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Computational geometry 
Algorithms for solving “geometric problems” 
in 2D and higher. 
Fundamental objects: 

point line segment line 
Basic structures: 

polygon point set 
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Computational geometry 
Algorithms for solving “geometric problems” 
in 2D and higher. 
Fundamental objects: 

point line segment line 
Basic structures: 

convex hull triangulation 
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Orthogonal range searching 

Input: n points in d dimensions 
• E.g., representing a database of n records 
           each with d numeric fields 

Query: Axis-aligned box  (in 2D, a rectangle) 
• Report on the points inside the box:  

• Are there any points? 
• How many are there? 
• List the points. 
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Orthogonal range searching 

Input: n points in d dimensions 
Query: Axis-aligned box  (in 2D, a rectangle) 

• Report on the points inside the box 
Goal: Preprocess points into a data structure 
   to support fast queries 

• Primary goal: Static data structure 
• In 1D, we will also obtain a 
  dynamic data structure 
  supporting insert and delete 
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1D range searching 
In 1D, the query is an interval: 

First solution using ideas we know: 
• Interval trees 

• Represent each point x by the interval [x, x]. 
• Obtain a dynamic structure that can list 
  k answers in a query in O(k lg n) time. 
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1D range searching 
In 1D, the query is an interval: 

Second solution using ideas we know: 
• Sort the points and store them in an array 

• Solve query by binary search on endpoints. 
• Obtain a static structure that can list 
  k answers in a query in O(k + lg n) time. 

Goal: Obtain a dynamic structure that can list 
k answers in a query in O(k + lg n) time. 
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1D range searching 
In 1D, the query is an interval: 

New solution that extends to higher dimensions: 
• Balanced binary search tree 

• New organization principle: 
  Store points in the leaves of the tree. 
• Internal nodes store copies of the leaves 
  to satisfy binary search property: 

• Node x stores in key[x] the maximum 
  key of any leaf in the left subtree of x. 
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Example of a 1D range tree 

1 

6 8 12 14 

17 

26 35 41 42 

43 

59 61 
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Example of a 1D range tree 

12 1 

6 8 12 14 

17 

26 35 41 42 

43 

59 61 

6 26 41 59 

1 14 35 43 

42 8 

17 
x 

≤ x > x 
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12 

8 12 14 

17 

26 35 41 

26 

14 

Example of a 1D range query 

1 

6 42 

43 

59 61 

6 41 59 

1 

12 

8 12 14 

17 

26 35 41 

26 

14 35 43 

42 8 

17 

RANGE-QUERY([7, 41]) 

x 

≤ x > x 
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General 1D range query 
root 

split node 
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Pseudocode, part 1: 
Find the split node 

1D-RANGE-QUERY(T, [x1, x2]) 
w ← root[T] 
while w is not a leaf  and  (x2 ≤ key[w] or key[w] < x1) 

do if x2 ≤ key[w] 
then w ← left[w] 
else  w ← right[w] 

⊳ w is now the split node 
[traverse left and right from w and report relevant subtrees] 
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Pseudocode, part 2: Traverse 
left and right from split node 

1D-RANGE-QUERY(T, [x1, x2]) 
[find the split node] 
⊳ w is now the split node 
if w is a leaf 
 then output the leaf w if x1 ≤ key[w] ≤ x2 
 else  v ← left[w]         ⊳ Left traversal 

   while v is not a leaf 
do if x1 ≤ key[v]  
      then output the subtree rooted at right[v] 
               v ← left[v] 
      else  v ← right[v] 

   output the leaf v if x1 ≤ key[v] ≤ x2 
   [symmetrically for right traversal] 
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Analysis of 1D-RANGE-QUERY 

Query time: Answer to range query represented 
by O(lg n) subtrees found in O(lg n) time. 
Thus: 

• Can test for points in interval in O(lg n) time. 
• Can count points in interval in O(lg n) time 
  if we augment the tree with subtree sizes. 
• Can report the first k points in 
  interval in O(k + lg n) time. 

Space: O(n) 
Preprocessing time: O(n lg n) 



© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001      L12.16 

2D range trees 
Store a primary 1D range tree for all the points 
based on x-coordinate. 
Thus in O(lg n) time we can find O(lg n) subtrees 
representing the points with proper x-coordinate. 
How to restrict to points with proper y-coordinate? 



© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001      L12.17 

2D range trees 
Idea: In primary 1D range tree of x-coordinate, 
every node stores a secondary 1D range tree 
based on y-coordinate for all points in the subtree 
of the node.  Recursively search within each. 
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Analysis of 2D range trees 
Query time: In O((lg n)2) time, we can represent 
the answer to range query by O((lg n)2) subtrees. 
Total cost for reporting k points: O(k + (lg n)2). 

Preprocessing time: O(n lg n) 

Space: The secondary trees at each level of the 
primary tree together store a copy of the points. 
Also, each point is present in each secondary 
tree along the path from the leaf to the root. 
Either way, we obtain that the space is O(n lg n). 
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d-dimensional range trees (d ≥ 2) 

Query time: O(k + (lg n)d) to report k points. 
Space: O(n (lg n)d – 1) 
Preprocessing time: O(n (lg n)d – 1) 

Each node of the secondary y-structure stores 
a tertiary z-structure representing the points 
in the subtree rooted at the node, etc. 

Best data structure to date: 
Query time: O(k + (lg n)d – 1) to report k points. 
Space: O(n (lg n / lg lg n)d – 1) 
Preprocessing time: O(n (lg n)d – 1) 
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Primitive operations: 
Crossproduct 

Given two vectors v1 = (x1, y1) and v2 = (x2, y2), 
is their counterclockwise angle θ 

• convex (< 180º), 
• reflex (> 180º), or 
• borderline (0 or 180º)? 

v1 

v2 
θ v2 

v1 

θ 
convex reflex 

Crossproduct  v1 × v2  = x1 x2 – y1 y2 
    = |v1| |v2| sin θ . 
Thus, sign(v1 × v2) = sign(sin θ)  > 0 if θ convex, 
      < 0 if θ reflex, 
      = 0 if θ borderline. 
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Primitive operations: 
Orientation test 

Given three points p1, p2, p3 are they 
• in clockwise (cw) order, 
• in counterclockwise (ccw) order, or 
• collinear? 

(p2 – p1) × (p3 – p1) 
    > 0 if ccw 
    < 0 if cw 
    = 0 if collinear p1 

p3 

p2 
cw p1 

p2 

p3 

ccw 

p1 

p2 

p3 

collinear 
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Primitive operations: 
Sidedness test 

Given three points p1, p2, p3 are they 
• in clockwise (cw) order, 
• in counterclockwise (ccw) order, or 
• collinear? 

Let L be the oriented line from p1 to p2. 
Equivalently, is the point p3 

• right of L, 
• left of L, or 
• on L? 

p1 

p3 

p2 
cw p1 

p2 

p3 

ccw 

p1 

p2 

p3 

collinear 
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Line-segment intersection 
Given n line segments, does any pair intersect? 
Obvious algorithm: O(n2). 

a 

b 

c 

d 
e 

f 
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Sweep-line algorithm 
• Sweep a vertical line from left to right 
  (conceptually replacing x-coordinate with time). 
• Maintain dynamic set S of segments 
  that intersect the sweep line, ordered 
  (tentatively) by y-coordinate of intersection. 
• Order changes when 

• new segment is encountered, 
• existing segment finishes, or 
• two segments cross 

• Key event points are therefore segment endpoints. 

segment 
endpoints 
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a 

b 

c 

d 
e 

f 

a 
a 
b b b b b b f f f f 

c 
a 

c 
a d d e d b e e 
d 

c c d b d d d 
e e e b 



© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001      L12.26 

Sweep-line algorithm 
 Process event points in order by sorting segment 
 endpoints by x-coordinate and looping through: 

• For a left endpoint of segment s: 
• Add segment s to dynamic set S. 
• Check for intersection between s 
  and its neighbors in S. 

• For a right endpoint of segment s: 
• Remove segment s from dynamic set S. 
• Check for intersection between 
  the neighbors of s in S. 
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Analysis 

Use red-black tree to store dynamic set S. 
Total running time: O(n lg n). 
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Correctness 
Theorem: If there is an intersection, 
the algorithm finds it. 
Proof: Let X be the leftmost intersection point. 
Assume for simplicity that 

• only two segments s1, s2 pass through X, and 
• no two points have the same x-coordinate. 

At some point before we reach X, 
s1 and s2 become consecutive in the order of S. 
Either initially consecutive when s1 or s2 inserted, 
      or became consecutive when another deleted. 
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