Introduction to Algorithms
6.046J/18.401J

LECTURE 1
Analysis of Algorithms

e * Insertion sort
\ Q « Asymptotic analysis

* Merge sort
e Recurrences

ALGORITHMS

Prof. Charles E. Leiserson

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.1

VY s

=4+ Course information

1. Staff 8. Course website

2. Distance learning 9. Extra help

3. Prerequisites 10. Registration

4. Lectures 11. Problem sets

5. Recitations 12. Describing algorithms
6. Handouts 13. Grading policy

/. Textbook 14. Collaboration policy

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.2

=4+ Analysis of algorithms

) s

The theoretical study of computer-program
performance and resource usage.

What’s more important than performance?

e modularity e user-friendliness
e correctness programmer time
e maintainability < simplicity

e functionality o extensibility

* robustness e reliability

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.3

o= Why study algorithms and
w7 performance?

. Algorlthms help us to understand scalability.

 Performance often draws the line between what
Is feasible and what Is impossible.

 Algorithmic mathematics provides a language
for talking about program behavior.

 Performance is the currency of computing.

 The lessons of program performance generalize
to other computing resources.

 Speed Is fun!

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.4

""""g\ The problem of sorting

)

Input: sequence (a,, a,, ..., a,) of numbers.

Output: permutation (a';, a’,, ..., a',) such

Example:
Input: 8 2 4 9 3 6

Output: 2 3 46 8 9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.5

Insertion sort

[INSERTION-SORT (A, n) & A[1..n]

forj«<—2ton
do key «— A |]
i—j-1

pseudocode < while i > 0 and A[i] > key

do Ali+1] « Ali]
[—1-1

\ A[i+1] = key

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.6

Insertion sort

[INSERTION-SORT (A, n) & A[1..n]

forj«<—2ton
do key «— A |]
[<—j—1

while 1 = 0 and A[i] > key
do A[i+1] « A[i]

i—i—-1
\ Ali+1] = key
1 | J n
A: ? :| |
-
key

sorted

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.7

ALGORIT

=~ Example of insertion sort

8§ 2 4 9 3 6

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.8

ALGORIT

"*~’~"-"‘ Example of insertion sort

“\‘

3 2 4 9 3 6
N

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.9

."-;'—ﬁ",'f Example of insertion sort

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.10

""\"\'," Example of insertion sort

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.11

"""3\ Example of insertion sort

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.12

""""g\ Example of insertion sort

wY

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.13

9
9
9

w W w W
o O O O

8
/
8 9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.14

~ 4+ Example of insertion sort

(

9
9
9
/

4
4 9
N— -

oo OO
Lw W W W
o O O O

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.15

~ 4+ Example of insertion sort

(

©<© O O
(08 L L L

&~ OO OO

@0

O

o OO OO O O

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L1.16

~ 4+ Example of insertion sort

(

9
9
9
/
9

w W W w

&~ OO OO

O
\CD (@) (@) (@) (@)

8
N~

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.17

~ 4~ Example of insertion sort

(

@CCO O O
(08 L L L

0
0
0
0
0

-~
9 done

AN AN @) @)
e
@0 @)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.18

M(;mi'”

— Runnlng time

1\\‘ =

 The running time depends on the input: an
already sorted sequence Is easier to sort.

 Parameterize the running time by the size of
the Input, since short sequences are easier to
sort than long ones.

* Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.19

- "' Kinds of analyses

1\\‘ -

Worst -case: (usually)

* T(n) = maximum time of algorithm
on any Input of size n.

Average-case: (sometimes)

* T(n) = expected time of algorithm
over all inputs of size n.

* Need assumption of statistical
distribution of Inputs.

Best-case: (bogus)

 Cheat with a slow algorithm that
works fast on some input.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.20

- "' Machine-independent time

Y e -

What Is insertion sort’s worst-case time?

* It depends on the speed of our computer:
e relative speed (on the same machine),
* absolute speed (on different machines).

BIG IDEA:
* Ignore machine-dependent constants.
 Look at growth of T(n) as n — oo,

“Asymptotic Analysis”

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.21

ALGORITHM

=71 ®-notation

'\\“ e

S

Math:
A(g(n)) ={ f (n) : there exist positive constants c., ¢,, and

nysuchthat 0 <c,g(n) <f(n)<c,g(n)
foralln>n,}
Engineering:
* Drop low-order terms; ignore leading constants.
e Example: 3n3+ 90n? — 5n + 6046 = ©(n3)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.22

" Asymptotic performance

Y e -

When n gets large enough, a ®(n?) algorithm
always beats a ®(n?) algorithm.

 \We shouldn’t ignore
asymptotically slower
algorithms, however.

 Real-world design
situations often call for a
careful balancing of
engineering objectives.

« Asymptotic analysis Is a

- . useful tool to help to

n Mo structure our thinking.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.23

.5"—"%"" Insertion sort analysis

Y e

Worst case: Input reverse sorted.
T(n) = Z@(J) —©(n2) [arithmetic series]

Average case: All permutations equally likely.
n
T(n)= Y 0(j/2)=06(n2)
j=2
Is Insertion sort a fast sorting algorithm?

e Moderately so, for small n.
 Not at all, for large n.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.24

)

""""g\ Merge sort

MERGE-SORT A[l .. n]|
1. If n=1, done.

2. Recursively sort A[1. .[n/21]
and A[[n/21+1..n].

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.25

ALGORITH

‘" Merging two sorted arrays

1\\‘ -

20 12
13 11
7 9
2 1

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.26

" Merging two sorted arrays

Y e -

20 12
13 11
7 9

'

1

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.27

ALGORITH

— I\/Ierglng two sorted arrays

1\\‘ -

20 12 20 12
13 11 13 11
7 9 7 9

2 2

1

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.28

" I\/Ierglng two sorted arrays

1\\‘ -

20 12 20 12
13 11 13 11
7 9 7 9

9

1 2

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.29

ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12
13 11 13 11 13 11
7 9 7 9 7 9

9

1 2

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.30

ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12
13 11 13 11 13 11
7 9 7 9 9

9

1 2 7

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.31

ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11
7 9 7 9 9 9

9

1 2 7

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.32

ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11

7 9 7 9 9

9

1 2 7 9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.33

ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 11

7 9 7 9 9

9

1 2 7 9

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.34

ALGORITH
“\

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 @

7 9 7 9 9

9

1 2 7 9 11

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.35

ALGORITH

u—-m

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 @ 13

7 9 7 9 9

9

1 2 7 9 11

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.36

ALGORITH

u—-m

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 | 20 12 || 20 12 | 20 12 | 20 12 20@
13 11 | 13 11 | 13 11 || 13 11 13 13

7 9 7 9 9

1 2 7 9 11 12

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.37

ALGORITH

— I\/Ierglng two sorted arrays

1\\‘ =

20 12 | 20 12 || 20 12 | 20 12 | 20 12 20@
13 11 | 13 11 | 13 11 || 13 11 13 13

7 9 7 9 9

1 2 7 9 11 12

Time = ®(n) to merge a total
of n elements (linear time).

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.38

'"""3\ Analyzing merge sort

)

T(n) MERGE-SORT A[l . . n]
/ O(1) 1. If n=1, done.

2T(n/2)| 2. Recursively sort A[1../n/21]
Abuse and A[[n/21+1..n7.

/®(”) 3. “Merge” the 2 sorted lists

Sloppiness: Should be T([n/21) + T(In/2]),
but it turns out not to matter asymptotically.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.39

~ .+~ Recurrence for merge sort

o [e@)ifn=1;
(n) = {2T(n/2) + @) ifn> 1.

« We shall usually omit stating the base
case when T(n) = ®(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

* CLRS and Lecture 2 provide several ways
to find a good upper bound on T(n).

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.40

'“" Recursmn tree

“\‘

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.41

"""' Recursmn tree

“\‘

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.
T(n)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.42

= .« Recursion tree

WY

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

- ch —
T(n/2) T(n/2)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.43

~ 4~ Recursion tree
Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.
ch

\
cn/2 cn/2

/. /. O\
T(/4) T(n/4) T(n/4) T(n/4)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.44

: Recursion tree

-
W,
A

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

ch
\
cn/2 cn/2
/ VAN

cn/4 cn/4 cn/4 cn/4
/

o(1)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.45

=~ < Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.
ch

\
cn/2 cn/2

) /N /N
h=1Ign 4 cn/4 cn/4 cn/4
/

o(1)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.46

h=lgn o
/

o(1)

September 7, 2005

cn/2 cn/2
/ VAN

cn/4 cn/4 cn/4

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L1.47

cn/2 cn/2 cn
RN N

h=lgn o cn/4 cn/4 cn/4
/

o(1)

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.48

N=1gn cn4
/

o(1)

September 7, 2005

o -~ cn
cn/2 CNJ2 e cn
VAN VAN
cn/4 cn/4 cn/4 - cn
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson 1.1.49

N=1gn cn4
/

September 7, 2005

e -~ cn
cn/2 cn/2 e cn
VAN VAN
cn/4 cn/4 cn/4 - cn
"""""" #leaves = n l @(n)
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.50

h=lgn o
/

September 7, 2005

CN e ch
\

cn/2 cn/2 cn
VAN VAN

cn/4 cn/4 cn/4 - cn
------------ #leaves = n l O(n)

Total = ©®(n lg n)

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.51

.-" " Conclusions

1\\‘ -

e ®O(n lg n) grows more slowly than ®(n?).

* Therefore, merge sort asymptotically
beats Insertion sort in the worst case.

* In practice, merge sort beats insertion
sort for n > 30 or so.

 Go test it out for yourself!

September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.52

Introduction to Algorithms
6.046J/18.401)

LECTURE 2
Asymptotic Notation

* O-, QO-, and ®-notation
\ ﬁ Recurrences

 Substitution method

e Iterating the recurrence
e Recursion tree

e Master method

ALGORITHMS

Prof. Erik Demaine

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.1

~ &+ Asymptotic notation

O-notation (upper bounds):

"We write f(n) = O(g(n)) if there
exist constants ¢ > 0, n, > 0 such
Jhat 0 <f(n) <cg(n) for all n > n,,. y

~

September 12, 2005

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L2.2

}\.

~ 4~ Asymptotic notation

O-notation (upper bounds):

"We write f(n) = O(g(n)) if there
exist constants ¢ > 0, n, > 0 such
Jhat 0 <f(n) <cg(n) for all n > n,,. y

~

ExamvpLe: 2n% = O(n?)

September 12, 2005

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

(c=1,n,=2)

L2.3

.-i:',\'f"_' Asymptotic notation

O-notation (upper bounds):

"We write f(n) = O(g(n)) if there
exist constants ¢ > 0, n, > 0 such
Jhat 0 <f(n) <cg(n) for all n > n,,. y

ExamvmpLe: 2n=0(n%) (c=1,n,=2)

/

functions,
not values

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.4

i-;';'_"_' Asymptotic notation

O-notation (upper bounds):

"We write f(n) = O(g(n)) if there
exist constants ¢ > 0, n, > 0 such
Jhat 0 <f(n) <cg(n) for all n > n,,. y

ExamvpLe: 2n=0(n%) (c=1,n,=2)

_ / funny, “one-way™
functions, equality
not values

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.5

!\',\"" Set definition of O-notation

(O(g(n)) = { f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < f(n) < cg(n)
foralln>n, }

_ /

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.6

""" Set definition of O-notation

/ O(g(n)) = { f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < f(n) < cg(n)
foralln>n, }

o

ExampLE: 2n? € O(n?)

/

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.7

- "' Set definition of O-notation

/ O(g(n)) = { f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < f(n) < cg(n)
foralln>n, }

_

ExampLE: 2n? € O(n?)

(Logicians: An.2n* € O(An.n?), but it’s
convenient to be sloppy, as long as we
understand what’s really going on.)

/

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.8

- ." Macro substitution

Y e -

Convention: A set in a formula represents
an anonymous function in the set.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.9

'*"""' Macro substitution

‘\“ :

Convention: A set in a formula represents
an anonymous function in the set.

ExampLe: f(n) =n3 + O(n?)
means
f(n) = n3 + h(n)
for some h(n) € O(n?) .

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.10

=+ Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

ExampLe: n2+ O(n) = O(n?)
means
for any f(n) € O(n):
n¢ + f(n) = h(n)
for some h(n) € O(n?) .

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.11

ALGORITHMS

~ 4~ Q-notation (lower bounds)

VY i

O-notation Is an upper-bound notation. It
makes no sense to say f(n) is at least O(n?).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.12

“ .+ Q-notation (lower bounds)

O-notation Is an upper-bound notation. It
makes no sense to say f(n) is at least O(n?).

¢ Q(g(n)) ={ f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < cg(n) < f(n)
foralln>n, }

- /

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.13

ALGORITHMS

-y

-

)|

QQ-notation (lower bounds)

| :
1\\‘ o

O-notation Is an upper-bound notation. It
makes no sense to say f(n) is at least O(n?).

¢ Q(g(n)) ={ f(n) : there exist constants
¢ >0, ny> 0 such
that 0 < cg(n) < f(n)
foralln>n, }

o
ExampLe: /n=Q(lgn) (c=1,n,=16)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.14

/

'“\"'," ®-notation (tight bounds)

ALG
W,
Y

- eEm)=0Em) N QEM)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.15

¥7% @-notation (tight bounds)

v \‘

- eEm)=0Em) N QEM)

EXAMPLE: %nz —2n=0(n°)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.16

~ &+ o-notation and w-notation

O-notation and Q-notation are like < and >.
o-notation and m-notation are like < and >.

“o(g(n)) = { f(n) : for any constant ¢ > 0,
there Is a constant n, > 0
such that O < f(n) < cg(n)
foralln>n, }

.

~

/

ExampLE: 2n?=0(n%) (n,=2/c)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.17

~ 4~ o-notation and ®-notation

O-notation and Q-notation are like < and >.
o-notation and m-notation are like < and >.

Ca(g(n)) = { f(n) : for any constant ¢ >0,
there Is a constant n, > 0
such that O < cg(n) < f(n)
foralln>n, } Y

N
ExampLe: \/n =w(lgn) (n, = 1+1/c)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.18

ALGORI

" Solvmg recurrences

1\\‘ =

* The analysis of merge sort from Lecture 1
required us to solve a recurrence.

 Recurrences are like solving integrals,
differential equations, etc.

o Learn a few tricks.

e Lecture 3: Applications of recurrences to
divide-and-conquer algorithms.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

- Substltutlon method

“\‘

The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

=~ Substitution method

The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

ExampPLE: T(n) =4T(n/2) +n
e [Assume that T(1) = ©(1).]
* Guess O(n?) . (Prove O and Q) separately.)

e Assume that T(k) <ck*fork<n.
* Prove T(n) < cn® by induction.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

Example Of SU bStitUtiOn

Y
1\\‘ \‘ ik

.'-“'

T(n)=4T(n/2)+n
<4c(n/2)3 +n
=(c/2)n3+n
=cn3 —((c/2)n3 —n) — desired — residual
< cn3 — desired

whenever (c/2)n®—n >0, for

example, if ¢ > 2 antbe 1,
residual

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

,; Example (continued)

)

* \We must also handle the initial conditions,
that Is, ground the induction with base
cases.

» Base: T(n) = ®(1) for all n <ng,, where n,
IS a sultable constant.

e For 1 <n <ng we have “O(1)” < cn?, if we
pick c big enough.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.23

.;—'«' Example (continued)

* We must also handle the initial conditions,
that Is, ground the induction with base
cases.

» Base: T(n) = ®(1) for all n <ng,, where n,
IS a suitable constant.

e For 1 <n <ng we have “O(1)” < cn?, if we
pick c big enough.

This bound is not tight!

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

;".‘"“ < A tighter upper bound?

Y e

We shall prove that T(n) = O(n?).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.25

~ 4~ Atighter upper bound?

We shall prove that T(n) = O(n?).

Assume that T(k) < ck? for k < n:
T(n)=4T(n/2)+n

£4C(n/2)2 +N

=cn® +n

= 0(n%)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.26

"'"*,\ A tighter upper bound?

We shall prove that T(n) = O(n?).

Assume that T(k) < ck? for k < n:
T(n)=4T(n/2)+n

£4C(n/2)2 +N

=cn® +n

= OX) Wrong! We must prove the I.H.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.27

""""\\ A tighter upper bound?

We shall prove that T(n) = O(n?).

Assume that T(k) < ck? for k < n:
T(n)=4T(n/2)+n
< 4c3(n/2)2 +N
=cn® +n
= OX) Wrong! We must prove the I.H.
=cn2 —(—n) [desired —residual]
<cn4 for no choice of ¢ > 0. Lose!

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28

,E. A tighter upper bound!

ARV Ve

IDEA: Strengthen the inductive hypothesis.
e Subtract a low-order term.

Inductive hypothesis: T(k) < ¢,k? — ¢,k for k <n.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.29

ALG

"'"'*,\ A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
e Subtract a low-order term.

Inductive hypothesis: T(k) < ¢,k? — ¢,k for k <n.
T(n) =4T(n/2) +n
= 4(c,(n/2)? - c,(n/2)) + n
=CcN°—2c,n+n
=¢,N*—c,n—(c,n—n)
<c¢n?—c,n ifc, > 1.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

."-;'—3_ A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
e Subtract a low-order term.

Inductive hypothesis: T(k) < ¢,k? — ¢,k for k <n.
T(n) =4T(n/2) +n
= 4(c,(n/2)? - c,(n/2)) + n
=CcN°—2c,n+n
=¢,N*—c,n—(c,n—n)
<c¢n?—c,n ifc, > 1.
Pick c, big enough to handle the initial conditions.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.31

M(;mi'”

" Recursmn tree method

1\\‘ =

« A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

 The recursion-tree method promotes intuition,
however.

 The recursion tree method Is good for
generating guesses for the substitution method.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32

"""" Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.33

"'""' Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n:
T(n)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.34

~ .+ Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + nZ:

2
— ; ™~
T(n/4) T(n/2)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35

R
Solve T(n) = T(n/4) + T(n/2) + nZ:
2
/ ’ \

(n/4)? (n/2)?

/. /. O\
T(n/16) T(n/8) T(n/8) T(n/4)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

= o~ Example of recursion tree

L2.36

R
Solve T(n) = T(n/4) + T(n/2) + n?:
2
/n \
(n/4)? (n/2)?
AN RN
(n/16)? (n/8)% (n/8)? (n/4)?
o)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

= o~ Example of recursion tree

L2.37

(n/4)? (n/2)?
AN VN
(n/16)> (n/8)? (n/8)? (n/4)?

o(1)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L2.38

(n/4)- (N/2)2 e n2
7N /N

(n/16)? (n/8)% (n/8)? (n/4)?

o(1)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

A E—— N2
/ \
(n/4)? (n/2)2 2.0
/N VRN o5
(n/16)> (n/8)> (n/8)? (n/4)? 256 n2
/

o(1)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

A E—— n2
(n/4)? (N/2)2 s 16"
RN 7\ 25
(n/16)> (n/8)> (n/8)2 (n/4)?—— Sgen?
/ =
0(1 _ 2 3
(1) Total =n (1+16+(1%) +(156) +)

=®(n%) geometric series

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L2.41

o

."—'«" The master method

Y e

The master method applies to recurrences of
the form

T(n) =aT(n/b) +f(n),

wherea>1,b>1, and f I1s asymptotically
positive.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

"”""' Th ree cCOmmon cases

“\‘

Compare f(n) with n'o%ba:
1. f(n) = O(n'92-2) for some constant ¢ > 0.

* f(n) grows polynomially slower than n'ed?
(by an n@ factor).

Solution: T(n) = ®(n'o%a)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.43

Compare f(n) with n'ogba;
1. f(n) = O(n'o%a-¢) for some constant ¢ > 0.

* f(n) grows polynomially slower than n'ed?
(by an n@ factor).

Solution: T(n) = ®(n'o%a)
2. f(n) = ®(n'°%2 |gkn) for some constant k > 0.

e f(n) and n'°%2 grow at similar rates.
Solution: T(n) = ®(n'o%a |gk+in)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.44

== Three common cases (cont.)

Compare f(n) with n'ogba;

3. f(n) = Q(n'o%a+*2) for some constant ¢ > 0.

* f(n) grows polynomially faster than n'o%? (by
an n¢ factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) =O(f(n)).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.45

= Examples

Ex. T(n) =4T(n/2) +n
a=4,b=2=nlogwa=n? f(n) =n.
Case 1: f(n) = O(n?-¢) for g = 1.
- T(n) = O(n?).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.46

Ex. T(n) =4T(n/2) +n
a=4,b=2=nlogwa=n? f(n) =n.
Case 1: f(n) = O(n?-¢) for g = 1.
- T(n) = B(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2=nlga=n? f(n) =n?
Case 2: f(n) = ®(n?lg®n), that is, k = 0.
- T(n) = ©(n?lgn).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.47

e Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nlga=n? f(n) =ns
Case 3:f(n)=Q(n**¢) fore =1
and 4(n/2)? < cn?(reg. cond.) for c = 1/2.
- T(n) = O(nd).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.48

=t Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nlga=n? f(n) =ns
Case 3:f(n)=Q(n**¢) fore =1
and 4(n/2)? < cn?(reg. cond.) for c = 1/2.
- T(n) = O(nd).

Ex. T(n) =4T(n/2) + n4/lgn
a=4,b=2= nlda=n2 f(n) =n?lgn.
Master method does not apply. In particular,
for every constant € > 0, we have n® =w(lgn).

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.49

.~ ldea of master theorem

Recursion tree:
f(n) .
P e N
f(n/b) f(n/b) --- f(n/b)
P N

f(n/b?) f(n/b?) --- f(n/b?)
/

(1)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L2.50

Recursion tree:
f(n)—7r———— f(n)

AN NCY
f(nib) f(n/b) -+ f(n/b)——af(n/b)

@

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/

()

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.51

Recursion tree:
| f(n)—7r———— f(n)

&
f(n/b) f(n/b) - f(n/b)——af(n/b)
h =loggn /\/_)\a

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/

()

\4

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.52

Recursion tree:
| f(n)—7r———— f(n)

AN NCY
f(nib) f(n/b) -+ f(n/b)——af(n/b)

h =loggn /\/‘_)\a

f(n/b2) f(n/b?) - f(n/b?) e a2f (n/b?)
/
" #leaves = a" _
’ = glogbn
| TQA) e nlogba 77(1)

= nlogha

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.53

f(/b) f(n/b) -~ f(n/b)——af(n/b)
h =log,n /\/‘)\a

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/

" (CASE 1: The weight increases
/- |geometrically from the root to the
| 7(1) |leaves. The leaves hold a constant [n'°%277(1)

fraction of the total weight.
@(nlogba)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.54

Recursion tree:
| f(n)—7r———— f(n)

AN NCY
f(nib) f(n/b) - f(n/b)—af(n/b)

h =loggn /\/‘_)\a

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/
/: (CASE 2: (k = 0) The weight ;
______ Is approximately the sameon|
V) each of the log,n levels. nee27(1)
®(n'o923]g n)

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.55

~ 4~ ldea of master theorem

Recursion tree:
t f(n) g f(n)

&
f(n/b) f(n/b) - f(n/b)-—af(n/b)
h =loggn /\/‘)\a

f(n/b?) f(n/b?) -+ f(n/b2) s a2f (n/b2)
/

* (CASE 3: The weight decreases
/- |geometrically from the root to the
| 7(1) |leaves. The root holds a constant | n'°%277(1)

fraction of the total weight.
O(t(n))

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.56

Introduction to Algorithms
6.046J/18.401)

ECTURE 3
Divide and Conquer

» Binary search
Coay e Powering a number

 Fibonacci numbers

« Matrix multiplication
e Strassen’s algorithm
* VLSI tree layout

ALGORITHMS

Prof. Erik D. Demaine

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.1

o The divide-and-conquer
~ design paradigm

1. Divide the problem (instance)
Into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L2.2

- """ Merge sort

Y e

1. Divide: Trivial.
2. Conguer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.3

.~"—'-" "' Merge sort

Y e

1. Divide: Trivial.
2. Conguer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) =2T(n/2) + ®(N)

subproblems work dividing
subproblem size and combining

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.4

~ &~ Master theorem (reprise)
: T(n) = aT(n/b) + f(n)

Cask 1: f(n) = O(n'e9a-¢2) constant € > 0
= T(n) = ©(n'o%a)

Cask 2: f(n) = ©(n'°%2 |gkn), constant k > 0
= T(n) = O(n'°o%a |gk+1n)

Case 3: f(n) = Q(n'o9a +2) constant € > 0,
and regularity condition
= T(n) = O(f(n)) .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.5

.+ Master theorem (reprise)
| T(n) = aT(n/b) + f(n)
Cask 1: f(n) = O(n'e9a-¢2) constant € > 0
= T(n) = ®(n'o9pa)
Cask 2: f(n) = ©(n'°%2 |gkn), constant k > 0
= T(n) = O(n'o%p2 |gk+in)

Case 3: f(n) = Q(n'o9a +2) constant € > 0,
and regularity condition
= T(n) = O(f(n)) .

Merge sort: a=2,b =2 = n'o%a = nlog22 = p
= CAsE2 (k=0) = T(n)=0(nlgn).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.6

~ &~ Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.7

.-"' " Binary search

“\‘

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.8

.-"' " Binary search

“\‘

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.9

.-"' "' Binary search

Y e

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.10

.-"' "' Binary search

Y e

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.11

.-"' "' Binary search

Y e

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.12

.-"' "' Binary search

Y e

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conguer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.13

-

= 4~ Recurrence for binary search

T(n) =1T(n/2) +B(1)

subproblems work dividing
subproblem size and combining

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.14

!\',\"" Recurrence for binary search

T(n) =1T(n/2) +B(1)

subproblems work dividing
subproblem size and combining

nlogbd = nlogzl = n0 =1 = Case 2 (k = 0)
= T(n) =O(gn) .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.15

'“" Powerlng a number

“\‘

Problem: Compute a", where n \.

Naive algorithm: ®(n).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.16

Powering a number

,
WY

Problem: Compute a", where n \.
Naive algorithm: ®(n).

Divide-and-conguer algorithm:

- anz. gniz if nis even;
a(m-D2.g(-D2. 5 if nis odd.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.17

~ .~ Powering a number
Problem: Compute a", where n \.
Naive algorithm: ®(n).

Divide-and-conguer algorithm:

an=-Dz.g=-02. 3 ifnis odd.

T(n) =T(n/2) + ®(1) = T(n) =6(lgn).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

i {a”/Z-a”’2 if niseven:
AN =

L2.18

- Fibonacclt numbers

Y
1\\‘ \‘ ik

._.N. =

Recursive definition:

0 if n=0;
F =<1 ifn=1;
ko +F, 1fn>2

0 1 1 2 3 5 8 1321 34 ---

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

= 4~ FIbonacci numbers

Recursive definition:

0 if n=0;
F =<1 ifn=1;
ko +F, 1fn>2

0 1 1 2 3 5 8 1321 34 ---

Naive recursive algorithm: Q(¢")
(exponential time), where ¢ =(1+/5)/2
IS the golden ratio.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

i Computlng Fibonacci
« " numbers

Bottom-up:

* Compute F, F,, F,, ..., F, In order, forming
each number by summing the two previous.

e Running time: ®(n).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

i Computlng Fibonacci
« " numbers

Bottom-up:

* Compute F, F,, F,, ..., F, In order, forming
each number by summing the two previous.

e Running time: ®(n).
Nailve recursive squaring:

F. = ¢"/\/5 rounded to the nearest integer.
 Recursive squaring: ®(lg n) time.

 This method Is unreliable, since floating-point
arithmetic Is prone to round-off errors.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

Recursive squaring

- e
Theorem: LT - L
I:n I:n—l

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.23

""""g\ Recursive squaring

)

Theorem: LT :_1 L
I:n I:n—l_ _1 O_

Algorithm: Recursive squaring.
Time =0O(lgn).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

~ 4~ Recursive squaring

Theorem: LT :_1 L
I:n I:n—l_ _l O_

Algorithm: Recursive squaring.
Time =O(lgn).

Proof of theorem. (Induction on n.)

T 41l
F» F 1 1
Base (n=1): | ¢ '|= .
F F|] |1 0

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.25

September 14, 2005

Inductive ste

Fn +1 I:n

0 (N = 2):

Fn I:n -1

Fn

- Fn -1

1

O_
.
O_

~ .~ Recursive squaring

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L2.26

Matrix multiplication

Input: A =[a;], B =[b;]. } L
Output: C = [c;] = A-B. ,)J=1,2,...,n.

(Ciy Cpp - Cin | @&y & =+ &y | [byg b - by,

Co1 Co2 =+ Con | |32 @ -+ Apn | |Da1 bpp -+ Dop

Ch1 Ch2 - Cpyp dn1 Apo ot dpp _bnl bn2 bnn

n
Cij = 2. aik - by
k=1

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.27

"""",\ Standard algorithm

\

-
)

fori< 1ton
do forj« 1ton
do ¢ < 0
fork <« 1ton
do Cj; < Cjj + &y Dy,

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28

"""",\ Standard algorithm

\
)

fori< 1ton
do forj« 1ton
do ¢ < 0
fork <« 1ton
do Cj; < Cjj + &y Dy,

Running time = ©(n3)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.29

""" Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r s ab e f

|
777777777777 —

,,,,,,,,,,,,,,,

t u cd g h

r —ae+bhg
s =af +bh | 8 mults of (n/2)x(n/2) submatrices

t =ce+dg g 4 adds of (n/2)x(n/2) submatrices

u=cf +dh_

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

""" Divide-and-conquer algorithm

IDEA:

nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r s ab e f

|
777777777777 —

,,,,,,,,,,,,,,,

t u cd g h

r —ae+bhg
s =af +bh
t =ce+dh
u=cf +dg_

CcC = A - B

recursive
SLmuIts of (n/2)x(n/2) submatrices
4 adds of (n/2)x(n/2) submatrices

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.31

‘ AnaIyS|s of D&C algorithm

“\‘

T(n) =8T(n/2) + ©(n?)

G |
submatrices work adding

. submatrices
submatrix size

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32

‘\

\
‘\‘

AnaIyS|s of D&C algorithm
T(n) =8T(n/2) + ©(n?)

G |
submatrices work adding

. submatrices
submatrix size

niodbd = nlog28 = n3 = Case 1 = T(n) = O(nd).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.33

\
N

""% Analysis of D&C algorithm

.

T(n) =8T(n/2) + ©(n?)

G |
submatrices work adding

. submatrices
submatrix size

niodbd = nlog28 = n3 = Case 1 = T(n) = O(nd).

No better than the ordinary algorithm.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.34

.-" "" Strassen’s 1dea

“\‘

. Multlply 2x2 matrices with only 7 recursive mults.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35

- Strassen’s 1dea

Y
1\\‘ \‘ ik

._.N. =

* Multiply 2x2 matrices with only 7 recursive mults.

=(a+b)-h

d-(g-e)
@a+d)-(e+h)
(b-d)-(g+h
@a-c)-(e+f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.36

St Strassen’s idea

> =a.(f-h) =P +P,—P,+P,
=(a+b)-h s =P, +P,
=(c+d)-e t =P;+P,
U=Ps+P —P3-P;

=(@+d)- (e +h)
=(b-)- (g +1)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

= 1 Strassen’s idea

= X
WY e

* Multiply 2x2 matrices with only 7 recursive mults.

> =a.(f-h) =P +P,—P,+P,
=(a+b)-h s =P, +P,
=(c+d)-e t =P;+P,
U=Ps+P —P3-P;

=(@+d)-(e+h)
=(b-d)-(g+h) |’ mults, 18 adds/subs.

=(a—c) (e+f) Note: No reliance on
commutativity of mult!

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

“ &~ Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P, =a-(f-h) r=P.+P,—P,+P;
,=(a+Db)-h =(a+d)(e+h)
P3=(c+d)-e td(g-e)-(a+b)h
°,=d-(g-¢) +(b-d)(g+h)
P.=(a+d)-(e+h) = ae + ah + de + dh
Pc=(b-d)-(g+h) + dg —de — ah — bh
2o =(a-c)-(e+f1) + bg + bh —dg - dh
= ae + bg

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

ALGORITI
m.\
-

-

“\‘

. Strassen’s algorithm

1 Divide: Partition A and B Into
(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

"*'*’”’"J Strassen’s algorithm

1 Divide: Partition A and B Into
(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) = 7T(n/2) + ©(n?)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.41

i

"<~ Analysis of Strassen

T(n) = 7T(n/2) + ©(n?)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

.~ Analysis of Strassen
T(n) = 7T(n/2) + ®(n2)

n'odbd = nlog2’ ~ n28l — Case 1 = T(n) = O(n'97),

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.43

‘ =~ Analysis of Strassen

“\‘

T(n) = 7T(n/2) + ©(n?)
n'ogba = nlog2” » n28l = Case 1 = T(n) = O(n'97).

The number 2.81 may not seem much smaller than
3, but because the difference Is In the exponent, the
Impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.44

‘ =~ Analysis of Strassen

“\‘

T(n) = 7T(n/2) + ©(n?)
n'ogbd = nlog2’ ~ n28l — Case 1 = T(n) = O(n'97"),
The number 2.81 may not seem much smaller than
3, but because the difference Is In the exponent, the
Impact on running time is significant. In fact,

Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.

Best to date (of theoretical interest only): ®(n2:376),

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.45

" VLSI layout

1\\‘ -

Problem Embed a complete binary tree
with n leaves in a grid using minimal area.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.46

“ 4~ VLSI layout
TR

Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

W(n)
l i i
H(In) . .

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.47

" VLSI layout

Y e

Problem Embed a complete binary tree
with n leaves in a grid using minimal area.

W(n)
I i i
H(In) -, L

H(n) = H(n/2) + ©(1)
= 0®(lg n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.48

.-";';'\','f VLSI layout

Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

W(n)
l i i
H(In) . .

H(n) =H(n/2) + ©(1) W(n) =2W(n/2) + 6(1)
= 0®(lg n) = O(n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.49

.-";'E"\','f VLSI layout

Problem: Embed a complete binary tree
with n leaves in a grid using minimal area.

W(n)
l i i
H(In) . .

H(n) =H(n/2) + ®(1) W(n) =2W(n/2) + (1)
= 0®(lg n) = O(n)
Area = ®(n lg n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.50

J\I (_.(}RIIIIMN

— H -tree embedding

Y e

L(n)

L(n)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.51

=~ H-tree embedding

L(n)

L(n)

L(n/4) ©(1) L(n/4)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.52

.

=~ H-tree embedding

L(n)

L(n) =2L(n/4) + ©(1)
= ®(/n)

L(n)

Area = O(n)

L(n/4) ©(1) L(n/4)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.53

ALGORIT

" Conclusmn

1\\‘ =

 Divide and conquer Is just one of several
powerful techniques for algorithm design.

 Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

 The divide-and-conquer strategy often leads
to efficient algorithms.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.54

Introduction to Algorithms
6.046J/18.401)

L ECTURE 4
Quicksort

~ . * Divide and conquer
\ﬁ{h\‘ _ e Partitioning |

 \Worst-case analysis

e Intuition
« Randomized quicksort
* Analysis

ALGORITHMS

Prof. Charles E. Leiserson

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.1

ALGORI

W Qumksort

1\\‘ =

* Proposed by C.A.R. Hoare in 1962.
 Divide-and-conquer algorithm.

e Sorts “In place” (like insertion sort, but not
like merge sort).

 Very practical (with tuning).

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.2

.-"' "' Divide and conquer

Y e

chksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements in upper subarray.

< X X > X

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.3

Partitioning subroutine

— ‘- __

PARTlTlON(A p,q) = A[p..(d] -
X < AlLp] > pivot = A[p] [Running time
| <D = O(n) for n
forj«<p+ltog elements.

doif A[]] <x
then 1« i1+1
exchange Ali] <> Al |]
exchange Al p] <> Ali]
return |

Invariant: | x <X > X ?
p i J g

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.4

~ .~ Example of partitioning

6 [10[13] 5 [8[3]2 [11]

]

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.5

~ .~ Example of partitioning

6 [10[13] 5 [8[3]2 [11]

]

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.6

~ .~ Example of partitioning

6 [10[13] 5 [8[3]2 [11]

|]

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.7

,;, Example of partitioning

10

ks

11

September 21, 2005

13

10

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.8

,;, Example of partitioning

10

ks

11

September 21, 2005

13

10

—)

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.9

,;, Example of partitioning

10

ks

11

September 21, 2005

13

10

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.10

ks

11

13

10

11

September 21, 2005

10

13

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.11

' Example of partitioning

10

ks

11

13

10

11

September 21, 2005

10

13

]

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.12

,“ Example of partitioning

10

ks

11

13

10

11

10

13

11

September 21, 2005

13

10

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.13

,“ Example of partitioning

10

ks

11

13

10

11

10

13

11

September 21, 2005

13

10

11

—)

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.14

,“ Example of partitioning

10

ks

11

13

10

11

10

13

11

September 21, 2005

13

10

11

—)

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.15

,“ Example of partitioning

10

ks

5

3

11

13

10

3

11

10

13

11

2

13

10

11

September 21, 2005

0
i

13

10

11

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.16

\
‘\‘

1

Pseudocode for quicksort

QUICKSORT(A, p, I)
ifp<r
then g <— PARTITION(A, p, I)
QUICKSORT(A, p, g-1)
QUICKSORT(A, g+1, 1)

Initial call: QuicksorT(A, 1, n)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.17

" Analy3|s of quicksort

1\\‘ =

» Assume all input elements are distinct.

* In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

 Let T(n) = worst-case running time on
an array of n elements.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.18

”'\"" Worst-case of quicksort

* Input sorted or reverse sorted.
e Partition around min or max element.
 One side of partition always has no elements.

T(n)=TO)+T(n-1)+6(n)
=OQ)+T(n-1)+06(n)
=T(n-1)+0O(n)
=0(n2) (arithmetic series)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.19

=1 Worst-case recursion tree

T(n) =T(0) + T(n-1) + cn

AR :

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.20

~I'-l_1? Worst-case recursion tree
T(n) = T(0) + T(n—1) + cn
T(n)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.21

ALGORITHM

.""""-j;,j Worst-case recursion tree
T(n) = T(0) + T(n—1) + cn

Cch
TN
T(0) T(n-1)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.22

~ .+ Worst-case recursion tree
T(n) = T(0) + T(n—1) + cn

cn
TN
T(0) c(n-1)
TN
T(0) T(n-2)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.23

~ .+ Worst-case recursion tree
~ T()=T(0) + T(n-1) +cn
CN
<
T(0) c(n-1)
< N
T(0) c(n-2)
an
T -
~
6(1)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.24

~ .+ Worst-case recursion tree
T(n) = T(0) + T(n—1) + cn

cn n
T(O{ C\(n—l) / @[k kj = @(nz)
RS =1

T(0) c(n-2)
7
TO) -
~
O(1)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.25

B Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn

4 Ccn n
o) ci-1) ({Zk] =6(n?)
RS k=1
O(1) c(n-2)
h=n S T(n) = O(n) + O(n?)
e1) - = O(n?)
~
O(1)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.26

\

Best -case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

T(n) =2T(n/2) + B(n)
=0®(nlgn) (same as merge sort)

9

What if the split Is always To ‘107

T(n)=T(in)+T(2n)+O(n)
What is the solution to this recurrence?

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.27

i
~
-

)

= 4~ Analysis of “almost-best™ case

T(n)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.28

.5"—"%"" Analysis of “almost-best™ case

Y e

T(lo)/ \(10 °n)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.29

JORITHMS

<~ Analysis of “almost-best” case

’J
V|

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.30

~ .~ Analysis of “almost-best™ case

CN oSS - mmmmmmmm e cn
/ \
- CIN SN Ao chn
AN 7 N\ o9
10Ocn 1gocn 1800” 1%100n X-------- cn

/ /NN T\

@(’i) O(n) leaves l

..\

A(1)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.31

1 9 9 81
100/Cn 100 cn 100 cn 100 CN -X-------- cn

7\ 7\ \

@(’i) O(n) leaves l ."\

®(nlgn) O(1)

Lucky! cnlog,,n <T(n) <cnlogyen + O(N)

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.32

ALGORITHMS

~ .+ More Intuition

Suppose we alternate lucky, unlucky,

luc

Ky, unlucky, lucky,
_(n) =2U(n/2) + ®(n) lucky

Jn)=L(n-1) + O(n) unlucky

Solving:
L(n) =2(L(n/2-1) + ®(n/2)) + B(n)

=2L(n/2 - 1) + B(n)
=0 lgn) Lucky!

How can we make sure we are usually lucky?

September

21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.33

ALGORIT

- Randomlzed quicksort

1\\‘ =

IDEA: Partition around a random element.

e Running time is independent of the input
order.

* No assumptions need to be made about
the input distribution.

* No specific input elicits the worst-case
behavior.

* The worst case Is determined only by the
output of a random-number generator.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.34

== Randomized quicksort
~ analysis
Let T(n) = the random variable for the running

time of randomized quicksort on an input of size
n, assuming random numbers are independent.

Fork=0,1, ..., n=1, define the indicator
random variable

“ - { 1 if PARTITION generates a k : n—k—1 split,
<~ L0 otherwise.

E[X,] = Pr{X,=1} = 1/n, since all splits are
equally likely, assuming elements are distinct.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.35

71 Analysis (continued)

" T(0) + T(n=1) + ®(n) if 0:n-1 split,
T(1) + T(n=2) + ®(n) 1f 1:n-2 split,

. T(n—l.) + T(0) + ®(n) 1f n—1:0 split,

3 X, (T(K)+T (n—k —1) +©(n))
k=0

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.36

"*'*’”’"J Calculating expectation

“\‘

n-1
E[T(n)]= {ZXK(T(k)+T(n—k—1)+®(n))

k=0

Take expectations of both sides.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.37

=« Calculating expectation
E[T(n)]= EerXk(T(k) +T(n—-k-1) +®(n))}
k=0
= nfE[xk(T(k) +T(n—k-1)+6O(n))]
k=0

Linearity of expectation.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.38

=« Calculating expectation

E[T(n)]= EerXK(T (K)+T(n—k-1)+ @(n))}
k=0

nN—

1E[Xk(T(k) +T(n—k—-1)+0O(n))]
0

SN

- fE[xk]- E[T (k) +T(n—k —1) + ©(n)]
k=0

Independence of X, from other random
choices.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.39

"<+ Calculating expectation

E[T(n)]= EerXK(T (K)+T(n—k-1)+ @(n))}

k=0

[(TK)+T(n-k -1) +06(n))]

[J-E[TK)+T(n—k 1) +0O(n)]

\ =

Z @)+ L S -k-0]+ L Tom)

Ny—o Ny—o

Linearity of expectation; E[X,| = 1/n.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.40

- Calculating expectation

Y
1\\‘ \‘ ik

.'-“'

n-1

Err<n>]:E{zkakmm—k—1>+@<n>>

k=0

= Y E[X (T(K)+T(n—k—-1)+©O(n))]

= Y E[X,] E[T(K) +T(n—k —1) + ©(n)]

n—1 n-1 n-1
LS E[T)]+L S E[T(n-k-1]+1 S o(Nn)
Ny o M=o Ny =0
:2n§E[T(k)]+ ®(n) Summations have
=1 identical terms.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.41

YRITHMS

~ 4~ Halry recurrence

.

"™ A T

n—1
ET(n)]=2 X E[T(K)]+ ©(n)
k=2

(The k =0, 1 terms can be absorbed in the ®(n).)

Prove: E[T(n)] <anlgn for constanta > 0.

» Choose a large enough so that anlgn
dominates E[T(n)] for sufficiently small n > 2.

n—1
Use fact:) klgk <inZlgn—1n2 (exercise).
k=2

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.42

= Substltutlon method

E[T (n)]< 2 nZ ak Igk + ©(n)

Substitute inductive hypothesis.

September 21, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L4.43

Use fact.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.44

~ .~ Substitution method

n-1
E[T(n)]< 2 aklgk + ©(n)
Ng=2
<28 lp2gp 1n2j+®(n)

Express as desired — residual.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.45

Substitution method
E[T ()] sZnZ ak Igk + ©(n)

_2a(l.» 12)
nZlgn—=n¢4 |+ O(n
n(Z J 8 (n)

—anlgn —(a4”—®(n))

<anlgn,

If a IS chosen large enough so that
an/4 dominates the ®(n).

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.46

ALGORI

W chksort In practice

1\\‘ =

 Quicksort Is a great general-purpose
sorting algorithm.

 Quicksort is typically over twice as fast
as merge sort.

 Quicksort can benefit substantially from
code tuning.

 Quicksort behaves well even with
caching and virtual memory.

September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.47

Introduction to Algorithms
6.046J/18.401)

LECTURE 5

Sorting Lower Bounds

.y * Decision trees

\ m Linear-Time Sorting
 Counting sort

 Radix sort

Appendix: Punched cards

ALGORITHMS

Prof. Erik Demaine

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.1

/) 2

— How fast can we sort?

1\\‘ -

AII the sorting algorithms we have seen so far

are comparison sorts: only use comparisons to
determine the relative order of elements.

 E.Q., Insertion sort, merge sort, quicksort,
heapsort.

The best worst-case running time that we’ve
seen for comparison sorting i1s O(nlgn).

Is O(nlgn) the best we can do?

Decision trees can help us answer this question.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.2

”"" « Decision-tree example

“\‘

Sort <a1, Ay, ..y

Each internal node is labeled i) for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if a; <
* The right subtree shows subsequent comparisons if a; > a;.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.3

"'"'*,\ Decision-tree example

=(9,4,6):

Each internal node is labeled i) for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if a; < a;.
* The right subtree shows subsequent comparisons if a; > a;.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.4

"'"'*,\ Decision-tree example

=(9,4,6):

Each internal node is labeled i) for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if a; < a;.
* The right subtree shows subsequent comparisons if a; > a;.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.5

"'"'*,\ Decision-tree example

=(9,4,6):

Each internal node is labeled i) for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if a; < a;.
* The right subtree shows subsequent comparisons if a; > a;.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.6

W,
WY e

Sort <a11 a21 a3>
=(9,4,06):

Each leaf contains a permutation {rt(1), ©(2),..., m(n)) to
Indicate that the ordering a,) <a,, < --- <a,, has been
established.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.7

M(;mi'”

NS | Decision-tree model

A decision tree can model the execution of
any comparison sort:

 One tree for each input size n.

 View the algorithm as splitting whenever
It compares two elements.

 The tree contains the comparisons along
all possible instruction traces.

* The running time of the algorithm = the
length of the path taken.

 Worst-case running time = height of tree.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.8

m L_ower bound for decision-
- tree sorting

Theorem. Any decision tree that can sort n
elements must have height Q(nlgn).

Proof. The tree must contain > n! leaves, since
there are n! possible permutations. A height-h
binary tree has < 2" leaves. Thus, n! < 2",

. h >1g(n!) (Ig I1s mono. Increasing)
> 1g ((n/e)™) (Stirling’s formula)
=nlgn-nlge

=Q(nlgn).

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.9

ha L_ower bound for comparison
~7 sorting

Corollary. Heapsort and merge sort are
asymptotically optimal comparison sorting
algorithms.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.10

"'"*,\ Sorting In linear time

Counting sort: No comparisons between elements.

e Input: A[1..n], where A[]]le{1, 2, ..., k}.
e Output: B[1 .. n], sorted.
 Auxiliary storage: C[1 .. K].

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.11

~ &~ Counting sort
fori< 1tok

do C[i] <~ 0
forj<« 1ton

do C[A[JII <~ C[A[JII+1 = C[i] = [{key = 1}]
fori< 2tok

do C[i] « C[i] + C[i-1] = CJi] = |{key <i}]
for | <~ ndownto 1

do B[C[A[J]I] <- AL}

CIALJ]] « C[A[J]] -1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.12

ALGORITHMS

September 26, 2005

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L5.13

fori< 1tok
do C[i] <0

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L5.14

forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.15

forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.16

forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.17

forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.18

forj<1ton
do C[A[JIl < CIA[J]] +1 = C[i] = {key = 1}]

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.19

fori <« 2tok
do C[i] <« C[i] + C[i-1]

> C[i] = [{key < i}

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.20

fori <« 2tok
do C[i] <« C[i] + C[i-1]

> C[i] = [{key < i}

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.21

fori <« 2tok
do C[i] <« C[i] + C[i-1]

> C[i] = [{key < i}

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.22

for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L5.23

for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L5.24

for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.25

for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.26

B:13344I C:101 1|3

for | «— ndownto 1
do BIC[A[J]]] <— Al J]
CIALJ]] < C[A[]]] -1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.27

\ Analysis

OKk) -~
®n) -

k) -

O(n) <

O(n + k)

" fori< 1tok
. doC[i]«0
forj <« 1ton

L doCIA[j]] « CIA[j]] +1
" fori<2tok
L. doCJi] « C[i] + C[i-1]
] for | «— ndownto 1
do B[C[A[]]]] <= AL
. CIALIIl <« CIA[J]] -1

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.28

.!‘*"'—'ﬁ" "' Running time

Y e

If k = O(n), then counting sort takes ®(n) time.
 But, sorting takes C2(nlgn) time!
* Where’s the fallacy?

Answer:
e Comparison sorting takes Q(nlgn) time.
e Counting sort Is not a comparison sort,

* In fact, not a single comparison between
elements occurs!

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.29

= Stable sorting

Counting sort is a stable sort: It preserves
the input order among equal elements.

Al 411343

B:13344I

Exercise: What other sorts have this property?

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.30

- "' Radix sort

Y e -

 Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See
Appendix [@).)

* Digit-by-digit sort.

 Hollerith’s original (bad) idea: sort on
most-significant digit first.

» Good Idea: Sort on least-significant digit
first with auxiliary stable sort.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.31

329
457
657
839
436
720
355

720
3955
430
457
657
329
839

(20
329
430
839
355
45 /1
657

: Operation of radix sort

329
355
430
45 7
657
(20
839

N

September 26, 2005

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L5.32

Al

Induction on digit position

* Assume that the numbers
are sorted by their low-order
{— 1 digits.

e Sorton digit t

September 26, 2005

~ 4~ Correctness of radix sort

720
329
430
839
355
457
657

329
355
436
45 7
657
(20
839

__

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

L5.33

ALGORIT

)

Induction on digit position

e Assume that the numbers
are sorted by their low-order

{— 1 digits.
e Sorton digit t

= Two numbers that differ In
digit t are correctly sorted.

= 4~ Correctness of radix sort

720 329
329 355
436 436
839 45 7
355 657
457 (20
657 839

__

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.34

ALGORITHM

wY

Induction on digit position

e Assume that the numbers
are sorted by their low-order
{— 1 digits.

e Sorton digit t

= Two numbers that differ In
digit t are correctly sorted.

= Two numbers equal in digit t
are put in the same order as
the input = correct order.

~ 4~ Correctness of radix sort

720 329
329 355
436—>4360

839 457
355/657
457 (20

657 839

__

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.35

“ 4~ Analysis of radix sort

Y N\ o

e Assume counting sort is the auxiliary stable sort.
 Sort n computer words of b bits each.

 Each word can be viewed as having b/r base-2'
digits. s 8 8 8

Example: 32-bit word
r =8 = b/r = 4 passes of counting sort on
base-28 digits; or r = 16 = b/r = 2 passes of
counting sort on base-21° digits.

How many passes should we make?

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.36

S AnaIyS|s (continued)

VY s

Recall Counting sort takes ©(n + k) time to
sort n numbers in the range from O to k — 1.

If each b-bit word is broken into r-bit pieces,
each pass of counting sort takes ®(n + 2") time.
Since there are b/r passes, we have

T(n,b) :®(E(n+2r)) |

Choose r to minimize T(n, b):
e Increasing r means fewer passes, but as
r >>|g n, the time grows exponentially.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.37

."—'«" Choosing r

T(n,b) = @(b (n +2))

r
Minimize T(n, b) by differentiating and setting to O.

Or, just observe that we don’t want 2" > n, and
there’s no harm asymptotically in choosing r as
large as possible subject to this constraint.

Choosing r = Ign implies T(n,b) = ®(bn/lgn).

 For numbers in the range from 0 to n% - 1, we
have b = d Ig n = radix sort runs in ®(dn) time.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.38

> "' Conclusions

1\\‘ -

In practlce, radix sort Is fast for large Iinputs, as
well as simple to code and maintain.

Example (32-bit numbers):
* At most 3 passes when sorting > 2000 numbers.

» Merge sort and quicksort do at least | Ig 2000 | =
11 passes.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
quicksort fares better on modern processors,
which feature steep memory hierarchies.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.39

\ Appendix: Punched-card
~* technology

e Herman Hollerith (1860-1929)

* Punched cards

 Hollerith’s tabulating system
 Operation of the sorter

 Origin of radix sort

e “Modern” IBM card

* Web resources on punched-card geum to jast
technolo_qy slide viewed.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.40

w# Herman Hollerith
~37 (1860-1929)

e The 1880 U.S. Census took almost
10 years to process.

* While a lecturer at MIT, Hollerith
prototyped punched-card technology.

* His machines, including a “card sorter,” allowed
the 1890 census total to be reported in 6 weeks.

 He founded the Tabulating Machine Company In
1911, which merged with other companies in 1924
to form International Business Machines.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.41

s

ALGORITHMS

.-" ." Punched cards

“\‘

e Punched card = data record.
 Hole = value.
 Algorithm = machine + human operator.

{1 - ER

A ADANG

[l g
Fola
:f-_ 2
Pas o an
in
g1 8
Ok D
LA
TR
o 7.l
L o !
lin _.;

September 26, 2005

E 4

B

S5+

A

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Un |

&

18]

Wl

W

L)

| ;
6 H{Mmow o TN
|
LS Hi cl MG WX]
A R par . deoomE 2d cwA
e
S R e R B
1
P | i W = TFM Ad
wolE i B
1
||-_| [X hi. 14 M3 .1 TEE LhE
1 Al C# M IT ! =3 L
u e e] LA il iF AR 1
(E S R En . - &7 Sl e e
]
e R R T R e L
1 ar I S Br BB ,':',!.‘p
{3 il A0 Sw CE- W Sy CE Wa o RF
! |
52 MW OF CPu e R M AR
Fa D Fr 13 L Fr Au
L S o F TR = e NN . TR - . B R -

Replica of punch
card from the
1900 U.S. census.

[Howells 2000]

L5.42

http://www.oz.net/%7Emarkhow/writing/holl.htm

THE FIRST

ALGORITHMS HOLLERITH
Ll ical
[P Ty —— CENSUS COUNTING MACHINE
T 1890
\ N\ \‘
WY el

Hollerith’s
tabulating

system

 Pantograph card
punch

*Hand-press reader
Dial counters
Sorting box

IIIIIIIII

Figure from
[Howells 2000].

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.43

http://www.oz.net/%7Emarkhow/writing/holl.htm

AL (_.(}RIIIIM

— Operatlon of the sorter

“\‘

« An operator inserts a card into
the press.

* Pins on the press reach through
the punched holes to make
electrical contact with mercury-
filled cups beneath the card.

* Whenever a particular digit |]
value Is punched, the lid of the
corresponding sorting bin lifts.

 The operator deposits the card

Hollerith Tabulator, Pantograph, Press, and Sorter

Into the bin and closes the lid. /

* When all cards have been processed, the front panel is opened, and
the cards are collected in order, yielding one pass of a stable sort.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.44

'“" Orlgln of radix sort

“\‘

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
Into the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the last
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be
a folk invention originated by machine operators.

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.45

http://theory.lcs.mit.edu/classes/6.046/fall01/Hollerith%20patent%201889.pdf

(J(}RIIIIMN

”"'," “Modern” IBM card

WY e

* One character per column.

812345673 2ABCDEFGHI JELMHOPRRS TUMHEYZ IMTRODUCTIOHN TO ALGORITHHMS
L] | 101l in 11
innnnnnna (| | i 1mm 1
| [alalapap=Tsl=paa g e a Tapalat=pap=YaT=hatatale] | | | | 0 |) Qsf=dsl=ds] [sl=f=] [=) [=Qal=f=] [=Ysf=isi=f=l=f=) [=)=] [alsf=)sf=Ysf=)sf=f=l==]s]=]=]
IRi1111111@1I111111 1111111111111 11111111111111111111111 0111111111111 111111111111

] (i) WA AN W N A N A A NN YA [N PrOduced by
332023333332 023333233C03232333 0233323333232 3232332232033 32233333333333333333 the WWW
4444044444444 0444444440444444404444444444444Q04444444444444444404444444444444444 V”.tual PunCh'
55555055555555055555555M3555555055555555055555555555555555555555555555555555555

LTSNS [VSTYYonet s [RUonatoversy [SUyop-tone] FEUYn-tobetotoraysy [Svets) [ns) [ARars) [yttt oy oy orey Yo Y o o Yy Card Server

CEE G oA o o I O A O A U A A A A A AT
gagogeaslscscgesslecseseceMe08e88505558558580888858588885858580855858888585858888
EEEEEEEEF] EEEEEFEF] FEEFEFER EREEFERE] EEE EEL EEFER] ERERFERERFE] | R

So, that’s why text windows have 80 columns!

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.46

http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard

e Web resources on punched-
~* card technology

* Doug Jones’s punched card index

 Biography of Herman Hollerith

e The 1890 U.S. Census

e Early history of IBM

e Pictures of Hollerith’s inventions

 Hollerith’s patent application (borrowed
from Gordon Bell’s CyberMuseum)

 Impact of punched cards on U.S. history

September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.47

http://www.cs.uiowa.edu/%7Ejones/cards/index.html
http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Mathematicians/Hollerith.html
http://www.oz.net/%7Emarkhow/writing/holl.htm
http://www.glencoe.com/norton/n-instructor-/updates/1999/51099-2.html
http://sln.fi.edu/qa00/attic4
http://theory.lcs.mit.edu/classes/6.046/fall01/Hollerith%20patent%201889.pdf
http://research.microsoft.com/users/GBell/CyberMuseumPubs.htm
http://www.whitehouse.gov/president

Introduction to Algorithms

6.046J/18.401J
sicoiitiivs | | LECTUREG
R en— Order Statistics
.~ | *Randomized divide and
\ ﬁ—\‘ conquer

 Analysis of expected time

* Worst-case linear-time
order statistics

* Analysis

Prof. Erik Demaine

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.1

.**"—"ﬁ' "' Order statistics

Y e

Select the ith smallest of n elements (the
element with rank 1).

e | = 1: minimum;
° | = N: maximum;
i =L(n+1)/2]or| (n+1)/2 |: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = ®(n lg n) + ©(1)
= 0O(n Ig n),

using merge sort or heapsort (not quicksort).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.2

w== Randomized divide-and-
.‘.'—\ -
«> " conguer algorithm

RAND-SELECT(A, p, 0,1) o ith smallest of A[p..

q]
If p=q then return A|p]

r < RAND-PARTITION(A, p, Q)

K«—r—-p+1 > Kk = rank(A[r])
If 1 =k then return A[r]
if 1<k

then return RAND-SELECT(A, p, r—1,1)
else ret1 |, 2 RAND-SELECT(A, r + 1, ¢, 1 — k)

< Alr] > Alr] l
p r 4

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.3

“ Example
Select the 1 = 7th smallest:

6 110(13| 5|8 | 3| 2 |11 1 =7
nIvot

Partition:
2 5136 |8 13|10 11 k=4

(. J
Y

Select the 7 — 4 = 3rd smallest recursively.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.4

""\"\'," Intuition for analysis

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) = T(9n/10) + O(n) n'0%10/91 = n0 =1
= O(n) CASE 3
Unlucky:
T(n)=T(nh-1) + ©(n) arithmetic series
= O(n?)

Worse than sorting!

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.5

- Analy3|s of expected time

1\\‘ -

The analy3|s follows that of randomized
quicksort, but it’s a little different.

Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.

Fork=0,1, ... n=1, define the indicator
random variable

“ - { 1 if PARTITION generates a k : n—k—1 split,
< |0 otherwise.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.6

"'""" +~ Analysis (continued)

To obtain an upper bound, assume that the ith
element always falls in the larger side of the

partition:
" T(max{0, n-1}) + ©(n) if 0:n-1 split,
T(n) =< T(max{1l, n-2}) + ®(n) 1f 1:n-2 split,

_T(max{n-1, 0}) + ®(n) 1f n—1:0 split,

nlek (T (max{k,n —k —13) + ©(n)).
k=0

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.7

.-":'5' Calculating expectation

Y
n—1

E[T(n)]=E| > X, (T (max{k,n—k —1}) + ©(n))

k=0

Take expectations of both sides.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.8

""""\\ Calculating expectation
.

E[T(n)] = E{ > X (T (max{k,n—k —1}) + ®(n))

k=0

— nz_:lE[Xk(T (max{k,n —k —1}) + ©(n))]
k=0

Linearity of expectation.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.9

=« Calculating expectation

E[T (n)] = E{nzlxk(T (max{k,n—k —1}) + @(n))}
k=0
= rilE[Xk(T (max{k,n —k —1}) + ©(n))|]

k=0
= nz_:lE[Xk]- E[T (max{k,n—k -1}) + ©(n)]
k=0

Independence of X, from other random
choices.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.10

= Calculating expectation

E[T(n)] = nz_:lxk(T (max{k,n -k —1}) + ®(n))
k=0

- Z_: E[X (T (max{k,n —k —1}) + ©(n))]
k=0

— nz_: E[Xy |- E[T (max{k,n -k —=1}) + ©(n)]
k=0

n_

1 Z [T (max{k,n —k —1})]+ ﬁ nf@(n)
k=0

Linearity of expectation; E[X,| = 1/n.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.11

.~ Calculating expectation
n-1

E[T(n)]=E| > X, (T (max{k,n—k —1}) + ©(n))
k=0

Ir]Z_SLE[XK(T (max{k,n—k —1}) + ©(n))]

0
1

=S5 N
|l

E[X, |- E[T (max{k,n—k —1}) + ®(n)]

|
:3 WA 7?

O
Z [T (max{k,n—k -1)]+1 nf@(n)
k=0 nk=0

ﬁk Z/E[T(k)]+®(”) Upper terms
R appear twice.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.12

=~ Hairy recurrence
(But not quite as hairy as the quicksort one.)
E[T(n)]= Z E[T (k)]+©(n)
M= = n/2]

Prove: E[T(n)] < cn for constant ¢ > 0.

* The constant c can be chosen large enough
so that E[T(n)] < cn for the base cases.

Use fact: Zk < n (exercise).
k=/n/2|

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.13

""\',"' Substitution method
4
E[T (n)]< 2 ank +O(n)
Me=ln/2.

Substitute inductive hypothesis.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.14

~ 4~ Substitution method

-1
E[T ()] 32 ch+@(n)
M= =n/2]
2c(3 .2
sn(sn)+(~)(n)

Use fact.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.15

Substitution method
= -1
E[T(n)] 32 ch+®(n)
E

< ch(gnz) +0(n)

= Cch— (Cz? = @(n))

Express as desired — residual.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.16

~,\ Substitution method
.
E[T ()] 32 ch+@(n)
N={n/2]
2C(312
Sn(sn)+®(n)
_~n_CN
=Cn (4 @(n))
<cn,

If ¢ 1S chosen large enough so
that cn/4 dominates the ®(n).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.17

w= Summary of randomized
~>' - order-statistic selection

» Works fast: linear expected time.
 Excellent algorithm in practice.
e But, the worst case is very bad: ®(n?).

Q. Is there an algorithm that runs in linear
time In the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good pivot recursively.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.18

m Worst-case linear-time order

~ - gtatistics
SELECT(I, n)

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SeLecT the median x of the | n/5]
group medians to be the pivot.

3. Partition around the pivot x. Let k = rank(x).

4.1f 1 =k then return x
elseif 1<k Same as
then recursively SeLecT the ith > RAND-
smallest element in the lower part SELECT
else recursively SeLecT the (i—k)th
smallest element in the upper part

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.19

ALGORITHMS

&+ Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

ALGORITHMS

Choosing the pivot

® e ¢ ¢ ¢ ¢ ¢ ¢ o
@ e & ¢ ¢ ¢ ¢ ¢ o
® e ¢ ¢ ¢ ¢ ¢ ¢ o
® e ¢ ¢ ¢ ¢ ¢ ¢ o
® 6 ¢ ¢ ¢ ¢ ¢ o

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

G

'"""3\ Choosing the pivot

-
)

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote. I

greater

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

"-*-'-;"""; Choosing the pivot

(o (s (9 (3 (s (s

\
)

e
® ®© 6 O

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote.

2. Recursively SeLecT the median x of the | n/5._
group medians to be the pivot. greater

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

:ﬁ Analysis

(o (s (9 (3 (s (s

>
® ®© 6 O

At least half the group medians are < x, which lesser
is at least | | n/5] /2= n/10] group medians. I

greater

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

I Ana|y3|5 (Assume all elements are distinct.)

it

At least half the group medians are < x, which lesser
is at least | | n/5] /2= n/10] group medians. I

» Therefore, at least 3| n/10 | elements are < x.

greater

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

ALGORITHMS

“\‘

Ana|y3|5 (Assume all elements are distinct.)

('(' | .@%

At least half the group medians are < x, which lesser
is at least | | n/5] /2= n/10] group medians. I

e Therefore, at least 3| n/10_| elements are < x.
e Similarly, at least 3| n/10 | elements are > x. greater

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

= 4~ Minor simplification

Ry

« For n > 50, we have 3| n/10 | > n/4.

e Therefore, for n > 50 the recursive call to
SELECT In Step 4 Is executed recursively
on < 3n/4 elements.

 Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) In the worst case.

e For n <50, we know that the worst-case
time 1s T(n) = G(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

“\‘

T(n)

e(n) <

- " Developing the recurrence

SELECT(I, Nn)

" 1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

-2, Recursively SeLecT the median x of the | n/5]

T(n/5) =
O(n)

T(3n/4) <

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).

(4. if i =kthen return x
elseif 1 <k
then recursively SELEcT the ith
smallest element in the lower part
else recursively SELecT the (i—k)th

-

X smallest element in the upper part

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

~ 4~ Solving the recurrence
T (n) =T(én)+TG’rn)+ O(n)

Substitution: T(n) < lens3Sen+ O(n)
T(n) <cn S 4

- ey O(n)
20

=Ch — (210 ch— @(n))

<cn |

If ¢ Is chosen large enough to handle both the
®(n) and the initial conditions.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.29

ALGORI

W Conclusmns

1\\‘ =

. Slnce the work at each level of recursion
IS a constant fraction (19/20) smaller, the
work per level Is a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of n Is large.

* The randomized algorithm is far more
practical.

Exercise: Why not divide into groups of 3?

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.30

Introduction to Algorithms
6.046J/18.401)

L ECTURE 7/
Hashing |
e Direct-access tables

— * Resolving collisions by
‘\‘m chaining

» Choosing hash functions
* Open addressing

ALGORITHMS

Prof. Charles E. Leiserson

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

Symbol -table problem

N
“\‘

Symbol table S holding n records:

record _
X — Operations on S:

key[x
I * INSERT(S, X)
Other fields ~ DELETE(S, X)

. containing ° SEARCH(S, K)
satellite data

How should the data structure S be organized?

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

“\‘ st

.’"‘ Direct-access table

IDEA: Suppose that the keys are drawn from
theset U < {0, 1, ..., m—1}, and keys are
distinct. Setup anarray T[0 .. m-1]:

TIK] = {x if X e Kand key[x] =
NIL otherwise.
Then, operations take ®(1) time.

Problem: The range of keys can be large:
 64-bit numbers (which represent

18,446,744,073,709,551,616 different keys),
* character strings (even larger!).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

.“\ Hash functions

\
\\“ s

Solution: Use a hash function h to map the
universe U of all keys into T
{0, 1, ..., m-1}: 0

h(ky)
h(k,)
h(k;) = h(ks)
h(ks)
m-1

When a record to be inserted maps to an already
occupied slot Iin T, a collision occurs.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

,... Resolving collisions by

=" chaining

e Link records 1n the same slot Into a list.

T

49

86

52

h(49) = h(86) = h(52) = |

Worst case:

* Every key
hashes to the
same slot.

e Access time =
) If S| =n

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

=~ Average-case analysis of chaining

We make the assumption of simple uniform
hashing:
e Each key k € S Is equally likely to be hashed

to any slot of table T, independent of where
other keys are hashed.

Let n be the number of keys in the table, and
let m be the number of slots.

Define the load factor of T to be
o =n/m
= average number of keys per slot.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

Search cost

-\
“\‘ s

The expected time for an unsuccessful
search for a record with a given key Is
=0(1 + a).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

”" Search cost

\
“\‘ s

The expected time for an unsuccessful
search for a record with a given key Is
= O(1 + op—__ search

AN the list

apply hash function
and access slot

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.8

Search cost

\
m‘ .

The expected time for an unsuccessful
search for a record with a given key Is

= O(1 + op—__ search

AN the list

apply hash function
and access slot

Expected search time = ®(1) if o = O(1),
or equivalently, if n = O(m).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

""'" Search cost
The expected time for an unsuccessful
search for a record with a given key Is

= O(1 + op—__ search

AN the list

apply hash function

and access slot

Expected search time = ®(1) if o = O(1),
or equivalently, if n = O(m).

A successful search has same asymptotic
bound, but a rigorous argument is a little
more complicated. (See textbook.)

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

October 3, 2005

\
1\\‘ .

Choosmg a hash function

The assumption of simple uniform hashing
IS hard to guarantee, but several common
techniques tend to work well in practice as
long as their deficiencies can be avoided.

Desirata:

A good hash function should distribute the
keys uniformly into the slots of the table.

* Reqgularity in the key distribution should
not affect this uniformity.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

®71 Division method
Assume all keys are integers, and define
h(k) = k mod m.
Deficiency: Don’t pick an m that has a small
divisor d. A preponderance of keys that are

congruent modulo d can adversely affect
uniformity.

Extreme deficiency: If m = 2", then the hash
doesn’t even depend on all the bits of k:

e If k= 1011000111011010, and r = 6, then
h(k) = 011010, . h(k)

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

\
“\‘

DIVISIOn method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
In the computing environment.

Annoyance:
e Sometimes, making the table size a prime is
Inconvenient.

But, this method is popular, although the next
method we’ll see Is usually superior.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

— Multiplication method

-
’!\“ st

Assume that all keys are integers, m = 2, and our
computer has w-bit words. Define

h(k) = (A-k mod 2%) rsh (w —r),

where rsh Is the “bitwise right-shift” operator and
A'is an odd integer in the range 2"t < A < 2V,

* Don’t pick A too close to 2" or 2V,

« Multiplication modulo 2" is fast compared to
division.

* The rsh operator Is fast.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

,_ Multiplication method
* example
h(k) = (A-k mod 2%) rsh (w —r)

Suppose that m = 8 = 23 and that our computer
has w = 7-bit words:

1011001 _ 5
X 1101011 —
10010100110011

——

h(k) A

Modular wheel 2A

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

e Resolving collisions by open
* addressing

No storage Is used outside of the hash table itself.

* Insertion systematically probes the table until an
empty slot is found.

 The hash function depends on both the key and
probe number:

h:Ux{0,1,....m1}—->{0,1, ..., m—1}.
* The probe sequence (h(k,0), h(k,1), ..., h(k,m-1))
should be a permutation of {0, 1, ..., m-1}.

* The table may fill up, and deletion is difficult (but
not impossible).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

ALGORI

=71 Example of open addressing

MY =

Insert key k = 496:

T
0. Probe h(496,0) ’
586
\ o
204 collision
481
m-1

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

ALGORI

=71 Example of open addressing

MY =

Insert key k = 496: T
0. Probe h(496,0) ’ o
1. Probe h(496,1) e collision
204
481
m-1

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

=70 Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
ne h(496,1)

2. Probe h(496,2) \

=

U
q
@)

Insertion

m-1

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

m < Example of open addressing

“\‘ st

Search for key k = 496:

0. Probe h(496,0)

1. Probe 1(496,1)\ N
2. Probe q(496,2)\\
Search uses the same probe
seguence, terminating suc-

cessfully If it finds the key
and unsuccessfully If it encounters an empty slot.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

v Probmg strategies

\
“\‘ s

Linear probing:

Given an ordinary hash function h'(k), linear
probing uses the hash function

h(k,i) = (h'(k) + i) mod m.

This method, though simple, suffers from primary
clustering, where long runs of occupied slots build
up, increasing the average search time. Moreover,
the long runs of occupied slots tend to get longer.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

. Probing strategies

Double hashing

Given two ordinary hash functions h,(k) and h,(k),
double hashing uses the hash function

h(k,i) = (h,(K) + i- h,(k)) mod m.

This method generally produces excellent results,
but h,(k) must be relatively prime to m. One way
IS to make m a power of 2 and design h,(k) to
produce only odd numbers.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

e Analy3|s of open addressing

\
“\‘

We make the assumption of uniform hashing:

 Each key Is equally likely to have any one of
the m! permutations as Its probe sequence.

Theorem. Given an open-addressed hash
table with load factor oo = n/m < 1, the
expected number of probes in an unsuccessful
search Is at most 1/(1-a.).

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

B2 Proof of the theorem

Proof.

At least one probe Is always necessary.

* With probability n/m, the first probe hits an
occupied slot, and a second probe Is necessary.

* With probability (n—1)/(m-1), the second probe
hits an occupied slot, and a third probe Is
necessary.

* With probability (n—2)/(m-2), the third probe
hits an occupied slot, etc.

Observethat " ' <" =g fori=1.2. ... n.
m—i m

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

.

1\;‘ \‘ TRerae

proof (

Therefore, the ex

continued)

nected number of probes Is

1+ (1+1
m m-1

gt

<l+al+al+a(---A+a)-))

<1+a+a?

w -
— al

1=0
1
l-«

3

+a®+---

The textbook has a
more rigorous proof
and an analysis of
successful searches.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

B Implications of the theorem

e If o IS constant, then accessing an open-
addressed hash table takes constant time.

o If the table is half full, then the expected
number of probes is 1/(1-0.5) = 2.

o If the table i1s 90% full, then the expected
number of probes is 1/(1-0.9) = 10.

October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

Introduction to Algorithms
6.046J/18.401)

| ECTURE 8

Hashing |1

. Universal hashing

: ﬁ{ﬁ\‘ Unlversal!ty theorem

R » Constructing a set of
universal hash functions

e Perfect hashing

ALGORITHMS

Prof. Charles E. Leiserson

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

A weakness of hashing

\
“\‘ e

Problem: For any hash function h, a set

of keys exists that can cause the average

access time of a hash table to skyrocket.

* An adversary can pick all keys from
{k € U : h(k) =1} for some slot I.

IDEA: Choose the hash function at random,

Independently of the keys.

 Even If an adversary can see your code,
he or she cannot find a bad set of keys,
since he or she doesn’t know exactly
which hash function will be chosen.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

¥ Universal hashing
Definition. Let U be a universe of keys, and
let H Dbe a finite collection of hash functions,
each mapping Uto {0, 1, ..., m-1}. We say

H 1s universal if for all x, y € U, where x # v,
we have [{h € H : h(x) = h(y)}| < [H|/m.

That Is, the chance

of a collision {h : h(x) = h(y)} H

between x and v IS \

< 1/m 1f we choose h

randomly from H. [H] { P - -
m

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

=1 Universality is good

-
’!\“ st

Theorem. Let h be a hash function chosen
(uniformly) at random from a universal set H

of hash functions. Suppose h Is used to hash
n arbitrary keys into the m slots of a table T.
Then, for a given key x, we have

E[#collisions with x] < n/m.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

m Proof of theorem

\

Proof. Let C, be the random variable denoting
the total number of collisions of keys in T with

~and let .
s . _ [1ifh()=h(y),
XY | 0 otherwise.

Note: E[c,J]=1/mand C,= > c, .
yeT <{x}

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

October 5, 2005

D Cyy » Take expectation
yeT —{x} of both sides.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.6

E[C,]=E| D, ¢y » Take expectation

| yeT-{x} | of both sides.
= > E[cy] e Linearity of
yeT —{x} expectation.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

ALGORI

BT Proof (continued)

AR\

E[C,]=E| D, ¢y » Take expectation

yeT{x} | of both sides.
= > E[cy] e Linearity of
yeT —{x} expectation.
= > 1/m * E[c,,] = 1/m.
yel <{x}

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

ALGORI

BT Proof (continued)

MY =

E[C,]=E| D, cy » Take expectation

yeT{x} of both sides.
= > E[cy] e Linearity of
yeT —{x} expectation.
= > 1/m * E[c,,] = 1/m.
yel {x}
_n-1 « Algebra.
m

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.9

mw= Constructing a set of

. ~_..~“ universal hash functions

Let m be prime. Decompose key kintor + 1
digits, each with value in the set {0, 1, ..., m-1}.
That s, let k = (kg, ky, ..., k), where 0 <k, <m.
Randomized strategy:

Pick a = (a,, a,, ..., a,) where each a; Is chosen
randomly from {0, 1, ..., m-1}.

)
_ - M Dot product,
Define h, (k) = i%&h Ki mod m. modulo m

How bigisH ={h_}? |H|=m""" *’%EI%!EMBER

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

m Unlversallty of dot-product
" hash functions

Theorem. The set H = {h_} Is universal.

Proof. Suppose that x = (X,, X, ..., X,y andy =
Vo, Y1, ---, Y, De distinct keys. Thus, they differ
In at least one digit position, wlog position O.
For how many h, € H do x and y collide?

We must have h_(x) = h_(y), which implies that
I I
Zaixi Ezai yi (mOd m) .
i=0 i=0

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

7 Proof (continued)

Equivalently, we have

Zr:ai (X —Yy;)=0 (modm)
i—0
or

)
a9 (Xo — Yo) + 2_ai(x; —y;)=0 (modm),
i=1
which implies that

a0 (X0 — Yo) ——Za (Xi —Yy;) (modm).

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

®T7% Fact from number theory

Theorem. Let m be prime. Foranyz e Z
such that z = 0, there exists a unique z* € Z

such that
z-7z1=1 (mod m).
Example: m=7.
Z 1 2 3 4 5 06
71l 1 4 5 2 3 6

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Back to the proof
We have r
ay(Xp — Yo) = —Z ai (% —y;) (modm),
1=1

and since x, # Y, , an inverse (X, — Y,)~* must exist,
which implies that

= [— 2.8 (X - Yi)j (X = Yo)™ (modm).
-1

Thus, for any choices of a,, a,, ..., a,, exactly
one choice of a, causes x and y to collide.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

B9 Proof (completed)

“\‘ \‘

Q. How many h,’s cause x and y to collide?

A. There are m choices for each of a,, a,, ..., a,,
but once these are chosen, exactly one choice
for a, causes x and y to collide, namely

= [(_Zai (X — Yi)] (X0 — YO)lj mod m.
i1

Thus, the number of h,’s that cause x and y
to collide is m"- 1 = m' = IH |/m.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

Perfect hashing

; \
“\‘

leen a set of n keys, construct a static hash
table of size m = O(n) such that SEARCH takes
®(1) time In the worst case.

.
IDEA: TWoO-) il
Ieyel sc_heme . T,
with universal -
hashing at 3 s, (14 =hy(27)=1
both levels. 4 {26} S,

- o= N
No collisions g e =
at level 2!

m a 012 3 456 7 8

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

. "”""'" Collisions at level 2

Theorem Let H be a class of universal hash
functions for a table of size m = n?. Then, if we
use a random h € H to hash n keys into the table,
the expected number of collisions is at most 1/2.

Proof. By the definition of universality, the
probability that 2 given keys in the table collide
under h is 1/m = 1/n4. Since there are (2) pairs
of keys that can possibly collide, the expected
number of collisions IS

N ~n(n-1) 1 1
— < .
2 n2 2 n2 2

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

. "”""'" No collisions at level 2

Corollary The probability of no collisions
IS at least 1/2.

Proof. Markov’s inequality says that for any
nonnegative random variable X, we have

Pr{X >t} < E[X]/.
Applying this inequality with t = 1, we find
that the probability of 1 or more collisions is
at most 1/2.

Thus, just by testing random hash functions
in A, we’ll quickly find one that works.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

Analy3|s of storage

\
“\‘ —

For the level-1 hash table T, choose m =n, and
let n; be random variable for the number of keys
that hash to slot i in T. By using n:? slots for the
level-2 hash table S, the expected total storage
required for the two level scheme Is therefore

E Z@() =0(n),
since the analy5|s IS 1dentical to the analysis from
recitation of the expected running time of bucket

sort. (For a probability bound, apply Markov.)

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Introduction to Algorithms
6.046J/18.401)

| ECTURE 9

Randomly built binary
search trees

e » Expected node depth
‘S‘ » Analyzing height

= Convexity lemma
= Jensen’s inequality
= Exponential height
e Post mortem

ALGORITHMS

Prof. Erik Demaine

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

=71 Binary-search-tree sort

\
Y N

T« O > Create an empty BST
fori=1ton

do TREe-INSERT(T, A[i])
Perform an inorder tree walk of T.

Example:
A=[3182675]

Tree-walk time = O(n),
but how long does it
take to build the BST?

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.2

AnaIyS|s of BST sort

BST sort performs the same comparisons as
quicksort, but in a different order!

\
“\‘

The expected time to build the tree Is asymptot-
Ically the same as the running time of quicksort.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Node depth

: \
“\‘

The depth of a node = the number of comparisons
made during TRee-INSERT. Assuming all input
permutations are equally likely, we have

Average node depth

N

_ iE > (#comparisons to insert node i)
i<l

— 1O(n Ign) (quicksort analysis)
n

=QO(lgn) .

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

”’"!' Expected tree height

\‘
‘\

But average node depth of a randomly built
BST = O(lg n) does not necessarily mean that its
expected height is also O(lg n) (although it is).

Example.

I
<lgn

l
Ave. depth < 1(n lgn+ ﬁzﬁ)
n

=0(lgn)

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

«-:-m Height of a randomly built
" binary search tree

Outline of the analysis:

* Prove Jensen’s inequality, which says that
f(E[X]) < E[f(X)] for any convex function f and
random variable X.

» Analyze the exponential height of a randomly
built BST on n nodes, which is the random
variable Y = 2%, where X_ is the random
variable denoting the height of the BST.

e Prove that 250l < E[2%n] = E[Y] = O(n3),
and hence that E[X.] = O(lg n).

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

™ Convex functions
~ Afunction f: R — R is convex if for all
o,3 > 0such that oo + 3 = 1, we have
flax + BY) < o f(x) + B f(y)
forall x,y € R.

af(x) + Bi(y)

(%)

oo+ By) |

X ox+ Py y

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

'*"""\ Convexity lemma

-\
“\‘

Lemma. Letf: R — R be a convex function,

and let o, o, , ..., o, be nonnegative real
numbers such that >, o, = 1. Then, for any
real numbers x,, x,, ..., X,, we have

([Sown < Bt
k=1 k=1

Proof. By inductiononn. Forn =1, we have
o, = 1, and hence (o, x,) < o, f(x,) trivially.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

F"'" Proof (continued)

\
“\‘

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

Proof (continued)

b
1\\‘ \‘ S

Inductive step:

n n-1 o
f Zakxk = f anxn+(1—an)2 KX,
k=1 k:ll

n—1 o,
<anf(x,)+1—ap)f 21 X,
k=11 &n
Convexity.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

~ 4~ Proof (continued)

Inductive step:

n n-1 o
f[Zaka): f[anxn +(1—0(n)2 « Xk]
k=1 k=1

1-a,

<a f(x)+(1-a)f[nzl “K xj
= Mn n n 1 K

k=11~ Un
Uy

n—1
Sanf(xn)+(1—an)zl .
k=1— “n

Induction.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

Inductive step:

n n-1 o
fEZakaj: f[anxn +(1—05n)2 “ ij
k=1 k=1

1-a,

<a f(x)+1-a)f(nzl “K x}
= ™n n n 1 K

k=11~ &n

i

n—1
Sanf(xn)+(1—an)zl .
k=1— “n

= Zak f(xg). Algebra.
k=1

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

""" ConveX|ty lemma: Infinite case

-\
WYY e

Lemma. Letf: R — R be a convex function,
and let o, o, , ..., be nonnegative real numbers

such that 2., o, = 1. Then, for any real
numbers x,, X,, ..., we have

f(iakxkjgiak F(x.) |

assuming that these summations exist.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

"""" o ConveX|ty lemma.: infinite case

\

Proof. By the convexity lemma, for any n > 1,

(giiﬁ}zszm”

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

ConveX|ty lemma: Infinite case

; \
“\‘

Proof. By the convexity lemma, for any n > 1,

(i ay] zzlk f(xk)'

klZ_ll 1'

Taking the limit of both sides
(and because the inequality Is not strict):

Iimf[nl Zakkadlm nl Zozkf(xk

N—0o0 Otkl N—>00 akl

Y

—>1 —>Zakxk _>1 _)Zakf(xk)
k=1 =1

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

”"'!' Jensen’s inequality

\‘
‘\

Lemma Let f be a convex function, and let X
be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

f(E[X]) = f[ik-Pr{X :k}]

K=—00

Definition of expectation.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

F'!g' Jensen’s inequality

Lé_'rlhma. Let f be a convex function, and let X
be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

f(E[X]) = f(ik-Pr{X :k}]

K=—o0

< if(k)-Pr{X:k}

K=—00

Convexity lemma (infinite case).

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

®7% Jensen’s inequality

Lé_'rlhma. Let f be a convex function, and let X
be a random variable. Then, f(E[X]) < E[f(X)].

Proof.

f(E[X]) = f[ik-Pr{X =k}j

K=—00

< 3 (K)-Pr{X =k}

K=—00

=E[T(X)].

Tricky step, but true—think about it.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

e < Analysis of BST height

\
1\\‘ —

Let X, be the random variable denoting
the height of a randomly built binary
search tree on n nodes, and let Y, = 2%

be its exponential height.
If the root of the tree has rank k, then
Xn =1+ maX{Xk_l, Xn—k} :

since each of the left and right subtrees
of the root are randomly built. Hence,

we have
Yﬂ =2 maX{Yk_l, Yn—k} :

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

FT1 Analysis (continued)

Define the indicator random variable Z ., as

1 if the root has rank K,
0 otherwise.

— <

an -

Thus, Pr{Z, =1} =E[Z,] = 1/n, and
N

Yn — Zznk (2 ' maX{Yk—l’Yn—k}) :
k=1

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

Exponentlal height recurrence

-\
“\‘ s

E[Yn] =E z Znk (2 ' maX{Yk—liYn—k})

k=1

Take expectation of both sides.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

BTX Exponential height recurrence

E[Yn] E zznk(z'maX{Yk—liYn—k})

n
k=1

E [an (2 ' maX{Yk—l 1 Yn—k})]

]
M=

;_
Il

1

Linearity of expectation.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

\
N

®71 Exponential height recurrence

.

E[Yn] E Zznk(z'maX{Yk—liYn—k})

k=1

E [Z nk (2 ' maX{Yk—l ’ Yn—k })]

1
22 E[an] ' E[maX{Yk—l’Yn—k}]
k=1

]
M=

>~

Independence of the rank of the root
from the ranks of subtree roots.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

\
'\\‘ ‘ TS

F"'"' Exponential height recurrence

N
E[Y,]=E| > Zx z'maX{Yk—LYn—k})
k=1

Z E[an (2 ' maX{Yk—l’Yn—k})]

k=1

N 22 E[an] ' E[maX{Yk—liYn—k}]
k=1

n

2 Z E[Yk—l + Yn—k]

Ny

The max of two nonnegative numbers
Is at most their sum, and E[Z,] = 1/n.

IN

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

=70 Exponential height recurrence

E[Yn] =E Z Lk (2 ' maX{Yk—LYn—k})

22 E[an] E[maX{Yk —1 Yn k}]
k=1

n
S 22 E[Yk—l +Yn—k]
Ny
4 ”‘1E[Y] Each term appears
ns twice, and reindex.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

¥ Solving the recurrence

Use substitution to
show that E[Y] < cn’ EYn]= ’ Z E[Yi]
for some positive

constant c, which we

can pick sufficiently

large to handle the

Initial conditions.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

Solvmg the recurrence

Use substitution to -l
Yo]=4 > ELY,]

show that E[Y] < cn’

for some positive .

constant c, W_hi_ch we <4 Z ck3
can pick sufficiently N o
large to handle the o
initial conditions. Substitution.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.27

¥ Solving the recurrence

g

Use substitution to A
show that E[Y,] < cn® EY]=" 2 ElYi]

for some positive

constant c, which we <4 3" ck3
can pick sufficiently N
large to handle the dc N 4
initial conditions. < ¢ xdx

Integral method.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.28

¥ Solving the recurrence

“\.‘ \‘ :

Use substitution to A
show that E[Y] < cn’ EYa]=" 2 ElY]

for some positive

constant ¢, which we <4 S
can pick sufficiently Nz
large to handle the Ac (0
initial conditions. < 7€ | xox

:4c(n4j
n\4

Solve the integral.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.29

Solvmg the recurrence

\
.““ :

Use substltutlon to 4=
show that E[Y] < cn’ 2 EDY
for some positive
constant ¢, which we <4 3" ck3
can pick sufficiently n

k=0
large to handle the Ac i
initial conditions. < %€ [x3dx
n 70
:4c(n4)
n\4
=cn®, Algebra.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.30

The grand finale

-\
“\‘

Putting it all together, we have
2EDn] < E[2%n]

Jensen’s inequality, since
f(x) = 2% is convex.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.31

The grand finale

N
“\‘

Putting it all together, we have
2EXnl < E[2%n]
= E[Y,]

Definition.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.32

N
“\‘

The grand finale

Putting it all together, we have

October 17, 2005

2EDn] < E[2%n]
= E[Y]
<cns,

What we just showed.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.33

®7X The grand finale

Putting it all together, we have
2EDn] < E[2%n]
= E[Y,]
<cns.
Taking the |g of both sides yields
E[X] <3lgn+0(1).

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.34

""" Post mortem

-
“\‘

Q. Does the analysis have to be this hard?

Q. Why bother with analyzing exponential
height?

Q. Why not just develop the recurrence on
Xn =1+ maX{Xk_l, Xn—k}
directly?

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.35

B Post mortem (continued)

A. The inequality
max{a, b} <a+Db.

provides a poor upper bound, since the RHS
approaches the LHS slowly as |a — b| Iincreases.
The bound

max{22, 2P} < 22 4 2D
allows the RHS to approach the LHS far more
quickly as |a — b| increases. By using the
convexity of f(x) = 2% via Jensen’s inequality,
we can manipulate the sum of exponentials,
resulting in a tight analysis.

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.36

\
“\‘

Thought exercises

» See what happens when you try to do the
analysis on X, directly.

 Try to understand better why the proof
uses an exponential. Will a quadratic do?

* See If you can find a simpler argument.
(This argument is a little simpler than the
one In the book—I hope Iit’s correct!)

October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.37

Introduction to Algorithms
6.046J/18.401)

LECTURE 10

Balanced Search Trees

* Red-black trees

* Height of a red-black tree

| |
- /Tﬁi‘ e Rotations
e |Insertion

ALGORITHMS

Prof. Erik Demaine

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.1

""" Balanced search trees

-
“\‘

Balanced search tree: A search-tree data
structure for which a height of O(lg n) Is
guaranteed when implementing a dynamic
set of n 1tems.

* AVL trees
e 2-3 trees

Examples: e 2-3-4 trees
e B-trees
» Red-black trees

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.2

m Red black trees

\
“\‘

This data structure requires an extra one-
oit color field in each node.

Red-black properties:
1. Every node is either red or black.

2. The root and leaves (N1L’s) are black.
3. If a node Is red, then its parent is black.

4. All simple paths from any node x to a
descendant leaf have the same number
of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

Example of a red-black tree

NIL NIL NIL NIL NIL NIL |

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

*"&' Example of a red-black tree

\
o e

NIL

NIL NIL NIL NIL NIL NIL

1. Every node Is either red or black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

Example of a red-black tree

NIL NIL NIL NIL NIL NIL

2. The root and leaves (N1L’s) are black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

*"&' Example of a red-black tree

\
o e

NIL

NIL NIL NIL NIL NIL NIL

3. If anode Is red, then its parent is black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

\
.‘\“ :

Example of a red-black tree

bh=0 NIL NIL NIL NIL NIL NIL

4. All simple paths from any node x to a
descendant leaf have the same number of
black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

B0 Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

B0 Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

B0 Height of a red-black tree

AR

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

B Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

B Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
Into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

B0 Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION: [

* Merge red nodes hr
Into their black |
parents.

* This process produces a tree in which each node
has 2, 3, or 4 children.

* The 2-3-4 tree has uniform depth h’ of leaves.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

=71 Proof (continued)

* \We have
N> h/2, since
at most half
the leaves on any path
are red.

* The number of leaves
In each treeisn + 1
=n+1>2"
= Ilg(n+1)>h'">h/2
=h<2Ig(n+1).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15

. Query operations
Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(lg n) time on a red-black

tree with n nodes.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

I\/Iodlfymg operations

“\‘ \‘

The operations INSERT and DELETE cause
modifications to the red-black tree:

* the operation itself,
e color changes,

o restructuring the links of the tree via
“rotations”.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

*71 Rotations

@ RiGHT-ROTATE(B)

Q I:EFT-ROTATE(A)
A A

Rotations maintain the inorder ordering of keys:
caca,bef,cey =>asA<b<B<ec,

A rotation can be performed in O(1) time.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

Insertlon INto a red-black tree

¥
VY et

IDEA Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

Insertlon INto a red-black tree

-\
VY et

IDEA Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e [nsert x =15.

 Recolor, moving the
violation up the tree.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

1 Insertion into a red-black tree

\
L
WYY =

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:

e Insert x =15.

 Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

1 Insertion into a red-black tree

\
L
WYY =

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e [nsert x =15.

 Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
 LEFT-ROTATE(7) and recolor.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

1 Insertion into a red-black tree

\
L
WYY =

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
e [nsert x =15.

 Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
 LEFT-ROTATE(7) and recolor.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

Pseudocode

RB-INSERT(T, x)
TREE-INSERT(T, X)
color[x] <~ RED = only RB property 3 can be violated
while x = root[T] and color|p[x]] = RED
do If p[x] = left[p[p[x]]
then y < right[p[p[x]] >y = aunt/uncle of x
If color[y] = RED
then (Case 1)
else if x = right[p[x]]
then (Case 2) © Case 2 falls into Case 3
(Case 3)
else (*“then’ clause with “left” and “right” swapped)
color[root[T]] <« BLACK

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24

. Graphlcal notation

\
“\‘ s

et Adenote a subtree with a black root.

All A’s have the same black-height.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

(Or, children of Push C’s black onto
A are swapped.) A and D, and recurse,

since C’s parent may
be red.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

LEFT-ROTATE(A)

Transform to Case 3.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.27

IGHT-ROTATE(C) E

Done! NoO more
violations of RB
property 3 are
possible.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.28

el Analy3|s

\
“\‘

* GO up the tree performing Case 1, which only
recolors nodes.

o If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.

RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see

textbook).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.29

Introduction to Algorithms

6.046J/18.401J
ALGORTTIIMS LECTURE 11
R Augmenting Data
Structures

* Dynamic order statistics
* Methodology
e Interval trees

Prof. Charles E. Leiserson

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.1

v Dynamlc order statistics

\
1\\‘ -

OS- SELECT(I S). returns the i1th smallest element
In the dynamic set S.

OS-RANK(X, S): returns the rank of x € Sin the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes In the nodes.

- _ < key)
Notation for nodes: T

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.2

size[x] = size[left[x]] + size[right|x]] + 1

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.3

Selectlon

; \
“‘ ‘ S

Implementatlon trick: Use a sentinel
(dummy record) for niL such that size[NniL] = 0.

OS-SELECT(X, 1) cith smallest element in the
subtree rooted at x

k < size[left[x]] + 1 & k =rank(x)

If 1 =k then return x

if 1<K
then return OS-SeLecT(left[x], 1)
else return OS-SELEcCT(right[x], I — k)

(OS-RANK Is In the textbook.)

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.4

PR

AR A L

Running time = O(h) = O(lg n) for red-black trees.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.5

Data structure maintenance

\
“\‘

Q. Why not keep the ranks themselves
IN the nodes Instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when
Inserting or deleting.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.6

PR

Example of insertion

mwy \ BT

INSERT(“K™) PN
\ 104

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.7

- Handllng rebalancing

Don tforget that RB-INserT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.

 Recolorings: no effect on subtree sizes.
 Rotations: fix up subtree sizes in O(1) time.

Example: & T
15 i> N
T 4 A
8
3 4

7 3
-.RB-INserT and RB-DeLETE still run in O(lg n) time.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.8

] Data-structure augmentation

g

Methodology: (e.g., order-statistics trees)

1. Choose an underlying data structure (red-
black trees).

2. Determine additional information to be
stored In the data structure (subtree sizes).

3. Verify that this information can be
maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.9

""'""" Interval trees

N
VY et

Goal: To maintain a dynamic set of intervals,
such as time intervals.

i = [7, 10]
low[i] = 7 =—— 10 = high[i]
5 e .11 17 e—e 19
4o X 15 o 18 22 e—e 23

Query: For a given query interval i, find an
Interval In the set that overlaps I.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.10

Followmg the methodology

\
1\\‘ —

1. Choose an underlying data structure.
* Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored In the data structure.
e Store In each node x the largest value m[x]
In the subtree rooted at x, as well as the
Interval int[x] corresponding to the key.

INt
m

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.11

“""""',\ Example interval tree

ARV Ve

" high[int[x]]
m[Xx] = max< mlleft[x]]
_ m[right[x]]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.12

Modlfymg operations

ﬁ\‘ \‘

3. Verlfy that this information can be maintained
for modifying operations.
* INSERT: FIX m’s on the way down.
 Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(lg n); DELETE similar.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.13

New operations

4. Develop new dynamic-set operations that use
the information.

; \
“\‘

INTERVAL-SEARCH(I)
X < root
while x = NIL and (low[i] > high[int[x]]
or low[int[x]] > highli])
do = i and int[x] don’t overlap
If left[x] = NIL and low[i] < m[left[x]]
then x <« left[x]
else x «— right[x]
return x

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.14

r‘\i(j

Example 1: INTERVAL-SEARCH([14,16])

; \

X «— root
[14,16] and [17,19] don’t overlap
14 <18 = x « left[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.15

r‘\i(j

Example 1: INTERVAL-SEARCH([14,16])

; \

[14,16] and [5,11] don’t overlap
14 > 8 = x « right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.16

Example 1: INTERVAL-SEARCH([14,16])

[14,16] and [15,18] overlap
return [15,18]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.17

r‘\i(j

Example 2. INTERVAL- -SEARCH([12,14])

; \

X «— root
[12,14] and [17,19] don’t overlap
12 <18 = x « left[X]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.18

‘\i(_-

_~~\ Example 2: INTERVAL-SEARCH([12,14])

\
1\\‘

[12,14] and [5,11] don’t overlap
12 > 8 = x < right[x]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19

‘\i(_-

_~~\ Example 2: INTERVAL-SEARCH([12,14])

\
1\\‘

[12,14] and [15,18] don’t overlap
12 > 10 = X « right[Xx]

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.20

r‘\i(j

Example 2. INTERVAL- -SEARCH([12,14])

\

X

X = NIL = no Interval that
overlaps [12,14] exists

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.21

el < Analysis

\
“\‘ —

Tlme = O(h) = O(lg n), since INTERVAL-SEARCH
does constant work at each level as it follows a
simple path down the tree.

List all overlapping intervals:
* Search, list, delete, repeat.

e Insert them all again at the end.
Time = O(k Ig n), where k Is the total number of
overlapping intervals.

This Is an output-sensitive bound.
Best algorithm to date: O(k + Ig n).

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.22

s BT Correctness

Theorem. et L be the set of intervals in the
left subtree of node x, and let R be the set of
Intervals In x’s right subtree.
o If the search goes right, then
{1"eL:1"overlapsi } = .
o If the search goes left, then
{iI"eL:1"overlapsi } =
= {1" e R:1"overlapsi } = U.
In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,
or nothing was to be found.

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.23

l""""» Correctness proof

“\‘ :

Proof Suppose first that the search goes right.
o If left][x] = NIL, then we’re done, since L = .

 Otherwise, the code dictates that we must have
low[i] > m[left[x]]. The value m[left[x]]
corresponds to the high endpoint of some
Interval | € L, and no other interval in L can
have a larger high endpoint than high| |].

e,
high[j] = m[leftp]] = = low(i)
* Therefore, {i’ « L : 1" overlaps i } = .

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24

'"'" Proof (continued)

Suppose that the search goes left, and assume that
{I"eL:1"overlapsi } = .
 Then, the code dictates that low[i] < m[left[x]] =
high[j] for some | € L.
e Since | € L, 1t does not overlap I, and hence
highl[i] < low] .
 But, the binary-search-tree property implies that

forall I’ € R, we have low[j] < low[i].
Butthen{I' € R:1"overlapsi } = U.
| J

/
I

October 24, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.25

Introduction to Algorithms
6.046J/18.401)

LECTURE 12
SKip Lists
N » Data structure
[* Randomized insertion
/S‘ * With-high-probability bound
» Analysis
e Coin flipping

Prof. Erik D. Demaine

ALGORITHMS

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.1

e Sklp lis

\
1\\‘ —

LS

e Simple randomized dynamic search structure

— Invented by
— Easy to imp
e Maintains ac

William Pugh in 1989
ement

ynamic set of n elements In

O(lg n) time

per operation In expectation and

with high probability
— Strong guarantee on tail of distribution of T(n)
— O(lg n) “almost always”

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.2

One linked list

; \
“\‘

Start from simplest data structure:
(sorted) linked list

o Searches take ®(n) time in worst case
 How can we speed up searches?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.3

Two linked lists

; \
“\‘

Suppose we had two sorted linked lists
(on subsets of the elements)

» Each element can appear in one or both lists
 How can we speed up searches?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.4

”"‘" Two linked lists as a subway

\

IDEA: EXpress and local subway lines
(a la New York City 7th Avenue Line)

» Express line connects a few of the stations
 Local line connects all stations

e LInks between lines at common stations

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.5

F7% Searching in two linked lists

SEARCH(X):

» Walk right in top linked list (L)
until going right would go too far

» Walk down to bottom linked list (L)
* Walk right in L, until element found (or not)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.6

S Searching in two linked lists

EXAMPLE: SEARCH(59)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.7

®7% Design of two linked lists

QUuUESTION: Which nodes should be in L,?

 |In a subway, the “popular stations”

» Here we care about worst-case performance
» Best approach: Evenly space the nodes in L,
» But how many nodes should be in L,?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.8

=71 Analysis of two linked lists

ANALYSIS: L,
+ Search cost is roughly |L,| -

 Minimized (up to ‘Li‘
constant factors) when terms are equal

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.9

F70 Analysis of two linked lists

ANALYSIS:

Lj=+n, [L[=n

 Search cost Is roughly

| More linked lists

b
1\\‘ \‘ S

What if we had more sorted linked lists?
« 2 sorted lists = 2-\/ﬁ
- 3sorted lists = 3-3/n
- ksorted lists = Kk .%/n

o ———Jp—— ———n

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.11

®71 Ig n linked lists

14

14

A N
EHEHEAE

lg n sorted linked lists are like a binary tree
(in fact, level-linked B*-tree; see Problem Set 5)

aop—79
FSED R0 RE0 SED SED S i)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.12

-~
O

October 26, 2005

L

B
FO e SE0 N

N
o1 o1 o1
o - -

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L11.13

1

A

A N =
BB.B

Sklp lists

Ideal skip list Is this Ig n linked list structure

Skip list data structure maintains roughly this
structure subject to updates (insert/delete
J p ()

B
FSED R0 RE0 SED SED S i)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.14

. INSERT(X)

\
“\‘

To Insert an element x into a skip list:
e SEARCH(X) to see where x fits In bottom list
o Always Insert into bottom list

INVARIANT: Bottom list contains all elements
e Insert into some of the lists above...

QUuESsTION: To which other lists should we add x?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.15

INSERT(X)

\
1\\‘ =

QUESTION To which other lists should we add x?

IDEA: Flip a (fair) coin; if HEADS,
promote x to next level up and flip again

 Probability of promotion to next level = 1/2

e On average:
— 1/2 of the elements promoted 0 levels
— 1/4 of the elements promoted 1 level
— 1/8 of the elements promoted 2 levels
— etc.

Approx.
balance
a?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.16

Example of skip list

; \
“‘ ‘ —

ExeRrcise: Try building a skip list from scratch
by repeated insertion using a real coin

Small change:

e Add special —©
value to every list
—> can search with

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.17

Sklp lists

\
1\\‘ =

A sklp list Is the result of insertions (and

deletions) from an initially empty structure
(containing just —<°)

* INSERT(X) uses random coin flips to decide
promotion level

o DELETE(X) removes x from all lists containing it

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.18

Sklp lists

\
1\\‘ =

A sklp list Is the result of insertions (and
deletions) from an initially empty structure
(containing just —<°)

* INSERT(X) uses random coin flips to decide
promotion level

o DELETE(X) removes x from all lists containing it
How good are skip lists? (speed/balance)

e INTUITIVELY: Pretty good on average
 CLaIM: Really, really good, almost always

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19

" "" « With-high-probability theorem

\
“\‘

THEOREM. With high probability, every search
In an n-element skip list costs O(lg n)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.20

e " With-high-probability theorem

\
1\\‘ -

THEOREI\/I With high probability, every search
In a skip list costs O(lg n)

* INFORMALLY: Event E occurs with high
probability (w.h.p.) if, for any o > 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 — O(1/n%)

— In fact, constant in O(lg n) depends on «

 FORMALLY: Parameterized event E_ occurs
with high probability if, for any o > 1, there Is
an appropriate choice of constants for which
E, occurs with probability at least 1 —c_/n“

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.21

e " « With-high-probability theorem

THEOREI\/I With high probability, every search
In a skip list costs O(lg n)

* INFORMALLY: Event E occurs with high
probability (w.h.p.) If, for any o > 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 — O(1/n%)

* IDEA: Can make error probability O(1/n%)
very small by setting o large, e.g., 100

* Almost certainly, bound remains true for entire
execution of polynomial-time algorithm

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.22

”f"""" Boole s Inequality / union bound

“\‘ s

RecaH:

BooLE’S INEQUALITY / UNION BOUND:
For any random events E,, E,, ..., E,,
Pr{E,VE, U ... UE}
< Pr{E,} + Pr{E,} + ... + Pr{E,}

Application to with-high-probability events:
If k = n°W, and each E; occurs with high
probability, thenso doesE;, " E, n ... " E,

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.23

m AnaIyS|s Warmup

LEMMA With high probability,
n-element skip list has O(lg n) levels

PROOF:

e Error probability for having at most c Ig n levels
= Pr{more than c Ig n levels}
<n - Pr{element x promoted at least ¢ Ig n times}
(by Boole’s Inequality)
=-n- (1/2(: Ig n)
=n - (1/n%
=1/nc-1

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24

e AnaIyS|s Warmup

\
“\‘ —

LEMMA: With high probability,
n-element skip list has O(lg n) levels
PROOF:
e Error probability for having at most c Ig n levels
<1/n¢-1
 This probability is polynomially small,
l.e.,atmost n®fora=c— 1.

* \We can make o arbitrarily large by choosing the
constant ¢ in the O(lg n) bound accordingly.

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.25

Proof of theorem

\
“\‘ e

THEOREI\/I With high probability, every search
In an n-element skip list costs O(lg n)

CooL IDEA: Analyze search backwards—Ileaf to root
o Search starts [ends] at leaf (node In bottom level)

e At each node visited:

— If node wasn’t promoted higher (got TAiLs here),
then we go [came from] left

— If node was promoted higher (got HEADS here),
then we go [came from] up

» Search stops [starts] at the root (or —)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.26

m Proof of theorem

\
“\‘

THEOREI\/I With high probability, every search
In an n-element skip list costs O(lg n)

CooL IDEA: Analyze search backwards—Ileaf to root
PROOF:

o Search makes “up” and “left” moves
until 1t reaches the root (or —«)

e Number of “up” moves < number of levels
<clgnw.h.p. (Lemma)

e = w.h.p., number of moves Is at most the number
of times we need to flip a coin to get ¢ Ig n HEADS

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.27

""”::" Coin flipping analysis
CrLAaimM: Number of coin flips until ¢ Ig n HEADS
= O(lg n) with high probability

PROOF:

Obviously Q2(lg n): at least ¢ Ig n
Prove O(lg n) “by example”:

o Say we make 10 c Ig n flips

 When are there at least ¢ Ig n HEADS?
(Later generalize to arbitrary values of 10)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.28

=7 Coin flipping analysis

ﬁ\‘ \‘

CLAIM Number of coin flips until ¢ Ig n HEADS
= O(lg n) with high probability

PROOF:

1OC|gn 1 clgn 1 9clgn
* Pr{exactly c lg n HEADS} = clgn (j (Ej

N J \ J \ J
Y Y Y

orders HEADS TAILS

N |

]_OCl N 9clgn
e Pr{at most c Ig n HEADS} < e
clgn 2
N y O
overestimate Ty s
on orders

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.29

¥71 Coin flipping analysis (cont’d)

. Recall bounds on (yj: (lj < (yj < (eljx
X X X X

10 | Oclgn
e Pr{at most c lg n HEADS } s[- gnj(ij
clgn 2

10clgn o (1)9“9”
<l e | —
clgn 2
_ (1Oe)clgn 2—9clgn

_ 2 lg(10e)-clgn 2—90 Ign
_ 2[Ig(10e)—9]-c|g n

=1/n” for a=[9-Ig(10e)]-c

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.30

":'”"" Coin flipping analysis (cont’d)

* Pr{at most c Ig n HEADS} < 1/n%for a. = [9—1g(10e)]c
 KEY PROPERTY: 00 — o0 as 10 — oo, for any c

e Soset 10, 1.e., constant in O(lg n) bound,
large enough to meet desired o

This completes the proof of the coin-flipping claim
and the proof of the theorem.

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.31

Introduction to Algorithms

6.046J/18.401J
scoRitiing| | LECTUREL3
‘ Amortized Analysis
g e Dynamic tables
\ /\\ * Aggregate method
“\ﬁ * Accounting method

e Potential method

Prof. Charles E. Leiserson

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.1

w== How large should a hash

“\

«2 " table be?

Goal: Make the table as small as possible, but
large enough so that it won’t overflow (or

otherwise become inefficient).
Problem: What if we don’t know the proper size

In advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, “grow” it
by allocating (via mal loc or new) a new, larger
table. Move all items from the old table into the
new one, and free the storage for the old table.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.2

Example of a dynamic table

1. INSERT
2. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.3

Example of a dynamic table

1. INSERT & 1
2. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.4

Example of a dynamic table

\‘ \

1. INSERT EI 1
2. INSERT 2

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.5

AIG

Example of a dynamic table

1. INSERT EI 1
2. INSERT 2
3. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.6

AIG

Example of a dynamic table

1. INSERT EI 1
2. INSERT 2
3. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.7

Example of a dynamic table

.\‘ \

1. INSERT EI 1
2. INSERT 2

3. INSERT

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.8

AIG

Example of a dynamic table

1. INSERT EI 1
2. INSERT 2
3. INSERT 3
4. INSERT 4

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.9

Example of a dynamic table

1. INSERT D 1
2. INSERT 2
3. INSERT 3
4. INSERT 4
5. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.10

ALGORITH

F"'" Example of a dynamic table

INSERT D
INSERT
INSERT

INSERT
INSERT overflow

Mwn |k

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.11

Example of a dynamic table

INSERT D
INSERT
INSERT

INSERT
INSERT

A TwWw I |-

1.
2.
3.
4.
D.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.12

ALGORITH

F"'" Example of a dynamic table

INSERT D
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT

~Njo|lu|~|w|N| e

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.13

B0 Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion IS
®(n). Therefore, the worst-case time for n
insertions is n - ©(n) = G(n?).

WRONG! In fact, the worst-case cost for
n insertions is only ®(n) <« ©(n?).

Let’s see why.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.14

“ 4~ Tighter analysis

Let c; = the cost of the ith insertion

r -

| 1f 1 —11s an exact power of 2,
_1 otherwise.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.15

F71 Tighter analysis

Let c; = the cost of the ith insertion

r -

| 1f 1 —11s an exact power of 2,
_1 otherwise.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.16

'""' Tlghter analysis (continued)

“\‘ s

Cost of n insertions = Zci
=1
Llg(n-1)]
<n+ Z 2]
j=0
<3n
=0O(n).

Thus, the average cost of each dynamic-table
operation is ®(n)/n = O(1).

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.17

Amortlzed analysis

\
1\\‘ e

An amortlzed analysis Is any strategy for
analyzing a sequence of operations to
show that the average cost per operation Is
small, even though a single operation
within the sequence might be expensive.

Even though we’re taking averages, however,
probability is not involved!

* An amortized analysis guarantees the
average performance of each operation in
the worst case.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.18

“\‘ \‘

Types of amortized analyses

Three common amortization arguments:

° 1
° 1
° 1

ne aggregate method,
ne accounting method,

ne potential method.

We’ve just seen an aggregate analysis.

The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.19

- Accountmg method

. Charge | th operation a fictitious amortized cost
., where $1 pays for 1 unit of work (i.e., time).
° This fee Is consumed to perform the operation.
e Any amount not iImmediately consumed Is stored
In the bank for use by subsequent operations.
* The bank balance must not go negative! We

must ensure that]]
Y <) 6
for all n. ==

 Thus, the total amortized costs provide an upper
bound on the total true costs.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.20

@#w Accounting analysis of

=" dynamic tables

Charge an amortized cost of ¢; = $3 for the ith
Insertion.

 $1 pays for the immediate insertion.
 $2 Is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:
$0/$0/$0($0/$2|%$2($2|$20 overflow

L]

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.21

m Accounting analysis of
<* dynamic tables

\‘
Charge an amortized cost of ¢; = $3 for the ith
Insertion.

 $1 pays for the immediate insertion.
 $2 Is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

[[[[[[[[Ioverflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.22

@#w Accounting analysis of

=" dynamic tables

Charge an amortized cost of ¢; = $3 for the ith
Insertion.

 $1 pays for the immediate insertion.
 $2 Is stored for later table doubling.

When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

Example:

L]

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.23

m Accounting analysis
w2 (continued)
Key Invariant: Bank balance never drops below 0.

Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i|1 2 3 4 5 6 7 8 9 10
sizez. | 1 2 4 4 8 8 8 8 16 16
¢ |1 2 3 1 5 1 1 1 9 1

& |23 3 3 3 3 3 3 3 3
pank; | 1 2 2 4 2 4 6 8 2 4

*Okay, so | lied. The first operation costs only $2, not $3.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.24

Potentlal method

-\
“\‘

IDEA: View the bank account as the potential
energy (a la physics) of the dynamic set.
Framework:

e Start with an initial data structure D,,.

* Operation i transforms D;_, to D;.

* The cost of operation 1 Is c;.
 Define a potential functlon O :{Di} - R,
such that (D) =0 and ®(D;) > O for all 1.

* The amortized cost ¢; with respect to @ Is
defined to be ¢; = c; h O(D;) — D(D;_4).

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.25

-\
“\‘

Understandlng potentials

¢; = c; + O(D;) — O(D;_4)

-~
potential difference A®;

* If AD;> 0, then ¢; > c;. Operation I stores
work in the data structure for later use.

* If AD; <0, then ¢; <c;. The data structure
delivers up stored work to help pay for
operation I.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.26

W The amortized costs bound
v* the true costs

The total amortized cost of n operations Is
ZC —Z (¢j + @(D;) - ®(Dj4))
i=1

Summing both sides.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.27

m The amortized costs bound
«2" the true costs

The total amortized cost of n operations Is

N N

6 = (¢ +@(D;) - D(Diy))
1=1 1=1
~ 3¢, + (D,) - (Dy)
1=1

The series telescopes.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.28

@~ [he amortized costs bound
i g
«2 " the true costs

The total amortized cost of n operations Is

n N

6 = (¢j + @(D;) - D(Diy))
1=1 1=1
~ 3¢, + (D,) - (Dy)
1=1

n
> ZCi since ®(D,) = 0 and
=1 O(Dy) = 0.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.29

,._ Potential analysis of table
=" doubling

Deflne the potential of the table after the ith

Insertion by ®(D;) = 21 -

Zrlg 0l = =0,)

Note:

- ®(D,) =0,

* ®(D;) = 0 forall I.

Example:

([s0[$0

$0

October 31, 2005

$0

$2

$2

2197l (Assume that

G=26-23=4

accounting method)

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.30

Calculatlon of amortized costs

¥
“\‘

The amortized cost of the 1th insertion 1s
éi — Ci + CD(DI) —_ CD(DI_]_)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.31

®71 Calculation of amortized costs

\“ \ rrnsten

The amortized cost of the 1th insertion 1s
éi — Ci + (D(DI) —_ CD(DI_]_)

_ J 1 1fi-11sanexact power of 2, |

1 otherwise;
+ (2| zﬁg I—‘) (2(| 1) zﬂg (i— l)—‘)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.32

”""",\ Calculation of amortized costs

,

The amortized cost of the 1th insertion 1s
éi — Ci + (D(DI) —_ CD(DI_]_)

(i ifi—1isanexact power of 2,)
1 otherwise;

.|.(2| zrlgﬂ) (2(| ~1) — 2l g (i- lﬂ)

(i ifi—1isan exact power of 2,
1 otherwise;

+ 2 _2lgil 4 2llg (i-1)1

— <

— <

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.33

Case 1:1—11s an exact power of 2.
& = i + 2 _2llgil 4 2llg (i-1)]

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.34

& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.35

¥71 Calculation

Case 1:1—1Is an exact power of 2.
& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
=1+2-21+2+1-1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.36

¥71 Calculation

Case 1:1—1Is an exact power of 2.

& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
=1+2-21+2+1-1
=3

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.37

¥ Calculation

Case 1:1—1Is an exact power of 2.

& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
=1+2-21+2+1-1
=3

Case 2: 1 — 1 Is not an exact power of 2.

G=1+2- Jgil 4 2llg (i-1) |

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.38

=~ Calculation
Case 1: i - 1 is an exact power of 2.
=i+ 2 _2lgil 4 2llg(i-1)]
—|+2 20—1)+ (1-1)
=1+2-21+t2+1-1
=3
Case 2: 1 - 1 is not an exact power of 2.
. =1+ 2— 2rlg il 4 2“9 (i-1) |
=3 (Slnce 2ﬂg i| — 2“9 (i— 1)—|)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.39

¥ Calculation

Case 1: i — 1 is an exact power of 2.

& = i + 2 _2llgil 4 2llg (i-1)]
=1+2-21-1)+ (-1
=1+2-21+2+1-1
=3

Case 2: 1 — 1 Is not an exact power of 2.

&G=1+ 2 _2llgil 4 2llg (i-1) |

=3
Therefore, n insertions cost ®(n) In the worst case.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.40

Calculatlon

; \
“\‘

Case 1:1- 1 IS an exact power of 2.
=i+ 2 _2lgil 4 2llg(i-1)]
—|+2 20—-1)+(1-1)
=1+2-21+2+1-1
=3
Case 2: 1 — 1 Is not an exact power of 2.
&G=1+ 2 _2llgil 4 2llg (i-1) |
=3
Therefore, n insertions cost ®(n) In the worst case.

Exercise: Fix the bug in this analysis to show that
the amortized cost of the first insertion is only 2.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.41

Conclusmns

\
“\‘ e

. Amortlzed costs can provide a clean abstraction
of data-structure performance.

* Any of the analysis methods can be used when
an amortized analysis is called for, but each
method has some situations where It is arguably
the simplest or most precise.

* Different schemes may work for assigning
amortized costs In the accounting method, or
potentials in the potential method, sometimes
yielding radically different bounds.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.42

Introduction to Algorithms
6.046J/18.401)

LECTURE 14
Competitive Analysis
N\ e Self-organizing lists
\ /:\\\‘ * Move-to-front heuristic
« Competitive analysis of
— MTF

ALGORITHMS

Prof. Charles E. Leiserson

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.1

;uimmm -] _ _
=« Self-organizing lists

-
ARy

Llst L of n elements

* The operation Access(x) costs rank, (x) =
distance of x from the head of L.

e can be reordered by transposing adjacent
elements at a cost of 1.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.2

B Self- -organizing lists

Llst L of n elements

* The operation Access(x) costs rank, (x) =
distance of x from the head of L.

e can be reordered by transposing adjacent
elements at a cost of 1.

Example:

{2 3 oI

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.3

BTN Self-organizing lists
Llst L of n elements

* The operation Access(x) costs rank, (x) =
distance of x from the head of L.

e can be reordered by transposing adjacent
elements at a cost of 1.

Example:

 —E-{E) -

Accessing the element with key 14 costs 4.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.4

BTN Self-organizing lists
Llst L of n elements

* The operation Access(x) costs rank, (x) =
distance of x from the head of L.

e can be reordered by transposing adjacent
elements at a cost of 1.

Example:

 —{2HE-E) -

Transposing 3 and 50 costs 1.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.5

\
“\‘

e . On-line and off-line problems

Definition. A sequence S of
operations Is provided one at a
time. For each operation, an
on-line algorithm A must execute
the operation immediately
without any knowledge of future
operations (e.g., Tetris).

An off-line algorithm may see
the whole sequence S In advance.

The game of Tetris

Goal: Minimize the total cost C,(S).

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.6

m Worst-case analysis of self-
W« organizing lists

An adversary always accesses the tail

(nth) element of L. Then, for any on-line
algorithm A, we have

CA(S) = Q([S]- n)
IN the worst case.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.7

m Average-case analysis of self-
w2 organizing lists

Suppose that element x is accessed with
probability p(x). Then, we have

E[CA(S)]=) p(x)-rank(X).
XelL

which Is minimized when L is sorted In
decreasing order with respect to p.

Heuristic: Keep a count of the number of
times each element is accessed, and
maintain L in order of decreasing count.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.8

’ "”""'" The move-to-front heuristic

\
“\‘ s

Practice: Implementers discovered that the
move-to-front (MTF) heuristic empirically
yields good results.

IDEA: After accessing x, move x to the head
of L using transposes:

cost = 2 - rank,(x) .

The MTF heuristic responds well to locality
In the access sequence S.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.9

Competltlve analysis

\
“\‘ s

Definition. An on-line algorithm A is
o.-competitive If there exists a constant k
such that for any sequence S of operations,

CaS) <o~ Copr(S) +K,
where OPT Is the optimal off-line algorithm
(“God’s algorithm™).

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.10

B MTFis O(1)-competitive

“\‘ \‘

Theorem MTF Is 4-competitive for self-
organizing lists.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.11

B MTFis O(1)-competitive

“\‘ \‘

Theorem MTF Is 4-competitive for self-
organizing lists.

Proof. Let L, be MTF’s list after the ith access,
and let L,* be OPT’s list after the ith access.

Let c; = MTF’s cost for the ith operation

=2 - rank . (x) IT It accesses X;
c;i* = OPT’s cost for the ith operation
= rank, . (x) +1,

where t; IS the “number of transposes that OPT
performs.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.12

AL

Defme the potential function ®:{L;} — R by

O(Ly) =2-RXy) - x =< yandy < . X}
=2- #mversmns

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.13

Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

0

Clg

£)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.14

Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

O(Ly)=2-[{...H

o)

0

Clg

£)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.15

Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

(L) =2-{(EC), ... H

o)

0

Clg

£)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.16

\ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

o(Ly) =2 - H(EC), (EA), ...}

0

Clg

£)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.17

\ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

0

Llg

o(Ly) =2 - {(EC), (EA), (ED), ...}

£)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.18

“ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

i

Clg

£)

o(Ly) =2 - {(EC), (EA), (ED), (EB), ...}

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.19

“ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

@

Llg

£)

(L) =2 - {(EC), (EA), (ED), (E,B), (D.B)}]

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.20

“ Potential function

De‘fi‘ne the potential function ®:{L;} — R by

O(L) =2 {(x,y) 1 x =< yandy < .x}
= 2 - # Inversions .

Example.

| .

L*—

o)

0

Clg

£)

(L) =2 - H(EC), (EA), (ED), (E,B), (D.B)}]

=10.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.21

AL

Defme the potential function ®:{L;} — R by

O(Ly) =2-RXy) - x =< yandy < . X}
=2- #mversmns

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.22

=71 Potential function

Define the potential function ®:{L;} — R by
O(L) =2 [{(x,) :x = yandy < .x}
= 2 - # Inversions .
Note that
ed(L)>=0fori=0,1, ...,

*D(Ly) =0 i1f MTF and OPT start with the
same list.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.23

m Potentlal function

“\‘

Defme the potential function ®:{L;} — R by

O(Ly) =2-RXy) - x =< yandy < . X}
= 2 - # Inversions .
Note that
ed(L)>=0fori=0,1, ...,
*D(Ly) =0 i1f MTF and OPT start with the
same list.

How much does ® change from 1 transpose?
A transpose creates/destroys 1 inversion.
e AD =+2 .

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.24

1 What happens on an access?

br—a
1\\‘ \‘ ik

Suppose that operation I accesses element x,
and define
A={yelL_,:y <L Xxandy =< .« X},
B={yelL_:y <L Xandy- .« X},
C={yelL_:y =L xandy <. X},
D={yelL_:y =L Xandy - X}.

L., AU B x| CuD |
L. * AuC X BuUD |

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.25

0 What happens on an access?

.-\Li_l A UB X CubD I
r = I’aﬂkLi_l(X)
Li—l* AVC X — I

r* = ran kLi_l* (X)

We haver = [A| + [B| + Land r* = |A| + |C| + 1.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.26

B What happens on an access?

ﬁ\‘ \‘

L AUB x| _CuD]
r =ran k'—i—l(x)
L * AuC X BuUD |

r* = ran kLi_l* (X)

We haver = [A| + [B| + Land r* = |A| + |C| + 1.

When MTF moves x to the front, it creates |A|
Inversions and destroys [B| inversions. Each
transpose by OPT creates < 1 inversion. Thus,
we have

O(L;) — O(Liy) <2(JA| - [B| + 1) .

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.27

Amortlzed cost

-\
“\‘ s

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ D(L;) - D(Li_y)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.28

Amortlzed cost

; \
“‘ ‘ —

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = C;+ O(L;) — d(L;_y)
< 2r + 2(A| - B] + t)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.29

F"{!' Amortized cost

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ O(Ly) — (L)
<2r+ 2(|A| - |B| + t)
=2r+ 2(|A[- (r-1-1A]) + 1)
(since r = |A| + |B| + 1)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.30

=77 Amortized cost

TR \‘

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ d(L;) — (L)
<2r+ 2(|A| - |B| + t)
=2r+ 2(|A[- (r-1-1A]) + 1)
=2r+4|A|-2r + 2 + 2t

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.31

¥ Amortized cost

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ d(L;) — (L)
<2r+ 2(|A| - |B| + t)
=2r+ 2(|A[- (r-1-1A]) + 1)
=2r+4|A|-2r + 2 + 2t
= 4|A| + 2 + 2t;

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.32

B Amortized cost

The amortized cost for the ith operation of
MTF with respect to @ Is

¢; = ¢+ O(L) - D(L;y)
<2r+ 2(|A| - |B| + t)
= 2r+2(Al - (r— 1= |A]) +t)
=2r+4|A|-2r + 2 + 2t
= 4|A| + 2 + 2t;
<A4(r* +t)
(since r* = |A|+|C|+ 1> A +1)

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.33

B Amortized cost

The amortized cost for the ith operation of
MTF with respect to @ Is

¢ = ¢+ d(L;) — (L)
<2r+ 2(|A| - |B| + t)
=2r+ 2(|A[- (r-1-1A]) + 1)
=2r+4|A|-2r + 2 + 2t
= 4|A| + 2 + 2t;
<A4(r* +t)
= 4C.*.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.34

B The grand finale

; \
“\‘

Thus, we have
S

CuTr(8) =D ¢
i—1

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.35

1 The grand finale

1\\‘ \‘

Thus, we have
S

CuTe(S) =) ¢
i—1
S

=D (G + (L) - (L))
]

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.36

" The grand finale

Thus, we have
S

Cumte(S) = ¢
i1

S

=3 (6 + D(Li_y) - (L))
=1

S
< [Z4ci*] +®O(Ly) —D(Lg))

=1

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.37

T The grand finale
N .'-_I-_‘.hus, we have
Core(S) = ici
.;1

— Z(CI + (D(I—i—l) - (D(Li))
=1

S
<[Z4ci*]+d><Lo>—q><qs>
=1

<4-Cop1(S),
since @(L,) = 0and ©(Lg) = 0.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.38

Addendum

\
1\\‘ =

If we count transpositions that move x toward the
front as “free” (models splicing x In and out of L
In constant time), then MTF Is 2-competitive.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.39

Addendum

\
“\‘

If we count transpositions that move x toward the
front as “free” (models splicing x In and out of L
In constant time), then MTF Is 2-competitive.

What if L, = L,*?
 Then, ®(L,) might be ®(n?) in the worst case.
* Thus, C,,1=(S) <4 - Copr(S) + ©(n?), which is

still 4-competitive, since n? is constant as
S| — co.

November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.40

Introduction to Algorithms
6.046J/18.401)

ECTURE 15
Dynamic Programming

e Longest common
subsequence

\ —= .
- \ﬂ\‘ * Optimal substructure
 Overlapping subproblems

ALGORITHMS

Prof. Charles E. Leiserson

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.1

Dynamlc programming

“\‘ \‘

De5|gn technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find
a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamlc programming

“\‘ \‘

De5|gn technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamlc programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

x A B C B D A B

v B D C A B A

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

=71 Dynamic programming

==
1\\‘ \‘ e

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
e Glven two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not ‘(the11

xx A B C B D A B BCBA =
| \ | g LCS(X, y)
y B D C A B A J - |
functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

“"“:"' Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

e . Brute-force LCS algorithm

\
“\‘

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

Analysis
» Checking = O(n) time per subsequence.

* 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

Worst-case running time = O(n2")

= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

=™ Towards a better algorithm

\
“\‘ ,.

Slmpllflcatlon.

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

=™ Towards a better algorithm

\
“\‘ ,.

Slmpllflcatlon.

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s]|.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

B™ Towards a better algorithm

Slmpllflcatlon:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s]|.

Strategy: Consider prefixes of x and .

e Define c[i,] = |[LCS(x[1..1], y[1..]])]|.

* Then, c[m, n] = [LCS(x, y)|.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

o c[i-1, j-1] + 1 if x[i] = y[j],
cl1, 1] = { max{c[i-1, j], c[i, j-1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

7 Recursive formulation

Theorem
o c[i-1, -1] +1 I x[1] = y[j].
cli, 1] = { max{c[i-1, j], c[i, j-1]} otherwise.

Proof. Case x[i] = y[J]

1 2 m

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

77 Recursive formulation

Theorem
o c[i-1, j-1] + 1 if x[i] = y[il,
cli, J] = { maX{C[i—l il, c[i, j—l]} otherwise.
Proof. Case x[i] =y[J]

1 2 m

y N - 17
Letz[1..k]=LCS(x[1..1],y[1l..]]),wherec]l,|]

= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 .. k=1]1sCSof x|1..1-1]and y[1 .. J-1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

F'% Proof (continued)

Claim: z[1..k=-1]=LCS(x[1..1-1], y[1..]-1]).
Suppose w iIs a longer CS of x[1 . . 1-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x[1 .. 1]Jand y[1..]]

with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

F"% Proof (continued)

Claim: z[1..k=-1]=LCS(x[1..1-1], y[1..]-1]).
Suppose w iIs a longer CS of x[1 . . 1-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x[1 .. 1]Jand y[1..]]

with |w || z[k] | > k. Contradiction, proving the
claim.
Thus, c[i-1, J]-1] = k-1, which implies that c[i, |]
=c[i-1, j-1] + 1.

Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

w== Dynamic-programming

‘\ /

«>" hallmark #1

o0

© Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

w Dynamlc programming
~ " hallmark #1

o0

© Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.

—/

If z = LCS(X, y), then any prefix of z Is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

¥ Recursive algorithm for LCS

LCS(x, vy, 1,]) /lignoring base cases
I x[i] =y[]]
then c[i, J] « LCS(x, vy, I-1,]-1) + 1
else c[i, j] <« max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}
return cli, ||

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

m Recurswe algorithm for LCS

\

LCS(x, vy, 1,]) /lignoring base cases
I x[i] =y[]]
then c[i, J] « LCS(x, vy, I-1,]-1) + 1
else c[i, j] <« max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}
return cli, ||

Worse case: x[i] # y[]], In which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

15
65 14
1) () (3 Gf G (Y ky (3

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

(15
@ m+n
(15) () (55) (62 (5) (4 (64 (73

\4

Height = m + n = work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursmn tree

.\‘ \

m:7,n:6: (7,6) t
@ subspa;rgt()elem @

D ® (65 14 ™
(15) (5) (55) (64) () (64) (64) (73,

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

@ Dynamic-programming
« " hallmark #?2

o0

(O Overlapping subproblems
A recursive solution contains a
“small”” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

w== Dynamic-programming

‘\ %

«>" hallmark #2
0

(O Overlapping subproblems
A recursive solution contains a
“small”” number of distinct
subproblems repeated many times.

—/

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

- ¥ Memoization algorithm

Mem0|zat|on After computing a solution to a
subproblem, store it Iin a table. Subsequent calls
check the table to avoid redoing work.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

'“"' Memoization algorithm

¥
“\‘

I\/Iem0|zat|on After computing a solution to a
subproblem, store It in a table. Subsequent calls

check the table to avoid redoing work.

LCS(x, v, 1,])
If c[l, J]] = NIL
then if x[i] = y|[j]

'\

then c[i, j] < LCS(x, y, i-1, j-1) + 1 | Same
else c[i, j] < max{ LCS(x, v, i-1, J), >ngore

LCS(x, v, i, j—1)}/

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

¥ Memoization algorithm

¥
“\‘

I\/Iem0|zat|on After computing a solution to a
subproblem, store It in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, v, I,])
if c[i, j] = NIL
then if x[i] = y|[j]
then cfi, j] < LCS(x, vy, i-1, j-1) + 1 | Same
else c[i, j] < max{LCS(x, y, i1, j), (&
. before
LCS(x, v, i, j-1)}
/

Time = ®(mn) = constant work per table entry.
Space = ®(mn).

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.27

'\

IDEA:
Compute the

table bottom-up. o

November 7, 2005

D
C
A
B

A

w== Dynamic-programming
" algorithm

A B CB D A B
001040101040
NN \
O0/1/1(141(1)1
014112)|2)|2
0 1\2 21222
10122 2\3 3
NN \
12]2[3/3,3/4
1122|3344

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.28

IDEA:
Compute the

table bottom-up. o

Time = ©(mn).

November 7, 2005

o > O O

w== Dynamic-programming
" algorithm

A B CB D A B
001040101040
NN \
O0/1/1(141(1)1
014112)|2)|2
0 1\2 21222
10122 2\3 3
NN \
12]2[3/3,3/4
1122|3344

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.29

w== Dynamic-programming

~=" algorithm

IDEA: B C B A

Compute the 0,040/ 0/0]0/040

table bottom-up. BloloF1l1M111 1\1

Time = ©(mn). olol1l1]1l2]2]2

Reconstruct N

LCS by tracing CLOJ01t121212]2]|”

backwards. 0/1|1112]|2]2 3\3
B 012 2/3|3 3|4
A 011|223 |34 4

November 7, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.30

m— Dynamic-programming

=" algorithm

IDEA:

Compute the

table bottom-up. 5

Time = ®(mn).

Reconstruct

LLCS by tracing C

/

backwards.

Space = ®(mn). B

Exercise:
O(min{m, n}).

November 7, 2005

N[N R PP, | O T

N ITNDINDNIND - R O 0

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.31

Introduction to Algorithms
6.046J/18.401)

ALGORITHMS

0
\
AD

L ECTURE 16

Greedy Algorithms (and
Graphs)

* Minimum spanning trees
» Optimal substructure

: —\‘ Graph representation

 Greedy choice
* Prim’s greedy MST
algorithm

Prof. Charles E. Leiserson

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.1

BTN Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) Is an ordered pair consisting of

e a set \V of vertices (singular: vertex),
caset E — V xV of edges.

In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.

In either case, we have |E| = O(V?). Moreover,
If G Is connected, then [E|>|V|- 1, which
Implies that g |E| = ©(lg V).

(Review CLRS, Appendix B.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.2

wi= Adjacency-matrix
«2Y representation

The adjacency matrix of a graph G = (V, E), where
V=41 2,...,n}isthe matrix A[1..n,1..n]

iven b
SRR E _{1 if (i,j) e E,
1= 0 i) ¢ E

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.3

== Adjacency-matrix
" representation

The adjacency matrix of a graph G = (V, E), where
V=41 2,...,n}isthe matrix A[1..n,1..n]

iven b
S AT _{1 if (i,]) e E,
1= 0 i) ¢ E

All 2 3 4

110 1 1 0 O(V? storage
210 0 1 O = dense
310 0 0 0 representation.
410 0 10

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.4

¥71 Adjacency-list representation

An adjacency list of a vertex v e V/ is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
@’0 Adj[2] = {3}

Adj[3] = {3
9 @ Adj[4] = {3}

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.5

71 Adjacency-list representation

e

An“adjacency list of a vertex v € V Is the list Adj[V]
of vertices adjacent to v.

Adj[1] = {2, 3}
@’0 Adj[2] = {3}

Adj[3] = {3
9 @ Adj[4] = {3}

For undirected graphs, |Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.6

F""': Adjacency-list representation

An adjacency list of a vertex v € V Is the list Adj[V]
of vertices adjacent to v.

Adj[1] = {2, 3}
@’0 Adj[2] = {3}

Adj[3] = {3
9 @ Adj[4] = {3}

For undirected graphs, |Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).
Handshaking Lemma: 2_,_, degree(v) = 2|E| for

undirected graphs = adjacency lists use O(V + E)
storage — a sparse representation.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.7

\
“\‘

" ""' I\/Ilnlmum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight functionw : E — R.

 For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.8

=71 Minimum spanning trees

-
’!\“ st

Input: A connected, undirected graph G = (V, E)
with weight functionw : E — R.

 For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

w(T)= > w(u,v).

(u,v)eT

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.9

ALGORITHMS

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.10

ALGORITHMS

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.11

e Optlmal substructure

\
VY s

MST T:

(Other edges of G
are not shown.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.12

. Optlmal substructure

\
“\‘ s

MST T: U

(Other edges of G
are not shown.)

Remove any edge (u, v) € T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.13

. Optlmal substructure

\
“\‘ s

MST T: U

(Other edges of G
are not shown.) °

Remove any edge (u, v) € T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.14

e Optlmal substructure

\
“\‘ s

MST T: U

(Other edges of G T,
are not shown.) °

T,

V

Remove any edge (u, v) € T. Then, T is partitioned
Into two subtrees T, and T..

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.15

F71 Optimal substructure

\
1\“ \‘ st

MST T:
u T,

(Other edges of G T,
are not shown.) v

Remove any edge (u, v) € T. Then, T is partitioned
Into two subtrees T, and T..

Theorem. The subtree T, iIsan MST of G, = (V,, E,),
the subgraph of G induced by the vertices of T,:

V, = vertices of T,,
E,={(X,y) e E:Xx,yeV,}
Similarly for T,.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.16

B2 Proof of optimal substructure

Proof. Cut and paste:

w(T) =w(u, v) +w(T,) +w(T,).
If T,”were a lower-weight spanning tree than T, for
G,then T'={(u,v)} U T,”UT,would be a
lower-weight spanning tree than T for G.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.17

¥ Proof of optimal substructure

Proof. Cut and paste:

w(T) =w(u, v) +w(T,) +w(T,).
If T,”were a lower-weight spanning tree than T, for
G,then T'={(u,v)} U T,”UT,would be a
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
* Yes.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.18

¥ Proof of optimal substructure
Proof. Cut and paste:

w(T) =w(u, v) +w(T,) +w(T,).
If T,”were a lower-weight spanning tree than T, for

G,then T'={(u,v)} U T,”UT,would be a
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
* Yes.

Great, then dynamic programming may work!
*Yes, but MST exhibits another powerful property
which leads to an even more efficient algorithm.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.19

o Hallmark for “greedy”
«~> " algorithms

L)

Greedy-choice property
A locally optimal choice
Is globally optimal.

(D

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.20

e Hallmark for “greedy”
= algorithms

L)

Greedy-choice property
A locally optimal choice
Is globally optimal.

(D

—/

Theorem. Let T be the MST of G = (V, E),
and let A — V. Suppose that (u, v) € E Is the
least-weight edge connecting Ato V — A.
hen, (u,v) e T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.21

Proof of theorem

.“\

Proof Suppose (u, v) ¢ T. Cut and paste.

(U, v) =

least-weight edge

e cV-A connecting A to V — A

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.22

- ¥ Proof of theorem
Prbof Suppose (u, v) ¢ T. Cut and paste.

T: *

@ € A .
(u, v) = least-weight edge
e cV-A connecting A to V — A

Consider the unique simple path fromutovinT.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.23

. ¥ Proof of theorem
Prbof Suppose (u, v) ¢ T. Cut and paste.

T: *

Q@ € A
e cV-A

(u, v) = least-weight edge
connecting AtoV - A

Consider the unique simple path fromutovinT.

Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V — A.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.24

. Proof of theorem

L
WYY =

Proof. Suppose (u, v) ¢ T. Cut and paste.

T .\
@ €A /

e cV-A

(u, v) = least-weight edge
connecting AtoV - A

Consider the unique simple path fromutovinT.

Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V — A.

A lighter-weight spanning tree than T results.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.25

- 7 Prim’s algorithm

IDEA Maintain V — A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.

Q«V
key[v] <~ oo forallv e V
key[s] < O for some arbitrary s € V
while Q # &
do u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v e Q and w(u, v) < key|v]
then key[v] < w(u,v) © DECREASE-KEY
r[v] <« u

At the end, {(v, =[v])} forms the MST.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.26

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.27

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.28

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.29

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.30

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.31

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.32

,i;' Example of Prim’s algorithm

15@

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.33

)0
DN

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.34

)0
DN

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.35

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.36

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.37

Example of Prim’s algorithm

Q@ € A
e cV-A

10

15@

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.38

Example of Prim’s algorithm

Q@ € A
e cV-A

10

15@

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.39

November 9, 2005

B2 Analysis of Prim

Q«V
key[v] <~ oo forall v e V
key[s] «<— O for some arbitrary s € V
while Q = &

do u < EXTRACT-MIN(Q)

for each v € Adj[u]
do if v e Q and w(u, v) < key|V]
then key[v] « w(u, V)
n[v] < u

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.40

= .~ Analysis of Prim
(Q<«V
key[v] <~ oo forall v e V
_ key[s] < O for some arbitrary s € V
while Q # &
do u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v e Q and w(u, v) < key|V]
then key[v] « w(u, V)
n[v] < u

O) J
total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.41

; \
“\‘ e

O) J
total
g
V]
times<
.

November 9, 2005

m Analysis of Prim

(Q<«V
key[v] <~ oo forall v e V

_ key[s] < O for some arbitrary s € V

while Q # &
do u < EXTRACT-MIN(Q)
for each v € Adj[u]
do if v e Q and w(u, v) < key|V]
then key[v] « w(u, V)
n[v] < u

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.42

B2 Analysis of Prim
_

OWV) J key[v] «— s forallv e V

total | ey [s] < 0 for some arbitrary s < v

- while Q # &
do u <— EXTRACT-MIN(Q)

V| ; " for each v € Adj[u]
times | degree(u)) do if v e Q and w(u, v) < key[V]
times then key[v] <— w(u, v)
L L n[v] <-u

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.43

; \
““ ETTYE TG

(V) _
total
V] {
times | degree(u)
times
N

Analy3|s of Prim

(Q<«V
key[v] <~ oo forall v e V

_ key[s] < O for some arbitrary s € V
4 while Q # &

do u < EXTRACT-MIN(Q)

" for each v € Adj[u]

do if v e Q and w(u, v) < key|V]
then key[v] « w(u, V)

L n[v] < u /

>

Handshaking Lemma = ©O(E) implicit DecreAse-KEY’S.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.44

; \
“\‘ e

m Analysis of Prim

(Q<«V
OWV) J key[v] «— s forallv e V
total | ey [s] < 0 for some arbitrary s < v
- while Q # &
do u <— EXTRACT-MIN(Q)
V| ; " for each v € Adj[u]
times | degree(u)) do if v e Q and w(u, v) < key[V]
times then key[v] < w(u, V)
5 _ n[v] < u /

Handshaking Lemma = ©O(E) implicit DecreAse-KEY’S.
Time = O(V) - Teyrractmin T ©(E) Tpecrease-Key

November 9, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.45

r— Analy3|s of Prim (continued)

®(V) TEXTRACT MIN T ®(E) TDECREASE KEY

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.46

- , 1 Analysis of Prim (continued)

®(V) TEXTRACT MIN T ®(E) TDECREASE KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.47

=70 Analysis of Prim (continued)

®(V) TEXTRACT MIN + ®(E) TDECREASE KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array O(V) O(1) O(V?)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.48

0 Analysis of Prim (continued)

®(V) TEXTRACT MIN + ®(E) TDECREASE KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array O(V) O(1) O(V?)
br']'gggy O(lg V) O(lgV) O(ElgV)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.49

F70 Analysis of Prim (continued)

TR \‘

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array O(V) O(1) O(V?)
binar
heapy O(lg V) O(gV) O(ElgV)
Fibonacci O(lgV) O(1) O(E+VligV)
heap amortized amortized worst case

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.50

I\/IST algorithms

N
“\‘

Kruskal’s algorithm (see CLRS):

 Uses the disjoint-set data structure (see CLRS,
Ch. 21).

* Running time = O(E lg V).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.51

] MST algorithms

\
1\\‘ \‘ o

Kruskal’s algorithm (see CLRS):
 Uses the disjoint-set data structure (see CLRS,

Ch. 21).
* Running time = O(E lg V).

Best to date:

 Karger, Klein, and Tarjan [1993].
e Randomized algorithm.

* O(V + E) expected time.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.52

Introduction to Algorithms
6.046J/18.401)

LECTURE 1/
Shortest Paths |
* Properties of shortest paths

ALGORITHMS

; @ Dijkstra’s algorithm
e » Correctness
* Analysis

e Breadth-first search

Prof. Erik Demaine

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.1

"""',\ Paths in graphs

Consider a digraph G = (V, E) with edge-weight

functionw : E — R. The weight of pathp =v, —
V, — -+ —V, IS defined to be

k—1
W(p) — ZW(Vi 1Vi+1) -
i=1

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.2

=71 Paths in graphs

Consider a digraph G = (V, E) with edge-weight
functionw : E — R. The weight of pathp =v, —
V, — -+ —V, IS defined to be

k—1
W(p) — ZW(Vi 1Vi+1) -
i=1

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.3

_~~\ Shortest paths

-\
“\‘

A shortest path from u to v Is a path of
minimum weight from u to v. The shortest-
path weight from u to v Is defined as

o(u, v) = min{w(p) : p Is a path from u to v}.

Note: 5(u, v) = oo If no path from u to v exists.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.4

w= Well-definedness of shortest
« Y paths

If a graph G contains a negative-weight cycle,
then some shortest paths do not exist.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.5

m Well-definedness of shortest
~2Y paths

If a graph G contains a negative-weight cycle,
then some shortest paths do not exist.

Example:

W—0

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.6

. Optlmal substructure

\
“\‘ s

Theorem. A subpath of a shortest path is a
shortest path.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.7

Optlmal substructure

; \

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

00000

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.8

Gaen o Optlmal substructure

\
.‘\“ I

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

—y -
-y _’
e -

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.9

; \
“\‘ e

Trlangle Inequality

Theorem. Forall u, v, x € V, we have
o(u, v) <o(u, x) + o(x, v).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.10

1 Triangle inequality

v \‘

Theorem. Forall u, v, x € V, we have
o(u, v) <o(u, x) + o(x, v).

Proof.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.11

e Single-source shortest paths
* (nonnegative edge weights)

Problem. Assume that w(u, v) > 0 for all (u, v)
e E. (Hence, all shortest-path weights must
exist.) From a given source vertex s € V, find
the shortest-path weights 6(s, v) forall v € V.

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step, add to S the vertexv € V —S
whose distance estimate from s is minimum.
3. Update the distance estimates of vertices
adjacent to v.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.12

_‘:\ Dlj kstra’s algorithm
d[s] «~0
foreachv € V —{s}
do d[v] < o
S«
Q«V = Q IS a priority gueue maintaining V — S,
keyed on d[v]

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.13

F"'" Dijkstra’s algorithm

\
“\‘

d[s] «~0
foreachv € V —{s}
do d[v] < o
S«
Q«V = Q IS a priority gueue maintaining V — S,
keyed on d[v]
while Q =
do U «— EXTRACT-MIN(Q)
S« Su{u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, V)
then d[v] <« d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.14

Dlj kstra’s algorithm

d[s] «~0
foreachv € V —{s}
do d[v] < o
S«
Q«V = Q IS a priority gueue maintaining V — S,
keyed on d[v]

; \
“\‘

while Q =&
do u <— ExTrRACT-MIN(Q)
S« Su{u}
for each v € Adj[u] _
do if d[v] > d[u] + w(u, V) relaxation
then d[v] < d[u] + w(u, V) step

\ Implicit DECREASE-KEY

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.15

Example of Dijkstra’s
=" algorithm

Graph with
nonnegative
edge weights:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.16

=« Example of Dijkstra’s
«> " algorithm

Initialize:

Q: A B CDE

0 o o oo o

o0
1 4
00

S:{}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.17

=« Example of Dijkstra’s
«> " algorithm

“A” ¢~ EXTRACT-MIN(Q): = 9
Oy

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.18

=« Example of Dijkstra’s
«> " algorithm

Relax all edges leaving A: 9
5 D !

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.19

=« Example of Dijkstra’s
«> " algorithm

“C” « EXTRACT-MIN(Q): 10 5,
’S D !

S:{AC}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.20

=« Example of Dijkstra’s
«> " algorithm

Relax all edges leaving C:

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.21

=« Example of Dijkstra’s
«> " algorithm

“E” <~ EXTRACT-MIN(Q):

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.22

=« Example of Dijkstra’s
«> " algorithm

Relax all edges leaving E: 2

Q: B D
0 o

o0

0 3

=

-
5

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.23

=« Example of Dijkstra’s
«> " algorithm

“B” «— EXTRACT-MIN(Q):

Q: D

2
O
1 4
O
3

0 oo o ®o © 5
1 3 o o
/ 11 5
7 11 S:{ACEB}

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.24

=« Example of Dijkstra’s
«> " algorithm

Relax all edges leaving B: 7

Q: D

0 oo o o o 3 5
1 3 o o
{ 11 5
7 11 S:{A C EB}
9

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.25

=« Example of Dijkstra’s
«> " algorithm

“D” «— EXTRACT-MIN(Q): ’

0 o ow o o 2 5
1 3 o o
{ 11 5
7 11 S:{A,C,E,B,D}
9

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.26

- BT Correctness — Part |

Lemma Initializing d|s] <— 0 and d[v] <— « for all
v € V —{s} establishes d[v] > &(s, v) forall v € V,

and this invariant Is maintained over any sequence
of relaxation steps.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.27

Correctness — Part |

Lemma. Initializing d|s] <— 0 and d[v] <— « for all
v € V —{s} establishes d[v] > &(s, v) forall v € V,
and this invariant Is maintained over any sequence
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for
which d[v] < o(s, v), and let u be the vertex that
caused d[v] to change: d[v] = d[u] + w(u, v). Then,
d[v] < (s, V) supposition

< 0o(s, u) +o(u, v) triangle inequality

< 0o(s,u) + w(u, v) sh. path < specific path

<d[u] +w(u,v) visfirst violation
Contradiction.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.28

. BT Correctness — Part I

Lemma et u be v’s predecessor on a shortest
path from s tov. Then, if d[u] = o(s, u) and edge
(u, v) Is relaxed, we have d[v] = (s, v) after the
relaxation.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.29

B Correctness — Part |1

Lemma. Let u be v’s predecessor on a shortest
path from s tov. Then, if d[u] = o(s, u) and edge
(u, v) Is relaxed, we have d[v] = (s, v) after the
relaxation.

Proof. Observe that 6(s, v) = (s, u) + w(u, V).
Suppose that d[v] > o(s, v) before the relaxation.
(Otherwise, we’re done.) Then, the test d|[v] >
dlu] + w(u, v) succeeds, because d[v] > 5(s, V) =
o(s, u) + w(u, v) = dfu] + w(u, v), and the
algorithm sets d[v] = d[u] + w(u, v) = &(s, V).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.30

- BT Correctness — Part 111

Theorem Dijkstra’s algorithm terminates with
dfv] =o(s, v) forall v e V.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.31

-—; | Correctness — Part 11

-
“\‘

Theorem Dijkstra’s algorithm terminates with
dlv] =o(s, v) forall v € V.

Proof. It suffices to show that d[v] = (s, v) for every v
e V when v is added to S. Suppose u is the first vertex
added to S for which d[u] > (s, u). Let y be the first

vertex in V — S along a shortest path from s to u, and
let x be Its predecessor:

s M
S, Just before
adding u.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.32

m Correctness — Part 111
Y (continued)

- (u,
(s Q’ﬂ

Since u Is the first vertex violating the claimed
Invariant, we have d[x] = (s, x). When x was
added to S, the edge (x, y) was relaxed, which

Implies that d[y] = 6(s, y) < 6(s, u) < d[u]. But,
dfu] < d[y] by our choice of u. Contradiction.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.33

1\ Analysis of Dijkstra

; \
“\‘ e

while Q =
do u «— ExTRACT-MIN(Q)
S« Su{u}
for each v € Adj[u]
do if d[v] > d[u] + w(u, V)
then d[v] <— d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.34

1\ Analysis of Dijkstra

s while Q =&
do u «— ExTRACT-MIN(Q)
|V| S« Sy {U}
fimes 3 for each v e Adj[u]
do if d[v] > d[u] + w(u, V)
: then d[v] <— d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.35

o whil

V] J
UMES | degree(u) _
times
N

eQ 2z

S« Su{u}
" foreach v e Ad
do if d[v] > ¢
then d

—_— Analysis of Dijkstra
do u <~ ExTrRACT-MIN(Q)

J[u]

[u] +w(u, v)

V] « d[u] + w(u, v)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.36

; \
“\‘

V]
times

<

N

while Q =
do u «— ExTRACT-MIN(Q)

degree(u) _
times

—

S« Su{u}
" for each v e Ad
do if d[v] > ¢

AnaIyS|s of Dijkstra

J[u]

[u] +w(u, v)

then d

V] « d[u] + w(u, v)

Handshaking Lemma = ©O(E) implicit Decrease-KEY'’s.

November 14, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.37

-\
“\‘

V]
times

<

-

N

while Q =
do u «— ExTRACT-MIN(Q)

degree(u) _
times

—

S« Su{u}
" for each v e Ad
do if d[v] > ¢

_“\ AnaIyS|s of Dijkstra

J[u]

[u] +w(u, v)

then d

V] « d[u] + w(u, v)

Handshaking Lemma = ©O(E) implicit Decrease-KEY'’s.

Ime =

®(V'TE><TRACT-M|N T E'TDECREASE-KEY)

Note: Same formula as In the analysis of Prim’s
minimum spanning tree algorithm.

November 14, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.38

== Analysis of Dijkstra
~2T (continued)

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q TextractMiN TDecrease-key Total

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.39

s Anal ysS Is of Dijkstra

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q TextractMiN TDecrease-key Total

array O(V) O(1) O(V?)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.40

== Analysis of Dijkstra
«> " (continued)

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q TextractMiN TDecrease-key Total

array O(V) O(1) O(V?)
br']gggy O(lg V) O(lgV) O(ElgV)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.41

s== Analysis of Dijkstra

oAy
N

~2" (continued)

Time = ®(V)'TEXTRACT-M|N t ®(E)'TDECREASE-KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array O(V) O(1) O(V?)
binar
heapy O(lg V) O(gV) O(ElgV)
Fibonacci O(lgV) O(1) O(E+VligV)
heap amortized amortized worst case

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.42

Unwelghted graphs

\‘ \

Suppose that w(u, v) = 1 for all (u, v)
Can Dijkstra’s algorithm be |mproved?

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.43

e Unweighted graphs

\
1\\‘ -

Suppose that w(u, v) = 1 for all (u, v)
Can Dijkstra’s algorithm be |mproved?

» Use a simple FIFO queue Instead of a priority
queue.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.44

- Unwelghted graphs
Suppose that w(u, v) = 1 for all (u, v)
Can Dijkstra’s algorithm be |mproved?

» Use a simple FIFO queue Instead of a priority
queue.

Breadth-first search
while Q =
do u < DeQUEUE(Q)
for each v € Adj[u]
do if d[v] =
then d[v] < d[u] + 1
ENQUEUE(Q, V)

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.45

Unwelghted graphs
Suppose that w(u, v) =1 for all (u, v)
Can Dijkstra’s algorithm be |mproved’>

» Use a simple FIFO queue Instead of a priority
queue.

Breadth-first search
while Q =
do u < DeQUEUE(Q)
for each v € Adj[u]
do if d[v] =«
then d[v] < d[u] + 1
ENQUEUE(Q, V)
Analysis: Time = O(V + E).

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.46

== Example of breadth-first
«" search

== Example of breadth-first
«" search

w== Example of breadth-first
~2T search

w== Example of breadth-first
~2T search

w== Example of breadth-first
~2T search

== Example of breadth-first
«" search

w== Example of breadth-first
~2T search

w== Example of breadth-first
~2T search

w== Example of breadth-first
~2T search

w== Example of breadth-first
~2T search

w== Example of breadth-first
~2T search

== Example of breadth-first
«" search

”"‘" Correctness of BFS

\
‘\‘

1

while Q =
do u < DeQUEUE(Q)
for each v € Adj[u]
do if d[v] = o
then d[v] < d[u] + 1
ENQUEUE(Q, V)

Key idea:
The FIFO Q In breadth-first search mimics
the priority queue Q in Dijkstra.

 Invariant: v comes after u in Q implies that
d[v] =d[u] or d[v] = d[u] + 1.

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.59

Introduction to Algorithms
6.046J/18.401)

L ECTURE 18
Shortest Paths 11
.| * Bellman-Ford algorithm

* Linear programming and
difference constraints

* VLSI layout compaction

ALGORITHMS

Prof. Erik Demaine

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.1

Negatlve welght cycles

Recall If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

O=n®

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.2

- Negatlve welight cycles

Recall If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

O=n®

Bellman-Ford algorithm: Finds all shortest-path
lengths from a sources € Vtoallv e Vor
determines that a negative-weight cycle exists.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.3

Bellman Ford algorithm

; \
“\‘

d[s] «0)
foreachv € V—-{s} ~ initialization
do d[v] < o)
fori« 1to|V|-
do for each edge (u, v) € E
do if d[v] > d[u] + w(u, v) relaxation

then d[v] < d[u] + w(u, V) | step
for each edge (u,v) € E
do if d[v] > d[u] + w(u, v)
then report that a negative-weight cycle exists
At the end, d[v] = &(s, V), If no negative-weight cycles.
Time = O(VE).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.4

*"'" Example of Bellman-Ford

\
'\\‘ ‘ TS

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.5

Example of Bellman-Forad

; \
““

Initialization.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.6

Example of Bellman-Forad

; \

Order of edge relaxation.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7

ALGORITHMS

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.8

ALGORITHMS

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.9

ALGORITHMS

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.10

ALGORITHMS

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.11

*\ Example of Bellman-Ford

; \
“\‘ e

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.12

*\ Example of Bellman-Ford

; \
“\‘ e

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.13

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14

*\ Example of Bellman-Ford

; \
“\‘ e

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.15

Example of Bellman-Forad

; \
““

End of pass 1.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.16

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.17

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.18

*\ Example of Bellman-Ford

; \
“\‘ e

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.19

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.20

*\ Example of Bellman-Ford

; \
“\‘ e

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.21

*\ Example of Bellman-Ford

; \
“\‘ e

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.22

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.23

*\ Example of Bellman-Ford

; \
“\‘ e

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.24

=71 Example of Bellman-Ford

End of pass 2 (and 3 and 4).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.25

- BT Correctness

Theorem If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = (s, v) forall v € V.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.26

— BT Correctness

Theorem If G = (V, E) contains no negative-
welght cycles, then after the Bellman-Ford
algorithm executes, d[v] = (s, v) forall v € V.

Proof. Letv € V be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.

V

p/®

Since p Is a shortest path, we have
o(S, Vi) = (S, Vi_y) + W(Vi_y, Vi) .

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.27

Correctness (continued)
V

/@

Initially, d[v,] = 0 =25(s, vy), and d[v,] is unchanged by
subsequent relaxations (because of the lemma from
Shortest Paths | that d[v] = &(s, V)).

» After 1 pass through E, we have d[v,] = 5(s, v,).
» After 2 passes through E, we have d[v,] = 6(s, v,).

o After k passes through E, we have d[v, | = (s, v,).

Since G contains no negative-weight cycles, p Is simple.
Longest simple path has < |V| — 1 edges.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.28

e Detection of negative-weight
«> " cycles

Corollary. If a value d|[v] fails to converge after
V| — 1 passes, there exists a negative-weight
cycle in G reachable from s.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.29

¥ Linear programming

ﬁ\‘ \‘

Let A be an mxn matrix, b be an m-vector, and c
be an n-vector. Find an n-vector x that maximizes
c'x subject to Ax < b, or determine that no such

solution exists.
n

m < maximizing —— -

A X < Db c' X

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.30

e Linear-programming
«> " algorithms

Algorithms for the general problem

« Simplex methods — practical, but worst-case
exponential time.

* Interior-point methods — polynomial time and
competes with simplex.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.31

e Linear-programming
«> " algorithms

Algorithms for the general problem
« Simplex methods — practical, but worst-case

exponential time.

* Interior-point methods — polynomial time and
competes with simplex.

Feasibility problem: No optimization criterion.
Just find x such that Ax < b.
* In general, just as hard as ordinary LP.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.32

m Solvmg a system of difference
«2Y constraints

Llnear programming where each row of A contains
exactly one 1, one —1, and the rest 0’s.

Example:
X=Xy £ 3
Xpg=Xg <=2 X=X S W
X —Xq <2

\

_/

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.33

m Solvmg a system of difference
« Y constraints

Llnear programming where each row of A contains
exactly one 1, one —1, and the rest 0’s.

Example: Solution:
I

X=Xy £ 3 Xy =

Xo =X <=2 Xj — Xj < W Xy =

X —Xq <2 X3 =

_/

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.34

m Solving a system of difference
«9 Y constraints

Linear programming where each row of A contains
exactly one 1, one —1, and the rest 0’s.

Example: Solution:
X=Xy £ 3 : Xy =
Xo =X <=2 Xj — Xj < W Xy =
X1 —X3<2 X3 =
Constraint graph: (The *A”
matrix has

W
X — X: < W @ . @ dimensions
Ty e[V

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.35

Unsatlsflable constraints

\
“\‘ e

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.36

Unsatisfiable constraints

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle Is
V, —>V, —> -+ =V, — V,. Then, we have

Xo— Xp SWyp

X = X1 S Wq i
Xp = X S Wy

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.37

""'" Unsatisfiable constraints

\‘

Theorem. If the constraint graph contains
a negative-weight cycle, then the system of
differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle Is
V, —>V, —> -+ =V, — V,. Then, we have

Xo—= X1 =Wy

— <
X3 = X ,—W23 Therefore, no

X — X . <W values for the x;
K k-1 k=1, k - h
X, — X, < Wiy can satisfy the
_ constraints.
0 < weight of cycle
<0

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.38

Satlsfymg the constraints

“\‘ \‘

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the
constraints are satisfiable.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.39

Satlsfymg the constraints

\‘ \‘

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the

constraints are satisfiable.
Proof. Add a new vertex s to VV with a O-weight edge

to each vertex v, € V.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.40

ey, Satlsfymg the constraints

Theorem. Suppose no negative-weight cycle
exists in the constraint graph. Then, the

constraints are satisfiable.
Proof. Add a new vertex s to VV with a O-weight edge

to each vertex v, € V.

V
0 v Note:

R&Y No negative-weight
S ' cycles introduced =
V') shortest paths exist.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.41

*"i' Proof (continued)

-\
“\‘

Clalm' The assignment x; = 6(s, v;) solves the constraints.

Consider any constraint x; — x; < w;;, and consider the
shortest paths from s to v, and %

IJ’

The triangle inequality gives us 5(s,v;) < (s, v;) + wj;.
Since x; = o(s, v;) and x; = 6(s, V), the constraint x; — x
< Ww; IS satlsfled

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.42

m Bellman-Ford and linear
w2 programming

Corollary. The Bellman-Ford algorithm can
solve a system of m difference constraints on n
variables in O(mn) time.

Single-source shortest paths is a simple LP
problem.

In fact, Bellman-Ford maximizes x, + x, + --- +x,
subject to the constraints x; — x; < w; and X: <0
(exercise).

Bellman-Ford also minimizes max;{x,} — min{x}
(exercise).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.43

m Appllcatlon to VLSI layout
« Y compaction

Integ rated
-Clrcuit I
features: I

,{(

minimum separation A

Problem: Compact (in one dimension) the
space between the features of a VLSI layout
without bringing any features too close together.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.44

F"'" VLSI layout compaction

—d;,— —I
1
#

X, X,
Constraint: x,—X,>d,;+ A

Bellman-Ford minimizes max;{x} — min{x},
which compacts the layout in the x-dimension.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.45

Introduction to Algorithms
6.046J/18.401)

L ECTURE 16
— Shortest Paths 111
ko * All-pairs shortest paths

e Matrix-multiplication
algorithm

 Floyd-Warshall algorithm
 Johnson’s algorithm

ALGORITHMS

Prof. Erik D. Demaine

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.1

- BT Shortest paths

Slngle source shortest paths
e Nonnegative edge weights

* Dijkstra’s algorithm: O(E + V Ig V)
 General

+ Bellman-Ford algorithm: O(VE)

* DAG
+ One pass of Bellman-Ford: O(V + E)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.2

- BT Shortest paths

Slngle source shortest paths
e Nonnegative edge weights
+ Dijkstra’s algorithm: O(E + V Ig V)
e General
+ Bellman-Ford algorithm: O(VE)
* DAG
+ One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths
e Nonnegative edge weights
+ Dijkstra’s algorithm |V| times: O(VE + V2 lg V)
e General
+ Three algorithms today.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.3

'""' AII -pairs shortest paths

Input: Digraph G = (V, E), where V = {1, 2,
., N}, with edge-weight functionw : E - R.

Output: n x n matrix of shortest-path lengths
o(l,]) foralli,] € V.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.4

"”"" AII -pairs shortest paths

Input Digraph G = (V, E), where V = {1, 2,
, N}, with edge-weight function w : E — R.

Output: n x n matrix of shortest-path lengths
o(l,]) foralli,] € V.

IDEA:

* Run Bellman-Ford once from each vertex.

e Time = O(V°E).

 Dense graph (®(n?) edges) = ©(n*) time in
the worst case.

Good first try!

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.5

;""""":;? Dynamic programming
Consider the n x n weighted adjacency matrix

A = (&;;), where a; = w(l, J) or o, and define

d;i(™ = welght of a shortest path from
| to | that uses at most m edges.

Claim: We have
4,0= {0 ifi=],
o If1#];
and form=1,2n-1,
d;;(™ = mlnk{d (MD) + 3, }.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.6

ALGORITHMS

<m -1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7

Proof of claim

‘“ K’s
di;™ = min {d ™ + a; }
Relaxation!

fork <« 1ton
do if d;; > dj, + ay
then dlj < dik + akj <m-1 edgeS

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.8

‘“ K’s
di;™ = min {d ™ + a; }

Relaxation!
fork <« 1ton
do if d;; > dj, + ay
then d;j < iy + &y <m -1 edges

Note: No negative-weight cycles implies
8('! J) - dij (-1) = dij (n) = dij (n+1) = ...

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.9

B Matrix multiplication

Compute C=A - B, where C, A,and B aren xn

matrices: "
Cij — Zaikbkj .
k=1

Time = ®(n?) using the standard algorithm.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.10

B0 Matrix multiplication

N
“\‘

Compute C=A-B,whereC, A,andBarenxn

matrices: "
Cij — Zaikbkj .
k=1

Time = ®(n?) using the standard algorithm.
What if we map “+” — “min” and “-” — “+7?

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.11

— BT Matrix multiplication
Compute C=A-B,whereC, A,and Baren xn

matrices:
— Z aikbkj .
k=1

Time = ®(n?) using the standard algorithm

What if we map “+” — “min” and “-” — “+7?
CIJ N mink {aik T bkj}-

Thus, DM = DM=1) > A

(0 o0 00m0)

Identity matrix = 1 = | %75 % =D = (d;().
| 00 00 00 O)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.12

@ Matrix multiplication
S

~=* (continued)

The (min, +) multiplication Is associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.

Consequently, we can compute

DO = DO.A = Al
D@ = DM .A = A2

DO-1) = p(-2) . A= AML.
yielding DY = (§(i, j)).
Time = ®(n-n®) = ®(n*). No better than n x B-F.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.13

m Improved matrix
= multiplication algorithm

Repeated squaring: A%< = Ak x Ak,
Compute A%, A%, ... a2 190-D1
—

hd .
O(lg n) squarings
Note: A™1 =AM =AML= ...
Time = ©(n3lg n).

_/

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional

time.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14

F™1 Floyd-Warshall algorithm
Also dynamic programming, but faster!
Define c;;(¥) = weight of a shortest path from i

J
J to | with intermediate vertices
belonging to the set {1, 2, ..., k}.

Thus, (i, J) = ¢;". Also, ¢;{”) = a; .

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.15

Intermediate vertices in {1, 2, ..., k— 1}

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.16

=« Pseudocode for Floyd-
> Warshall

fork<«1ton
dofori<« 1ton
doforj<« 1ton
do If ¢;; > Cy, + Cy

then Cij < Cik + ij

} relaxation

Notes:

» Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in ®(n?) time.

e SiImple to code.

o Efficient In practice.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.17

@ Transitive closure of a
«> " directed graph

1 1f there exists a path from | to |,

Compute G = 1 5 Stherwise.

IDEA: Use Floyd-Warshall, but with (v, A) Instead
of (min, +):

100 = 6D v (D A (D).

Time = O(n3).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.18

Graph reweighting

Theorem Given a function h : V — R, reweight each
edge (u,v) € E by w,(u, v) =w(u, v) + h(u) h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.19

Graph reweighting

; \
“\‘

Theorem Given a function h : V — R, reweight each
edge (u,v) € E by w,(u, v) =w(u, v) + h(u) h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

Proof. Letp=v, > Vv, — --- —> v, beapathin G. We
have

k-1
Wy (p) — Z; Wh (Vi ’Vi+1)
k-1
= Zi (W(v; Vi) +h(vi)=h(viy))
k1
= 2w i0) + h(y) ~h(y,) _ Same

amount!
= w(p) + h(v,) —h(v,).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.20

w= Shortest paths in reweighted
graphs

Corollary. 6,(u, v) = d(u, v) + h(u) — h(v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.21

@ Shortest paths in reweighted
«2 " graphs

Corollary. 6,(u, v) = d(u, v) + h(u) — h(v).

IDEA: Find a function h : V — R such that
W, (u, v) = 0 for all (u, v) € E. Then, run
Dijkstra’s algorithm from each vertex on the
reweighted graph.

NoTe: w,(u, v) = 0 Iff h(v) — h(u) < w(u, v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.22

vy e Johnson’s algorithm
1. Flnd a function h : V — R such that w,(u, v) > 0 for
all (u, v) € E by using Bellman-Ford to solve the
difference constraints h(v) — h(u) < w(u, v), or
determine that a negative-weight cycle exists.
* Time = O(VE).

2. Run Dijkstra’s algorithm using w, from each vertex
u e Vto compute 6, (u, v) forall v e V.
e Time=0O(VE+VZ?IgV).

3. Foreach (u,v) € V xV, compute
o(u, V) = d,(u, v) —h(u) + h(v) .
e Time = O(V?).
Total time = O(VE + V2 lIg V).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.23

Introduction to Algorithms
6.046J/18.401J/SMAB5503

ALGORITHMS

_ecture 12

Prof. Erik Demaine

[T

=~ Computational geometry

AR

Algorithms for solving “geometric problems”
In 2D and higher.

Fundamental objects: e —

point line segment line
Basic structures:
®
° ®
o ®
®
® °
¢ ®
point set polygon

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.2

~ o+ Computational geometry

Algorithms for solving “geometric problems”
In 2D and higher.

Fundamental objects: e —

point line segment line
Basic structures:

Eo A

triangulation convex hull

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.3

ALGORIT

=&~ Orthogonal range searching
Input: n points in d dimensions
 E.g., representing a database of n records
each with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)
* Report on the points inside the box:

* Are there any points? L .
 How many are there? y y
» List the points. S

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.4

ALGORIT

= &~ Orthogonal range searching

)

Input: n points in d dimensions

Query: Axis-aligned box (in 2D, a rectangle)
* Report on the points inside the box

Goal: Preprocess points into a data structure
to support fast queries
 Primary goal: Static data structure °~ .
* In 1D, we will also obtain a ' '
dynamic data structure . °
supporting insert and delete L .

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L125

ALGORITHN

~ &~ 1D range searching

)

In 1D, the query Is an interval:
*—0© @ o —©

First solution using ideas we know:
* Interval trees
* Represent each point x by the interval [x, x].
 Obtain a dynamic structure that can list
k answers In a query in O(k Ig n) time.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.6

ALGORITHN

e

)

In 1D, the query Is an interval:

~ &~ 1D range searching

*—0—

_.

Second solution using ideas we know:

e Sort the points and store them in an array
 Solve query by binary search on endpoints.
 Obtain a static structure that can list

k answers In a query in O(k + Ig n) time.

Goal: Obtain a dynamic structure that can list
k answers In a query in O(k + Ig n) time.

© 2001 by Erik D. Demaine

Introduction to Algorithms

October 24, 2001 L12.7

ALGORITH

“ 5~ 1D range searching

)

In 1D, the query Is an interval:
*—0© @ o —©

New solution that extends to higher dimensions:
 Balanced binary search tree
* New organization principle:
Store points in the leaves of the tree.
e Internal nodes store copies of the leaves
to satisfy binary search property:
* Node x stores In key[x] the maximum
key of any leaf in the left subtree of x.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.8

ALGORIT

~ .+ Example of a 1D range tree

(4
(4 (J
([(4 [
(D (QE) (O &l
Sll8]a2iae] [2s)issfianiaz] [ss)n]

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.9

“ o~ Example of a 1D range tree

g m s
£) i) @) @
BN [e S E [T Y

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.10

“ o Example of a 1D range query

O UWT s s
i @ E

RANGE-QUERY([7, 41])

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.11

>

! General 1D range query

' root
(J
(4
(4

split node '

N

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.12

m Pseudocode, part 1;
=" Find the split node

1D-RANGE-QUERY(T, [X4, X5])
W < root[T]
while w is not a leaf and (x, < key[w] or key[w] < x,)
do if x, < key[w]
then w < left[w]
else w <« right[w]
> W IS now the split node
[traverse left and right from w and report relevant subtrees]

pd N
~ Tl

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.13

m Pseudocode, part 2: Traverse
~*1 - left and right from split node

1D-RANGE-QUERY(T, [X4, X5])
[find the split node]
> W IS now the split node
If wis a leaf
then output the leaf w if x, < key[w] <X,
else v « left[w] > Left traversal
while v is not a leaf
do if x, < key|[v]
then output the subtree rooted at right[v]
v < left]v]
else v « right[v]
output the leaf v if x, < key|[v] < x,
[symmetrically for right traversal]

pd N
~ Tl

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.14

;‘;f‘“« Analysis of 1D-RANGE-QUERY

AR

Query time: Answer to range query represented
by O(lg n) subtrees found in O(lg n) time.
Thus:
e Can test for points in interval in O(lg n) time.
« Can count points in interval in O(lg n) time
If we augment the tree with subtree sizes.
 Can report the first k points In
Interval in O(k + Ig n) time.

Space: O(n)
Preprocessing time: O(n Ig n)

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.15

ALGORITHM

“ o~ 2D range trees

)
Store a primary 1D range tree for all the points
based on x-coordinate.

Thus in O(lg n) time we can find O(lg n) subtrees

representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

@
[]
& N
~ 7

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.16

ALGORITH
o 2D range trees

“\‘

Idea In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

\

A AAA

© 2001 by Erik D. Demaine Introduction to Algorltﬁms OctGber 24,2001 L12.17

St AnaIyS|s of 2D range trees

Query time: In O((lg n)?) time, we can represent
the answer to range query by O((lg n)?) subtrees.
Total cost for reporting k points: O(k + (Ig n)?).

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point Is present In each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n Ig n).

Preprocessing time: O(n Ig n)

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.18

m
d-dimensional range trees =2

\

Each node of the secondary y-structure stores
a tertiary z-structure representing the points
In the subtree rooted at the node, etc.

Query time: O(k + (Ig n)9) to report k points.
Space: O(n (Ig n)d-1)

Preprocessing time: O(n (Ig n)d-1)

Best data structure to date:

Query time: O(k + (Ig n)4-1) to report k points.
Space: O(n (Ign/lglgn)d-1)

Preprocessing time: O(n (Ig n)d-1)

© 2001 by Erik D. Demaine Introduction to Algorithms

October 24,2001 L12.19

m— Primitive operations:
- Crossproduct

Given two vectors v, = (X, y,) and v, = (X5, V,),
IS thelr counterclockwise angle 6
e convex (< 180°)

e reflex (> 180°), or L. é

e borderline (O or 180°)? —— reflex

Crossproduct v, XV, =X, X, =Y, Y
= [vy| V5| SIN 6.
Thus, sign(v, x v,) =sign(sin 6) > 0 If 6 convex,
< 0 1f O reflex,
= 0 1f 6 borderline.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.20

m Primitive operations:
=1 Orientation test

Given three points p,, p,, p; are they
* In clockwise (cw) order,

* In counterclockwise (ccw) order, or
e collinear?

(pz - p11? X (p3 - pl) coplllinear
>0 1f ccw

<0i1fcw

i i P P3
= 0 1f collinear
Pq P1
P3 P,

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.21

m Primitive operations:
~37 Sidedness test

Given three points p,, p,, p; are they
* In clockwise (cw) order,
* In counterclockwise (ccw) order, or
e collinear?

Let L be the oriented line from p, to p..
Equivalently, is the point p,
e right of L

’ p p

o left of L, or : ‘@ 2 p ‘@ ;
. " ' '

on L P3 P,

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.22

P3

Pq
collinear

ALGORITHN

™~

“ o~ Line-segment intersection

)

Given n line segments, does any palr intersect?
Obvious algorithm: O(n?).

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.23

ALGORITH

~ <~ Sweep-line algorithm
e Sweep a vertical line from left to right
(conceptually replacing x-coordinate with time).
e Maintain dynamic set S of segments
that intersect the sweep line, ordered

(tentatively) by y-coordinate of intersection.
 Order changes when

* New segment Is encountered, | segment
» existing segment finishes, or J endpoints
e two0 segments cross

« Key event points are therefore segment endpoints.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.24

L12.25

October 24, 2001

Introduction to Algorithms

© 2001 by Erik D. Demaine

ALGORITH

“ o Sweep-line algorithm
Process event points in order by sorting segment
endpoints by x-coordinate and looping through:
* For a left endpoint of segment s:
* Add segment s to dynamic set S.
» Check for intersection between s
and Its neighbors in S,
* For a right endpoint of segment s:
* Remove segment s from dynamic set S.
* Check for intersection between

the neighbors of s In S.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.26

; ITHMS]
=&~ Analysis

Y N\ e

Use red-black tree to store dynamic set S.
Total running time: O(n Ig n).

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.27

“ .« Correctness
Theorem: If there Is an intersection,
the algorithm finds it.
Proof: Let X be the leftmost intersection point.
Assume for simplicity that
e only two segments s, S, pass through X, and
* N0 two points have the same x-coordinate.
At some point before we reach X,
s, and s, become consecutive In the order of S.
Either initially consecutive when s, or s, Inserted,

or became consecutive when another deleted.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24,2001 L12.28

	01-Analysis-of-Algorithms
	Introduction to Algorithms�6.046J/18.401J
	Course information
	Analysis of algorithms
	Why study algorithms and performance?
	The problem of sorting
	Insertion sort
	Insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Example of insertion sort
	Running time
	Kinds of analyses
	Machine-independent time
	Q-notation
	Asymptotic performance
	Insertion sort analysis
	Merge sort
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Merging two sorted arrays
	Analyzing merge sort
	Recurrence for merge sort
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Recursion tree
	Conclusions

	02-Asymptotic-Notation-and-Recurrences
	Introduction to Algorithms�6.046J/18.401J
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Asymptotic notation
	Set definition of O-notation
	Set definition of O-notation
	Set definition of O-notation
	Macro substitution
	Macro substitution
	Macro substitution
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (lower bounds)
	-notation (tight bounds)
	-notation (tight bounds)
	o-notation and -notation
	o-notation and -notation
	Solving recurrences
	Substitution method
	Substitution method
	Example of substitution
	Example (continued)
	Example (continued)
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound?
	A tighter upper bound!
	A tighter upper bound!
	A tighter upper bound!
	Recursion-tree method
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	The master method
	Three common cases
	Three common cases
	Three common cases (cont.)
	Examples
	Examples
	Examples
	Examples
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem
	Idea of master theorem

	03-Divide-and-Conquer
	Introduction to Algorithms�6.046J/18.401J
	The divide-and-conquer design paradigm
	Merge sort
	Merge sort
	Master theorem (reprise)
	Master theorem (reprise)
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Recurrence for binary search
	Recurrence for binary search
	Powering a number
	Powering a number
	Powering a number
	Fibonacci numbers
	Fibonacci numbers
	Computing Fibonacci numbers
	Computing Fibonacci numbers
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Recursive squaring
	Matrix multiplication
	Standard algorithm
	Standard algorithm
	Divide-and-conquer algorithm
	Divide-and-conquer algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Analysis of D&C algorithm
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s idea
	Strassen’s algorithm
	Strassen’s algorithm
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	Analysis of Strassen
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	VLSI layout
	H-tree embedding
	H-tree embedding
	H-tree embedding
	Conclusion

	04-Quicksort
	Introduction to Algorithms�6.046J/18.401J
	Quicksort
	Divide and conquer
	Partitioning subroutine
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Example of partitioning
	Pseudocode for quicksort
	Analysis of quicksort
	Worst-case of quicksort
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Worst-case recursion tree
	Best-case analysis
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	Analysis of “almost-best” case
	More intuition
	Randomized quicksort
	Randomized quicksort analysis
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Quicksort in practice

	05-Linear-Time-Sorting
	Introduction to Algorithms�6.046J/18.401J
	How fast can we sort?
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree example
	Decision-tree model
	Lower bound for decision-tree sorting
	Lower bound for comparison sorting
	Sorting in linear time
	Counting sort
	Counting-sort example
	Loop 1
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 2
	Loop 3
	Loop 3
	Loop 3
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Loop 4
	Analysis
	Running time
	Stable sorting
	Radix sort
	Operation of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Correctness of radix sort
	Analysis of radix sort
	Analysis (continued)
	Choosing r
	Conclusions
	Appendix: Punched-card technology
	Herman Hollerith�(1860-1929)
	Punched cards
	Hollerith’s tabulating system
	Operation of the sorter
	Origin of radix sort
	“Modern” IBM card
	Web resources on punched-card technology

	06-Order-Statistics
	Introduction to Algorithms�6.046J/18.401J
	Order statistics
	Randomized divide-and-conquer algorithm
	Example
	Intuition for analysis
	Analysis of expected time
	Analysis (continued)
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Calculating expectation
	Hairy recurrence
	Substitution method
	Substitution method
	Substitution method
	Substitution method
	Summary of randomized order-statistic selection
	Worst-case linear-time order statistics
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Choosing the pivot
	Analysis
	Analysis
	Analysis
	Minor simplification
	Developing the recurrence
	Solving the recurrence
	Conclusions

	07-Hashing-I
	Introduction to Algorithms�6.046J/18.401J
	Symbol-table problem
	Direct-access table
	Hash functions
	Resolving collisions by chaining
	Average-case analysis of chaining
	Search cost
	Search cost
	Search cost
	Search cost
	Choosing a hash function
	Division method
	Division method (continued)
	Multiplication method
	Multiplication method example
	Resolving collisions by open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Example of open addressing
	Probing strategies
	Probing strategies
	Analysis of open addressing
	Proof of the theorem
	Proof (continued)
	Implications of the theorem

	08-Hashing-II
	Introduction to Algorithms�6.046J/18.401J
	A weakness of hashing
	Universal hashing
	Universality is good
	Proof of theorem
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Constructing a set of universal hash functions
	Universality of dot-product hash functions
	Proof (continued)
	Fact from number theory
	Back to the proof
	Proof (completed)
	Perfect hashing
	Collisions at level 2
	No collisions at level 2
	Analysis of storage

	09-Randomly-Built-BST
	Introduction to Algorithms�6.046J/18.401J
	Binary-search-tree sort
	Analysis of BST sort
	Node depth
	Expected tree height
	Height of a randomly built binary search tree
	Convex functions
	Convexity lemma
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Proof (continued)
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Convexity lemma: infinite case
	Jensen’s inequality
	Jensen’s inequality
	Jensen’s inequality
	Analysis of BST height
	Analysis (continued)
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Exponential height recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	Solving the recurrence
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Post mortem
	Post mortem (continued)
	Thought exercises

	10-Balanced-Search-Trees
	Introduction to Algorithms�6.046J/18.401J
	Balanced search trees
	Red-black trees
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Example of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Height of a red-black tree
	Proof (continued)
	Query operations
	Modifying operations
	Rotations
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Insertion into a red-black tree
	Pseudocode
	Graphical notation
	Case 1
	Case 2
	Case 3
	Analysis

	11-Augmenting Data Structures
	Introduction to Algorithms�6.046J/18.401J
	Dynamic order statistics
	Example of an OS-tree
	Selection
	Example
	Data structure maintenance
	Example of insertion
	Handling rebalancing
	Data-structure augmentation
	Interval trees
	Following the methodology
	Example interval tree
	Modifying operations
	New operations
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 1: INTERVAL-SEARCH([14,16])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Example 2: INTERVAL-SEARCH([12,14])
	Analysis
	Correctness
	Correctness proof
	Proof (continued)

	12-Skip-Lists
	Introduction to Algorithms�6.046J/18.401J
	Skip lists
	One linked list
	Two linked lists
	Two linked lists as a subway
	Searching in two linked lists
	Searching in two linked lists
	Design of two linked lists
	Analysis of two linked lists
	Analysis of two linked lists
	More linked lists
	lg n linked lists
	Searching in lg n linked lists
	Skip lists
	INSERT(x)
	INSERT(x)
	Example of skip list
	Skip lists
	Skip lists
	With-high-probability theorem
	With-high-probability theorem
	With-high-probability theorem
	Boole’s inequality / union bound
	Analysis Warmup
	Analysis Warmup
	Proof of theorem
	Proof of theorem
	Coin flipping analysis
	Coin flipping analysis
	Coin flipping analysis (cont’d)
	Coin flipping analysis (cont’d)

	13-Amortized-Analysis
	Introduction to Algorithms�6.046J/18.401J
	How large should a hash table be?
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Worst-case analysis
	Tighter analysis
	Tighter analysis
	Tighter analysis (continued)
	Amortized analysis
	Types of amortized analyses
	Accounting method
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis (continued)
	Potential method
	Understanding potentials
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	Potential analysis of table doubling
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Conclusions

	14-Competitive-Analysis
	Introduction to Algorithms�6.046J/18.401J
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	Self-organizing lists
	On-line and off-line problems
	Worst-case analysis of self-organizing lists
	Average-case analysis of self-organizing lists
	The move-to-front heuristic
	Competitive analysis
	MTF is O(1)-competitive
	MTF is O(1)-competitive
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	Potential function
	What happens on an access?
	What happens on an access?
	What happens on an access?
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	Amortized cost
	The grand finale
	The grand finale
	The grand finale
	The grand finale
	Addendum
	Addendum

	15-Dynamic-Programming
	Introduction to Algorithms�6.046J/18.401J
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1
	Recursive algorithm for LCS
	Recursive algorithm for LCS
	Recursion tree
	Recursion tree
	Recursion tree
	Dynamic-programming hallmark #2
	Dynamic-programming hallmark #2
	Memoization algorithm
	Memoization algorithm
	Memoization algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm
	Dynamic-programming algorithm

	16-Greedy-Algorithms
	Introduction to Algorithms�6.046J/18.401J
	Graphs (review)
	Adjacency-matrix representation
	Adjacency-matrix representation
	Adjacency-list representation
	Adjacency-list representation
	Adjacency-list representation
	Minimum spanning trees
	Minimum spanning trees
	Example of MST
	Example of MST
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Proof of optimal substructure
	Hallmark for “greedy” algorithms
	Hallmark for “greedy” algorithms
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Proof of theorem
	Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Example of Prim’s algorithm
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	Analysis of Prim (continued)
	MST algorithms
	MST algorithms

	17-Shortest-Paths-I
	Introduction to Algorithms�6.046J/18.401J
	Paths in graphs
	Paths in graphs
	Shortest paths
	Well-definedness of shortest paths
	Well-definedness of shortest paths
	Optimal substructure
	Optimal substructure
	Optimal substructure
	Triangle inequality
	Triangle inequality
	Single-source shortest paths�(nonnegative edge weights)
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Example of Dijkstra’s algorithm
	Correctness — Part I
	Correctness — Part I
	Correctness — Part II
	Correctness — Part II
	Correctness — Part III
	Correctness — Part III
	Correctness — Part III (continued)
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Analysis of Dijkstra (continued)
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Unweighted graphs
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Example of breadth-first search
	Correctness of BFS

	18-Shortest-Paths-II
	Introduction to Algorithms�6.046J/18.401J
	Negative-weight cycles
	Negative-weight cycles
	Bellman-Ford algorithm
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Example of Bellman-Ford
	Correctness
	Correctness
	Correctness (continued)
	Detection of negative-weight cycles
	Linear programming
	Linear-programming algorithms
	Linear-programming algorithms
	Solving a system of difference constraints
	Solving a system of difference constraints
	Solving a system of difference constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Unsatisfiable constraints
	Satisfying the constraints
	Satisfying the constraints
	Satisfying the constraints
	Proof (continued)
	Bellman-Ford and linear programming
	Application to VLSI layout compaction
	VLSI layout compaction

	19-Shortest-Paths-III
	Introduction to Algorithms�6.046J/18.401J
	Shortest paths
	Shortest paths
	All-pairs shortest paths
	All-pairs shortest paths
	Dynamic programming
	Proof of claim
	Proof of claim
	Proof of claim
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication (continued)
	Improved matrix multiplication algorithm
	Floyd-Warshall algorithm
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall
	Transitive closure of a directed graph
	Graph reweighting
	Graph reweighting
	Shortest paths in reweighted graphs
	Shortest paths in reweighted graphs
	Johnson’s algorithm

	XX-Computational-Geometry
	Introduction to Algorithms�6.046J/18.401J/SMA5503�
	Computational geometry
	Computational geometry
	Orthogonal range searching
	Orthogonal range searching
	1D range searching
	1D range searching
	1D range searching
	Example of a 1D range tree
	Example of a 1D range tree
	Example of a 1D range query
	General 1D range query
	Pseudocode, part 1:�Find the split node
	Pseudocode, part 2: Traverse left and right from split node
	Analysis of 1D-RANGE-QUERY
	2D range trees
	2D range trees
	Analysis of 2D range trees
	d-dimensional range trees (d  2)
	Primitive operations: Crossproduct
	Primitive operations:�Orientation test
	Primitive operations:�Sidedness test
	Line-segment intersection
	Sweep-line algorithm
	Slide Number 25
	Sweep-line algorithm
	Analysis
	Correctness

