <0
(exercise).

Bellman-Ford also minimizes max;{x,} — min{x}
(exercise).
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m Appllcatlon to VLSI layout
« Y compaction

Integ rated
-Clrcuit I
features: I

_,{(_

minimum separation A

Problem: Compact (in one dimension) the
space between the features of a VLSI layout
without bringing any features too close together.
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F"'" VLSI layout compaction

—d;,— —I
1
#

X, X,
Constraint:  x,—X,>d,;+ A

Bellman-Ford minimizes max;{x} — min{x},
which compacts the layout in the x-dimension.
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— Shortest Paths 111
ko * All-pairs shortest paths

e Matrix-multiplication
algorithm

 Floyd-Warshall algorithm
 Johnson’s algorithm

ALGORITHMS

Prof. Erik D. Demaine
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- BT Shortest paths

Slngle source shortest paths
e Nonnegative edge weights

* Dijkstra’s algorithm: O(E + V Ig V)
 General

+ Bellman-Ford algorithm: O(VE)

* DAG
+ One pass of Bellman-Ford: O(V + E)
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- BT Shortest paths

Slngle source shortest paths
e Nonnegative edge weights
+ Dijkstra’s algorithm: O(E + V Ig V)
e General
+ Bellman-Ford algorithm: O(VE)
* DAG
+ One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths
e Nonnegative edge weights
+ Dijkstra’s algorithm |V| times: O(VE + V2 lg V)
e General
+ Three algorithms today.
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'""' AII -pairs shortest paths

Input: Digraph G = (V, E), where V = {1, 2,
., N}, with edge-weight functionw : E - R.

Output: n x n matrix of shortest-path lengths
o(l,]) foralli, ] € V.
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"”"" AII -pairs shortest paths

Input Digraph G = (V, E), where V = {1, 2,
, N}, with edge-weight function w : E — R.

Output: n x n matrix of shortest-path lengths
o(l,]) foralli, ] € V.

IDEA:

* Run Bellman-Ford once from each vertex.

e Time = O(V°E).

 Dense graph (®(n?) edges) = ©(n*) time in
the worst case.

Good first try!
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;""""":;? Dynamic programming
Consider the n x n weighted adjacency matrix

A = (&;;), where a; = w(l, J) or o, and define

d;i(™ = welght of a shortest path from
| to | that uses at most m edges.

Claim: We have
4,0= {0 ifi=],
o If1#];
and form=1,2 ....n-1,
d;;(™ = mlnk{d (MD) + 3, }.
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ALGORITHMS

<m -1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7



Proof of claim

‘“ K’s
di;™ = min {d ™ + a; }
Relaxation!

fork <« 1ton
do if d;; > dj, + ay
then dlj < dik + akj <m-1 edgeS
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‘“ K’s
di;™ = min {d ™ + a; }

Relaxation!
fork <« 1ton
do if d;; > dj, + ay
then d;j < iy + &y <m -1 edges

Note: No negative-weight cycles implies
8('! J) - dij (-1) = dij (n) = dij (n+1) = ...
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B Matrix multiplication

Compute C=A - B, where C, A,and B aren xn

matrices: "
Cij — Zaikbkj .
k=1

Time = ®(n?) using the standard algorithm.
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B0 Matrix multiplication

N
“\‘

Compute C=A-B,whereC, A,andBarenxn

matrices: "
Cij — Zaikbkj .
k=1

Time = ®(n?) using the standard algorithm.
What if we map “+” — “min” and “-” — “+7?
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— BT Matrix multiplication
Compute C=A-B,whereC, A,and Baren xn

matrices:
— Z aikbkj .
k=1

Time = ®(n?) using the standard algorithm

What if we map “+” — “min” and “-” — “+7?
CIJ N mink {aik T bkj}-

Thus, DM = DM=1) > A

(0 o0 00m0)

Identity matrix = 1 = | %75 % =D = (d;().
| 00 00 00 O)
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@ Matrix multiplication
S

~=* (continued)

The (min, +) multiplication Is associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.

Consequently, we can compute

DO = DO.A = Al
D@ = DM .A = A2

DO-1) = p(-2) . A= AML.
yielding DY = (§(i, j)).
Time = ®(n-n®) = ®(n*). No better than n x B-F.
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m Improved matrix
= multiplication algorithm

Repeated squaring: A%< = Ak x Ak,
Compute A%, A%, ... a2 190-D1
—

hd .
O(lg n) squarings
Note: A™1 =AM =AML= ...
Time = ©(n3lg n).

_/

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional

time.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14



F™1 Floyd-Warshall algorithm
Also dynamic programming, but faster!
Define c;;(¥) = weight of a shortest path from i

J
J to | with intermediate vertices
belonging to the set {1, 2, ..., k}.

Thus, (i, J) = ¢;". Also, ¢;{”) = a; .
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Intermediate vertices in {1, 2, ..., k— 1}
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=« Pseudocode for Floyd-
> Warshall

fork<«1ton
dofori<« 1ton
doforj<« 1ton
do If ¢;; > Cy, + Cy

then Cij < Cik + ij

} relaxation

Notes:

» Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in ®(n?) time.

e SiImple to code.

o Efficient In practice.
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@ Transitive closure of a
«> " directed graph

1 1f there exists a path from | to |,

Compute G = 1 5 Stherwise.

IDEA: Use Floyd-Warshall, but with (v, A) Instead
of (min, +):

100 = 6D v (D A (D).

Time = O(n3).
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Graph reweighting

Theorem Given a function h : V — R, reweight each
edge (u,v) € E by w,(u, v) =w(u, v) + h(u) h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.
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Graph reweighting

; \
“\‘

Theorem Given a function h : V — R, reweight each
edge (u,v) € E by w,(u, v) =w(u, v) + h(u) h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

Proof. Letp=v, > Vv, — --- —> v, beapathin G. We
have

k-1
Wy ( p) — Z; Wh (Vi ’Vi+1)
k-1
= Zi (W(v; Vi) +h(vi)=h(viy))
k1
= 2w i0) + h(y) ~h(y,) _ Same

amount!
= w(p) + h(v,) —h(v, ).
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w= Shortest paths in reweighted
graphs

Corollary. 6,(u, v) = d(u, v) + h(u) — h(v).
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@ Shortest paths in reweighted
«2 " graphs

Corollary. 6,(u, v) = d(u, v) + h(u) — h(v).

IDEA: Find a function h : V — R such that
W, (u, v) = 0 for all (u, v) € E. Then, run
Dijkstra’s algorithm from each vertex on the
reweighted graph.

NoTe: w,(u, v) = 0 Iff h(v) — h(u) < w(u, v).
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vy e Johnson’s algorithm
1. Flnd a function h : V — R such that w,(u, v) > 0 for
all (u, v) € E by using Bellman-Ford to solve the
difference constraints h(v) — h(u) < w(u, v), or
determine that a negative-weight cycle exists.
* Time = O(VE).

2. Run Dijkstra’s algorithm using w, from each vertex
u e Vto compute 6, (u, v) forall v e V.
e Time=0O(VE+VZ?IgV).

3. Foreach (u,v) € V xV, compute
o(u, V) = d,(u, v) —h(u) + h(v) .
e Time = O(V?).
Total time = O(VE + V2 lIg V).
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[T

=~ Computational geometry

AR

Algorithms for solving “geometric problems”
In 2D and higher.

Fundamental objects: e —

point  line segment line
Basic structures:
®
° ®
o ®
®
® °
¢ ®
point set polygon
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~ o+ Computational geometry

Algorithms for solving “geometric problems”
In 2D and higher.

Fundamental objects: e —

point  line segment line
Basic structures:

Eo A

triangulation convex hull
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ALGORIT

=&~ Orthogonal range searching
Input: n points in d dimensions
 E.g., representing a database of n records
each with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)
* Report on the points inside the box:

* Are there any points? L .
 How many are there? y y
» List the points. S
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ALGORIT

= &~ Orthogonal range searching

)

Input: n points in d dimensions

Query: Axis-aligned box (in 2D, a rectangle)
* Report on the points inside the box

Goal: Preprocess points into a data structure
to support fast queries
 Primary goal: Static data structure °~ .
* In 1D, we will also obtain a ' '
dynamic data structure . °
supporting insert and delete L .
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ALGORITHN

~ &~ 1D range searching

)

In 1D, the query Is an interval:
*—0© @ o —©

First solution using ideas we know:
* Interval trees
* Represent each point x by the interval [x, x].
 Obtain a dynamic structure that can list
k answers In a query in O(k Ig n) time.
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ALGORITHN

e

)

In 1D, the query Is an interval:

~ &~ 1D range searching

*—0—

_.

Second solution using ideas we know:

e Sort the points and store them in an array
 Solve query by binary search on endpoints.
 Obtain a static structure that can list

k answers In a query in O(k + Ig n) time.

Goal: Obtain a dynamic structure that can list
k answers In a query in O(k + Ig n) time.

© 2001 by Erik D. Demaine
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ALGORITH

“ 5~ 1D range searching

)

In 1D, the query Is an interval:
*—0© @ o —©

New solution that extends to higher dimensions:
 Balanced binary search tree
* New organization principle:
Store points in the leaves of the tree.
e Internal nodes store copies of the leaves
to satisfy binary search property:
* Node x stores In key[x] the maximum
key of any leaf in the left subtree of x.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.8



ALGORIT

~ .+ Example of a 1D range tree

(4
(4 (J
( [ (4 [
(D (QE ) (O &l
Sll8]a2iae]  [2s)issfianiaz]  [ss)n]
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“ o~ Example of a 1D range tree

g m s
£ ) i ) @ ) @
BN [ e S E [ T Y
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“ o Example of a 1D range query

O UWT s s
i @ E

RANGE-QUERY([7, 41])
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! General 1D range query

' root
(J
(4
(4

split node '

N
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m Pseudocode, part 1;
=" Find the split node

1D-RANGE-QUERY(T, [X4, X5])
W < root[T]
while w is not a leaf and (x, < key[w] or key[w] < x,)
do if x, < key[w]
then w < left[w]
else w <« right[w]
> W IS now the split node
[traverse left and right from w and report relevant subtrees]

pd N
~ Tl
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m Pseudocode, part 2: Traverse
~*1 - left and right from split node

1D-RANGE-QUERY(T, [X4, X5])
[find the split node]
> W IS now the split node
If wis a leaf
then output the leaf w if x, < key[w] <X,
else v « left[w] > Left traversal
while v is not a leaf
do if x, < key|[v]
then output the subtree rooted at right[v]
v < left]v]
else v « right[v]
output the leaf v if x, < key|[v] < x,
[symmetrically for right traversal]

pd N
~ Tl
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;‘;f‘“« Analysis of 1D-RANGE-QUERY

AR

Query time: Answer to range query represented
by O(lg n) subtrees found in O(lg n) time.
Thus:
e Can test for points in interval in O(lg n) time.
« Can count points in interval in O(lg n) time
If we augment the tree with subtree sizes.
 Can report the first k points In
Interval in O(k + Ig n) time.

Space: O(n)
Preprocessing time: O(n Ig n)
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ALGORITHM

“ o~ 2D range trees

)
Store a primary 1D range tree for all the points
based on x-coordinate.

Thus in O(lg n) time we can find O(lg n) subtrees

representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

@
[ ]
& N
~ 7
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ALGORITH
o 2D range trees

“\‘

Idea In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

\

A AAA
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St AnaIyS|s of 2D range trees

Query time: In O((lg n)?) time, we can represent
the answer to range query by O((lg n)?) subtrees.
Total cost for reporting k points: O(k + (Ig n)?).

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point Is present In each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n Ig n).

Preprocessing time: O(n Ig n)
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m
d-dimensional range trees =2

\

Each node of the secondary y-structure stores
a tertiary z-structure representing the points
In the subtree rooted at the node, etc.

Query time: O(k + (Ig n)9) to report k points.
Space: O(n (Ig n)d-1)

Preprocessing time: O(n (Ig n)d-1)

Best data structure to date:

Query time: O(k + (Ig n)4-1) to report k points.
Space: O(n (Ign/lglgn)d-1)

Preprocessing time: O(n (Ig n)d-1)
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m— Primitive operations:
- Crossproduct

Given two vectors v, = (X, y,) and v, = (X5, V,),
IS thelr counterclockwise angle 6
e convex (< 180°)

e reflex (> 180°), or L. é

e borderline (O or 180°)? —— reflex

Crossproduct v, XV, =X, X, =Y, Y
= [vy| V5| SIN 6.
Thus, sign(v, x v,) =sign(sin 6) > 0 If 6 convex,
< 0 1f O reflex,
= 0 1f 6 borderline.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.20



m Primitive operations:
=1 Orientation test

Given three points p,, p,, p; are they
* In clockwise (cw) order,

* In counterclockwise (ccw) order, or
e collinear?

(pz - p11? X (p3 - pl) coplllinear
>0 1f ccw

<0i1fcw

i i P P3
= 0 1f collinear
Pq P1
P3 P,
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m Primitive operations:
~37 Sidedness test

Given three points p,, p,, p; are they
* In clockwise (cw) order,
* In counterclockwise (ccw) order, or
e collinear?

Let L be the oriented line from p, to p..
Equivalently, is the point p,
e right of L

’ p p

o left of L, or : ‘@ 2 p ‘@ ;
. " ' '

on L P3 P,
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ALGORITHN

™~

“ o~ Line-segment intersection

)

Given n line segments, does any palr intersect?
Obvious algorithm: O(n?).
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ALGORITH

~ <~ Sweep-line algorithm
e Sweep a vertical line from left to right
(conceptually replacing x-coordinate with time).
e Maintain dynamic set S of segments
that intersect the sweep line, ordered

(tentatively) by y-coordinate of intersection.
 Order changes when

* New segment Is encountered, | segment
» existing segment finishes, or J endpoints
e two0 segments cross

« Key event points are therefore segment endpoints.
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ALGORITH

“ o Sweep-line algorithm
Process event points in order by sorting segment
endpoints by x-coordinate and looping through:
* For a left endpoint of segment s:
* Add segment s to dynamic set S.
» Check for intersection between s
and Its neighbors in S,
* For a right endpoint of segment s:
* Remove segment s from dynamic set S.
* Check for intersection between

the neighbors of s In S.
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; ITHMS ]
=&~ Analysis

Y N\ e

Use red-black tree to store dynamic set S.
Total running time: O(n Ig n).
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“ .« Correctness
Theorem: If there Is an intersection,
the algorithm finds it.
Proof: Let X be the leftmost intersection point.
Assume for simplicity that
e only two segments s, S, pass through X, and
* N0 two points have the same x-coordinate.
At some point before we reach X,
s, and s, become consecutive In the order of S.
Either initially consecutive when s, or s, Inserted,

or became consecutive when another deleted.
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