
September 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1.1 

Introduction to Algorithms 
6.046J/18.401J 

Prof. Charles E. Leiserson 

LECTURE 1  
Analysis of Algorithms 
• Insertion sort 
• Asymptotic analysis 
• Merge sort 
• Recurrences 
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Analysis of algorithms 

The theoretical study of computer-program 
performance and resource usage. 

What’s more important than performance? 
• modularity 
• correctness 
• maintainability 
• functionality 
• robustness 

• user-friendliness 
• programmer time 
• simplicity 
• extensibility 
• reliability 
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Why study algorithms and 
performance? 

• Algorithms help us to understand scalability. 
• Performance often draws the line between what 

is feasible and what is impossible. 
• Algorithmic mathematics provides a language 

for talking about program behavior. 
• Performance is the currency of computing. 
• The lessons of program performance generalize 

to other computing resources.  
• Speed is fun! 
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The problem of sorting 

Input: sequence  〈a1, a2, …, an〉  of numbers. 

Example: 
Input:  8  2  4  9  3  6 

Output:  2  3  4  6  8  9 

Output: permutation  〈a'1, a'2, …, a'n〉  such 
that  a'1 ≤ a'2 ≤ … ≤ a'n . 
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Insertion sort 
INSERTION-SORT (A, n) ⊳ A[1 . . n]  
 for j ← 2 to n 
  do key ← A[ j] 
   i ← j – 1 
   while i > 0 and A[i] > key 
    do A[i+1] ← A[i] 
     i ← i – 1 
   A[i+1] = key 

“pseudocode” 
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Insertion sort 
INSERTION-SORT (A, n) ⊳ A[1 . . n]  
 for j ← 2 to n 
  do key ← A[ j] 
   i ← j – 1 
   while i > 0 and A[i] > key 
    do A[i+1] ← A[i] 
     i ← i – 1 
   A[i+1] = key 

“pseudocode” 

sorted 

i j 

key 
A: 

1 n 
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Example of insertion sort 
8 2 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 
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Example of insertion sort 
8 2 4 9 3 6 

2 8 4 9 3 6 

2 4 8 9 3 6 

2 4 8 9 3 6 

2 3 4 8 9 6 

2 3 4 6 8 9 done 
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Running time 

• The running time depends on the input: an 
already sorted sequence is easier to sort. 

• Parameterize the running time by the size of 
the input, since short sequences are easier to 
sort than long ones. 

• Generally, we seek upper bounds on the 
running time, because everybody likes a 
guarantee. 
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Kinds of analyses 
Worst-case: (usually) 

• T(n) = maximum time of algorithm 
on any input of size n. 

Average-case: (sometimes) 
• T(n) = expected time of algorithm 

over all inputs of size n. 
• Need assumption of statistical 

distribution of inputs. 
Best-case: (bogus) 

• Cheat with a slow algorithm that 
works fast on some input. 
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Machine-independent time 

What is insertion sort’s worst-case time? 
• It depends on the speed of our computer: 

• relative speed (on the same machine), 
• absolute speed (on different machines). 

BIG IDEA: 
• Ignore machine-dependent constants. 
• Look at growth of T(n) as n → ∞ . 

“Asymptotic Analysis” 
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Θ-notation 

• Drop low-order terms; ignore leading constants. 
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3) 

Math: 
Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and 

n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n) 
for all n ≥ n0 } 

Engineering: 
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Asymptotic performance 

n 

T(n) 

n0 

• We shouldn’t ignore 
asymptotically slower 
algorithms, however. 

• Real-world design 
situations often call for a 
careful balancing of 
engineering objectives. 

• Asymptotic analysis is a 
useful tool to help to 
structure our thinking. 

When n gets large enough, a Θ(n2) algorithm 
always beats a Θ(n3) algorithm. 
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Insertion sort analysis 
Worst case: Input reverse sorted. 

( )∑
=

Θ=Θ=
n

j
njnT

2

2)()(

Average case: All permutations equally likely. 

( )∑
=

Θ=Θ=
n

j
njnT

2

2)2/()(

Is insertion sort a fast sorting algorithm? 
• Moderately so, for small n. 
• Not at all, for large n. 

[arithmetic series] 
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Merge sort 

MERGE-SORT  A[1 . . n] 
1. If n = 1, done. 
2. Recursively sort A[ 1 . . n/2 ] 

and A[ n/2+1 . . n ] . 
3. “Merge” the 2 sorted lists. 

Key subroutine: MERGE 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Merging two sorted arrays 
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Time = Θ(n) to merge a total 
of n elements (linear time). 
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Analyzing merge sort 

MERGE-SORT A[1 . . n] 
1. If n = 1, done. 
2. Recursively sort A[ 1 . . n/2 ] 

and A[ n/2+1 . . n ] . 
3. “Merge” the 2 sorted lists 

T(n) 
Θ(1) 
2T(n/2) 

Θ(n)   
Abuse 

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically. 
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Recurrence for merge sort 

T(n) = 
Θ(1) if n = 1; 
2T(n/2) + Θ(n) if n > 1. 

• We shall usually omit stating the base 
case when T(n) = Θ(1) for sufficiently 
small n, but only when it has no effect on 
the asymptotic solution to the recurrence. 

• CLRS and Lecture 2 provide several ways 
to find a good upper bound on T(n). 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n) 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

T(n/2) T(n/2) 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

T(n/4) T(n/4) T(n/4) T(n/4) 

cn/2 cn/2 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 

cn 

cn 
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 

cn 

cn 

cn 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 

cn 

cn 

cn 

#leaves = n Θ(n) 

…
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Recursion tree 
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. 

cn 

cn/4 cn/4 cn/4 cn/4 

cn/2 cn/2 

Θ(1) 

h = lg n 

cn 

cn 

cn 

#leaves = n Θ(n) 
Total = Θ(n lg n) 

…
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Conclusions 

•  Θ(n lg n) grows more slowly than Θ(n2). 
• Therefore, merge sort asymptotically 

beats insertion sort in the worst case. 
• In practice, merge sort beats insertion 

sort for n > 30 or so. 
• Go test it out for yourself! 
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Introduction to Algorithms 
6.046J/18.401J 

Prof. Erik Demaine 

LECTURE 2  
Asymptotic Notation 
• O-, Ω-, and Θ-notation 
Recurrences 
• Substitution method 
• Iterating the recurrence 
• Recursion tree 
• Master method 
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Asymptotic notation 

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 

O-notation (upper bounds): 
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Asymptotic notation 

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 

O-notation (upper bounds): 

EXAMPLE:  2n2 = O(n3) (c = 1, n0 = 2) 
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Asymptotic notation 

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 

O-notation (upper bounds): 

EXAMPLE:  2n2 = O(n3) 

functions, 
not values 

(c = 1, n0 = 2) 
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Asymptotic notation 

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 

O-notation (upper bounds): 

EXAMPLE:  2n2 = O(n3) 

functions, 
not values 

funny, “one-way” 
equality 

(c = 1, n0 = 2) 
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Set definition of O-notation 

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) 
for all n ≥ n0 } 
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Set definition of O-notation 

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) 
for all n ≥ n0 } 

EXAMPLE:  2n2 ∈ O(n3) 
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Set definition of O-notation 

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) 
for all n ≥ n0 } 

EXAMPLE:  2n2 ∈ O(n3) 
(Logicians: λn.2n2 ∈ O(λn.n3), but it’s 
convenient to be sloppy, as long as we 
understand what’s really going on.) 
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Macro substitution 

Convention:  A set in a formula represents 
an anonymous function in the set. 
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Macro substitution 

Convention:  A set in a formula represents 
an anonymous function in the set. 

f(n) = n3 + O(n2)  
means  
f(n) = n3 + h(n)   
for some h(n) ∈ O(n2) . 

EXAMPLE: 
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Macro substitution 

Convention:  A set in a formula represents 
an anonymous function in the set. 

n2 + O(n) = O(n2) 
means 
for any f(n) ∈ O(n): 
 n2 + f(n) = h(n)   
 for some h(n) ∈ O(n2) . 

EXAMPLE: 
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Ω-notation (lower bounds) 

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2). 
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Ω-notation (lower bounds) 

Ω(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ cg(n) ≤ f(n) 
for all n ≥ n0 } 

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2). 
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Ω-notation (lower bounds) 

Ω(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ cg(n) ≤ f(n) 
for all n ≥ n0 } 

EXAMPLE: )(lg nn Ω= (c = 1, n0 = 16) 

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2). 
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Θ-notation (tight bounds) 

Θ(g(n)) = O(g(n))  ∩  Ω(g(n)) 
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Θ-notation (tight bounds) 

Θ(g(n)) = O(g(n))  ∩  Ω(g(n)) 

EXAMPLE: )(2 22
2
1 nnn Θ=−
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ο-notation and ω-notation 

ο(g(n)) = { f(n) : for any constant c > 0,  
there is a constant n0 > 0 
such that 0 ≤ f(n) < cg(n) 
for all n ≥ n0 } 

EXAMPLE: (n0 = 2/c) 

O-notation and Ω-notation are like ≤ and ≥. 
o-notation and ω-notation are like < and >. 

2n2 = o(n3) 
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ο-notation and ω-notation 

ω(g(n)) = { f(n) : for any constant c > 0,  
there is a constant n0 > 0 
such that 0 ≤ cg(n) < f(n) 
for all n ≥ n0 } 

EXAMPLE: )(lgnn ω= (n0 = 1+1/c) 

O-notation and Ω-notation are like ≤ and ≥. 
o-notation and ω-notation are like < and >. 
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Solving recurrences 

• The analysis of merge sort from Lecture 1 
required us to solve a recurrence. 

• Recurrences are like solving integrals, 
differential equations, etc. 
Learn a few tricks. 

• Lecture 3: Applications of recurrences to 
divide-and-conquer algorithms. 
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Substitution method 

1. Guess the form of the solution. 
2. Verify by induction. 
3. Solve for constants. 

The most general method: 
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Substitution method 

1. Guess the form of the solution. 
2. Verify by induction. 
3. Solve for constants. 

The most general method: 

EXAMPLE:  T(n) = 4T(n/2) + n 
• [Assume that T(1) = Θ(1).] 
• Guess O(n3) .  (Prove O and Ω separately.) 
• Assume that T(k) ≤ ck3 for k < n . 
• Prove T(n) ≤ cn3 by induction. 
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Example of substitution 

3

33

3

3

))2/((
)2/(

)2/(4
)2/(4)(

cn
nnccn

nnc
nnc

nnTnT

≤
−−=

+=
+≤

+=

desired – residual 

whenever  (c/2)n3 – n ≥ 0, for 
example, if c ≥ 2 and n ≥ 1. 

desired 

residual 
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Example (continued) 
• We must also handle the initial conditions, 

that is, ground the induction with base 
cases. 

• Base: T(n) = Θ(1) for all n < n0, where n0 
is a suitable constant. 

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough. 
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Example (continued) 
• We must also handle the initial conditions, 

that is, ground the induction with base 
cases. 

• Base: T(n) = Θ(1) for all n < n0, where n0 
is a suitable constant. 

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough. 

This bound is not tight! 
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A tighter upper bound? 

We shall prove that T(n) = O(n2). 
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A tighter upper bound? 

We shall prove that T(n) = O(n2). 

Assume that T(k) ≤ ck2 for k < n: 

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=
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A tighter upper bound? 

We shall prove that T(n) = O(n2). 

Assume that T(k) ≤ ck2 for k < n: 

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong!  We must prove the I.H. 
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A tighter upper bound? 

We shall prove that T(n) = O(n2). 

Assume that T(k) ≤ ck2 for k < n: 

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong!  We must prove the I.H. 

2

2 )(
cn

ncn
≤

−−=
for no choice of c > 0.  Lose! 

[ desired – residual ] 
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A tighter upper bound! 
IDEA:  Strengthen the inductive hypothesis. 
• Subtract a low-order term. 
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n. 
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A tighter upper bound! 
IDEA:  Strengthen the inductive hypothesis. 
• Subtract a low-order term. 
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n. 

T(n) = 4T(n/2) + n 
 = 4(c1(n/2)2 – c2(n/2)) + n 
 = c1n2 – 2c2n + n 
 = c1n2 – c2n – (c2n – n) 
 ≤ c1n2 – c2n  if c2 ≥ 1. 
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A tighter upper bound! 
IDEA:  Strengthen the inductive hypothesis. 
• Subtract a low-order term. 
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n. 

Pick c1 big enough to handle the initial conditions. 

T(n) = 4T(n/2) + n 
 = 4(c1(n/2)2 – c2(n/2)) + n 
 = c1n2 – 2c2n + n 
 = c1n2 – c2n – (c2n – n) 
 ≤ c1n2 – c2n  if c2 ≥ 1. 
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Recursion-tree method 

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm. 

• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…). 

• The recursion-tree method promotes intuition, 
however.  

• The recursion tree method is good for 
generating guesses for the substitution method. 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 

T(n) 
Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 

T(n/4) T(n/2) 

n2 

Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

n2 

(n/4)2 (n/2)2 

T(n/16) T(n/8) T(n/8) T(n/4) 
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Example of recursion tree 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

Solve T(n) = T(n/4) + T(n/2) + n2: 
n2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

2nn2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

2
16
5 n

2nn2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 

Θ(1) 

2
16
5 n

2n

2
256
25 n

n2 

(n/2)2 

…
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 

Θ(1) 

2
16
5 n

2n

2
256
25 n

( ) ( )( ) 1 3
16
52

16
5

16
52 ++++n

…
 

Total  = 
= Θ(n2) 

n2 

(n/2)2 

geometric series 
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The master method 

The master method applies to recurrences of 
the form 

T(n) = a T(n/b) + f (n) ,  
where a ≥ 1, b > 1, and  f  is asymptotically 
positive. 
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Three common cases 
Compare f (n) with nlogba: 
1.  f (n) = O(nlogba – ε) for some constant ε > 0. 

• f (n) grows polynomially slower than nlogba 
(by an nε factor). 

 Solution: T(n) = Θ(nlogba) . 
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Three common cases 
Compare f (n) with nlogba: 
1.  f (n) = O(nlogba – ε) for some constant ε > 0. 

• f (n) grows polynomially slower than nlogba 
(by an nε factor). 

 Solution: T(n) = Θ(nlogba) . 

2.  f (n) = Θ(nlogba lgkn) for some constant k ≥ 0. 
• f (n) and nlogba grow at similar rates. 
Solution: T(n) = Θ(nlogba lgk+1n) . 
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Three common cases (cont.) 
Compare f (n) with nlogba: 
3.  f (n) = Ω(nlogba + ε) for some constant ε > 0. 

• f (n) grows polynomially faster than nlogba (by 
an nε factor), 

 and  f (n) satisfies the regularity condition that 
a f (n/b) ≤ c f (n) for some constant c < 1. 

 Solution: T(n) = Θ( f (n) ) . 
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Examples 

 EX. T(n) = 4T(n/2) + n 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n. 
 CASE 1: f (n) = O(n2 – ε) for ε = 1. 
 ∴ T(n) = Θ(n2). 
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Examples 

 EX. T(n) = 4T(n/2) + n 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n. 
 CASE 1: f (n) = O(n2 – ε) for ε = 1. 
 ∴ T(n) = Θ(n2). 

EX. T(n) = 4T(n/2) + n2 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2. 
  CASE 2: f (n) = Θ(n2lg0n), that is, k = 0. 
 ∴ T(n) = Θ(n2lg n). 
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Examples 

 EX. T(n) = 4T(n/2) + n3 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3. 
  CASE 3: f (n) = Ω(n2 + ε) for ε = 1 
 and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2. 
 ∴ T(n) = Θ(n3). 
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Examples 

 EX. T(n) = 4T(n/2) + n3 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3. 
  CASE 3: f (n) = Ω(n2 + ε) for ε = 1 
 and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2. 
 ∴ T(n) = Θ(n3). 

EX. T(n) = 4T(n/2) + n2/lg n 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lg n. 
 Master method does not apply.  In particular, 

for every constant ε > 0, we have nε = ω(lg n). 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
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nlogbaΤ (1) 

f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

#leaves = ah 
 = alogbn 
 = nlogba 

…
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

CASE 1: The weight increases 
geometrically from the root to the 
leaves. The leaves hold a constant 
fraction of the total weight. 

Θ(nlogba) 

…
 

nlogbaΤ (1) 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

CASE 2: (k = 0) The weight 
is approximately the same on 
each of the logbn levels. 

Θ(nlogbalg n) 

…
 

nlogbaΤ (1) 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
 

CASE 3: The weight decreases 
geometrically from the root to the 
leaves. The root holds a constant 
fraction of the total weight. 

nlogbaΤ (1) 

Θ( f (n)) 
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Introduction to Algorithms 
6.046J/18.401J 

Prof. Erik D. Demaine 

LECTURE 3  
Divide and Conquer 
• Binary search 
• Powering a number 
• Fibonacci numbers 
• Matrix multiplication 
• Strassen’s algorithm 
• VLSI tree layout 
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The divide-and-conquer 
design paradigm 

1. Divide the problem (instance) 
into subproblems. 

2. Conquer the subproblems by 
solving them recursively. 

3. Combine subproblem solutions. 
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Merge sort 

1. Divide: Trivial. 
2. Conquer: Recursively sort 2 subarrays. 
3. Combine: Linear-time merge. 
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Merge sort 

1. Divide: Trivial. 
2. Conquer: Recursively sort 2 subarrays. 
3. Combine: Linear-time merge. 

T(n) = 2 T(n/2) + Θ(n) 

# subproblems 
subproblem size 

work dividing 
and combining 
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Master theorem (reprise) 
T(n) = a T(n/b) + f (n) 

CASE 1: f (n) = O(nlogba – ε), constant ε > 0 
⇒ T(n) = Θ(nlogba) . 

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0  
⇒ T(n) = Θ(nlogba lgk+1n) . 

CASE 3: f (n) = Ω(nlogba + ε ), constant ε > 0, 
and regularity condition 

⇒ T(n) = Θ( f (n)) . 
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Master theorem (reprise) 
T(n) = a T(n/b) + f (n) 

CASE 1: f (n) = O(nlogba – ε), constant ε > 0 
⇒ T(n) = Θ(nlogba) . 

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0  
⇒ T(n) = Θ(nlogba lgk+1n) . 

CASE 3: f (n) = Ω(nlogba + ε ), constant ε > 0, 
and regularity condition 

⇒ T(n) = Θ( f (n)) . 
Merge sort: a = 2, b = 2  ⇒  nlogba = nlog22 = n 

 ⇒  CASE 2 (k = 0)  ⇒  T(n) = Θ(n lg n) .  
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Binary search 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Example: Find 9 

3 5 7 8 9 12 15 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Example: Find 9 

3 5 7 8 9 12 15 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Example: Find 9 

3 5 7 8 9 12 15 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Example: Find 9 

3 5 7 8 9 12 15 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Example: Find 9 

3 5 7 8 9 12 15 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 
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Binary search 

Find an element in a sorted array: 
1. Divide: Check middle element. 
2. Conquer: Recursively search 1 subarray. 
3. Combine: Trivial. 

Example: Find 9 

3 5 7 8 9 12 15 
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Recurrence for binary search 

T(n) = 1 T(n/2) + Θ(1) 

# subproblems 
subproblem size 

work dividing 
and combining 
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Recurrence for binary search 

T(n) = 1 T(n/2) + Θ(1) 

# subproblems 
subproblem size 

work dividing 
and combining 

nlogba = nlog21 = n0 = 1 ⇒  CASE 2 (k = 0) 
⇒  T(n) = Θ(lg n) .  
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Powering a number 

Problem: Compute a n, where n ∈ N. 

Naive algorithm: Θ(n). 
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Powering a number 

Problem: Compute a n, where n ∈ N. 

a 
n = 

a 
n/2 ⋅ a 

n/2  if n is even; 
a 

(n–1)/2 ⋅ a 
(n–1)/2 ⋅ a if n is odd. 

Divide-and-conquer algorithm: 

Naive algorithm: Θ(n). 
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Powering a number 

Problem: Compute a n, where n ∈ N. 

a 
n = 

a 
n/2 ⋅ a 

n/2  if n is even; 
a 

(n–1)/2 ⋅ a 
(n–1)/2 ⋅ a if n is odd. 

Divide-and-conquer algorithm: 

T(n) = T(n/2) + Θ(1)  ⇒  T(n) = Θ(lg n) .  

Naive algorithm: Θ(n). 
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Fibonacci numbers 
Recursive definition: 

Fn = 
0  if n = 0; 

Fn–1 + Fn–2
 if n ≥ 2. 

1  if n = 1; 

0 1 1 2 3 5 8 13 21 34  
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Fibonacci numbers 
Recursive definition: 

Fn = 
0  if n = 0; 

Fn–1 + Fn–2
 if n ≥ 2. 

1  if n = 1; 

0 1 1 2 3 5 8 13 21 34  

Naive recursive algorithm: Ω(φ n) 
(exponential time), where φ =  
is the golden ratio. 

2/)51( +
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Computing Fibonacci 
numbers 

Bottom-up:  
• Compute F0, F1, F2, …, Fn in order, forming 

each number by summing the two previous. 
• Running time: Θ(n).  
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Computing Fibonacci 
numbers 

Naive recursive squaring: 
Fn = φ n/ rounded to the nearest integer. 5

• Recursive squaring: Θ(lg n) time.  
• This method is unreliable, since floating-point 

arithmetic is prone to round-off errors. 

Bottom-up:  
• Compute F0, F1, F2, …, Fn in order, forming 

each number by summing the two previous. 
• Running time: Θ(n).  
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Recursive squaring 
n

FF
FF

nn

nn





=






−

+

01
11

1

1Theorem: . 
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Recursive squaring 
n

FF
FF

nn

nn





=






−

+

01
11

1

1Theorem: . 

Algorithm: Recursive squaring. 
Time = Θ(lg n) . 
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Recursive squaring 
n

FF
FF

nn

nn





=






−

+

01
11

1

1Theorem: . 

Proof of theorem.  (Induction on n.) 

Base (n = 1): . 
1 

01
11

01

12





=





FF
FF

Algorithm: Recursive squaring. 
Time = Θ(lg n) . 



September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.26 

Recursive squaring 

. 

. 

Inductive step (n ≥ 2): 

n

n
FF
FF

FF
FF

nn

nn

nn

nn






=






⋅
−






=






⋅





=






−−

−

−

+

01
11

01
111

01
11

01
11

21

1

1

1
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Matrix multiplication 












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





⋅



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
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
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
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∑
=
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n

k
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1

Input: A = [aij], B = [bij]. 
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n. 
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Standard algorithm 

for i ← 1 to n 
 do for j ← 1 to n 
     do cij ← 0 
    for k ← 1 to n 
      do cij ← cij + aik⋅ bkj 
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Standard algorithm 

for i ← 1 to n 
 do for j ← 1 to n 
     do cij ← 0 
    for k ← 1 to n 
      do cij ← cij + aik⋅ bkj 

Running time = Θ(n3) 



September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30 

Divide-and-conquer algorithm 

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices: 
IDEA: 






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B 
r = ae + bg 
s = af + bh 
t = ce + dg 
u = cf + dh 

8 mults of (n/2)×(n/2) submatrices  
4 adds of (n/2)×(n/2) submatrices  
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Divide-and-conquer algorithm 

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices: 
IDEA: 






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B 
r = ae + bg 
s = af + bh 
t = ce + dh 
u = cf + dg 

8 mults of (n/2)×(n/2) submatrices  
4 adds of (n/2)×(n/2) submatrices  ^ 

recursive 
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Analysis of D&C algorithm 

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Analysis of D&C algorithm 

nlogba = nlog28 = n3  ⇒  CASE 1  ⇒  T(n) = Θ(n3).  

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Analysis of D&C algorithm 

nlogba = nlog28 = n3  ⇒  CASE 1  ⇒  T(n) = Θ(n3).  

No better than the ordinary algorithm. 

# submatrices 
submatrix size 

work adding 
submatrices 

T(n) = 8 T(n/2) + Θ(n2) 
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
s = P1 + P2 
t = P3 + P4 
u = P5 + P1 – P3 – P7 
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7 mults, 18 adds/subs. 
Note: No reliance on 
commutativity of mult! 

Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
s = P1 + P2 
t = P3 + P4 
u = P5 + P1 – P3 – P7 
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Strassen’s idea 
• Multiply 2×2 matrices with only 7 recursive mults.  

P1 = a ⋅ ( f – h) 
P2 = (a + b) ⋅ h 
P3 = (c + d) ⋅ e 
P4 = d ⋅ (g – e) 
P5 = (a + d) ⋅ (e + h) 
P6 = (b – d) ⋅ (g + h) 
P7 = (a – c) ⋅ (e + f  ) 

r = P5 + P4 – P2 + P6 
 = (a + d) (e + h)  
  + d (g – e) – (a + b) h 
  + (b – d) (g + h) 
 = ae + ah + de + dh  
  + dg –de – ah – bh 
  + bg + bh – dg – dh 
 = ae + bg 
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Strassen’s algorithm 
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – . 

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively. 

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices. 
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Strassen’s algorithm 
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – . 

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively. 

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices. 

T(n) = 7 T(n/2) + Θ(n2) 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 32 or so. 
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Analysis of Strassen 
T(n) = 7 T(n/2) + Θ(n2) 

nlogba = nlog27 ≈ n2.81  ⇒  CASE 1  ⇒  T(n) = Θ(nlg 7). 

Best to date (of theoretical interest only): Θ(n2.376). 

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 32 or so. 
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VLSI layout 
Problem: Embed a complete binary tree 
with n leaves in a grid using minimal area. 
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VLSI layout 
Problem: Embed a complete binary tree 
with n leaves in a grid using minimal area. 

H(n) 

W(n) 
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VLSI layout 
Problem: Embed a complete binary tree 
with n leaves in a grid using minimal area. 

H(n) 

W(n) 

H(n) = H(n/2) + Θ(1) 
 = Θ(lg n) 
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VLSI layout 
Problem: Embed a complete binary tree 
with n leaves in a grid using minimal area. 

H(n) 

W(n) 

H(n) = H(n/2) + Θ(1) 
 = Θ(lg n) 

W(n) = 2 W(n/2) + Θ(1) 
 = Θ(n) 
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VLSI layout 
Problem: Embed a complete binary tree 
with n leaves in a grid using minimal area. 

H(n) 

W(n) 

H(n) = H(n/2) + Θ(1) 
 = Θ(lg n) 

W(n) = 2 W(n/2) + Θ(1) 
 = Θ(n) 

Area = Θ(n lg n) 
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H-tree embedding 
L(n) 

L(n) 
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H-tree embedding 
L(n) 

L(n) 

L(n/4) L(n/4) Θ(1) 
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H-tree embedding 
L(n) 

L(n) 

L(n/4) L(n/4) Θ(1) 

L(n) = 2 L(n/4) + Θ(1) 
 = Θ( ) n

Area = Θ(n) 
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Conclusion 

• Divide and conquer is just one of several 
powerful techniques for algorithm design.  

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method (so practice this math). 

• The divide-and-conquer strategy often leads 
to efficient algorithms. 
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Prof. Charles E. Leiserson 

LECTURE 4  
Quicksort 
• Divide and conquer 
• Partitioning 
• Worst-case analysis 
• Intuition  
• Randomized quicksort 
• Analysis 

Introduction to Algorithms 
6.046J/18.401J 
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Quicksort 

• Proposed by C.A.R. Hoare in 1962. 
• Divide-and-conquer algorithm. 
• Sorts “in place” (like insertion sort, but not 

like merge sort). 
• Very practical (with tuning). 
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Divide and conquer 
Quicksort an n-element array: 
1. Divide: Partition the array into two subarrays 

around a pivot x such that elements in lower 
subarray ≤ x ≤ elements in upper subarray. 
 

2. Conquer: Recursively sort the two subarrays. 
3. Combine: Trivial. 

≤ x x ≥ x 

Key: Linear-time partitioning subroutine. 



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.4 

x 

Running time 
= O(n) for n 
elements. 

Partitioning subroutine 
PARTITION(A, p, q) ⊳ A[ p . . q]  

x ← A[ p] ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q 

do if A[ j] ≤ x 
then i ← i + 1 
 exchange A[i] ↔ A[ j] 

exchange A[ p] ↔ A[i] 
return i 

≤ x ≥ x ? 
p i q j 

Invariant: 
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Example of partitioning 

i j 
6 10 13 5 8 3 2 11 
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Example of partitioning 

i j 
6 10 13 5 8 3 2 11 
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Example of partitioning 

i j 
6 10 13 5 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

i j 
6 5 13 10 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

i j 
6 5 13 10 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

i j 
6 5 13 10 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

i j 
6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

i j 
6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

i j 
6 5 3 2 8 13 10 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

i j 
6 5 3 2 8 13 10 11 



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.15 

Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

i j 
6 5 3 2 8 13 10 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

6 5 3 2 8 13 10 11 

i 
2 5 3 6 8 13 10 11 
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Pseudocode for quicksort 
QUICKSORT(A, p, r) 

if p < r 
then q ← PARTITION(A, p, r) 

QUICKSORT(A, p, q–1) 
QUICKSORT(A, q+1, r) 

Initial call: QUICKSORT(A, 1, n) 
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Analysis of quicksort 

• Assume all input elements are distinct. 
• In practice, there are better partitioning 

algorithms for when duplicate input 
elements may exist. 

• Let T(n) = worst-case running time on 
an array of n elements. 
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Worst-case of quicksort 

• Input sorted or reverse sorted. 
• Partition around min or max element. 
• One side of partition always has no elements. 

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=
Θ+−+Θ=
Θ+−+=

(arithmetic series) 
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Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 
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Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(n) 
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cn 
T(0) T(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 
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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) T(n–2) 
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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

Θ(1) 


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cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

Θ(1) 



( )2

1
nk

n

k
Θ=








Θ ∑

=
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cn 
Θ(1) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

Θ(1) c(n–2) 

Θ(1) 

Θ(1) 



( )2

1
nk

n

k
Θ=








Θ ∑

=

T(n) = Θ(n) + Θ(n2) 
 = Θ(n2) 

h = n 
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Best-case analysis 
(For intuition only!) 

If we’re lucky, PARTITION splits the array evenly: 
T(n) = 2T(n/2) + Θ(n) 
 = Θ(n lg n) (same as merge sort) 

What if the split is always 10
9

10
1 : ? 

( ) ( ) )()( 10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence? 
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Analysis of “almost-best” case 
)(nT
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Analysis of “almost-best” case 
cn

( )nT 10
1 ( )nT 10

9
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Analysis of “almost-best” case 
cn

cn10
1 cn10

9

( )nT 100
1 ( )nT 100

9 ( )nT 100
9 ( )nT 100

81
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Analysis of “almost-best” case 
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1) 

Θ(1) 

log10/9n 

cn

cn

cn

…
 

O(n) leaves 
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log10
n 

Analysis of “almost-best” case 
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1) 

Θ(1) 

log10/9n 

cn

cn

cn

T(n) ≤ cn log10/9n + Ο(n) 

…
 

cn log10n ≤ 

O(n) leaves 

Θ(n lg n) 
Lucky! 
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More intuition 
Suppose we alternate lucky, unlucky, 
lucky, unlucky, lucky, …. 

L(n) = 2U(n/2) + Θ(n) lucky 
U(n) = L(n – 1) + Θ(n) unlucky 

Solving: 
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n) 
 = 2L(n/2 – 1) + Θ(n) 
 = Θ(n lg n) 

How can we make sure we are usually lucky? 
Lucky! 



September 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L4.34 

Randomized quicksort 
IDEA: Partition around a random element. 
• Running time is independent of the input 

order. 
• No assumptions need to be made about 

the input distribution. 
• No specific input elicits the worst-case 

behavior. 
• The worst case is determined only by the 

output of a random-number generator. 
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Randomized quicksort 
analysis 

Let T(n) = the random variable for the running 
time of randomized quicksort on an input of size 
n, assuming random numbers are independent. 
For k = 0, 1, …, n–1, define the indicator 
random variable 

Xk =  1 if PARTITION generates a k : n–k–1 split, 
0 otherwise. 

E[Xk] = Pr{Xk = 1} = 1/n, since all splits are 
equally likely, assuming elements are distinct. 
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Analysis (continued) 

T(n) =  

T(0) + T(n–1) + Θ(n) if 0 : n–1 split, 
T(1) + T(n–2) + Θ(n) if 1 : n–2 split, 
  
T(n–1) + T(0) + Θ(n) if n–1 : 0 split, 

( )∑
−

=

Θ+−−+=
1

0
)()1()(

n

k
k nknTkTX
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Calculating expectation 
( )








Θ+−−+= ∑

−

=

1

0
)()1()()]([

n

k
k nknTkTXEnTE

Take expectations of both sides. 
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Calculating expectation 
( )

( )[ ]∑

∑
−

=

−

=

Θ+−−+=









Θ+−−+=

1

0

1

0

)()1()(

)()1()()]([

n

k
k

n

k
k

nknTkTXE

nknTkTXEnTE

Linearity of expectation. 
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Calculating expectation 
( )

( )[ ]

[ ] [ ]∑

∑

∑

−

=

−

=

−

=

Θ+−−+⋅=

Θ+−−+=









Θ+−−+=

1

0

1

0

1

0

)()1()(

)()1()(

)()1()()]([

n

k
k

n

k
k

n

k
k

nknTkTEXE

nknTkTXE

nknTkTXEnTE

Independence of Xk from other random 
choices. 
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Calculating expectation 
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Linearity of expectation; E[Xk] = 1/n . 
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Calculating expectation 
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Summations have 
identical terms. 
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Hairy recurrence 

[ ] )()(2)]([
1

2
nkTE

n
nTE

n

k
Θ+= ∑

−

=

(The k = 0, 1 terms can be absorbed in the Θ(n).) 

Prove: E[T(n)] ≤ a n lg n for constant a > 0 . 

Use fact:  2
1

2
8
12

2
1 lglg nnnkk

n

k
∑

−

=
−≤ (exercise). 

• Choose a large enough so that a n lg n 
dominates E[T(n)] for sufficiently small n ≥ 2. 
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Substitution method 
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Substitute inductive hypothesis. 
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Substitution method 
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Use fact. 
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Substitution method 
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Express as desired – residual. 
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Substitution method 
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if a is chosen large enough so that 
an/4 dominates the Θ(n). 

, 
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Quicksort in practice 

• Quicksort is a great general-purpose 
sorting algorithm. 

• Quicksort is typically over twice as fast 
as merge sort. 

• Quicksort can benefit substantially from 
code tuning.   

• Quicksort behaves well even with 
caching and virtual memory. 
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How fast can we sort? 
All the sorting algorithms we have seen so far 
are comparison sorts: only use comparisons to 
determine the relative order of elements. 
• E.g., insertion sort, merge sort, quicksort, 

heapsort. 
The best worst-case running time that we’ve 
seen for comparison sorting is O(n lg n) . 

Is O(n lg n)  the best we can do? 

Decision trees can help us answer this question.  
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}. 
•The left subtree shows subsequent comparisons if ai ≤ aj. 
•The right subtree shows subsequent comparisons if ai > aj. 

Sort 〈a1, a2, …, an〉 
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}. 
•The left subtree shows subsequent comparisons if ai ≤ aj. 
•The right subtree shows subsequent comparisons if ai > aj. 

9 ≥ 4 Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉: 
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}. 
•The left subtree shows subsequent comparisons if ai ≤ aj. 
•The right subtree shows subsequent comparisons if ai > aj. 

9 ≥ 6 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉: 



September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.6 

Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}. 
•The left subtree shows subsequent comparisons if ai ≤ aj. 
•The right subtree shows subsequent comparisons if ai > aj. 

4 ≤ 6 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉: 
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Decision-tree example 

1:2 

2:3 

123 1:3 

132 312 

1:3 

213 2:3 

231 321 

Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to 
indicate that the ordering aπ(1) ≤ aπ(2) ≤  ≤ aπ(n) has been 
established. 

4 ≤ 6 ≤ 9 

Sort 〈a1, a2, a3〉 
= 〈 9, 4, 6 〉: 
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Decision-tree model 
A decision tree can model the execution of 
any comparison sort: 
• One tree for each input size n.  
• View the algorithm as splitting whenever 

it compares two elements. 
• The tree contains the comparisons along 

all possible instruction traces. 
• The running time of the algorithm = the 

length of the path taken. 
• Worst-case running time = height of tree. 
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Lower bound for decision-
tree sorting 

Theorem.  Any decision tree that can sort n 
elements must have height Ω(n lg n) . 
Proof.  The tree must contain ≥ n! leaves, since 
there are n! possible permutations.  A height-h 
binary tree has ≤ 2h leaves.  Thus, n! ≤ 2h . 
 ∴ h ≥ lg(n!) (lg is mono. increasing) 
  ≥ lg ((n/e)n) (Stirling’s formula) 
  = n lg n – n lg e 
  = Ω(n lg n) .  
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Lower bound for comparison 
sorting 

Corollary.  Heapsort and merge sort are 
asymptotically optimal comparison sorting 
algorithms. 
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Sorting in linear time 

Counting sort: No comparisons between elements. 
• Input: A[1 . . n], where A[ j]∈{1, 2, …, k} . 
• Output: B[1 . . n], sorted. 
• Auxiliary storage: C[1 . . k] . 
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Counting sort 
for i ← 1 to k 

do C[i] ← 0 
for j ← 1 to n 

do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
for i ← 2 to k 

do C[i] ← C[i] + C[i–1]  ⊳ C[i] = |{key ≤ i}| 
for j ← n downto 1 

do B[C[A[ j]]] ← A[ j] 
 C[A[ j]] ← C[A[ j]] – 1 



September 26, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L5.13 

Counting-sort example 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 
1 2 3 4 
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Loop 1 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 0 0 0 0 
1 2 3 4 

for i ← 1 to k 
do C[i] ← 0 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 0 0 0 1 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 0 1 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 1 1 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 1 2 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 2 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 
1 2 3 4 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1  ⊳ C[i] = |{key = i}| 
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Loop 3 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 
1 2 3 4 

C': 1 1 2 2 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]  ⊳ C[i] = |{key ≤ i}| 
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Loop 3 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 
1 2 3 4 

C': 1 1 3 2 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]  ⊳ C[i] = |{key ≤ i}| 
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Loop 3 

A: 4 1 3 4 3 

B: 

1 2 3 4 5 

C: 1 0 2 2 
1 2 3 4 

C': 1 1 3 5 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1]  ⊳ C[i] = |{key ≤ i}| 
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Loop 4 

A: 4 1 3 4 3 

B: 3 

1 2 3 4 5 

C: 1 1 3 5 
1 2 3 4 

C': 1 1 2 5 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 
 C[A[ j]] ← C[A[ j]] – 1 
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Loop 4 

A: 4 1 3 4 3 

B: 3 4 

1 2 3 4 5 

C: 1 1 2 5 
1 2 3 4 

C': 1 1 2 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 
 C[A[ j]] ← C[A[ j]] – 1 
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Loop 4 

A: 4 1 3 4 3 

B: 3 3 4 

1 2 3 4 5 

C: 1 1 2 4 
1 2 3 4 

C': 1 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 
 C[A[ j]] ← C[A[ j]] – 1 
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Loop 4 

A: 4 1 3 4 3 

B: 1 3 3 4 

1 2 3 4 5 

C: 1 1 1 4 
1 2 3 4 

C': 0 1 1 4 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 
 C[A[ j]] ← C[A[ j]] – 1 
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Loop 4 

A: 4 1 3 4 3 

B: 1 3 3 4 4 

1 2 3 4 5 

C: 0 1 1 4 
1 2 3 4 

C': 0 1 1 3 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 
 C[A[ j]] ← C[A[ j]] – 1 
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Analysis 
for i ← 1 to k 

do C[i] ← 0 

Θ(n) 

Θ(k) 

Θ(n) 

Θ(k) 

for j ← 1 to n 
do C[A[ j]] ← C[A[ j]] + 1 

for i ← 2 to k 
do C[i] ← C[i] + C[i–1] 

for j ← n downto 1 
do B[C[A[ j]]] ← A[ j] 
 C[A[ j]] ← C[A[ j]] – 1 

Θ(n + k) 
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Running time 

If k = O(n), then counting sort takes Θ(n) time. 
• But, sorting takes Ω(n lg n) time! 
• Where’s the fallacy? 

Answer: 
• Comparison sorting takes Ω(n lg n) time. 
• Counting sort is not a comparison sort. 
• In fact, not a single comparison between 

elements occurs! 
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Stable sorting 

Counting sort is a stable sort: it preserves 
the input order among equal elements. 

A: 4 1 3 4 3 

B: 1 3 3 4 4 

Exercise: What other sorts have this property? 
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Radix sort 

• Origin: Herman Hollerith’s card-sorting 
machine for the 1890 U.S. Census.  (See 
Appendix     .) 

• Digit-by-digit sort. 
• Hollerith’s original (bad) idea: sort on 

most-significant digit first. 
• Good idea: Sort on least-significant digit 

first with auxiliary stable sort. 
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Operation of radix sort 

3 2 9 
4 5 7 
6 5 7 
8 3 9 
4 3 6 
7 2 0 
3 5 5 

7 2 0 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
3 2 9 
8 3 9 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 
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• Sort on digit t 

Correctness of radix sort 
Induction on digit position  
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits. 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 
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• Sort on digit t 

Correctness of radix sort 
Induction on digit position  
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits. 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 

 
 Two numbers that differ in 

digit t are correctly sorted. 
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• Sort on digit t 

Correctness of radix sort 
Induction on digit position  
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits. 

7 2 0 
3 2 9 
4 3 6 
8 3 9 
3 5 5 
4 5 7 
6 5 7 

3 2 9 
3 5 5 
4 3 6 
4 5 7 
6 5 7 
7 2 0 
8 3 9 

 
 Two numbers that differ in 

digit t are correctly sorted.  
 Two numbers equal in digit t 

are put in the same order as 
the input ⇒ correct order. 
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Analysis of radix sort 
• Assume counting sort is the auxiliary stable sort. 
• Sort n computer words of b bits each. 
• Each word can be viewed as having b/r base-2r 

digits. 
Example: 32-bit word 

8 8 8 8 

r = 8 ⇒ b/r = 4 passes of counting sort on 
base-28 digits; or r = 16 ⇒ b/r = 2 passes of 
counting sort on base-216 digits. 

How many passes should we make? 
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Analysis (continued) 
Recall: Counting sort takes Θ(n + k) time to 
sort n numbers in the range from 0 to k – 1. 
If each b-bit word is broken into r-bit pieces, 
each pass of counting sort takes Θ(n + 2r) time.  
Since there are b/r passes, we have 

( )




 +Θ= rn

r
bbnT 2),( . 

Choose r to minimize T(n, b): 
• Increasing r means fewer passes, but as 

r >  lg n, the time grows exponentially. > 
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Choosing r 
( )





 +Θ= rn

r
bbnT 2),(

Minimize T(n, b) by differentiating and setting to 0. 
Or, just observe that we don’t want 2r >  n, and 
there’s no harm asymptotically in choosing r as 
large as possible subject to this constraint. 

 > 

Choosing r = lg n implies T(n, b) = Θ(b n/lg n) . 

• For numbers in the range from 0 to n 
d – 1, we 

have b = d lg n ⇒ radix sort runs in Θ(d n) time. 
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Conclusions 

Example (32-bit numbers): 
• At most 3 passes when sorting ≥ 2000 numbers. 
• Merge sort and quicksort do at least lg 2000 = 

11 passes. 

In practice, radix sort is fast for large inputs, as 
well as simple to code and maintain. 

Downside: Unlike quicksort, radix sort displays 
little locality of reference, and thus a well-tuned 
quicksort fares better on modern processors, 
which feature steep memory hierarchies. 
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Appendix: Punched-card 
technology 

• Herman Hollerith (1860-1929) 
• Punched cards 
• Hollerith’s tabulating system 
• Operation of the sorter 
• Origin of radix sort 
• “Modern” IBM card 
• Web resources on punched-card 

technology 
Return to last 
slide viewed. 
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Herman Hollerith 
(1860-1929) 

• The 1880 U.S. Census took almost 
 10 years to process. 
• While a lecturer at MIT, Hollerith  
 prototyped punched-card technology. 
• His machines, including a “card sorter,” allowed 

the 1890 census total to be reported in 6 weeks. 
• He founded the Tabulating Machine Company in 

1911, which merged with other companies in 1924 
to form International Business Machines. 
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Punched cards 
• Punched card = data record. 
• Hole = value.  
• Algorithm = machine + human operator. 

Replica of punch 
card from the 
1900 U.S. census.  
[Howells 2000] 

http://www.oz.net/%7Emarkhow/writing/holl.htm
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Hollerith’s 
tabulating 
system 
•Pantograph card 
punch 

•Hand-press reader 
•Dial counters 
•Sorting box 

Figure from 
[Howells 2000]. 

http://www.oz.net/%7Emarkhow/writing/holl.htm
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Operation of the sorter 
• An operator inserts a card into 

the press. 
• Pins on the press reach through 

the punched holes to make 
electrical contact with  mercury-
filled cups beneath the card. 

• Whenever a particular digit 
value is punched, the lid of the 
corresponding sorting bin lifts. 

• The operator deposits the card 
into the bin and closes the lid. 

• When all cards have been processed, the front panel is opened, and 
the cards are collected in order, yielding one pass of a stable sort. 

Hollerith Tabulator, Pantograph, Press, and Sorter 
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Origin of radix sort 

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort: 

“The most complicated combinations can readily be 
counted with comparatively few counters or relays by first 
assorting the cards according to the first items entering 
into the combinations, then reassorting each group 
according to the second item entering into the combination, 
and so on, and finally counting on a few counters the last 
item of the combination for each group of cards.” 

Least-significant-digit-first radix sort seems to be 
a folk invention originated by machine operators. 

http://theory.lcs.mit.edu/classes/6.046/fall01/Hollerith%20patent%201889.pdf
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“Modern” IBM card 

So, that’s why text windows have 80 columns! 

Produced by 
the WWW 
Virtual Punch-
Card Server. 

• One character per column. 

http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard
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Web resources on punched-
card technology 

• Doug Jones’s punched card index 
• Biography of Herman Hollerith 
• The 1890 U.S. Census 
• Early history of IBM 
• Pictures of Hollerith’s inventions 
• Hollerith’s patent application (borrowed 

from  Gordon Bell’s CyberMuseum) 
• Impact of punched cards on U.S. history 

http://www.cs.uiowa.edu/%7Ejones/cards/index.html
http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Mathematicians/Hollerith.html
http://www.oz.net/%7Emarkhow/writing/holl.htm
http://www.glencoe.com/norton/n-instructor-/updates/1999/51099-2.html
http://sln.fi.edu/qa00/attic4
http://theory.lcs.mit.edu/classes/6.046/fall01/Hollerith%20patent%201889.pdf
http://research.microsoft.com/users/GBell/CyberMuseumPubs.htm
http://www.whitehouse.gov/president
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LECTURE 6  
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conquer 
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• Worst-case linear-time 

order statistics 
• Analysis 

Introduction to Algorithms 
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Order statistics 
Select the i th smallest of n elements (the 
element with rank i). 
• i = 1: minimum; 
• i = n: maximum; 
• i = (n+1)/2 or (n+1)/2: median. 

Naive algorithm: Sort and index i th element. 
Worst-case running time = Θ(n lg n) + Θ(1) 
 = Θ(n lg n), 
using merge sort or heapsort (not quicksort). 



September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.3 

Randomized divide-and-
conquer algorithm 

RAND-SELECT(A, p, q, i) ⊳ i th smallest of A[ p . . 
q]  
if  p = q  then return A[ p] 
r ← RAND-PARTITION(A, p, q) 
k ← r – p + 1 ⊳ k = rank(A[r]) 
if  i = k  then return A[ r] 
if  i < k   

then return RAND-SELECT( A, p, r – 1, i ) 
else return RAND-SELECT( A, r + 1, q, i – k ) 

≤ A[r] ≥ A[r] 
r p q 

k 
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Example 

pivot 
i = 7 6 10 13 5 8 3 2 11 

k = 4 

Select the 7 – 4 = 3rd smallest recursively. 

Select the i = 7th smallest: 

2 5 3 6 8 13 10 11 
Partition: 
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Intuition for analysis 

Lucky: 
101log 9/10 == nn

CASE 3 
T(n) = T(9n/10) + Θ(n) 
 = Θ(n) 

Unlucky: 
T(n) = T(n – 1) + Θ(n) 
 = Θ(n2) 

arithmetic series 

Worse than sorting! 

(All our analyses today assume that all elements 
are distinct.) 
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Analysis of expected time 

Let T(n) = the random variable for the running 
time of RAND-SELECT on an input of size n, 
assuming random numbers are independent. 
For k = 0, 1, …, n–1, define the indicator 
random variable 

Xk =  1 if PARTITION generates a k : n–k–1 split, 
0 otherwise. 

The analysis follows that of randomized 
quicksort, but it’s a little different. 
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Analysis (continued) 

T(n) =  

T(max{0, n–1}) + Θ(n) if 0 : n–1 split, 
T(max{1, n–2}) + Θ(n) if 1 : n–2 split, 
  
T(max{n–1, 0}) + Θ(n) if n–1 : 0 split, 

( )∑
−

=
Θ+−−=

1

0
)(})1,(max{

n

k
k nknkTX . 

To obtain an upper bound, assume that the i th 
element always falls in the larger side of the 
partition: 
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Calculating expectation 
( )








Θ+−−= ∑

−

=

1

0
)(})1,(max{)]([

n

k
k nknkTXEnTE

Take expectations of both sides. 
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Calculating expectation 
( )

( )[ ]∑

∑
−

=

−

=

Θ+−−=









Θ+−−=

1

0

1

0

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

nknkTXE

nknkTXEnTE

Linearity of expectation. 
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Calculating expectation 
( )

( )[ ]

[ ] [ ]∑

∑

∑

−

=

−

=

−

=

Θ+−−⋅=

Θ+−−=









Θ+−−=

1

0

1

0

1

0

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k
k

n

k
k

n

k
k

nknkTEXE

nknkTXE

nknkTXEnTE

Independence of Xk from other random 
choices. 



September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.11 

Calculating expectation 
( )

( )[ ]

[ ] [ ]

[ ] ∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

Θ+−−=

Θ+−−⋅=

Θ+−−=









Θ+−−=

1

0

1

0

1

0

1

0

1

0

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

Linearity of expectation; E[Xk] = 1/n . 
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Calculating expectation 
( )

( )[ ]

[ ] [ ]

[ ]

[ ]
 

)()(2

)(1})1,(max{1

)(})1,(max{

)(})1,(max{

)(})1,(max{)]([

1

2/

1

0

1

0

1

0

1

0

1

0

nkTE
n

n
n

knkTE
n

nknkTEXE

nknkTXE

nknkTXEnTE

n

nk

n

k

n

k

n

k
k

n

k
k

n

k
k

Θ+≤

Θ+−−=

Θ+−−⋅=

Θ+−−=









Θ+−−=

∑

∑∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

−

=

Upper terms 
appear twice. 
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Hairy recurrence 

[ ]
 

)()(2)]([
1

2/
nkTE

n
nTE

n

nk
Θ+= ∑

−

=

Prove: E[T(n)] ≤ c n  for constant c > 0 . 

Use fact:  
 

2
1

2/
8
3nk

n

nk
∑
−

=
≤ (exercise). 

• The constant c can be chosen large enough 
so that E[T(n)] ≤ c n for the base cases. 

(But not quite as hairy as the quicksort one.) 
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Substitution method 

[ ]
 

)(2)(
1

2/
nck

n
nTE

n

nk
Θ+≤ ∑

−

=

Substitute inductive hypothesis. 
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Substitution method 

[ ]
 

)(
8
32

)(2)(

2

1

2/

nn
n
c

nck
n

nTE
n

nk

Θ+




≤

Θ+≤ ∑
−

=

Use fact. 
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Substitution method 

Express as desired – residual. 

[ ]
 






 Θ−−=

Θ+




≤

Θ+≤ ∑
−

=

)(
4

)(
8
32

)(2)(

2

1

2/

ncncn

nn
n
c

nck
n

nTE
n

nk
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Substitution method 

[ ]
 

cn

ncncn

nn
n
c

nck
n

nTE
n

nk

≤






 Θ−−=

Θ+




≤

Θ+≤ ∑
−

=

)(
4

)(
8
32

)(2)(

2

1

2/

if c is chosen large enough so 
that cn/4 dominates the Θ(n). 

, 
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Summary of randomized 
order-statistic selection 

• Works fast: linear expected time. 
• Excellent algorithm in practice. 
• But, the worst case is very bad: Θ(n2). 

Q. Is there an algorithm that runs in linear 
time in the worst case? 

IDEA: Generate a good pivot recursively. 

A. Yes, due to Blum, Floyd, Pratt, Rivest, 
and Tarjan [1973]. 
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Worst-case linear-time order 
statistics 

if  i = k then return x 
elseif  i < k  

then recursively SELECT the i th 
 smallest element in the lower part 

else recursively SELECT the (i–k)th 
 smallest element in the upper part 

SELECT(i, n) 
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote. 
2. Recursively SELECT the median x of the n/5 

group medians to be the pivot. 
3. Partition around the pivot x.  Let k = rank(x). 
4.   

 Same as 
RAND-
SELECT 
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Choosing the pivot 
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Choosing the pivot 

1. Divide the n elements into groups of 5. 
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Choosing the pivot 

lesser 

greater 

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote. 
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Choosing the pivot 

lesser 

greater 

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote. 

2. Recursively SELECT the median x of the  n/5 
group medians to be the pivot. 

x 
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Analysis 

lesser 

greater 

x 

At least half the group medians are ≤ x, which 
is at least   n/5 /2 =  n/10 group medians.  
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Analysis 

lesser 

greater 

x 

At least half the group medians are ≤ x, which 
is at least   n/5 /2 =  n/10 group medians. 
• Therefore, at least 3  n/10 elements are ≤ x. 

(Assume all elements are distinct.) 
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Analysis 

lesser 

greater 

x 

At least half the group medians are ≤ x, which 
is at least   n/5 /2 =  n/10 group medians. 
• Therefore, at least 3  n/10 elements are ≤ x. 
• Similarly, at least 3  n/10 elements are ≥ x. 

(Assume all elements are distinct.) 
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Minor simplification 
• For n ≥ 50, we have 3  n/10 ≥ n/4. 
• Therefore, for n ≥ 50 the recursive call to 

SELECT in Step 4 is executed recursively 
on ≤ 3n/4 elements. 

• Thus, the recurrence for running time 
can assume that Step 4 takes time 
T(3n/4) in the worst case. 

• For n < 50, we know that the worst-case 
time is T(n) = Θ(1). 



September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28 

Developing the recurrence 

if  i = k then return x 
elseif  i < k  

then recursively SELECT the i th 
 smallest element in the lower part 

else recursively SELECT the (i–k)th 
 smallest element in the upper part 

SELECT(i, n) 
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote. 
2. Recursively SELECT the median x of the n/5 

group medians to be the pivot. 
3. Partition around the pivot x.  Let k = rank(x). 
4.   

 

T(n) 

Θ(n) 

T(n/5) 
Θ(n) 

T(3n/4) 
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Solving the recurrence 
)(

4
3

5
1)( nnTnTnT Θ+





+





=

if c is chosen large enough to handle both the 
Θ(n) and the initial conditions. 

cn

ncncn

ncn

ncncnnT

≤






 Θ−−=

Θ+=

Θ++≤

)(
20
1

)(
20
19

)(
4
3

5
1)(

, 

Substitution: 
T(n) ≤ cn 
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Conclusions 
• Since the work at each level of recursion 

is a constant fraction (19/20) smaller, the 
work per level is a geometric series 
dominated by the linear work at the root. 

• In practice, this algorithm runs slowly, 
because the constant in front of n is large. 

• The randomized algorithm is far more 
practical. 

Exercise: Why not divide into groups of 3? 
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chaining 
• Choosing hash functions 
• Open addressing 
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Symbol-table problem 

Symbol table S holding n records: 

key[x] 
record 

x 

Other fields 
containing 
satellite data 

Operations on S: 
• INSERT(S, x) 
• DELETE(S, x) 
• SEARCH(S, k) 

How should the data structure S be organized? 
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Direct-access table 

IDEA: Suppose that the keys are drawn from 
the set U ⊆ {0, 1, …, m–1}, and keys are 
distinct.  Set up an array T[0 . . m–1]:  

T[k] = x  if x ∈ K and key[x] = k, 
NIL  otherwise. 

Then, operations take Θ(1) time. 
Problem: The range of keys can be large: 
• 64-bit numbers (which represent 

18,446,744,073,709,551,616 different keys), 
• character strings (even larger!). 
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As each key is inserted, h maps it to a slot of T. 

Hash functions 
Solution: Use a hash function h to map the 
universe U of all keys into 
{0, 1, …, m–1}: 

U 

S 
k1 

k2 k3 

k4 

k5 

0 

m–1 

h(k1) 
h(k4) 

h(k2) 

h(k3) 

When a record to be inserted maps to an already 
occupied slot in T, a collision occurs. 

T 

 = h(k5) 
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Resolving collisions by 
chaining 

• Link records in the same slot into a list. 

h(49) = h(86) = h(52) = i 

T 

i 
49 86 52 

Worst case: 
• Every key 

hashes to the 
same slot. 

• Access time = 
Θ(n) if |S| = n  
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Average-case analysis of chaining 

We make the assumption of simple uniform 
hashing: 
• Each key k ∈ S  is equally likely to be hashed 

to any slot of table T, independent of where 
other keys are hashed. 

Let n be the number of keys in the table, and 
let m be the number of slots. 
Define the load factor of T to be 

α = n/m 
 = average number of keys per slot. 
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Search cost 
The expected time for an unsuccessful 
search for a record with a given key is 
= Θ(1 + α). 
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Search cost 
The expected time for an unsuccessful 
search for a record with a given key is 
= Θ(1 + α). 

apply hash function 
and access slot 

search 
the list 
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Search cost 
The expected time for an unsuccessful 
search for a record with a given key is 
= Θ(1 + α). 

apply hash function 
and access slot 

search 
the list 

Expected search time = Θ(1) if α = O(1), 
or equivalently, if n = O(m). 
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Search cost 
The expected time for an unsuccessful 
search for a record with a given key is 
= Θ(1 + α). 

apply hash function 
and access slot 

search 
the list 

Expected search time = Θ(1) if α = O(1), 
or equivalently, if n = O(m). 
A successful search has same asymptotic 
bound, but a rigorous argument is a little 
more complicated.  (See textbook.) 
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Choosing a hash function 

The assumption of simple uniform hashing 
is hard to guarantee, but several common 
techniques tend to work well in practice as 
long as their deficiencies can be avoided. 

Desirata: 
• A good hash function should distribute the 

keys uniformly into the slots of the table. 
• Regularity in the key distribution should 

not affect this uniformity. 
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h(k) 

Division method 
Assume all keys are integers, and define 

h(k) = k mod m. 

Extreme deficiency:  If m = 2r, then the hash 
doesn’t even depend on all the bits of k: 
• If k = 10110001110110102 and r = 6, then 

h(k) = 0110102 . 

Deficiency:  Don’t pick an m that has a small 
divisor d.  A preponderance of keys that are 
congruent modulo d can adversely affect 
uniformity.  



October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13 

Division method (continued) 

h(k) = k mod m. 

Pick m to be a prime not too close to a power 
of 2 or 10 and not otherwise used prominently 
in the computing environment. 
Annoyance: 
• Sometimes, making the table size a prime is 

inconvenient. 
But, this method is popular, although the next 
method we’ll see is usually superior. 
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Multiplication method 

Assume that all keys are integers, m = 2r, and our 
computer has w-bit words.  Define  

h(k) = (A·k mod 2w) rsh (w – r), 
where rsh is the “bitwise right-shift” operator and 
A is an odd integer in the range 2w–1 < A < 2w. 
• Don’t pick A too close to 2w–1 or 2w. 
• Multiplication modulo 2w is fast compared to 

division. 
• The rsh operator is fast. 
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4 

0 

3 5 
2 6 

1 7 

Modular wheel 

Multiplication method 
example 

h(k) = (A·k mod 2w) rsh (w – r) 
Suppose that m = 8 = 23 and that our computer 
has w = 7-bit words: 

1 0 1 1 0 0 1 
×                     1 1 0 1 0 1 1 

1 0 0 1 0 1 0 0 1 1 0 0 1 1 

= A 
= k 

h(k) A . 
2A 

. 

3A . 
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Resolving collisions by open 
addressing 

No storage is used outside of the hash table itself. 
• Insertion systematically probes the table until an 

empty slot is found. 
• The hash function depends on both the key and 

probe number: 
h : U × {0, 1, …, m–1} → {0, 1, …, m–1}. 

• The probe sequence 〈h(k,0), h(k,1), …, h(k,m–1)〉 
should be a permutation of {0, 1, …, m–1}. 

• The table may fill up, and deletion is difficult (but 
not impossible). 
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204 204 

Example of open addressing 

Insert key k = 496:  

0. Probe h(496,0) 
586 
133 

481 

T 
0 

m–1 

collision 
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Example of open addressing 

Insert key k = 496:  

0. Probe h(496,0) 
586 
133 

204 

481 

T 
0 

m–1 

1. Probe h(496,1) collision 586 
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Example of open addressing 

Insert key k = 496:  

0. Probe h(496,0) 
586 
133 

204 

481 

T 
0 

m–1 

1. Probe h(496,1) 

insertion 496 

2. Probe h(496,2) 
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Example of open addressing 

Search for key k = 496:  

0. Probe h(496,0) 
586 
133 

204 

481 

T 
0 

m–1 

1. Probe h(496,1) 

496 

2. Probe h(496,2) 

Search uses the same probe 
sequence, terminating suc- 
cessfully if it finds the key 
and unsuccessfully if it encounters an empty slot. 
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Probing strategies 

Linear probing:  
Given an ordinary hash function h′(k), linear 
probing uses the hash function 

h(k,i) = (h′(k) + i) mod m. 
This method, though simple, suffers from primary 
clustering, where long runs of occupied slots build 
up, increasing the average search time.  Moreover, 
the long runs of occupied slots tend to get longer. 
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Probing strategies 

Double hashing  
Given two ordinary hash functions h1(k) and h2(k), 
double hashing uses the hash function 

h(k,i) = (h1(k) + i⋅ h2(k)) mod m. 
This method generally produces excellent results, 
but h2(k) must be relatively prime to m.  One way 
is to make m a power of 2 and design h2(k) to 
produce only odd numbers. 
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Analysis of open addressing 

We make the assumption of uniform hashing: 
• Each key is equally likely to have any one of 

the m! permutations as its probe sequence. 

Theorem.  Given an open-addressed hash 
table with load factor α = n/m < 1, the 
expected number of probes in an unsuccessful 
search is at most 1/(1–α). 



October 3, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.24 

Proof of the theorem 
Proof. 
• At least one probe is always necessary. 
• With probability n/m, the first probe hits an 

occupied slot, and a second probe is necessary. 
• With probability (n–1)/(m–1), the second probe 

hits an occupied slot, and a third probe is 
necessary. 

• With probability (n–2)/(m–2), the third probe 
hits an occupied slot, etc. 

Observe that α=<
−
−

m
n

im
in for i = 1, 2, …, n. 
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Proof (continued) 

Therefore, the expected number of probes is 
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. 

The textbook has a 
more rigorous proof 
and an analysis of 
successful searches. 
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Implications of the theorem 

• If α is constant, then accessing an open-
addressed hash table takes constant time. 

• If the table is half full, then the expected 
number of probes is 1/(1–0.5) = 2. 

• If the table is 90% full, then the expected 
number of probes is 1/(1–0.9) = 10. 
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Prof. Charles E. Leiserson 

LECTURE 8  
Hashing II 
• Universal hashing 
• Universality theorem 
• Constructing a set of 

universal hash functions 
• Perfect hashing 

Introduction to Algorithms 
6.046J/18.401J 
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A weakness of hashing 
Problem: For any hash function h, a set 
of keys exists that can cause the average 
access time of a hash table to skyrocket. 

IDEA: Choose the hash function at random, 
independently of the keys. 
• Even if an adversary can see your code, 

he or she cannot find a bad set of keys, 
since he or she doesn’t know exactly 
which hash function will be chosen. 

• An adversary can pick all keys from 
{k ∈ U : h(k) = i} for some slot i. 
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Universal hashing 
Definition.  Let U be a universe of keys, and 
let H   be a finite collection of hash functions, 
each mapping U to {0, 1, …, m–1}.  We say 
H   is universal if for all x, y ∈ U, where x ≠ y, 
we have |{h ∈ H  : h(x) = h(y)}| ≤ |H | / m. 

That is, the chance 
of a collision 
between x and y is 
≤ 1/m if we choose h 
randomly from H. 

H  {h : h(x) = h(y)} 

|H | 
m 
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Universality is good 

Theorem.  Let h be a hash function chosen 
(uniformly) at random from a universal set H  
of hash functions.  Suppose h is used to hash 
n arbitrary keys into the m slots of a table T.  
Then, for a given key x, we have 

E[#collisions with x] < n/m. 
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Proof of theorem 

Proof.  Let Cx be the random variable denoting 
the total number of collisions of keys in T with 
x, and let  

cxy = 1  if h(x) = h(y), 
0  otherwise. 

Note:  E[cxy] = 1/m and ∑
−∈

=
}{xTy
xyx cC . 
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Proof (continued) 












= ∑

−∈ }{
][

xTy
xyx cECE • Take expectation 

of both sides. 
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Proof (continued) 

∑

∑

−∈

−∈

=












=

}{

}{

][

][

xTy
xy

xTy
xyx

cE

cECE

• Linearity of 
expectation. 

• Take expectation 
of both sides. 
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Proof (continued) 

∑

∑

∑
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−∈
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
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/1
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xTy

xTy
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xTy
xyx

m

cE

cECE

• E[cxy] = 1/m. 

• Linearity of 
expectation. 

• Take expectation 
of both sides. 
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Proof (continued) 

m
n

m
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xTy

xTy
xy

xTy
xyx

1
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
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
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∑

∑

∑

−∈

−∈

−∈
• Take expectation 

of both sides. 

• Linearity of 
expectation. 

• E[cxy] = 1/m. 

• Algebra. . 
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REMEMBER 
THIS! 

Constructing a set of 
universal hash functions 

Let m be prime.  Decompose key k into r + 1 
digits, each with value in the set {0, 1, …, m–1}. 
That is, let k = 〈k0, k1, …, kr〉, where 0 ≤ ki < m. 
Randomized strategy: 
Pick a = 〈a0, a1, …, ar〉 where each ai is chosen 
randomly from {0, 1, …, m–1}. 

mkakh
r

i
iia mod)(

0
∑
=

=Define . 

How big is H  = {ha}?   |H | = mr + 1. 

Dot product, 
modulo m 
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Universality of dot-product 
hash functions 

Theorem. The set H  = {ha} is universal. 

Proof.  Suppose that  x = 〈x0, x1, …, xr〉 and y = 
〈y0, y1, …, yr〉 be distinct keys.  Thus, they differ 
in at least one digit position, wlog position 0.  
For how many ha ∈ H  do x and y collide? 

)(mod
00

myaxa
r

i
ii

r

i
ii ∑∑

==
≡ . 

We must have ha(x) = ha(y), which implies that 
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Proof (continued) 
Equivalently, we have 

)(mod0)(
0

myxa
r

i
iii ≡−∑

=

or 
)(mod0)()(

1
000 myxayxa

r

i
iii ≡−+− ∑

=

)(mod)()(
1

000 myxayxa
r

i
iii∑

=
−−≡−

which implies that 

, 

. 
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Fact from number theory 

Theorem.  Let m be prime.  For any z ∈ Zm 
such that z ≠ 0, there exists a unique z–1 ∈ Zm 
such that 

z · z–1 ≡ 1     (mod m). 

Example:  m = 7. 

z 

z–1 

1    2    3    4    5    6 

1    4    5    2    3    6 
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Back to the proof 

)(mod)()(
1

000 myxayxa
r

i
iii∑

=
−−≡−

We have 

and since x0 ≠ y0 , an inverse (x0 – y0 )–1 must exist, 
which implies that 

, 

)(mod)()( 1
00

1
0 myxyxaa

r

i
iii

−

=
−⋅








−−≡ ∑ . 

Thus, for any choices of a1, a2, …, ar, exactly 
one choice of a0 causes x and y to collide. 
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Proof (completed) 

Q. How many ha’s cause x and y to collide? 

A. There are m choices for each of a1, a2, …, ar , 
but once these are chosen, exactly one choice 
for a0 causes x and y to collide, namely 

myxyxaa
r

i
iii mod)()( 1

00
1

0 







−⋅








−−= −

=
∑ . 

 Thus, the number of ha’s that cause x and y 
to collide is mr · 1 = mr = |H |/m. 
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Perfect hashing 
Given a set of n keys, construct a static hash 
table of size m = O(n) such that SEARCH takes 
Θ(1) time in the worst case. 

IDEA: Two-
level scheme 
with universal 
hashing at 
both levels. 
No collisions 
at level 2! 40 37 22 

0 
1 
2 
3 
4 
5 
6 

26 

m a 0 1 2 3 4 5 6 7 8 

14 27 

S4 

S6 

S1 

4 31 

1 00 

9 86 

T 

h31(14) = h31(27) = 1 
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Collisions at level 2 
Theorem. Let H  be a class of universal hash 
functions for a table of size m = n2.  Then, if we 
use a random h ∈ H  to hash n keys into the table, 
the expected number of collisions is at most 1/2.   
Proof.  By the definition of universality, the 
probability that 2 given keys in the table collide 
under h is 1/m = 1/n2.  Since there are      pairs 
of keys that can possibly collide, the expected 
number of collisions is 

( )2
n

2
11

2
)1(1

2 22 <⋅−=⋅







n

nn
n

n . 
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No collisions at level 2 
Corollary.  The probability of no collisions 
is at least 1/2. 

Thus, just by testing random hash functions 
in H , we’ll quickly find one that works.   

Proof.  Markov’s inequality says that for any 
nonnegative random variable X, we have 

Pr{X ≥ t} ≤ E[X]/t. 
Applying this inequality with t = 1, we find 
that the probability of 1 or more collisions is 
at most 1/2.   
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Analysis of storage 
For the level-1 hash table T, choose m = n, and 
let ni be random variable for the number of keys 
that hash to slot i in T.  By using ni

2 slots for the 
level-2 hash table Si, the expected total storage 
required for the two-level scheme is therefore 

( ) )(
1

0

2 nnE
m

i
i Θ=








Θ∑

−

=
, 

since the analysis is identical to the analysis from 
recitation of the expected running time of bucket 
sort.  (For a probability bound, apply Markov.) 
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Prof. Erik Demaine 

LECTURE 9  
Randomly built binary 

search trees 
• Expected node depth 
• Analyzing height 
 Convexity lemma 
 Jensen’s inequality 
 Exponential height 

• Post mortem 

Introduction to Algorithms 
6.046J/18.401J 
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3 

Binary-search-tree sort 
T ← ∅  ⊳ Create an empty BST 
for i = 1 to n 

do TREE-INSERT(T, A[i]) 
Perform an inorder tree walk of T. 

Example: 
A = [3 1 8 2 6 7 5] 8 1 

2 6 
5 7 

Tree-walk time = O(n), 
but how long does it 
take to build the BST? 
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Analysis of BST sort 
BST sort performs the same comparisons as 
quicksort, but in a different order! 

3  1  8  2  6  7  5 

1  2 8  6  7  5 

2 6 7 5 

7 5 

The expected time to build the tree is asymptot-
ically the same as the running time of quicksort. 
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Node depth 
The depth of a node = the number of comparisons 
made during TREE-INSERT.  Assuming all input 
permutations are equally likely, we have 

( )

)(lg

)lg(1

 nodeinsert   toscomparison#1
1

nO

nnO
n

iE
n

 
n

i

=

=









= ∑

=

Average node depth 

. 

(quicksort analysis) 
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Expected tree height 
But, average node depth of a randomly built 
BST = O(lg n) does not necessarily mean that its 
expected height is also O(lg n) (although it is). 

Example. 

≤ lg n 
nh =

)(lg
2

lg1

nO

nnnn
n

=






 ⋅+⋅≤Ave. depth 
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Height of a randomly built 
binary search tree 

• Prove Jensen’s inequality, which says that 
f(E[X]) ≤ E[f(X)] for any convex function f and 
random variable X.   

• Analyze the exponential height of a randomly 
built BST on n nodes, which is the random 
variable Yn = 2Xn, where Xn is the random 
variable denoting the height of the BST. 

• Prove that 2E[Xn] ≤ E[2Xn ] = E[Yn] = O(n3), 
and hence that E[Xn] = O(lg n). 

Outline of the analysis: 



October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7 

Convex functions 
A function f : R → R is convex if for all 
α,β ≥ 0 such that α + β = 1, we have 

f(αx + βy) ≤ α f(x) + β f(y) 
for all x,y ∈ R. 

αx + βy 

αf(x) + βf(y) 

f(αx + βy) 

x y 

f(x) 

f(y) 
f 
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Convexity lemma 

Lemma. Let f : R → R be a convex function, 
and let α1, α2 , …, αn be nonnegative real 
numbers such that ∑k αk = 1.  Then, for any 
real numbers x1, x2, …, xn, we have 

)(
11

∑∑
==

≤






 n

k
kk

n

k
kk xfxf αα

Proof.  By induction on n.  For n = 1, we have 
α1 = 1, and hence f(α1x1) ≤ α1f(x1) trivially. 

. 
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Proof (continued) 









−

−+=






 ∑∑
−

==

1

11 1
)1(
n

k
k

n

k
nnn

n

k
kk xxfxf

α
αααα

Inductive step: 

Algebra. 
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Proof (continued) 
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Inductive step: 

Convexity. 
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Proof (continued) 
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Inductive step: 

Induction. 
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Proof (continued) 
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Inductive step: 

Algebra. . 
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Convexity lemma: infinite case 

Lemma. Let f : R → R be a convex function, 
and let α1, α2 , …, be nonnegative real numbers 
such that ∑k αk = 1.  Then, for any real 
numbers x1, x2, …, we have 
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kk

k
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assuming that these summations exist. 

, 
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Convexity lemma: infinite case 

Proof. By the convexity lemma, for any n ≥ 1, 
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Convexity lemma: infinite case 

Proof. By the convexity lemma, for any n ≥ 1, 
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Taking the limit of both sides 
(and because the inequality is not strict): 

)(1lim1lim
1

1
1

1

∑
∑

∑
∑ =

=
∞→

=
=

∞→
≤












 n

k
kkn

i i
n

n

k
kkn

i i
n

xfxf α
α

α
α

→ 1 ∑
∞

=

→
1k

kk xα → 1 ∑
∞

=

→
1

)(
k

kk xfα



October 17, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16 

Jensen’s inequality 
Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].   









=⋅= ∑

∞

−∞=k
kXkfXEf }Pr{])[(

Proof. 

Definition of expectation. 
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Jensen’s inequality 

∑

∑
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kXkfXEf

}Pr{)(

}Pr{])[(
Proof. 

Convexity lemma (infinite case). 

Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].   
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Jensen’s inequality 

)]([

}Pr{)(

}Pr{])[(

XfE

kXkf

kXkfXEf

k

k

=

=⋅≤









=⋅=

∑

∑
∞

−∞=

∞

−∞=

. 

Proof. 

Tricky step, but true—think about it. 

Lemma.  Let f  be a convex function, and let X 
be a random variable.  Then, f (E[X]) ≤ E[ f (X)].   
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Analysis of BST height 
Let Xn be the random variable denoting 
the height of a randomly built binary 
search tree on n nodes, and let Yn = 2Xn 

be its exponential height. 
If the root of the tree has rank k, then  

Xn = 1 + max{Xk–1, Xn–k} ,  
since each of the left and right subtrees 
of the root are randomly built.  Hence, 
we have 

Yn = 2· max{Yk–1, Yn–k} . 
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Analysis (continued) 

Define the indicator random variable Znk as 

Znk = 1 if the root has rank k, 
0 otherwise. 

Thus, Pr{Znk = 1} = E[Znk] = 1/n, and 

( )∑
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−−⋅=
n

k
knknkn YYZY

1
1 },max{2 . 
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Exponential height recurrence 
[ ] ( )








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=
−−

n

k
knknkn YYZEYE

1
1 },max{2

Take expectation of both sides. 
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Exponential height recurrence 
[ ] ( )

( )[ ]∑

∑

=
−−

=
−−

⋅=









⋅=

n

k
knknk

n

k
knknkn

YYZE

YYZEYE

1
1

1
1

},max{2

},max{2

Linearity of expectation. 
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Exponential height recurrence 
[ ] ( )

( )[ ]

∑

∑

∑

=
−−

=
−−

=
−−

⋅=

⋅=









⋅=

n

k
knknk

n

k
knknk

n

k
knknkn

YYEZE

YYZE

YYZEYE

1
1

1
1

1
1

}],[max{][2

},max{2

},max{2

Independence of the rank of the root 
from the ranks of subtree roots. 
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Exponential height recurrence 
[ ] ( )

( )[ ]

∑

∑

∑

∑

=
−−

=
−−

=
−−

=
−−

+≤

⋅=

⋅=









⋅=

n

k
knk

n

k
knknk

n

k
knknk

n

k
knknkn

YYE
n

YYEZE

YYZE

YYZEYE

1
1

1
1

1
1

1
1

][2

}],[max{][2

},max{2

},max{2

The max of two nonnegative numbers 
is at most their sum, and E[Znk] = 1/n. 
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Exponential height recurrence 
[ ] ( )

( )[ ]

∑

∑

∑

∑

∑

−

=

=
−−

=
−−

=
−−

=
−−

=

+≤

⋅=

⋅=









⋅=

1

0

1
1

1
1

1
1

1
1

][4

][2

}],[max{][2

},max{2

},max{2

n

k
k

n

k
knk

n

k
knknk

n

k
knknk

n

k
knknkn

YE
n

YYE
n

YYEZE

YYZE

YYZEYE

Each term appears 
twice, and reindex. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 

[ ] ∑
−

=
=

1

0
][4

n

k
kn YE

n
YE
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 

[ ]

∑

∑
−

=

−

=

≤

=

1

0

3

1

0

4

][4

n

k

n

k
kn

ck
n

YE
n

YE

Substitution. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 

[ ]

∫

∑

∑

≤

≤

=

−

=

−

=

n

n

k

n

k
kn

dxx
n
c

ck
n

YE
n

YE

0
3

1

0

3

1

0

4

4

][4

Integral method. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 

[ ]






=

≤

≤

=

∫

∑

∑
−

=

−

=

4
4

4

4

][4

4
0

3

1

0

3

1

0

n
n
c

dxx
n
c

ck
n

YE
n

YE

n

n

k

n

k
kn

Solve the integral. 
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Solving the recurrence 
Use substitution to 
show that E[Yn] ≤ cn3 
for some positive 
constant c, which we 
can pick sufficiently 
large to handle the 
initial conditions. 

[ ]

3

4
0

3

1

0

3

1

0

4
4

4

4

][4

cn

n
n
c

dxx
n
c

ck
n

YE
n

YE

n

n

k

n

k
kn

=






=

≤

≤

=

∫

∑

∑
−

=

−

=

. Algebra. 
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The grand finale 

2E[Xn] ≤ E[2Xn ] 
Putting it all together, we have 

Jensen’s inequality, since 
f(x) = 2x is convex. 
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The grand finale 

2E[Xn] ≤ E[2Xn ] 
 = E[Yn] 

Putting it all together, we have 

Definition. 
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The grand finale 

2E[Xn] ≤ E[2Xn ] 
 = E[Yn] 
 ≤ cn3 . 

Putting it all together, we have 

What we just showed. 
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The grand finale 

2E[Xn] ≤ E[2Xn ] 
 = E[Yn] 
 ≤ cn3 . 

Putting it all together, we have 

Taking the lg of both sides yields 
 E[Xn] ≤ 3 lg n +O(1) . 
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Post mortem 

Q. Does the analysis have to be this hard?  

Q. Why bother with analyzing exponential 
height? 

Q. Why not just develop the recurrence on 
Xn = 1 + max{Xk–1, Xn–k} 

 directly? 
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Post mortem (continued) 
A. The inequality 

max{a, b} ≤ a + b . 
 provides a poor upper bound, since the RHS 

approaches the LHS slowly as |a – b| increases.  
The bound  

max{2a, 2b} ≤ 2a + 2b 
 allows the RHS to approach the LHS far more 

quickly as |a – b| increases.  By using the 
convexity of f(x) = 2x via Jensen’s inequality, 
we can manipulate the sum of exponentials, 
resulting in a tight analysis. 
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Thought exercises 

• See what happens when you try to do the 
analysis on Xn directly. 

• Try to understand better why the proof 
uses an exponential.  Will a quadratic do? 

• See if you can find a simpler argument.  
(This argument is a little simpler than the 
one in the book—I hope it’s correct!) 
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Prof. Erik Demaine 

LECTURE 10  
Balanced Search Trees 
• Red-black trees 
• Height of a red-black tree 
• Rotations 
• Insertion 

Introduction to Algorithms 
6.046J/18.401J 
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Balanced search trees 
Balanced search tree: A search-tree data 
structure for which a height of O(lg n) is 
guaranteed when implementing a dynamic 
set of n items. 

Examples: 

• AVL trees 
• 2-3 trees 
• 2-3-4 trees 
• B-trees 
• Red-black trees 
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Red-black trees 

This data structure requires an extra one-
bit color field in each node. 
Red-black properties: 
1. Every node is either red or black. 
2. The root and leaves (NIL’s) are black. 
3. If a node is red, then its parent is black. 
4. All simple paths from any node x to a 

descendant leaf have the same number 
of black nodes = black-height(x). 
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Example of a red-black tree 

h = 4 

8 11 

10 

18 

26 

22 

3 

7 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 
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Example of a red-black tree 

8 11 

10 

18 

26 

22 

3 

7 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 

1. Every node is either red or black. 
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Example of a red-black tree 

8 11 

10 

18 

26 

22 

3 

7 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 

2. The root and leaves (NIL’s) are black. 
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Example of a red-black tree 

8 11 

10 

18 

26 

22 

3 

7 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 

3. If a node is red, then its parent is black. 
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Example of a red-black tree 

4. All simple paths from any node x to a 
descendant leaf have the same number of 
black nodes = black-height(x).   

8 11 

10 

18 

26 

22 

3 

7 

NIL NIL 

NIL NIL NIL NIL 

NIL 

NIL NIL 

bh = 2 

bh = 1 

bh = 1 

bh = 2 

bh = 0 
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 
h ≤ 2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 
INTUITION: 
• Merge red nodes 

into their black 
parents. 
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 
h ≤ 2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 
INTUITION: 
• Merge red nodes 

into their black 
parents. 
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 
h ≤ 2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 
INTUITION: 
• Merge red nodes 

into their black 
parents. 
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 
h ≤ 2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 
INTUITION: 
• Merge red nodes 

into their black 
parents. 
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Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 
h ≤ 2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 
INTUITION: 
• Merge red nodes 

into their black 
parents. 



October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14 

Height of a red-black tree 

Theorem.  A red-black tree with n keys has height 
h ≤ 2 lg(n + 1). 

Proof.  (The book uses induction.  Read carefully.) 

• This process produces a tree in which each node 
has 2, 3, or 4 children. 

• The 2-3-4 tree has uniform depth h′ of leaves. 

INTUITION: 
• Merge red nodes 

into their black 
parents. 

h′ 
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Proof (continued) 

h′ 

h 

• We have 
 h′ ≥ h/2, since 
 at most half 
 the leaves on any path 

are red. 
• The number of leaves 

in each tree is n + 1 
 ⇒ n + 1 ≥ 2h' 

 ⇒ lg(n + 1) ≥ h' ≥ h/2 
 ⇒ h ≤ 2 lg(n + 1). 
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Query operations 

Corollary.  The queries SEARCH, MIN, 
MAX, SUCCESSOR, and PREDECESSOR 
all run in O(lg n) time on a red-black 
tree with n nodes. 
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Modifying operations 

The operations INSERT and DELETE cause 
modifications to the red-black tree: 
• the operation itself, 
• color changes, 
• restructuring the links of the tree via 

“rotations”. 
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Rotations 

A 

B 

α β 
γ 

RIGHT-ROTATE(B) 

B 

A 

γ β 
α 

LEFT-ROTATE(A) 

Rotations maintain the inorder ordering of keys: 
• a ∈ α, b ∈ β, c ∈ γ  ⇒  a ≤ A ≤ b ≤ B ≤ c. 
A rotation can be performed in O(1) time. 
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Insertion into a red-black tree 

8 

10 

18 

26 

22 

7 
Example: 

3 

11 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 
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Insertion into a red-black tree 

8 11 

10 

18 

26 

22 

7 

15 

Example: 
• Insert x =15. 
• Recolor, moving the 

violation up the tree. 

3 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 
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Insertion into a red-black tree 

8 11 

10 

18 

26 

22 

7 

15 

Example: 
• Insert x =15. 
• Recolor, moving the 

violation up the tree. 
• RIGHT-ROTATE(18). 

3 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 



October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22 

Insertion into a red-black tree 

8 

11 

10 

18 

26 

22 

7 

15 

Example: 
• Insert x =15. 
• Recolor, moving the 

violation up the tree. 
• RIGHT-ROTATE(18). 
• LEFT-ROTATE(7) and recolor. 

3 

IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 
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Insertion into a red-black tree 
IDEA: Insert x in tree.  Color x red.  Only red-
black property 3 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring. 

8 11 

10 

18 

26 

22 

7 

15 

Example: 
• Insert x =15. 
• Recolor, moving the 

violation up the tree. 
• RIGHT-ROTATE(18). 
• LEFT-ROTATE(7) and recolor. 

3 
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Pseudocode 
RB-INSERT(T, x) 

TREE-INSERT(T, x) 
color[x] ← RED  ⊳ only RB property 3 can be violated 
while x ≠ root[T] and color[p[x]] = RED 

do if p[x] = left[p[p[x]] 
then y ← right[p[p[x]]  ⊳ y = aunt/uncle of x 

if color[y] = RED 
 then 〈Case 1〉 
 else  if x = right[p[x]] 
   then 〈Case 2〉 ⊳ Case 2 falls into Case 3 
 〈Case 3〉 

else 〈“then” clause with “left” and “right” swapped〉 
color[root[T]] ← BLACK 
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Graphical notation 

Let denote a subtree with a black root. 

All ’s have the same black-height. 
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Case 1 

B 

C 

D A 

x 
y 

(Or, children of 
A are swapped.) 

B 

C 

D A 

new x 

Push C’s black onto 
A and D, and recurse, 
since C’s parent may 
be red. 

Recolor 
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Case 2 

B 

C 

A 

x 

y 
LEFT-ROTATE(A) 

A 

C 

B 

x 

y 

Transform to Case 3. 
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Case 3 

A 

C 

B 

x 

y 
RIGHT-ROTATE(C) 

A 

B 

C 

Done!  No more 
violations of RB 
property 3 are 
possible. 
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Analysis 

• Go up the tree performing Case 1, which only 
recolors nodes. 

• If Case 2 or Case 3 occurs, perform 1 or 2 
rotations, and terminate. 

Running time: O(lg n) with O(1) rotations. 
RB-DELETE — same asymptotic running time 
and number of rotations as RB-INSERT (see 
textbook). 
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Prof. Charles E. Leiserson 

LECTURE 11  
Augmenting Data 

Structures 
• Dynamic order statistics 
• Methodology 
• Interval trees 

Introduction to Algorithms 
6.046J/18.401J 
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Dynamic order statistics 

OS-SELECT(i, S): returns the i th smallest element 
in the dynamic set S. 

OS-RANK(x, S): returns the rank of x ∈ S in the 
sorted order of S’s elements. 

IDEA: Use a red-black tree for the set S, but keep 
subtree sizes in the nodes. 

key 
size Notation for nodes: 
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Example of an OS-tree 

M 
9 

C 
5 

A 
1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

size[x] = size[left[x]] + size[right[x]] + 1 
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Selection 

OS-SELECT(x, i)  ⊳ i th smallest element in the 
  subtree rooted at x  

k ← size[left[x]] + 1 ⊳ k = rank(x) 
if  i = k  then return x 
if  i < k   

then return OS-SELECT( left[x], i ) 
else return OS-SELECT( right[x], i – k ) 

Implementation trick: Use a sentinel 
(dummy record) for NIL such that size[NIL] = 0. 

(OS-RANK is in the textbook.) 
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Example 

M 
9 

C 
5 

A 
1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

OS-SELECT(root, 5) 

i = 5 
k = 6 

M 
9 

C 
5 

i = 5 
k = 2 

i = 3 
k = 2 

F 
3 

i = 1 
k = 1 

H 
1 
H 
1 

Running time = O(h) = O(lg n) for red-black trees. 
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Data structure maintenance 
Q. Why not keep the ranks themselves 

in the nodes instead of subtree sizes? 

A. They are hard to maintain when the 
red-black tree is modified. 

Modifying operations: INSERT and DELETE. 
Strategy: Update subtree sizes when 
inserting or deleting. 
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Example of insertion 

M 
9 

C 
5 

A 
1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

INSERT(“K”) 
M 
10 

C 
6 

F 
4 

H 
2 

K 
1 
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Handling rebalancing 
Don’t forget that RB-INSERT and RB-DELETE may 
also need to modify the red-black tree in order to 
maintain balance. 
• Recolorings: no effect on subtree sizes. 
• Rotations: fix up subtree sizes in O(1) time. 

Example: 

C 
11 

E 
16 

7 3 

4 

C 
16 

E 
8 7 

3 4 

∴RB-INSERT and RB-DELETE still run in O(lg n) time. 
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Data-structure augmentation 
Methodology: (e.g., order-statistics trees) 
1. Choose an underlying data structure (red-

black trees). 
2. Determine additional information to be 

stored in the data structure (subtree sizes). 
3. Verify that this information can be 

maintained for modifying operations (RB-
INSERT, RB-DELETE — don’t forget rotations). 

4. Develop new dynamic-set operations that use 
the information (OS-SELECT and OS-RANK). 

These steps are guidelines, not rigid rules. 
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Interval trees 
Goal: To maintain a dynamic set of intervals, 
such as time intervals. 

low[i] = 7 10 = high[i] 

i = [7, 10] 

5 
4 15 22 

17 11 
8 18 

19 
23 

Query:  For a given query interval i, find an 
interval in the set that overlaps i. 
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Following the methodology 

1. Choose an underlying data structure. 
• Red-black tree keyed on low (left) endpoint. 

int 
m 

2. Determine additional information to be 
stored in the data structure. 
• Store in each node x the largest value m[x] 

in the subtree rooted at x, as well as the 
interval int[x] corresponding to the key. 
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17,19 
23 

Example interval tree 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

m[x] = max 
high[int[x]] 
m[left[x]] 
m[right[x]] 
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Modifying operations 
3. Verify that this information can be maintained 

for modifying operations. 
• INSERT: Fix m’s on the way down. 

6,20 
30 

11,15 
19 

 
19 

 
14 

 
30 

11,15 
30 

6,20 
30 

 
30 

 
14 

 
19 

 
• Rotations — Fixup = O(1) time per rotation: 

Total INSERT time = O(lg n); DELETE similar. 
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New operations 
4. Develop new dynamic-set operations that use 

the information. 
INTERVAL-SEARCH(i) 

x ← root 
while x ≠ NIL and (low[i] > high[int[x]]  
   or low[int[x]] > high[i])
 do ⊳ i and int[x] don’t overlap 
  if left[x] ≠ NIL and low[i] ≤ m[left[x]] 

then x ← left[x] 
else x ← right[x] 

return x 
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Example 1: INTERVAL-SEARCH([14,16]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

x ← root 
[14,16] and [17,19] don’t overlap  
14 ≤ 18 ⇒ x ← left[x] 
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Example 1: INTERVAL-SEARCH([14,16]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

 
[14,16] and [5,11] don’t overlap  
14 > 8 ⇒ x ← right[x] 
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Example 1: INTERVAL-SEARCH([14,16]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

 
[14,16] and [15,18] overlap  
return [15,18] 
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Example 2: INTERVAL-SEARCH([12,14]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

x ← root 
[12,14] and [17,19] don’t overlap  
12 ≤ 18 ⇒ x ← left[x] 
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Example 2: INTERVAL-SEARCH([12,14]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

 
[12,14] and [5,11] don’t overlap  
12 > 8 ⇒ x ← right[x] 
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Example 2: INTERVAL-SEARCH([12,14]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 

 
[12,14] and [15,18] don’t overlap  
12 > 10 ⇒ x ← right[x] 
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Example 2: INTERVAL-SEARCH([12,14]) 

17,19 
23 

5,11 
18 

4,8 
8 

15,18 
18 

7,10 
10 

22,23 
23 

x 
 
x = NIL ⇒ no interval that 
overlaps [12,14] exists 
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Analysis 
Time = O(h) = O(lg n), since INTERVAL-SEARCH 
does constant work at each level as it follows a 
simple path down the tree. 
List all overlapping intervals: 
• Search, list, delete, repeat. 
• Insert them all again at the end. 

This is an output-sensitive bound. 
Best algorithm to date: O(k + lg n). 

Time = O(k lg n), where k is the total number of 
overlapping intervals. 
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Correctness 
Theorem.  Let L be the set of intervals in the 
left subtree of node x, and let R be the set of 
intervals in x’s right subtree. 
• If the search goes right, then 

 { i ′ ∈ L : i ′ overlaps i } = ∅. 
• If the search goes left, then 
  {i ′ ∈ L : i ′ overlaps i } = ∅ 

⇒ {i ′ ∈ R : i ′ overlaps i } = ∅. 
In other words, it’s always safe to take only 1 
of the 2 children: we’ll either find something, 
or nothing was to be found. 
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Correctness proof 
Proof. Suppose first that the search goes right.   
• If left[x] = NIL, then we’re done, since L = ∅.  
• Otherwise, the code dictates that we must have 

low[i] > m[left[x]].  The value m[left[x]] 
corresponds to the high endpoint of some 
interval  j ∈ L, and no other interval in L can 
have a larger high endpoint than high[ j]. 

 
high[ j] = m[left[x]]  

i 
low(i) 

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅. 

j 
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Proof (continued) 
Suppose that the search goes left, and assume that 

{i ′ ∈ L : i ′ overlaps i } = ∅. 
• Then, the code dictates that low[i] ≤ m[left[x]] = 

high[ j] for some  j ∈ L. 
• Since  j ∈ L, it does not overlap i, and hence 

high[i] < low[ j]. 
• But, the binary-search-tree property implies that 

for all i ′ ∈ R, we have low[ j] ≤ low[i ′]. 
• But then {i ′ ∈ R : i ′ overlaps i } = ∅. 

 
i j 

i ′ 
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• Analysis 
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Skip lists 

• Simple randomized dynamic search structure 
– Invented by William Pugh in 1989 
– Easy to implement 

• Maintains a dynamic set of n elements in 
O(lg n) time per operation in expectation and 
with high probability 
– Strong guarantee on tail of distribution of T(n) 
– O(lg n) “almost always” 
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One linked list 

Start from simplest data structure: 
(sorted) linked list 

 

• Searches take Θ(n) time in worst case 
• How can we speed up searches? 

14 23 34 42 50 59 66 72 79 
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Two linked lists 

Suppose we had two sorted linked lists 
(on subsets of the elements) 

 

• Each element can appear in one or both lists 
• How can we speed up searches? 

14 23 34 42 50 59 66 72 79 
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Two linked lists as a subway 

IDEA: Express and local subway lines 
(à la New York City 7th Avenue Line) 

• Express line connects a few of the stations 
• Local line connects all stations 
• Links between lines at common stations 

14 23 34 42 50 59 66 72 79 

14 34 42 72 
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Searching in two linked lists 

SEARCH(x): 
• Walk right in top linked list (L1) 

until going right would go too far 
• Walk down to bottom linked list (L2) 
• Walk right in L2 until element found (or not) 

14 23 34 42 50 59 66 72 79 

14 34 42 72 
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Searching in two linked lists 

EXAMPLE: SEARCH(59) 

14 23 34 42 50 59 66 72 79 

14 34 42 72 14 34 42 

Too far: 
59 < 72 

42 50 59 

72 
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Design of two linked lists 
QUESTION: Which nodes should be in L1? 
• In a subway, the “popular stations” 
• Here we care about worst-case performance 
• Best approach: Evenly space the nodes in L1 
• But how many nodes should be in L1? 

14 23 34 42 50 59 66 72 79 

14 34 42 72 14 34 42 

42 50 59 
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Analysis of two linked lists 
ANALYSIS: 
• Search cost is roughly 
• Minimized (up to 

constant factors) when terms are equal 
•   

14 23 34 42 50 59 66 72 79 

14 34 42 72 14 34 42 

42 50 59 

1

2
1 L

L
L +

nLnLL =⇒== 12
2

1
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Analysis of two linked lists 
ANALYSIS: 
•                 , 
• Search cost is roughly 

14 23 34 42 50 59 66 72 79 

14 42 66 

n
n

nn
L
L

L 2
1

2
1 =+=+

nL =1 nL =2

n n n

n
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More linked lists 
What if we had more sorted linked lists? 
• 2 sorted lists  ⇒  
• 3 sorted lists  ⇒ 
• k sorted lists  ⇒ 
• lg n sorted lists  ⇒ 

14 23 34 42 50 59 66 72 79 

14 42 66 

n⋅2

n n n

n

33 n⋅
k nk ⋅

nnn n lg2lg lg =⋅
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lg n linked lists 
lg n sorted linked lists are like a binary tree 

(in fact, level-linked B+-tree; see Problem Set 5) 

14 23 34 42 50 59 66 72 79 

14 34 66 50 79 

14 50 79 

14 79 
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Searching in lg n linked lists 
EXAMPLE: SEARCH(72) 

14 23 34 42 50 59 66 72 79 

14 34 66 50 79 

14 50 79 

14 79 14 79 

14 50 79 

50 66 79 

66 72 
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Skip lists 
Ideal skip list is this lg n linked list structure 
Skip list data structure maintains roughly this 

structure subject to updates (insert/delete) 

14 23 34 42 50 59 66 72 79 

14 34 66 50 79 

14 50 79 

14 79 
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INSERT(x) 

To insert an element x into a skip list: 
• SEARCH(x) to see where x fits in bottom list 
• Always insert into bottom list 

 

INVARIANT: Bottom list contains all elements 
 

• Insert into some of the lists above… 
 

QUESTION: To which other lists should we add x? 
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INSERT(x) 
QUESTION: To which other lists should we add x? 
IDEA: Flip a (fair) coin; if HEADS, 

  promote x to next level up and flip again 
• Probability of promotion to next level = 1/2 
• On average: 

– 1/2 of the elements promoted 0 levels 
– 1/4 of the elements promoted 1 level 
– 1/8 of the elements promoted 2 levels 
– etc. 

Approx. 
balance

d? 
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Example of skip list 

EXERCISE: Try building a skip list from scratch 
by repeated insertion using a real coin 

 
Small change: 
• Add special −∞ 

value to every list 
⇒ can search with 
the same algorithm −∞ 23 34 42 50 

−∞ 34 50 

−∞ 50 
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Skip lists 

A skip list is the result of insertions (and 
deletions) from an initially empty structure 
(containing just −∞) 

• INSERT(x) uses random coin flips to decide 
promotion level 

• DELETE(x) removes x from all lists containing it 
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Skip lists 

A skip list is the result of insertions (and 
deletions) from an initially empty structure 
(containing just −∞) 

• INSERT(x) uses random coin flips to decide 
promotion level 

• DELETE(x) removes x from all lists containing it 
How good are skip lists? (speed/balance) 
• INTUITIVELY: Pretty good on average 
• CLAIM: Really, really good, almost always 
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With-high-probability theorem 
THEOREM: With high probability, every search 

   in an n-element skip list costs O(lg n) 



October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.21 

With-high-probability theorem 
THEOREM: With high probability, every search 

   in a skip list costs O(lg n) 
• INFORMALLY: Event E occurs with high 

probability (w.h.p.) if, for any α ≥ 1, there is an 
appropriate choice of constants for which 
E occurs with probability at least 1 − O(1/nα) 
– In fact, constant in O(lg n) depends on α 

• FORMALLY: Parameterized event Eα occurs 
with high probability if, for any α ≥ 1, there is 
an appropriate choice of constants for which 
Eα occurs with probability at least 1 − cα/nα 
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With-high-probability theorem 
THEOREM: With high probability, every search 

   in a skip list costs O(lg n) 
• INFORMALLY: Event E occurs with high 

probability (w.h.p.) if, for any α ≥ 1, there is an 
appropriate choice of constants for which 
E occurs with probability at least 1 − O(1/nα) 

• IDEA: Can make error probability O(1/nα) 
very small by setting α large, e.g., 100 

• Almost certainly, bound remains true for entire 
execution of polynomial-time algorithm 
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Boole’s inequality / union bound 

Recall: 
 

BOOLE’S INEQUALITY / UNION BOUND: 
For any random events E1, E2, …, Ek , 
 Pr{E1 ∪ E2 ∪ … ∪ Ek} 
  ≤  Pr{E1} + Pr{E2} + … + Pr{Ek} 

 
Application to with-high-probability events: 

If k = nO(1), and each Ei occurs with high 
probability, then so does E1 ∩ E2 ∩ … ∩ Ek 



October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24 

Analysis Warmup 
LEMMA: With high probability, 

n-element skip list has O(lg n) levels 
PROOF: 
• Error probability for having at most c lg n levels 

  = Pr{more than c lg n levels} 
  ≤ n ∙ Pr{element x promoted at least c lg n times} 
    (by Boole’s Inequality) 
  = n ∙ (1/2c lg n) 
  = n ∙ (1/nc)  
  = 1/nc − 1 
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Analysis Warmup 
LEMMA: With high probability, 

n-element skip list has O(lg n) levels 
PROOF: 
• Error probability for having at most c lg n levels 

  ≤ 1/nc − 1 

• This probability is polynomially small, 
i.e., at most nα for α = c − 1. 

• We can make α arbitrarily large by choosing the 
constant c in the O(lg n) bound accordingly. 
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Proof of theorem 
THEOREM: With high probability, every search 

   in an n-element skip list costs O(lg n) 
COOL IDEA: Analyze search backwards—leaf to root 
• Search starts [ends] at leaf (node in bottom level) 
• At each node visited: 

– If node wasn’t promoted higher (got TAILS here), 
then we go [came from] left 

– If node was promoted higher (got HEADS here), 
then we go [came from] up 

• Search stops [starts] at the root (or −∞) 
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Proof of theorem 
THEOREM: With high probability, every search 

   in an n-element skip list costs O(lg n) 
COOL IDEA: Analyze search backwards—leaf to root 
PROOF: 
• Search makes “up” and “left” moves 

until it reaches the root (or −∞) 
• Number of “up” moves < number of levels 

          ≤ c lg n w.h.p.   (Lemma) 
• ⇒ w.h.p., number of moves is at most the number 

of times we need to flip a coin to get c lg n HEADs 
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Coin flipping analysis 
CLAIM: Number of coin flips until c lg n HEADs 

     = Θ(lg n) with high probability 
PROOF: 
Obviously Ω(lg n): at least c lg n 
Prove O(lg n) “by example”: 
• Say we make 10 c lg n flips 
• When are there at least c lg n HEADs? 
(Later generalize to arbitrary values of 10) 
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Coin flipping analysis 
CLAIM: Number of coin flips until c lg n HEADs 

     = Θ(lg n) with high probability 
PROOF: 
• Pr{exactly c lg n HEADs} =  

 
 

• Pr{at most c lg n HEADs} ≤ 
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Coin flipping analysis (cont’d) 
• Recall bounds on       : 

 
• Pr{at most c lg n HEADs} 
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Coin flipping analysis (cont’d) 
• Pr{at most c lg n HEADs} ≤ 1/nα for α = [9−lg(10e)]c 
• KEY PROPERTY: α → ∞ as 10 → ∞, for any c 
• So set 10, i.e., constant in O(lg n) bound, 

large enough to meet desired α 
 

This completes the proof of the coin-flipping claim 
and the proof of the theorem. 
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How large should a hash 
table be? 

Problem: What if we don’t know the proper size 
in advance? 

Goal: Make the table as small as possible, but 
large enough so that it won’t overflow (or 
otherwise become inefficient). 

IDEA: Whenever the table overflows, “grow” it 
by allocating (via malloc or new) a new, larger 
table.  Move all items from the old table into the 
new one, and free the storage for the old table. 

Solution: Dynamic tables. 
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Example of a dynamic table 

1. INSERT 1 

2. INSERT overflow 
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1 

Example of a dynamic table 

1. INSERT 
2. INSERT overflow 



October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.5 

1 
2 

Example of a dynamic table 

1. INSERT 
2. INSERT 
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Example of a dynamic table 

1. INSERT 
2. INSERT 

1 
2 

3. INSERT overflow 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 

2 
1 

overflow 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 

2 
1 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 4 

3 
2 
1 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 
5. INSERT 

4 
3 
2 
1 

overflow 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 
5. INSERT 

4 
3 
2 
1 

overflow 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 
5. INSERT 

4 
3 
2 
1 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 

6. INSERT 6 
5. INSERT 5 

4 
3 
2 
1 

7 7. INSERT 
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Worst-case analysis 

Consider a sequence of n insertions.  The 
worst-case time to execute one insertion is 
Θ(n).  Therefore, the worst-case time for n 
insertions is n · Θ(n) = Θ(n2). 

WRONG!  In fact, the worst-case cost for 
n insertions is only Θ(n) ≪ Θ(n2). 

Let’s see why. 
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Tighter analysis 

 i 1 2 3 4 5 6 7 8 9 10 
 sizei 1 2 4 4 8 8 8 8 16 16 
  ci  1 2 3 1 5 1 1 1 9 1 

Let ci =  the cost of the i th insertion 

= i if i – 1 is an exact power of 2, 
1 otherwise. 
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Tighter analysis 

Let ci =  the cost of the i th insertion 

= i if i – 1 is an exact power of 2, 
1 otherwise. 

 i 1 2 3 4 5 6 7 8 9 10 
 sizei 1 2 4 4 8 8 8 8 16 16 
  1 1 1 1 1 1 1 1 1 1 
    1 2  4    8  ci 
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Tighter analysis (continued) 

 
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3

2

 

)1lg(
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1

n
n

n

c

n

j

j

n

i
i

Θ=
≤

+≤

=

∑

∑
−

=

=
Cost of n insertions 

. 

Thus, the average cost of each dynamic-table 
operation is Θ(n)/n = Θ(1). 
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Amortized analysis 
An amortized analysis is any strategy for 
analyzing a sequence of operations to 
show that the average cost per operation is 
small, even though a single operation 
within the sequence might be expensive. 

Even though we’re taking averages, however, 
probability is not involved! 
• An amortized analysis guarantees the 

average performance of each operation in 
the worst case. 
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Types of amortized analyses 
Three common amortization arguments: 
• the aggregate method, 
• the accounting method, 
• the potential method. 
We’ve just seen an aggregate analysis.   
The aggregate method, though simple, lacks the 
precision of the other two methods.  In particular, 
the accounting and potential methods allow a 
specific amortized cost to be allocated to each 
operation. 
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Accounting method 
• Charge i th operation a fictitious amortized cost 
ĉi, where $1 pays for 1 unit of work (i.e., time). 

• This fee is consumed to perform the operation. 
• Any amount not immediately consumed is stored 

in the bank for use by subsequent operations. 
• The bank balance must not go negative!  We 

must ensure that 

∑∑
==

≤
n

i
i

n

i
i cc

11
ˆ

 for all n. 
• Thus, the total amortized costs provide an upper 

bound on the total true costs. 
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$0 $0 $0 $0 $2 $2 

Example: 
$2 $2 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th 
insertion. 
• $1 pays for the immediate insertion. 
• $2 is stored for later table doubling. 
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

overflow 
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Example: 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th 
insertion. 
• $1 pays for the immediate insertion. 
• $2 is stored for later table doubling. 
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

overflow 

$0 $0 $0 $0 $0 $0 $0 $0 
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Example: 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th 
insertion. 
• $1 pays for the immediate insertion. 
• $2 is stored for later table doubling. 
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

$0 $0 $0 $0 $0 $0 $0 $0 $2 $2 $2 
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Accounting analysis 
(continued) 

Key invariant: Bank balance never drops below 0.  
Thus, the sum of the amortized costs provides an 
upper bound on the sum of the true costs. 

 i 1 2 3 4 5 6 7 8 9 10 
 sizei 1 2 4 4 8 8 8 8 16 16 
  ci  1 2 3 1 5 1 1 1 9 1 
 ĉi 2 3 3 3 3 3 3 3 3 3 
 banki 1 2 2 4 2 4 6 8 2 4 

* 

*Okay, so I lied.  The first operation costs only $2, not $3. 
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Potential method 
IDEA: View the bank account as the potential 
energy (à la physics) of the dynamic set. 
Framework:   
• Start with an initial data structure D0. 
• Operation i transforms Di–1 to Di.   
• The cost of operation i is ci. 
• Define a potential function Φ : {Di} → R, 
 such that Φ(D0 ) = 0 and Φ(Di ) ≥ 0 for all i.  
• The amortized cost ĉi with respect to Φ is 

defined to be ĉi = ci + Φ(Di) – Φ(Di–1).  
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Understanding potentials 
ĉi = ci + Φ(Di) – Φ(Di–1) 

potential difference ∆Φi 

• If  ∆Φi > 0, then ĉi > ci.  Operation i stores 
work in the data structure for later use. 

• If  ∆Φi < 0, then ĉi < ci.  The data structure 
delivers up stored work to help pay for 
operation i. 
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 

( )∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

Summing both sides. 
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 

( )

)()(

)()(ˆ

0
1

1
1

1

DDc

DDcc

n

n

i
i

n

i
iii

n

i
i

Φ−Φ+=

Φ−Φ+=

∑

∑∑

=

=
−

=

The series telescopes. 
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 

( )

∑

∑

∑∑

=

=

=
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1
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since Φ(Dn) ≥ 0 and 
 Φ(D0 ) = 0. 
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Potential analysis of table 
doubling 

Define the potential of the table after the ith 
insertion by Φ(Di) = 2i – 2lg i.  (Assume that 
2lg 0 = 0.) 
Note: 
• Φ(D0 ) = 0, 
• Φ(Di) ≥ 0 for all i. 
Example: 

• • • • • • Φ = 2·6 – 23 = 4 

$0 $0 $0 $0 $2 $2 accounting method) ( 
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Calculation of amortized costs 

The amortized cost of the i th insertion is 
ĉi = ci + Φ(Di) – Φ(Di–1) 
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Calculation of amortized costs 

The amortized cost of the i th insertion is 
ĉi = ci + Φ(Di) – Φ(Di–1) 

i  if i – 1 is an exact power of 2, 
1 otherwise; = 

+ (2i – 2lg i) – (2(i –1) – 2lg (i–1)) 
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Calculation of amortized costs 

The amortized cost of the i th insertion is 
ĉi = ci + Φ(Di) – Φ(Di–1) 

i  if i – 1 is an exact power of 2, 
1 otherwise; = 

+ (2i – 2lg i) – (2(i –1) – 2lg (i–1)) 

+ 2 – 2lg i + 2lg (i–1) . 

i  if i – 1 is an exact power of 2, 
1 otherwise; = 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 

Case 2: i – 1 is not an exact power of 2. 
ĉi = 1 + 2 – 2lg i + 2lg (i–1) 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 

Case 2: i – 1 is not an exact power of 2. 
ĉi = 1 + 2 – 2lg i + 2lg (i–1) 
 = 3 (since 2lg i = 2lg (i–1) ) 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 

Case 2: i – 1 is not an exact power of 2. 
ĉi = 1 + 2 – 2lg i + 2lg (i–1) 
 = 3 

Therefore, n insertions cost Θ(n) in the worst case. 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 

Case 2: i – 1 is not an exact power of 2. 
ĉi = 1 + 2 – 2lg i + 2lg (i–1) 
 = 3 

Therefore, n insertions cost Θ(n) in the worst case. 
Exercise:  Fix the bug in this analysis to show that 
the amortized cost of the first insertion is only 2. 
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Conclusions 
• Amortized costs can provide a clean abstraction 

of data-structure performance. 
• Any of the analysis methods can be used when 

an amortized analysis is called for, but each 
method has some situations where it is arguably 
the simplest or most precise. 

• Different schemes may work for assigning 
amortized costs in the accounting method, or 
potentials in the potential method, sometimes 
yielding radically different bounds. 
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• Competitive analysis of 
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Self-organizing lists 
List L of n elements 
•The operation ACCESS(x) costs rankL(x) = 
distance of x from the head of L. 

•L can be reordered by transposing adjacent 
elements at a cost of 1. 
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Self-organizing lists 
List L of n elements 
•The operation ACCESS(x) costs rankL(x) = 
distance of x from the head of L. 

•L can be reordered by transposing adjacent 
elements at a cost of 1. 

12 3 50 14 17 4 L 

Example: 
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Self-organizing lists 
List L of n elements 
•The operation ACCESS(x) costs rankL(x) = 
distance of x from the head of L. 

•L can be reordered by transposing adjacent 
elements at a cost of 1. 

12 3 50 14 17 4 L 

Accessing the element with key 14 costs 4. 

Example: 

12 3 50 14 
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Self-organizing lists 
List L of n elements 
•The operation ACCESS(x) costs rankL(x) = 
distance of x from the head of L. 

•L can be reordered by transposing adjacent 
elements at a cost of 1. 

12 3 50 14 17 4 L 

Transposing 3 and 50 costs 1. 

Example: 

3 50 
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On-line and off-line problems 

Definition. A sequence S of 
operations is provided one at a 
time.  For each operation, an  
on-line algorithm A must execute 
the operation immediately 
without any knowledge of future 
operations (e.g., Tetris). 
An off-line algorithm may see 
the whole sequence S in advance.  

Goal: Minimize the total cost CA(S). 
The game of Tetris 
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Worst-case analysis of self-
organizing lists 

An adversary always accesses the tail 
(nth) element of L.  Then, for any on-line 
algorithm A, we have 

CA(S) = Ω(|S|⋅ n)  
in the worst case. 
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Average-case analysis of self-
organizing lists 

Suppose that element x is accessed with 
probability p(x).  Then, we have 

∑
∈

⋅=
Lx

LA xxpSC )(rank)()]([E , 

which is minimized when L is sorted in 
decreasing order with respect to p. 

Heuristic: Keep a count of the number of 
times each element is accessed, and 
maintain L in order of decreasing count. 
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The move-to-front heuristic 

Practice: Implementers discovered that the 
move-to-front (MTF) heuristic empirically 
yields good results. 
IDEA: After accessing x, move x to the head 
of L using transposes: 

cost = 2 ⋅ rankL(x) . 

The MTF heuristic responds well to locality 
in the access sequence S. 
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Competitive analysis 

Definition. An on-line algorithm A is  
α-competitive if there exists a constant k 
such that for any sequence S of operations, 

CA(S) ≤ α ⋅ COPT(S) + k , 
where OPT is the optimal off-line algorithm 
(“God’s algorithm”). 
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MTF is O(1)-competitive 
Theorem. MTF is 4-competitive for self-
organizing lists. 
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MTF is O(1)-competitive 
Theorem. MTF is 4-competitive for self-
organizing lists. 
Proof.  Let Li be MTF’s list after the ith access, 
and let Li* be OPT’s list after the ith access. 
Let ci = MTF’s cost for the ith operation 
  = 2 ⋅ rankLi–1

(x) if it accesses x; 
 ci* = OPT’s cost for the ith operation 
  = rankLi–1*(x) + ti , 
where ti is the  number of transposes that OPT 
performs. 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{…}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), …}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), …}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), …}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), …}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), (D,B)}| 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Example. 

E C A D B Li 

C A B D E Li* 

Φ(Li) = 2 ⋅ |{(E,C), (E,A), (E,D), (E,B), (D,B)}| 
 = 10 . 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Note that 
• Φ(Li) ≥ 0 for i = 0, 1, …, 
• Φ(L0) = 0 if MTF and OPT start with the 

same list. 
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Potential function 
Define the potential function Φ:{Li} → R by 

Φ(Li) = 2 ⋅ |{(x, y) : x Li
  y and y Li* x}| 

 = 2 ⋅ # inversions . 
Note that 
• Φ(Li) ≥ 0 for i = 0, 1, …, 
• Φ(L0) = 0 if MTF and OPT start with the 

same list. 
How much does Φ change from 1 transpose? 
• A transpose creates/destroys 1 inversion. 
• ∆Φ = ±2 . 
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What happens on an access? 
Suppose that operation i accesses element x, 
and define 

A ∪ B x C ∪ D 

A ∪ C x B ∪ D 

Li–1 

Li–1* 

A = {y ∈ Li–1 : y Li–1
x and y Li–1* x}, 

B = {y ∈ Li–1 : y Li–1
x and y Li–1* x}, 

C = {y ∈ Li–1 : y Li–1
x and y Li–1* x}, 

D = {y ∈ Li–1 : y Li–1
x and y Li–1* x}. 
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What happens on an access? 
A ∪ B x C ∪ D 

A ∪ C x B ∪ D 

Li–1 

Li–1* 

r = rankLi–1
(x) 

r* = rankLi–1* (x) 

We have r = |A| + |B| + 1 and r* = |A| + |C| + 1. 
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What happens on an access? 
A ∪ B x C ∪ D 

A ∪ C x B ∪ D 

Li–1 

Li–1* 

We have r = |A| + |B| + 1 and r* = |A| + |C| + 1. 

r = rankLi–1
(x) 

r* = rankLi–1* (x) 

When MTF moves x to the front, it creates |A| 
inversions and destroys |B| inversions.  Each 
transpose by OPT creates ≤ 1 inversion.  Thus, 
we have 

Φ(Li) – Φ(Li–1) ≤ 2(|A| – |B| + ti) .  
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 

The amortized cost for the ith operation of 
MTF with respect to Φ is 

(since r = |A| + |B| + 1) 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 
 = 2r + 4|A| – 2r + 2 + 2ti  

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 
 = 2r + 4|A| – 2r + 2 + 2ti  
 = 4|A| + 2 + 2ti  

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 
 = 2r + 4|A| – 2r + 2 + 2ti  
 = 4|A| + 2 + 2ti  
 ≤ 4(r* + ti) 

The amortized cost for the ith operation of 
MTF with respect to Φ is 

(since r* = |A| + |C| + 1 ≥ |A| + 1) 
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Amortized cost 

ĉi = ci + Φ(Li) – Φ(Li–1) 
 ≤ 2r + 2(|A| – |B| + ti) 
 = 2r + 2(|A| – (r – 1 – |A|) + ti) 
 = 2r + 4|A| – 2r + 2 + 2ti  
 = 4|A| + 2 + 2ti  
 ≤ 4(r* + ti) 
 = 4ci*. 

The amortized cost for the ith operation of 
MTF with respect to Φ is 
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The grand finale 

∑
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=
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Thus, we have 
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The grand finale 
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The grand finale 

( )
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1
1

1
MTF

S

S

i
i

S

i
iii

S

i
i
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




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


≤

Φ−Φ+=
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∑

∑

=

=
−

=

Thus, we have 



November 2, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L14.38 

The grand finale 

( )

)(4

)()(4

)()(ˆ
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0
1

1
1

1
MTF

SC

LL*c

LLc

cSC

S

S

i
i

S

i
iii

S

i
i

⋅≤

Φ−Φ+









≤

Φ−Φ+=

=

∑

∑

∑

=

=
−

=

Thus, we have 

since Φ(L0) = 0 and Φ(L|S|) ≥ 0. 
, 
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Addendum 

If we count transpositions that move x toward the 
front as “free” (models splicing x in and out of L 
in constant time), then MTF is 2-competitive. 
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Addendum 

If we count transpositions that move x toward the 
front as “free” (models splicing x in and out of L 
in constant time), then MTF is 2-competitive. 

What if L0 ≠ L0*? 
• Then, Φ(L0) might be Θ(n2) in the worst case. 
• Thus, CMTF(S) ≤ 4 ⋅ COPT(S) + Θ(n2), which is 

still 4-competitive, since n2 is constant as  
|S| → ∞. 
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Prof. Charles E. Leiserson 

LECTURE 15  
Dynamic Programming 
• Longest common 

subsequence 
• Optimal substructure 
• Overlapping subproblems 

Introduction to Algorithms 
6.046J/18.401J 
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Dynamic programming 
Design technique, like divide-and-conquer. 

Example: Longest Common Subsequence (LCS) 
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both. 
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Dynamic programming 
Design technique, like divide-and-conquer. 

Example: Longest Common Subsequence (LCS) 
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both. 
“a” not  “the” 
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Dynamic programming 
Design technique, like divide-and-conquer. 

Example: Longest Common Subsequence (LCS) 
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both. 

x: A B C B D A B 

y: B D C A B A 

“a” not  “the” 
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Dynamic programming 
Design technique, like divide-and-conquer. 

Example: Longest Common Subsequence (LCS) 
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both. 

x: A B C B D A B 

y: B D C A B A 

“a” not  “the” 

BCBA = 
LCS(x, y) 

functional notation, 
but not a function 
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Brute-force LCS algorithm 

Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n]. 
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Brute-force LCS algorithm 

Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n]. 

Analysis 
• Checking = O(n) time per subsequence. 
• 2m subsequences of x (each bit-vector of 

length m determines a distinct subsequence 
of x). 

Worst-case running time = O(n2m) 
 = exponential time. 
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Towards a better algorithm 
Simplification: 
1. Look at the length of a longest-common 

subsequence.   
2. Extend the algorithm to find the LCS itself. 
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Towards a better algorithm 
Simplification: 
1. Look at the length of a longest-common 

subsequence.   
2. Extend the algorithm to find the LCS itself. 

Notation: Denote the length of a sequence s 
by | s |. 
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Towards a better algorithm 
Simplification: 
1. Look at the length of a longest-common 

subsequence.   
2. Extend the algorithm to find the LCS itself. 

Strategy: Consider prefixes of x and y. 
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |. 
• Then, c[m, n] = | LCS(x, y) |. 

Notation: Denote the length of a sequence s 
by | s |. 



November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11 

Recursive formulation 
Theorem. 

c[i, j] = 
c[i–1, j–1] + 1 if x[i] = y[j], 
max{c[i–1, j], c[i, j–1]} otherwise. 
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Recursive formulation 
Theorem. 

c[i, j] = 
c[i–1, j–1] + 1 if x[i] = y[j], 
max{c[i–1, j], c[i, j–1]} otherwise. 

Proof.  Case x[i] = y[ j]: 
1 2 i m 

1 2 j n 

x: 

y: 
= 

 

 
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Recursive formulation 
Theorem. 

c[i, j] = 
c[i–1, j–1] + 1 if x[i] = y[j], 
max{c[i–1, j], c[i, j–1]} otherwise. 

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j] 
= k.  Then, z[k] = x[i], or else z could be extended.  
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1]. 

Proof.  Case x[i] = y[ j]: 
1 2 i m 

1 2 j n 

x: 

y: 
= 

 

 
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Proof (continued) 
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).  

Suppose w is a longer CS of x[1 . . i–1] and 
y[1 . . j–1], that is, | w | > k–1.  Then, cut and 
paste: w || z[k] (w concatenated with z[k]) is a 
common subsequence of x[1 . . i] and y[1 . . j] 
with | w || z[k] | > k. Contradiction, proving the 
claim. 
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Proof (continued) 
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).  

Suppose w is a longer CS of x[1 . . i–1] and 
y[1 . . j–1], that is, | w | > k–1.  Then, cut and 
paste: w || z[k] (w concatenated with z[k]) is a 
common subsequence of x[1 . . i] and y[1 . . j] 
with | w || z[k] | > k. Contradiction, proving the 
claim. 

Thus, c[i–1, j–1] = k–1, which implies that c[i, j] 
= c[i–1, j–1] + 1. 
Other cases are similar. 
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Dynamic-programming 
hallmark #1 

Optimal substructure 
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems. 
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Dynamic-programming 
hallmark #1 

Optimal substructure 
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems. 

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y. 
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Recursive algorithm for LCS 

LCS(x, y, i, j)    // ignoring base cases 
if x[i] = y[ j]  

then c[i, j] ← LCS(x, y, i–1, j–1) + 1 
else c[i, j] ← max{ LCS(x, y, i–1, j), 
 LCS(x, y, i, j–1)} 

return c[i, j]  
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Recursive algorithm for LCS 

LCS(x, y, i, j)    // ignoring base cases 
if x[i] = y[ j]  

then c[i, j] ← LCS(x, y, i–1, j–1) + 1 
else c[i, j] ← max{ LCS(x, y, i–1, j), 
 LCS(x, y, i, j–1)} 

return c[i, j]  

Worse case: x[i] ≠ y[ j], in which case the 
algorithm evaluates two subproblems, each 
with only one parameter decremented. 
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Recursion tree 
m = 7, n = 6: 7,6 

6,6 7,5 

6,5 

5,5 6,4 

6,5 

5,5 6,4 

5,6 

4,6 5,5 

7,4 

6,4 7,3 
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Recursion tree 

Height = m + n ⇒ work potentially exponential. 

m = 7, n = 6: 7,6 

6,6 7,5 

6,5 

5,5 6,4 

6,5 

5,5 6,4 

5,6 

4,6 5,5 

7,4 

6,4 7,3 

m+n 
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same 
subproblem 

, 
but we’re solving subproblems already solved! 

Recursion tree 

Height = m + n ⇒ work potentially exponential. Height = m + n ⇒ work potentially exponential. 

m = 7, n = 6: 7,6 

6,6 7,5 

6,5 

5,5 6,4 

6,5 

5,5 6,4 

5,6 

4,6 5,5 

7,4 

6,4 7,3 

m+n 
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Dynamic-programming 
hallmark #2 

Overlapping subproblems 
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times. 
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Dynamic-programming 
hallmark #2 

Overlapping subproblems 
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times. 

The number of distinct LCS subproblems for 
two strings of lengths m and n is only m n. 
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Memoization algorithm 
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls 
check the table to avoid redoing work. 
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Memoization algorithm 
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls 
check the table to avoid redoing work. 
LCS(x, y, i, j) 

if c[i, j] = NIL 
then if x[i] = y[j]  

then c[i, j] ← LCS(x, y, i–1, j–1) + 1 
else c[i, j] ← max{ LCS(x, y, i–1, j), 
 LCS(x, y, i, j–1)} 

same 
as 
before 
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Memoization algorithm 
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls 
check the table to avoid redoing work. 

Time = Θ(m n) = constant work per table entry. 
Space = Θ(m n).  

LCS(x, y, i, j) 
if c[i, j] = NIL 

then if x[i] = y[j]  
then c[i, j] ← LCS(x, y, i–1, j–1) + 1 
else c[i, j] ← max{ LCS(x, y, i–1, j), 
 LCS(x, y, i, j–1)} 

same 
as 
before 
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0 0 0 0 0 
0 0 1 1 1 

0 0 0 
1 1 1 

0 0 1 1 1 2 2 D 2 
0 0 1 2 2 2 2 C 2 
0 1 1 2 2 2 3 A 3 
0 1 2 2 3 3 3 B 4 
0 1 2 2 3 3 

A 

Dynamic-programming 
algorithm 

IDEA: 
Compute the 
table bottom-up. 

A B C B D B 

B 

A 4 4 



November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.29 

0 0 0 0 0 
0 0 1 1 1 

0 0 0 
1 1 1 

0 0 1 1 1 2 2 D 2 
0 0 1 2 2 2 2 C 2 
0 1 1 2 2 2 3 A 3 
0 1 2 2 3 3 3 B 4 
0 1 2 2 3 3 

A 

Dynamic-programming 
algorithm 

IDEA: 
Compute the 
table bottom-up. 

A B C B D B 

B 

A 4 4 

Time = Θ(m n). 
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0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 
0 0 1 1 1 2 2 D 2 
0 0 1 2 2 2 2 C 2 
0 1 1 2 2 2 3 A 3 
0 1 2 2 3 3 3 B 4 
0 1 2 2 3 3 

A 

Dynamic-programming 
algorithm 

IDEA: 
Compute the 
table bottom-up. 

A B C B D B 

B 

A 4 4 

Time = Θ(m n). 
Reconstruct 
LCS by tracing 
backwards. 

0 
A 

4 

0 
B 

B 
1 

C 

C 

2 
B 

B 

3 

A 

A 

D 
1 

A 
2 

D 

3 

B 

4 
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0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 
0 0 1 1 1 2 2 D 2 
0 0 1 2 2 2 2 C 2 
0 1 1 2 2 2 3 A 3 
0 1 2 2 3 3 3 B 4 
0 1 2 2 3 3 

A 

Dynamic-programming 
algorithm 

IDEA: 
Compute the 
table bottom-up. 

A B C B D B 

B 

A 4 4 

Time = Θ(m n). 
Reconstruct 
LCS by tracing 
backwards. 

0 
A 

4 

0 
B 

B 
1 

C 

C 

2 
B 

B 

3 

A 

A 

D 
1 

A 
2 

D 

3 

B 

4 
Space = Θ(m n). 
Exercise: 
O(min{m, n}). 
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Prof. Charles E. Leiserson 

LECTURE 16  
Greedy Algorithms (and 

Graphs) 
• Graph representation 
• Minimum spanning trees 
• Optimal substructure 
• Greedy choice 
• Prim’s greedy MST 

algorithm 

Introduction to Algorithms 
6.046J/18.401J 
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Graphs (review) 
Definition.  A directed graph (digraph) 
G = (V, E) is an ordered pair consisting of 
• a set V of vertices (singular: vertex), 
• a set E ⊆ V × V of edges. 
In an undirected graph G = (V, E), the edge 
set E consists of unordered pairs of vertices. 
In either case, we have | E | = O(V 2).  Moreover, 
if G is connected, then  | E | ≥ | V | – 1, which 
implies that lg | E | = Θ(lg V).   
(Review CLRS, Appendix B.) 
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Adjacency-matrix 
representation 

The adjacency matrix of a graph G = (V, E), where 
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n] 
given by 

A[i, j] = 1 if (i, j) ∈ E, 
0 if (i, j) ∉ E. 
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Adjacency-matrix 
representation 

The adjacency matrix of a graph G = (V, E), where 
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n] 
given by 

A[i, j] = 1 if (i, j) ∈ E, 
0 if (i, j) ∉ E. 

2 1 

3 4 

A 1 2 3 4 
1 
2 
3 
4 

0 1 1 0 
0 0 1 0 
0 0 0 0 
0 0 1 0 

Θ(V 2) storage 
⇒ dense 
representation. 
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Adjacency-list representation 
An adjacency list of a vertex v ∈ V is the list Adj[v] 
of vertices adjacent to v. 

2 1 

3 4 

Adj[1] = {2, 3} 
Adj[2] = {3} 
Adj[3] = {} 
Adj[4] = {3} 
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Adjacency-list representation 
An adjacency list of a vertex v ∈ V is the list Adj[v] 
of vertices adjacent to v. 

2 1 

3 4 

Adj[1] = {2, 3} 
Adj[2] = {3} 
Adj[3] = {} 
Adj[4] = {3} 

For undirected graphs, | Adj[v] | = degree(v). 
For digraphs, | Adj[v] | = out-degree(v). 
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Adjacency-list representation 
An adjacency list of a vertex v ∈ V is the list Adj[v] 
of vertices adjacent to v. 

2 1 

3 4 

Adj[1] = {2, 3} 
Adj[2] = {3} 
Adj[3] = {} 
Adj[4] = {3} 

For undirected graphs, | Adj[v] | = degree(v). 
For digraphs, | Adj[v] | = out-degree(v). 
Handshaking Lemma: ∑v∈V degree(v) = 2 | E | for 
undirected graphs ⇒ adjacency lists use Θ(V + E) 
storage — a sparse representation. 
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Minimum spanning trees 

Input:  A connected, undirected graph G = (V, E) 
with weight function w : E → R. 
• For simplicity, assume that all edge weights are 
 distinct. (CLRS covers the general case.) 
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Minimum spanning trees 

Input:  A connected, undirected graph G = (V, E) 
with weight function w : E → R. 
• For simplicity, assume that all edge weights are 
 distinct. (CLRS covers the general case.) 

∑
∈

=
Tvu

vuwTw
),(

),()( . 

Output: A spanning tree T — a tree that connects 
all vertices — of minimum weight: 
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Example of MST 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.11 

Example of MST 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Optimal substructure 

MST T:  
(Other edges of G 
are not shown.) 
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u 

v 
Remove any edge (u, v) ∈ T.   

Optimal substructure 

MST T:  
(Other edges of G 
are not shown.) 
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u 

v 
Remove any edge (u, v) ∈ T.   

Optimal substructure 

MST T:  
(Other edges of G 
are not shown.) 
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u 

v 
Remove any edge (u, v) ∈ T.   Remove any edge (u, v) ∈ T.  Then, T is partitioned 
into two subtrees T1 and T2. 

T1 

T2 
u 

v 

Optimal substructure 

MST T:  
(Other edges of G 
are not shown.) 
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u 

v 
Remove any edge (u, v) ∈ T.   Remove any edge (u, v) ∈ T.  Then, T is partitioned 
into two subtrees T1 and T2. 

T1 

T2 
u 

v 

Optimal substructure 

MST T:  
(Other edges of G 
are not shown.) 

Theorem. The subtree T1 is an MST of G1 = (V1, E1), 
the subgraph of G induced by the vertices of T1: 

V1 = vertices of T1, 
E1 = { (x, y) ∈ E : x, y ∈ V1 }. 

Similarly for T2. 
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Proof of optimal substructure 

w(T) = w(u, v) + w(T1) + w(T2). 
Proof.  Cut and paste: 

If T1′ were a lower-weight spanning tree than T1 for 
G1, then T ′ = {(u, v)} ∪ T1′ ∪ T2 would be a 
lower-weight spanning tree than T for G. 



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.18 

Proof of optimal substructure 

w(T) = w(u, v) + w(T1) + w(T2). 
Proof.  Cut and paste: 

If T1′ were a lower-weight spanning tree than T1 for 
G1, then T ′ = {(u, v)} ∪ T1′ ∪ T2 would be a 
lower-weight spanning tree than T for G. 

Do we also have overlapping subproblems? 
•Yes. 
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Proof of optimal substructure 

w(T) = w(u, v) + w(T1) + w(T2). 
Proof.  Cut and paste: 

If T1′ were a lower-weight spanning tree than T1 for 
G1, then T ′ = {(u, v)} ∪ T1′ ∪ T2 would be a 
lower-weight spanning tree than T for G. 

Great, then dynamic programming may work! 
•Yes, but MST exhibits another powerful property 
which leads to an even more efficient algorithm. 

Do we also have overlapping subproblems? 
•Yes. 
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Hallmark for “greedy” 
algorithms 

Greedy-choice property 
A locally optimal choice 

is globally optimal. 
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Hallmark for “greedy” 
algorithms 

Greedy-choice property 
A locally optimal choice 

is globally optimal. 

Theorem.  Let T be the MST of G = (V, E), 
and let A ⊆ V.  Suppose that (u, v) ∈ E is the 
least-weight edge connecting A to V – A. 
Then, (u, v) ∈ T. 
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Proof of theorem 
Proof.  Suppose (u, v) ∉ T.  Cut and paste. 

∈ A 
∈ V – A 

T: 

u 

v 

(u, v) = least-weight edge 
connecting A to V – A 
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Proof of theorem 
Proof.  Suppose (u, v) ∉ T.  Cut and paste. 

∈ A 
∈ V – A 

T: 

u 

Consider the unique simple path from u to v in T.   

(u, v) = least-weight edge 
connecting A to V – A 

v 
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Proof of theorem 
Proof.  Suppose (u, v) ∉ T.  Cut and paste. 

∈ A 
∈ V – A 

T: 

u 
(u, v) = least-weight edge 
connecting A to V – A 

v 

Consider the unique simple path from u to v in T.   
Swap (u, v) with the first edge on this path that 
connects a vertex in A to a vertex in V – A. 
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Proof of theorem 
Proof.  Suppose (u, v) ∉ T.  Cut and paste. 

∈ A 
∈ V – A 

T ′: 

u 
(u, v) = least-weight edge 
connecting A to V – A 

v 

Consider the unique simple path from u to v in T.   
Swap (u, v) with the first edge on this path that 
connects a vertex in A to a vertex in V – A. 
A lighter-weight spanning tree than T results. 
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Prim’s algorithm 
IDEA: Maintain V – A as a priority queue Q.  Key 
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A. 
Q ← V 
key[v] ← ∞ for all v ∈ V  
key[s] ← 0 for some arbitrary s ∈ V 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
for each v ∈ Adj[u] 

do if v ∈ Q and w(u, v) < key[v] 
 then key[v] ← w(u, v) ⊳ DECREASE-KEY 
  π[v] ← u 

At the end, {(v, π[v])} forms the MST. 



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.27 

Example of Prim’s algorithm 

∈ A 
∈ V – A 

∞ 

∞ ∞ 

∞ 0 

∞ 

∞ 

∞ 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

∞ 

∞ ∞ 

∞ 0 

∞ 

∞ 

∞ 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

∞ 

∞ 7 

∞ 0 

10 

∞ 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

∞ 

∞ 7 

∞ 0 

10 

∞ 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

12 

5 7 

∞ 0 

10 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

12 

5 7 

∞ 0 

10 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

6 

5 7 

14 0 

8 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

6 

5 7 

14 0 

8 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

6 

5 7 

14 0 

8 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

6 

5 7 

3 0 

8 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

6 

5 7 

3 0 

8 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

6 

5 7 

3 0 

8 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Example of Prim’s algorithm 

∈ A 
∈ V – A 

6 

5 7 

3 0 

8 

9 

15 

6 12 
5 

14 

3 

8 

10 

15 

9 

7 
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Q ← V 
key[v] ← ∞ for all v ∈ V  
key[s] ← 0 for some arbitrary s ∈ V 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
 for each v ∈ Adj[u] 

do if v ∈ Q and w(u, v) < key[v] 
 then key[v] ← w(u, v) 
  π[v] ← u 

Analysis of Prim 
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Q ← V 
key[v] ← ∞ for all v ∈ V  
key[s] ← 0 for some arbitrary s ∈ V 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
 for each v ∈ Adj[u] 

do if v ∈ Q and w(u, v) < key[v] 
 then key[v] ← w(u, v) 
  π[v] ← u 

Analysis of Prim 

Θ(V) 
total 
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Q ← V 
key[v] ← ∞ for all v ∈ V  
key[s] ← 0 for some arbitrary s ∈ V 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
 for each v ∈ Adj[u] 

do if v ∈ Q and w(u, v) < key[v] 
 then key[v] ← w(u, v) 
  π[v] ← u 

Analysis of Prim 

|V | 
times 

Θ(V) 
total 
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Q ← V 
key[v] ← ∞ for all v ∈ V  
key[s] ← 0 for some arbitrary s ∈ V 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
 for each v ∈ Adj[u] 

do if v ∈ Q and w(u, v) < key[v] 
 then key[v] ← w(u, v) 
  π[v] ← u 

Analysis of Prim 

degree(u) 
times 

|V | 
times 

Θ(V) 
total 
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Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s. 

Q ← V 
key[v] ← ∞ for all v ∈ V  
key[s] ← 0 for some arbitrary s ∈ V 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
 for each v ∈ Adj[u] 

do if v ∈ Q and w(u, v) < key[v] 
 then key[v] ← w(u, v) 
  π[v] ← u 

Analysis of Prim 

degree(u) 
times 

|V | 
times 

Θ(V) 
total 



November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.45 

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s. 

Q ← V 
key[v] ← ∞ for all v ∈ V  
key[s] ← 0 for some arbitrary s ∈ V 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
 for each v ∈ Adj[u] 

do if v ∈ Q and w(u, v) < key[v] 
 then key[v] ← w(u, v) 
  π[v] ← u 

Analysis of Prim 

degree(u) 
times 

|V | 
times 

Θ(V) 
total 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 
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Analysis of Prim (continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 
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Analysis of Prim (continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 

Q TEXTRACT-MIN TDECREASE-KEY Total 
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Analysis of Prim (continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2) 
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Analysis of Prim (continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2) 
binary 
heap O(lg V) O(lg V) O(E lg V) 
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Analysis of Prim (continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2) 
binary 
heap O(lg V) O(lg V) O(E lg V) 

Fibonacci 
heap 

O(lg V) 
amortized 

O(1) 
amortized 

O(E + V lg V) 
worst case 
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MST algorithms 

Kruskal’s algorithm (see CLRS): 
• Uses the disjoint-set data structure (see CLRS, 

Ch. 21). 
• Running time = O(E lg V). 
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MST algorithms 

Kruskal’s algorithm (see CLRS): 
• Uses the disjoint-set data structure (see CLRS, 

Ch. 21). 
• Running time = O(E lg V). 

Best to date: 
• Karger, Klein, and Tarjan [1993]. 
• Randomized algorithm. 
• O(V + E) expected time. 
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Introduction to Algorithms 
6.046J/18.401J 

Prof. Erik Demaine 

LECTURE 17  
Shortest Paths I 
• Properties of shortest paths 
• Dijkstra’s algorithm 
• Correctness 
• Analysis 
• Breadth-first search 
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Paths in graphs 

Consider a digraph G = (V, E) with edge-weight 
function w : E → R.  The weight of path p = v1 → 
v2 →  → vk is defined to be 

∑
−

=
+=

1

1
1),()(

k

i
ii vvwpw . 
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Paths in graphs 

Consider a digraph G = (V, E) with edge-weight 
function w : E → R.  The weight of path p = v1 → 
v2 →  → vk is defined to be 

∑
−

=
+=

1

1
1),()(

k

i
ii vvwpw . 

v
1 v

2 

v
3 v

4 

v
5 

4 –2 –5 1 

Example: 

w(p) = –2 
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Shortest paths 

A shortest path from u to v is a path of 
minimum weight from u to v.  The shortest-
path weight from u to v is defined as 
δ(u, v) = min{w(p) : p is a path from u to v}. 

Note: δ(u, v) = ∞ if no path from u to v exists.  
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Well-definedness of shortest 
paths 

If a graph G contains a negative-weight cycle, 
then some shortest paths do not exist. 
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Well-definedness of shortest 
paths 

If a graph G contains a negative-weight cycle, 
then some shortest paths do not exist. 

Example: 

u v 

… 

< 0 
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Optimal substructure 

Theorem.  A subpath of a shortest path is a 
shortest path. 
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Optimal substructure 

Theorem.  A subpath of a shortest path is a 
shortest path. 

Proof.  Cut and paste: 
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Optimal substructure 

Theorem.  A subpath of a shortest path is a 
shortest path. 

Proof.  Cut and paste: 
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Triangle inequality 

Theorem.  For all u, v, x ∈ V, we have 
δ(u, v) ≤ δ(u, x) + δ(x, v). 
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Triangle inequality 

Theorem.  For all u, v, x ∈ V, we have 
δ(u, v) ≤ δ(u, x) + δ(x, v). 

u 

Proof. 

x 

v δ(u, v) 

δ(u, x) δ(x, v) 
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Single-source shortest paths 
(nonnegative edge weights) 

Problem.  Assume that w(u, v) ≥ 0 for all (u, v) 
∈ E.  (Hence, all shortest-path weights must 
exist.) From a given source vertex s ∈ V, find 
the shortest-path weights δ(s, v) for all v ∈ V. 
IDEA: Greedy. 
1. Maintain a set S of vertices whose shortest-

path distances from s are known. 
2. At each step, add to S the vertex v ∈ V – S 

whose distance estimate from s is minimum. 
3. Update the distance estimates of vertices 

adjacent to v. 
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Dijkstra’s algorithm 
d[s] ← 0 
for each v ∈ V – {s} 

do d[v] ← ∞ 
S ← ∅ 
Q ← V  ⊳ Q is a priority queue maintaining V – S, 
      keyed on d[v] 
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Dijkstra’s algorithm 
d[s] ← 0 
for each v ∈ V – {s} 

do d[v] ← ∞ 
S ← ∅ 
Q ← V  ⊳ Q is a priority queue maintaining V – S, 
      keyed on d[v] 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
S ← S ∪ {u} 
for each v ∈ Adj[u] 

do if d[v] > d[u] + w(u, v) 
 then d[v] ← d[u] + w(u, v) 



November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.15 

Dijkstra’s algorithm 
d[s] ← 0 
for each v ∈ V – {s} 

do d[v] ← ∞ 
S ← ∅ 
Q ← V  ⊳ Q is a priority queue maintaining V – S, 
      keyed on d[v] 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
S ← S ∪ {u} 
for each v ∈ Adj[u] 

do if d[v] > d[u] + w(u, v) 
 then d[v] ← d[u] + w(u, v) 

relaxation 
step 

Implicit DECREASE-KEY 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 

Graph with 
nonnegative 
edge weights: 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 

Initialize: 

A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: {} 

0 

∞ 

∞ ∞ 

∞ 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A } 

0 

∞ 

∞ ∞ 

∞ “A” ← EXTRACT-MIN(Q): 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A } 

0 

10 

3 ∞ 

∞ 

10 3 

Relax all edges leaving A: 

∞ ∞ 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A, C } 

0 

10 

3 ∞ 

∞ 

10 3 

“C” ← EXTRACT-MIN(Q): 

∞ ∞ 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A, C } 

0 

7 

3 5 

11 

10 3 
7 11 5 

Relax all edges leaving C: 

∞ ∞ 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A, C, E } 

0 

7 

3 5 

11 

10 3 
7 11 5 

“E” ← EXTRACT-MIN(Q): 

∞ ∞ 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A, C, E } 

0 

7 

3 5 

11 

10 3 ∞ ∞ 
7 11 5 
7 11 

Relax all edges leaving E: 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A, C, E, B } 

0 

7 

3 5 

11 

10 3 ∞ ∞ 
7 11 5 
7 11 

“B” ← EXTRACT-MIN(Q): 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A, C, E, B } 

0 

7 

3 5 

9 

10 3 ∞ ∞ 
7 11 5 
7 11 

Relax all edges leaving B: 

9 
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Example of Dijkstra’s 
algorithm 

A 

B D 

C E 

10 

3 

1 4 7 9 8 

2 

2 A B C D E Q: 
0 ∞ ∞ ∞ ∞ 

S: { A, C, E, B, D } 

0 

7 

3 5 

9 

10 3 ∞ ∞ 
7 11 5 
7 11 

9 

“D” ← EXTRACT-MIN(Q): 
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Correctness — Part I 
Lemma.  Initializing d[s] ← 0 and d[v] ← ∞  for all 
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, 
and this invariant is maintained over any sequence 
of relaxation steps. 
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Correctness — Part I 
Lemma.  Initializing d[s] ← 0 and d[v] ← ∞  for all 
v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, 
and this invariant is maintained over any sequence 
of relaxation steps. 
Proof.  Suppose not.  Let v be the first vertex for 
which d[v] < δ(s, v), and let u be the vertex that 
caused d[v] to change: d[v] = d[u] + w(u, v).  Then,  

d[v] < δ(s, v) supposition 
 ≤ δ(s, u) + δ(u, v) triangle inequality 
 ≤ δ(s,u) + w(u, v) sh. path ≤ specific path 
 ≤ d[u] + w(u, v) v is first violation 

Contradiction. 
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Correctness — Part II 
Lemma.  Let u be v’s predecessor on a shortest 
path from s to v.  Then, if d[u] = δ(s, u) and edge 
(u, v) is relaxed, we have d[v] = δ(s, v) after the 
relaxation. 
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Correctness — Part II 
Lemma.  Let u be v’s predecessor on a shortest 
path from s to v.  Then, if d[u] = δ(s, u) and edge 
(u, v) is relaxed, we have d[v] = δ(s, v) after the 
relaxation. 
Proof.  Observe that δ(s, v) = δ(s, u) + w(u, v).  
Suppose that d[v] > δ(s, v) before the relaxation.  
(Otherwise, we’re done.)  Then, the test d[v] > 
d[u] + w(u, v) succeeds, because d[v] > δ(s, v) = 
δ(s, u) + w(u, v) = d[u] + w(u, v), and the 
algorithm sets d[v] = d[u] + w(u, v) = δ(s, v).  
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Correctness — Part III 
Theorem.  Dijkstra’s algorithm terminates with 
d[v] = δ(s, v) for all v ∈ V. 



November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.32 

Correctness — Part III 
Theorem.  Dijkstra’s algorithm terminates with 
d[v] = δ(s, v) for all v ∈ V. 
Proof.  It suffices to show that d[v] = δ(s, v) for every v 
∈ V when v is added to S.  Suppose u is the first vertex 
added to S for which d[u] > δ(s, u). Let y be the first 
vertex in V – S along a shortest path from s to u, and 
let x be its predecessor: 

s 
 
 

x y 

u 

S, just before 
adding u. 
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Correctness — Part III 
(continued) 

Since u is the first vertex violating the claimed 
invariant, we have d[x] = δ(s, x).  When x was 
added to S, the edge (x, y) was relaxed, which 
implies that d[y] = δ(s, y) ≤ δ(s, u) < d[u].  But, 
d[u] ≤ d[y] by our choice of u.  Contradiction. 

s 
 
 

x y 

u S 
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Analysis of Dijkstra 
while Q ≠ ∅ 

do u ← EXTRACT-MIN(Q) 
S ← S ∪ {u} 
for each v ∈ Adj[u] 

do if d[v] > d[u] + w(u, v) 
 then d[v] ← d[u] + w(u, v) 
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Analysis of Dijkstra 

|V | 
times 

while Q ≠ ∅ 
do u ← EXTRACT-MIN(Q) 

S ← S ∪ {u} 
for each v ∈ Adj[u] 

do if d[v] > d[u] + w(u, v) 
 then d[v] ← d[u] + w(u, v) 
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Analysis of Dijkstra 

degree(u) 
times 

|V | 
times 

while Q ≠ ∅ 
do u ← EXTRACT-MIN(Q) 

S ← S ∪ {u} 
for each v ∈ Adj[u] 

do if d[v] > d[u] + w(u, v) 
 then d[v] ← d[u] + w(u, v) 
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Analysis of Dijkstra 

degree(u) 
times 

|V | 
times 

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s. 

while Q ≠ ∅ 
do u ← EXTRACT-MIN(Q) 

S ← S ∪ {u} 
for each v ∈ Adj[u] 

do if d[v] > d[u] + w(u, v) 
 then d[v] ← d[u] + w(u, v) 
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Analysis of Dijkstra 

degree(u) 
times 

|V | 
times 

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s. 
Time = Θ(V·TEXTRACT-MIN + E·TDECREASE-KEY) 

Note: Same formula as in the analysis of Prim’s 
minimum spanning tree algorithm. 

while Q ≠ ∅ 
do u ← EXTRACT-MIN(Q) 

S ← S ∪ {u} 
for each v ∈ Adj[u] 

do if d[v] > d[u] + w(u, v) 
 then d[v] ← d[u] + w(u, v) 
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Analysis of Dijkstra 
(continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 

Q TEXTRACT-MIN TDECREASE-KEY Total 
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Analysis of Dijkstra 
(continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2) 
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Analysis of Dijkstra 
(continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2) 
binary 
heap O(lg V) O(lg V) O(E lg V) 
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Analysis of Dijkstra 
(continued) 

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY 

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2) 
binary 
heap O(lg V) O(lg V) O(E lg V) 

Fibonacci 
heap 

O(lg V) 
amortized 

O(1) 
amortized 

O(E + V lg V) 
worst case 
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Unweighted graphs 

 

 

Suppose that w(u, v) = 1 for all (u, v) ∈ E.   
Can Dijkstra’s algorithm be improved? 
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Unweighted graphs 

• Use a simple FIFO queue instead of a priority 
queue. 

 

 

Suppose that w(u, v) = 1 for all (u, v) ∈ E.   
Can Dijkstra’s algorithm be improved? 
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Unweighted graphs 

while Q ≠ ∅ 
do u ← DEQUEUE(Q) 

for each v ∈ Adj[u] 
do if d[v] = ∞ 

 then d[v] ← d[u] + 1 
     ENQUEUE(Q, v) 

• Use a simple FIFO queue instead of a priority 
queue. 

 

 

Breadth-first search 

Suppose that w(u, v) = 1 for all (u, v) ∈ E.   
Can Dijkstra’s algorithm be improved? 
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Unweighted graphs 

while Q ≠ ∅ 
do u ← DEQUEUE(Q) 

for each v ∈ Adj[u] 
do if d[v] = ∞ 

 then d[v] ← d[u] + 1 
     ENQUEUE(Q, v) 

• Use a simple FIFO queue instead of a priority 
queue. 

 

 
Analysis: Time = O(V + E). 

Breadth-first search 

Suppose that w(u, v) = 1 for all (u, v) ∈ E.   
Can Dijkstra’s algorithm be improved? 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q: 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a 

0 

0 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d 

0 

1 

1 

1  1 



November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.50 

Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e 

0 

1 

1 

2 2 

1  2  2 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e 

0 

1 

1 

2 2 

2  2 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e 

0 

1 

1 

2 2 

2 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e  g  i 

0 

1 

1 

2 2 

3 

3 

3  3 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e  g  i  f 

0 

1 

1 

2 2 

3 

3 

4 

3  4 



November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.55 

Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e  g  i  f  h 

0 

1 

1 

2 2 

3 

3 

4 4 

4  4 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e  g  i  f  h 

0 

1 

1 

2 2 

3 

3 

4 4 

4 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e  g  i  f  h 

0 

1 

1 

2 2 

3 

3 

4 4 
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Example of breadth-first 
search 

a 

b 

c 

d 

e 
g 

i 

f h 

Q:  a  b  d  c  e  g  i  f  h 

0 

1 

1 

2 2 

3 

3 

4 4 
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Correctness of BFS 

Key idea:  
The FIFO Q in breadth-first search mimics 
the priority queue Q in Dijkstra. 
• Invariant: v comes after u in Q implies that 

d[v] = d[u] or d[v] = d[u] + 1. 

while Q ≠ ∅ 
do u ← DEQUEUE(Q) 

for each v ∈ Adj[u] 
do if d[v] = ∞ 

 then d[v] ← d[u] + 1 
     ENQUEUE(Q, v) 
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Prof. Erik Demaine 

LECTURE 18  
Shortest Paths II 
• Bellman-Ford algorithm 
• Linear programming and 

difference constraints 
• VLSI layout compaction 

Introduction to Algorithms 
6.046J/18.401J 
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Negative-weight cycles 
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist. 
Example: 

u v 

… 

< 0 
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Negative-weight cycles 
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist. 
Example: 

u v 

… 

< 0 

Bellman-Ford algorithm: Finds all shortest-path 
lengths from a source s ∈ V to all v ∈ V or 
determines that a negative-weight cycle exists. 
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Bellman-Ford algorithm 
d[s] ← 0 
for each v ∈ V – {s} 

do d[v] ← ∞ 

for i ← 1 to | V | – 1 
do for each edge (u, v) ∈ E 

do if d[v] > d[u] + w(u, v) 
then d[v] ← d[u] + w(u, v) 

for each edge (u, v) ∈ E 
do if d[v] > d[u] + w(u, v) 

then report that a negative-weight cycle exists 

initialization 

At the end, d[v] = δ(s, v), if no negative-weight cycles.  
Time = O(V E). 

relaxation 
step 
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Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
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Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 

∞ 

0 ∞ 

∞ ∞ 

Initialization. 
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Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 

∞ 

0 ∞ 

∞ ∞ 

1 

2 

3 
4 

5 

7 

8 

Order of edge relaxation. 

6 
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Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 

∞ 

0 ∞ 

∞ ∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 

∞ 

0 ∞ 

∞ ∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 

∞ 

0 ∞ 

∞ ∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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∞ −1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
0 ∞ 

∞ ∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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∞ 4 

−1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
0 ∞ 

∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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4 

−1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
0 ∞ 

∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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4 2 

−1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
0 ∞ 

∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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2 

−1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
0 ∞ 

∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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2 

−1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
0 ∞ 

∞ 

1 

2 

3 
4 

5 

7 

8 

End of pass 1. 

6 
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∞ 1 

2 

−1 

Example of Bellman-Ford 
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E 

C D 

–1 
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3 
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∞ 

1 

2 

3 
4 

5 

7 

8 

6 
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1 

2 

−1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 
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1 
2 

–3 

2 
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3 
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2 

3 
4 

5 

7 

8 
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∞ 1 

1 

2 

−1 

Example of Bellman-Ford 
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B 

E 

C D 

–1 
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1 
2 

–3 

2 

5 

3 
0 

1 

2 

3 
4 

5 

7 

8 

6 
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1 

1 

2 

−1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
0 

1 

2 

3 
4 

5 

7 

8 

6 
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1 

1 

2 

−1 

Example of Bellman-Ford 
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E 

C D 
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1 
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3 
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3 
4 

5 

7 

8 
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1 

1 

2 

−1 

Example of Bellman-Ford 
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C D 
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8 
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1 

1 

2 

−1 

Example of Bellman-Ford 
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C D 
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1 −2 

1 

2 

−1 

Example of Bellman-Ford 
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B 

E 

C D 

–1 

4 
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3 
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−2 

1 

2 

−1 

Example of Bellman-Ford 

A 

B 

E 

C D 

–1 

4 

1 
2 

–3 

2 

5 

3 
0 

1 

2 

3 
4 

5 

7 

8 

6 

End of pass 2 (and 3 and 4). 
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Correctness 
Theorem.  If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford 
algorithm executes, d[v] = δ(s, v) for all v ∈ V.  
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Correctness 
Theorem.  If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford 
algorithm executes, d[v] = δ(s, v) for all v ∈ V.  
Proof.  Let v ∈ V be any vertex, and consider a shortest 
path p from s to v with the minimum number of edges. 

v
1 v

2 

v
3 

v
k v0 

… 
s 

v 

p: 

Since p is a shortest path, we have 
δ(s, vi) = δ(s, vi–1) + w(vi–1, vi) . 
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Correctness (continued) 
v
1 v

2 

v
3 

v
k v0 

… 
s 

v 

p: 

Initially, d[v0] = 0 = δ(s, v0), and d[v0] is unchanged by 
subsequent relaxations (because of the lemma from 
Shortest Paths I that d[v] ≥ δ(s, v)). 
• After 1 pass through E, we have d[v1] = δ(s, v1). 
• After 2 passes through E, we have d[v2] = δ(s, v2). 
  
• After k passes through E, we have d[vk] = δ(s, vk). 
Since G contains no negative-weight cycles, p is simple.  
Longest simple path has ≤ | V | – 1 edges. 
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Detection of negative-weight 
cycles 

Corollary.  If a value d[v] fails to converge after 
| V | – 1 passes, there exists a negative-weight 
cycle in G reachable from s. 
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Linear programming 

Let A be an m×n matrix, b be an m-vector, and c 
be an n-vector.  Find an n-vector x that maximizes 
cTx subject to Ax ≤ b, or determine that no such 
solution exists. 

. ≤ . maximizing m 

n 

A x ≤ b cT x 
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Linear-programming 
algorithms 

Algorithms for the general problem 
• Simplex methods — practical, but worst-case 

exponential time. 
• Interior-point methods — polynomial time and 

competes with simplex. 
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Linear-programming 
algorithms 

Algorithms for the general problem 
• Simplex methods — practical, but worst-case 

exponential time. 
• Interior-point methods — polynomial time and 

competes with simplex. 

Feasibility problem: No optimization criterion.  
Just find x such that Ax ≤ b. 
• In general, just as hard as ordinary LP. 
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Solving a system of difference 
constraints 

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s.  
Example: 

x1 – x2 ≤ 3 
x2 – x3 ≤ –2 
x1 – x3 ≤ 2 

xj – xi ≤ wij 
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Solving a system of difference 
constraints 

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s.  
Example: 

x1 – x2 ≤ 3 
x2 – x3 ≤ –2 
x1 – x3 ≤ 2 

xj – xi ≤ wij 

Solution: 
x1 = 3 
x2 = 0 
x3 = 2 
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Solving a system of difference 
constraints 

Linear programming where each row of A contains 
exactly one 1, one –1, and the rest 0’s.  
Example: 

x1 – x2 ≤ 3 
x2 – x3 ≤ –2 
x1 – x3 ≤ 2 

xj – xi ≤ wij 

Solution: 
x1 = 3 
x2 = 0 
x3 = 2 

Constraint graph: 

vj vi xj – xi ≤ wij 
wij 

(The “A” 
matrix has 
dimensions 
|E | × |V |.) 
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Unsatisfiable constraints 
Theorem.  If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable. 
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Unsatisfiable constraints 
Theorem.  If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable. 
Proof.  Suppose that the negative-weight cycle is 
v1 → v2 →  → vk → v1.  Then, we have 

 x2 – x1 ≤ w12 
 x3 – x2 ≤ w23 
    
 xk – xk–1 ≤ wk–1, k 
 x1 – xk ≤ wk1 
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Unsatisfiable constraints 
Theorem.  If the constraint graph contains 
a negative-weight cycle, then the system of 
differences is unsatisfiable. 
Proof.  Suppose that the negative-weight cycle is 
v1 → v2 →  → vk → v1.  Then, we have 

 x2 – x1 ≤ w12 
 x3 – x2 ≤ w23 
    
 xk – xk–1 ≤ wk–1, k 
 x1 – xk ≤ wk1 

Therefore, no 
values for the xi 
can satisfy the 
constraints. 

 0  ≤ weight of cycle 
   < 0 
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Satisfying the constraints 
Theorem.  Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable. 
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Satisfying the constraints 
Theorem.  Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable. 
Proof.  Add a new vertex s to V with a 0-weight edge 
to each vertex vi ∈ V. 

v
1 

v
4 

v
7 

v
9 

v
3 
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Satisfying the constraints 
Theorem.  Suppose no negative-weight cycle 
exists in the constraint graph.  Then, the 
constraints are satisfiable. 
Proof.  Add a new vertex s to V with a 0-weight edge 
to each vertex vi ∈ V. 

v
1 

v
4 

v
7 

v
9 

v
3 

s 

0 Note: 
No negative-weight 
cycles introduced ⇒ 
shortest paths exist. 
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The triangle inequality gives us δ(s,vj) ≤ δ(s, vi) + wij.  
Since xi = δ(s, vi) and xj = δ(s, vj), the constraint xj – xi 
≤ wij is satisfied. 

Proof (continued) 
Claim: The assignment xi = δ(s, vi) solves the constraints. 

s 

vj 

vi 
δ(s, vi) 

δ(s, vj) wij 

Consider any constraint xj – xi ≤ wij, and consider the 
shortest paths from s to vj and vi: 
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Bellman-Ford and linear 
programming 

Corollary.  The Bellman-Ford algorithm can 
solve a system of m difference constraints on n 
variables in O(m n) time.   
Single-source shortest paths is a simple LP 
problem. 
In fact, Bellman-Ford maximizes x1 + x2 +  + xn 
subject to the constraints xj – xi ≤ wij and xi ≤ 0 
(exercise). 
Bellman-Ford also minimizes maxi{xi} – mini{xi} 
(exercise). 
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Application to VLSI layout 
compaction 

Integrated
-circuit 
features: 

Problem:  Compact (in one dimension) the 
space between the features of a VLSI layout 
without bringing any features too close together. 

minimum separation λ 
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VLSI layout compaction 

1 

x1 x2 

2 

d1 

Constraint: x2 – x1 ≥ d1 + λ 
Bellman-Ford minimizes maxi{xi} – mini{xi}, 
which compacts the layout in the x-dimension. 
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Prof. Erik D. Demaine 

LECTURE 16 
Shortest Paths III 
• All-pairs shortest paths 
• Matrix-multiplication 

algorithm 
• Floyd-Warshall algorithm 
• Johnson’s algorithm 

Introduction to Algorithms 
6.046J/18.401J 
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Shortest paths 
Single-source shortest paths 
• Nonnegative edge weights 
Dijkstra’s algorithm: O(E + V lg V)  

• General 
 Bellman-Ford algorithm: O(VE) 

• DAG 
One pass of Bellman-Ford: O(V + E) 
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Shortest paths 
Single-source shortest paths 
• Nonnegative edge weights 
Dijkstra’s algorithm: O(E + V lg V)  

• General 
 Bellman-Ford algorithm: O(VE) 

• DAG 
One pass of Bellman-Ford: O(V + E) 

All-pairs shortest paths 
• Nonnegative edge weights 
Dijkstra’s algorithm |V| times: O(VE + V 2 lg V)  

• General 
 Three algorithms today. 
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All-pairs shortest paths 

Input: Digraph G = (V, E), where V  = {1, 2, 
…, n}, with edge-weight function w : E → R. 
Output: n × n matrix of shortest-path lengths 
δ(i, j) for all i, j ∈ V. 
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All-pairs shortest paths 

Input: Digraph G = (V, E), where V  = {1, 2, 
…, n}, with edge-weight function w : E → R. 
Output: n × n matrix of shortest-path lengths 
δ(i, j) for all i, j ∈ V. 
IDEA: 
• Run Bellman-Ford once from each vertex. 
• Time = O(V 2E). 
• Dense graph (Θ(n2) edges) ⇒ Θ(n 4) time in 

the worst case. 
Good first try! 
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Dynamic programming 
Consider the n × n weighted adjacency matrix 
A = (aij), where aij = w(i, j) or ∞, and define 

dij
(0) = 0 if i = j, 

∞ if i ≠ j; 

Claim: We have 

and for m = 1, 2, …, n – 1, 
dij

(m) = mink{dik
(m–1) + akj }. 

dij
(m) = weight of a shortest path from 

 i to j that uses at most m edges. 
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Proof of claim 
dij

(m) = mink{dik
(m–1) + akj } 

i j i 
 

k’s 

≤ m – 1 edges 
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Proof of claim 
dij

(m) = mink{dik
(m–1) + akj } 

i j i 
 

k’s 

≤ m – 1 edges 

Relaxation! 
for k ← 1 to n 

do if dij > dik + akj 
then dij ← dik + akj 
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Proof of claim 
dij

(m) = mink{dik
(m–1) + akj } 

i j i 
 

k’s 

≤ m – 1 edges 

Relaxation! 
for k ← 1 to n 

do if dij > dik + akj 
then dij ← dik + akj 

Note: No negative-weight cycles implies 
δ(i, j) = dij 

(n–1) = dij 
(n) = dij 

(n+1) =  
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Matrix multiplication 
Compute C = A · B, where C, A, and B are n × n 
matrices: 

∑
=

=
n

k
kjikij bac

1
. 

Time = Θ(n3) using the standard algorithm. 
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Matrix multiplication 
Compute C = A · B, where C, A, and B are n × n 
matrices: 

∑
=

=
n

k
kjikij bac

1
. 

Time = Θ(n3) using the standard algorithm. 
What if we map “+” → “min” and “·” → “+”?  
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Matrix multiplication 
Compute C = A · B, where C, A, and B are n × n 
matrices: 

∑
=

=
n

k
kjikij bac

1
. 

Time = Θ(n3) using the standard algorithm. 
What if we map “+” → “min” and “·” → “+”?  

cij = mink {aik + bkj}. 
Thus, D(m) = D(m–1) “×” A. 

Identity matrix = I =  
















∞∞∞
∞∞∞
∞∞∞
∞∞∞

0
0

0
0

= D0 = (dij
(0)). 
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Matrix multiplication 
(continued) 

The (min, +) multiplication is associative, and 
with the real numbers, it forms an algebraic 
structure called a closed semiring. 
Consequently, we can compute 

 D(1) = D(0) · A = A1 

 D(2) = D(1) · A = A2 

       
 D(n–1) = D(n–2) · A = An–1 , 

yielding D(n–1) = (δ(i, j)). 
Time = Θ(n·n3) = Θ(n4).  No better than n × B-F. 
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Improved matrix 
multiplication algorithm 

Repeated squaring: A2k = Ak × Ak. 
Compute A2, A4, …, A2lg(n–1) . 

O(lg n) squarings 

Time = Θ(n3 lg n). 

To detect negative-weight cycles, check the 
diagonal for negative values in O(n) additional 
time. 

Note: An–1 = An = An+1 = . 
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Floyd-Warshall algorithm 

Also dynamic programming, but faster! 

Define cij
(k) = weight of a shortest path from i 

to j with intermediate vertices 
belonging to the set {1, 2, …, k}. 

i ≤ k ≤ k ≤ k ≤ k j 

Thus, δ(i, j) = cij
(n).  Also, cij

(0) = aij . 
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Floyd-Warshall recurrence 
cij

(k) = min {cij
(k–1), cik

(k–1) + ckj
(k–1)} 

i j 

k 

i 
cij

(k–1) 

cik
(k–1) ckj

(k–1) 

intermediate vertices in {1, 2, …, k − 1} 
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Pseudocode for Floyd-
Warshall 

for k ← 1 to n 
do for i ← 1 to n 

do for j ← 1 to n 
do if cij > cik + ckj 

then cij ← cik + ckj relaxation 

Notes: 
• Okay to omit superscripts, since extra relaxations 

can’t hurt. 
• Runs in Θ(n3) time. 
• Simple to code. 
• Efficient in practice. 
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Transitive closure of a 
directed graph 

Compute tij =  1 if there exists a path from i to j, 
0 otherwise. 

IDEA: Use Floyd-Warshall, but with (∨, ∧) instead 
of (min, +): 

tij(k) = tij(k–1) ∨ (tik(k–1) ∧ tkj
(k–1)). 

Time = Θ(n3). 
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Graph reweighting 
Theorem.  Given a function h : V → R, reweight  each 
edge (u, v) ∈ E  by wh(u, v) = w(u, v) + h(u) – h(v).  
Then, for any two vertices, all paths between them are 
reweighted by the same amount. 
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Graph reweighting 

Proof.  Let p = v1 → v2 →  → vk be a path in G.  We 
have  

( )

)()()(

)()(),(

)()(),(

),()(

1

1

1

1
1

1

1
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1

1
1

k

k

k

i
ii

k

i
iiii

k

i
iihh

vhvhpw

vhvhvvw

vhvhvvw

vvwpw

−+=

−+=

−+=

=

∑

∑

∑

−

=
+

−

=
++

−

=
+

. 

Theorem.  Given a function h : V → R, reweight  each 
edge (u, v) ∈ E  by wh(u, v) = w(u, v) + h(u) – h(v).  
Then, for any two vertices, all paths between them are 
reweighted by the same amount. 

Same 
amount! 
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Shortest paths in reweighted 
graphs 

Corollary.  δh(u, v) = δ(u, v) + h(u) – h(v). 



November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.22 

Shortest paths in reweighted 
graphs 

Corollary.  δh(u, v) = δ(u, v) + h(u) – h(v). 

IDEA:  Find a function h : V → R such that 
wh(u, v) ≥ 0 for all (u, v) ∈ E.  Then, run 
Dijkstra’s algorithm from each vertex on the 
reweighted graph.  
NOTE: wh(u, v) ≥ 0 iff h(v) – h(u) ≤ w(u, v). 
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Johnson’s algorithm 
1. Find a function h : V → R such that wh(u, v) ≥ 0 for 

all (u, v) ∈ E by using Bellman-Ford to solve the 
difference constraints h(v) – h(u) ≤ w(u, v), or 
determine that a negative-weight cycle exists. 
• Time = O(V E). 

2. Run Dijkstra’s algorithm using wh from each vertex 
u ∈ V to compute δh(u, v) for all v ∈ V. 
• Time = O(V E + V 2 lg V). 

3. For each (u, v) ∈ V × V, compute 
δ(u, v) =  δh(u, v) – h(u) + h(v) . 

• Time = O(V 2). 
Total time = O(V E + V 2 lg V). 
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Computational geometry 
Algorithms for solving “geometric problems” 
in 2D and higher. 
Fundamental objects: 

point line segment line 
Basic structures: 

polygon point set 
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Computational geometry 
Algorithms for solving “geometric problems” 
in 2D and higher. 
Fundamental objects: 

point line segment line 
Basic structures: 

convex hull triangulation 
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Orthogonal range searching 

Input: n points in d dimensions 
• E.g., representing a database of n records 
           each with d numeric fields 

Query: Axis-aligned box  (in 2D, a rectangle) 
• Report on the points inside the box:  

• Are there any points? 
• How many are there? 
• List the points. 
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Orthogonal range searching 

Input: n points in d dimensions 
Query: Axis-aligned box  (in 2D, a rectangle) 

• Report on the points inside the box 
Goal: Preprocess points into a data structure 
   to support fast queries 

• Primary goal: Static data structure 
• In 1D, we will also obtain a 
  dynamic data structure 
  supporting insert and delete 
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1D range searching 
In 1D, the query is an interval: 

First solution using ideas we know: 
• Interval trees 

• Represent each point x by the interval [x, x]. 
• Obtain a dynamic structure that can list 
  k answers in a query in O(k lg n) time. 
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1D range searching 
In 1D, the query is an interval: 

Second solution using ideas we know: 
• Sort the points and store them in an array 

• Solve query by binary search on endpoints. 
• Obtain a static structure that can list 
  k answers in a query in O(k + lg n) time. 

Goal: Obtain a dynamic structure that can list 
k answers in a query in O(k + lg n) time. 
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1D range searching 
In 1D, the query is an interval: 

New solution that extends to higher dimensions: 
• Balanced binary search tree 

• New organization principle: 
  Store points in the leaves of the tree. 
• Internal nodes store copies of the leaves 
  to satisfy binary search property: 

• Node x stores in key[x] the maximum 
  key of any leaf in the left subtree of x. 
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Example of a 1D range tree 

1 

6 8 12 14 

17 

26 35 41 42 

43 

59 61 
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Example of a 1D range tree 

12 1 

6 8 12 14 

17 

26 35 41 42 

43 

59 61 

6 26 41 59 

1 14 35 43 

42 8 

17 
x 

≤ x > x 
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12 

8 12 14 

17 

26 35 41 

26 

14 

Example of a 1D range query 

1 

6 42 

43 

59 61 

6 41 59 

1 

12 

8 12 14 

17 

26 35 41 

26 

14 35 43 

42 8 

17 

RANGE-QUERY([7, 41]) 

x 

≤ x > x 
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General 1D range query 
root 

split node 
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Pseudocode, part 1: 
Find the split node 

1D-RANGE-QUERY(T, [x1, x2]) 
w ← root[T] 
while w is not a leaf  and  (x2 ≤ key[w] or key[w] < x1) 

do if x2 ≤ key[w] 
then w ← left[w] 
else  w ← right[w] 

⊳ w is now the split node 
[traverse left and right from w and report relevant subtrees] 
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Pseudocode, part 2: Traverse 
left and right from split node 

1D-RANGE-QUERY(T, [x1, x2]) 
[find the split node] 
⊳ w is now the split node 
if w is a leaf 
 then output the leaf w if x1 ≤ key[w] ≤ x2 
 else  v ← left[w]         ⊳ Left traversal 

   while v is not a leaf 
do if x1 ≤ key[v]  
      then output the subtree rooted at right[v] 
               v ← left[v] 
      else  v ← right[v] 

   output the leaf v if x1 ≤ key[v] ≤ x2 
   [symmetrically for right traversal] 
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Analysis of 1D-RANGE-QUERY 

Query time: Answer to range query represented 
by O(lg n) subtrees found in O(lg n) time. 
Thus: 

• Can test for points in interval in O(lg n) time. 
• Can count points in interval in O(lg n) time 
  if we augment the tree with subtree sizes. 
• Can report the first k points in 
  interval in O(k + lg n) time. 

Space: O(n) 
Preprocessing time: O(n lg n) 
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2D range trees 
Store a primary 1D range tree for all the points 
based on x-coordinate. 
Thus in O(lg n) time we can find O(lg n) subtrees 
representing the points with proper x-coordinate. 
How to restrict to points with proper y-coordinate? 
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2D range trees 
Idea: In primary 1D range tree of x-coordinate, 
every node stores a secondary 1D range tree 
based on y-coordinate for all points in the subtree 
of the node.  Recursively search within each. 
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Analysis of 2D range trees 
Query time: In O((lg n)2) time, we can represent 
the answer to range query by O((lg n)2) subtrees. 
Total cost for reporting k points: O(k + (lg n)2). 

Preprocessing time: O(n lg n) 

Space: The secondary trees at each level of the 
primary tree together store a copy of the points. 
Also, each point is present in each secondary 
tree along the path from the leaf to the root. 
Either way, we obtain that the space is O(n lg n). 
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d-dimensional range trees (d ≥ 2) 

Query time: O(k + (lg n)d) to report k points. 
Space: O(n (lg n)d – 1) 
Preprocessing time: O(n (lg n)d – 1) 

Each node of the secondary y-structure stores 
a tertiary z-structure representing the points 
in the subtree rooted at the node, etc. 

Best data structure to date: 
Query time: O(k + (lg n)d – 1) to report k points. 
Space: O(n (lg n / lg lg n)d – 1) 
Preprocessing time: O(n (lg n)d – 1) 
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Primitive operations: 
Crossproduct 

Given two vectors v1 = (x1, y1) and v2 = (x2, y2), 
is their counterclockwise angle θ 

• convex (< 180º), 
• reflex (> 180º), or 
• borderline (0 or 180º)? 

v1 

v2 
θ v2 

v1 

θ 
convex reflex 

Crossproduct  v1 × v2  = x1 x2 – y1 y2 
    = |v1| |v2| sin θ . 
Thus, sign(v1 × v2) = sign(sin θ)  > 0 if θ convex, 
      < 0 if θ reflex, 
      = 0 if θ borderline. 



© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001      L12.21 

Primitive operations: 
Orientation test 

Given three points p1, p2, p3 are they 
• in clockwise (cw) order, 
• in counterclockwise (ccw) order, or 
• collinear? 

(p2 – p1) × (p3 – p1) 
    > 0 if ccw 
    < 0 if cw 
    = 0 if collinear p1 

p3 

p2 
cw p1 

p2 

p3 

ccw 

p1 

p2 

p3 

collinear 
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Primitive operations: 
Sidedness test 

Given three points p1, p2, p3 are they 
• in clockwise (cw) order, 
• in counterclockwise (ccw) order, or 
• collinear? 

Let L be the oriented line from p1 to p2. 
Equivalently, is the point p3 

• right of L, 
• left of L, or 
• on L? 

p1 

p3 

p2 
cw p1 

p2 

p3 

ccw 

p1 

p2 

p3 

collinear 



© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001      L12.23 

Line-segment intersection 
Given n line segments, does any pair intersect? 
Obvious algorithm: O(n2). 

a 

b 

c 

d 
e 

f 
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Sweep-line algorithm 
• Sweep a vertical line from left to right 
  (conceptually replacing x-coordinate with time). 
• Maintain dynamic set S of segments 
  that intersect the sweep line, ordered 
  (tentatively) by y-coordinate of intersection. 
• Order changes when 

• new segment is encountered, 
• existing segment finishes, or 
• two segments cross 

• Key event points are therefore segment endpoints. 

segment 
endpoints 
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a 

b 

c 

d 
e 

f 

a 
a 
b b b b b b f f f f 

c 
a 

c 
a d d e d b e e 
d 

c c d b d d d 
e e e b 
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Sweep-line algorithm 
 Process event points in order by sorting segment 
 endpoints by x-coordinate and looping through: 

• For a left endpoint of segment s: 
• Add segment s to dynamic set S. 
• Check for intersection between s 
  and its neighbors in S. 

• For a right endpoint of segment s: 
• Remove segment s from dynamic set S. 
• Check for intersection between 
  the neighbors of s in S. 
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Analysis 

Use red-black tree to store dynamic set S. 
Total running time: O(n lg n). 
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Correctness 
Theorem: If there is an intersection, 
the algorithm finds it. 
Proof: Let X be the leftmost intersection point. 
Assume for simplicity that 

• only two segments s1, s2 pass through X, and 
• no two points have the same x-coordinate. 

At some point before we reach X, 
s1 and s2 become consecutive in the order of S. 
Either initially consecutive when s1 or s2 inserted, 
      or became consecutive when another deleted. 
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