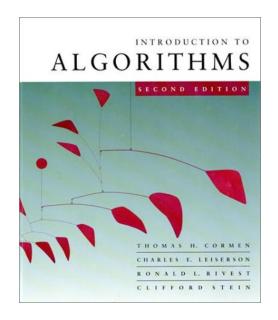
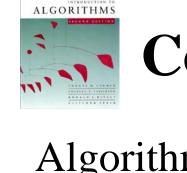
Introduction to Algorithms 6.046J/18.401J/SMA5503



Lecture 12 Prof. Erik Demaine



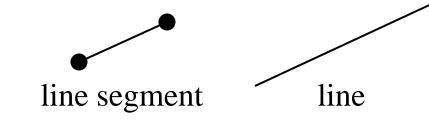
Computational geometry

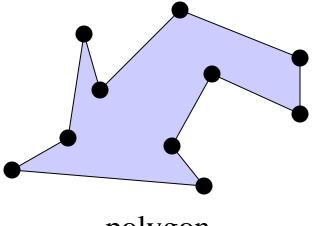
Algorithms for solving "geometric problems" in 2D and higher.

point

Fundamental objects:

Basic structures:





point set

© 2001 by Erik D. Demaine

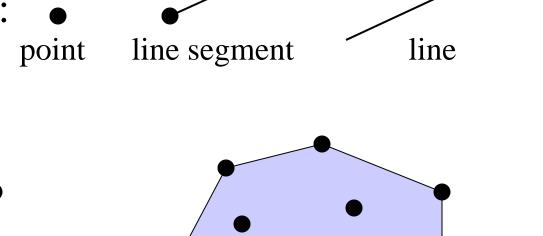


Computational geometry

Algorithms for solving "geometric problems" in 2D and higher.

Fundamental objects:

Basic structures:



convex hull

triangulation

Introduction to Algorithms

© 2001 by Erik D. Demaine

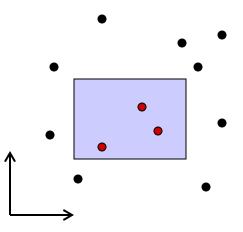
Orthogonal range searching

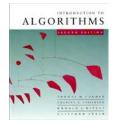
Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

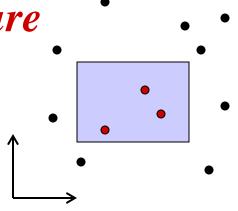




Orthogonal range searching

Input: *n* points in *d* dimensions

- Query: Axis-aligned *box* (in 2D, a rectangle)
 - Report on the points inside the box
- **Goal:** Preprocess points into a data structure to support fast queries
 - Primary goal: *Static data structure*
 - In 1D, we will also obtain a dynamic data structure supporting insert and delete



1D range searching

In 1D, the query is an interval:

First solution using ideas we know:

- Interval trees
 - Represent each point x by the interval [x, x].
 - Obtain a dynamic structure that can list k answers in a query in O(k lg n) time.

1D range searching

In 1D, the query is an interval:

Second solution using ideas we know:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list k answers in a query in $O(k + \lg n)$ time.

Goal: Obtain a dynamic structure that can list *k* answers in a query in $O(k + \lg n)$ time.

© 2001 by Erik D. Demaine

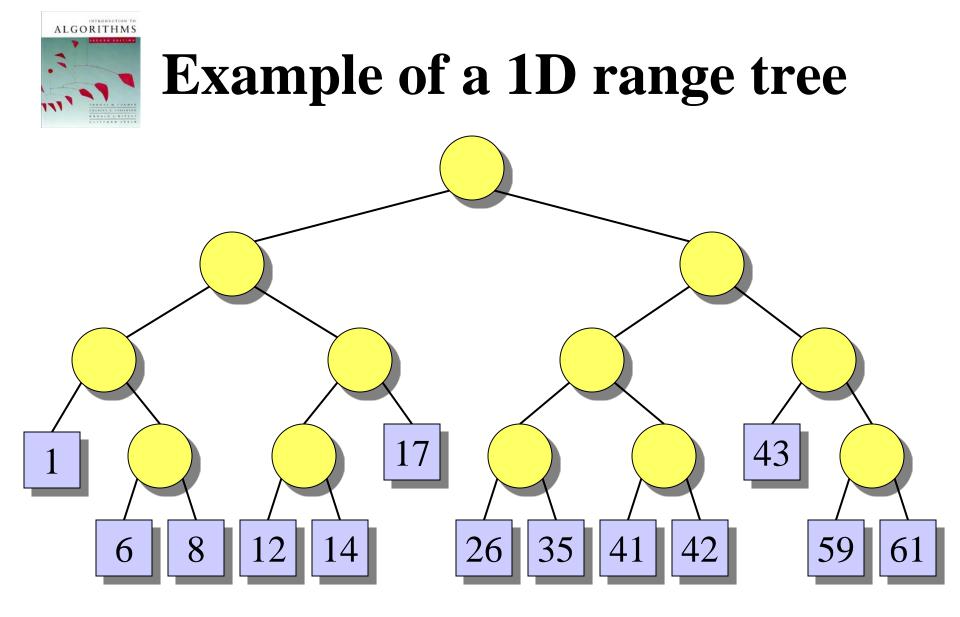
1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

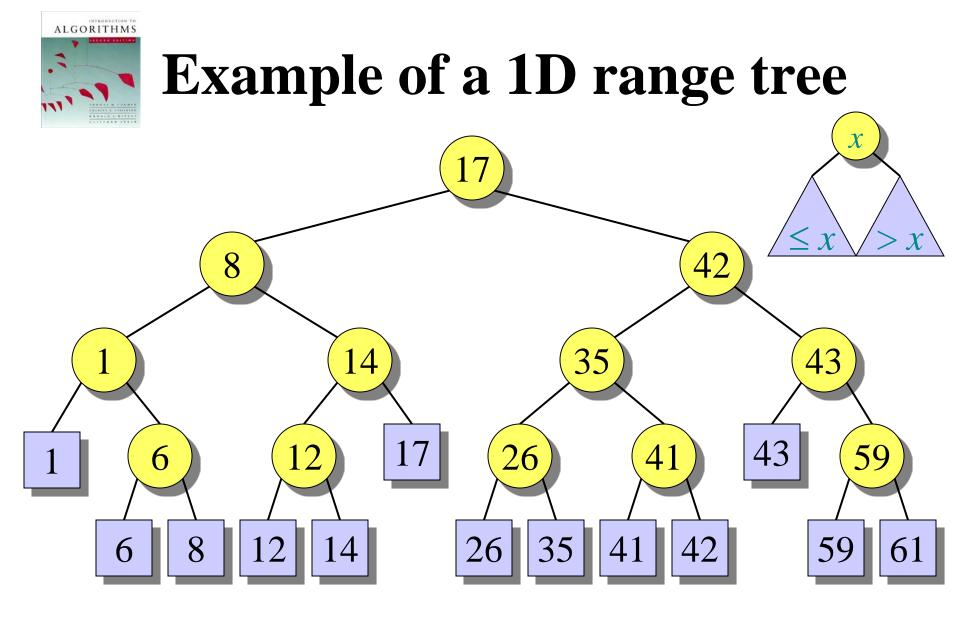
- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node *x* stores in *key*[*x*] the maximum key of any leaf in the left subtree of *x*.

© 2001 by Erik D. Demaine



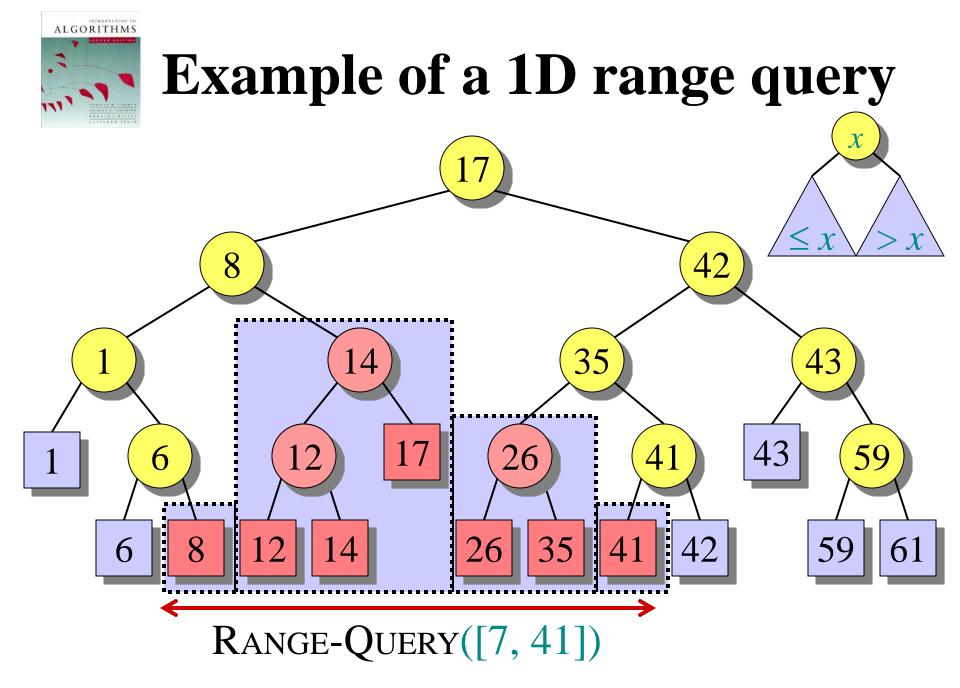
© 2001 by Erik D. Demaine

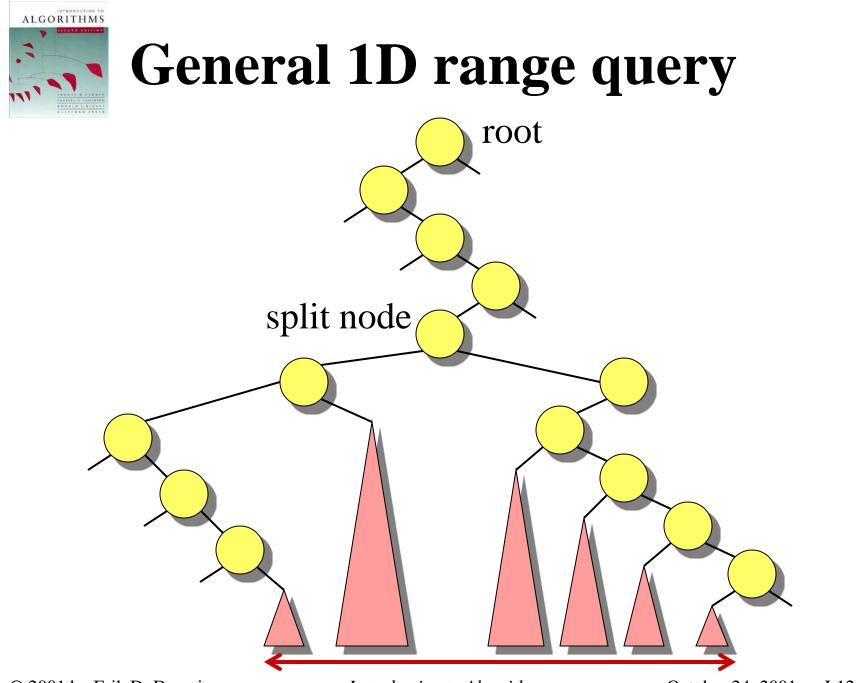
Introduction to Algorithms



© 2001 by Erik D. Demaine

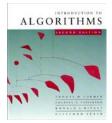
Introduction to Algorithms





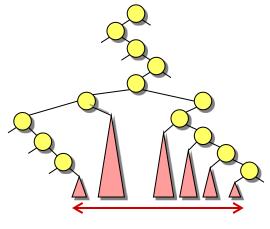
© 2001 by Erik D. Demaine

Introduction to Algorithms



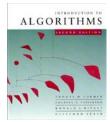
Pseudocode, part 1: Find the split node

1D-RANGE-QUERY(T, [x₁, x₂])
w ← root[T]
while w is not a leaf and (x₂ ≤ key[w] or key[w] < x₁)
do if x₂ ≤ key[w]
then w ← left[w]
else w ← right[w]
▷ w is now the split node
[traverse left and right from w and report relevant subtrees]



© 2001 by Erik D. Demaine

Introduction to Algorithms

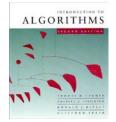


Pseudocode, part 2: Traverse left and right from split node

1D-RANGE-QUERY(T, $[x_1, x_2]$) [find the split node] $\triangleright w$ is now the split node if w is a leaf **then** output the leaf w if $x_1 \le key[w] \le x_2$ else $v \leftarrow left[w]$ \triangleright Left traversal while *v* is not a leaf **do if** $x_1 \leq key[v]$ then output the subtree rooted at *right*[v] $v \leftarrow left[v]$ else $v \leftarrow right[v]$ output the leaf *v* if $x_1 \le key[v] \le x_2$ [symmetrically for right traversal]

© 2001 by Erik D. Demaine

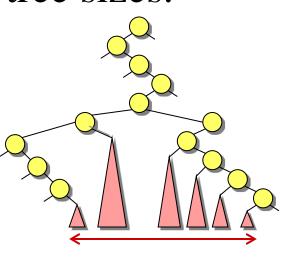
Introduction to Algorithms



Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented by $O(\lg n)$ subtrees found in $O(\lg n)$ time. Thus:

- Can test for points in interval in O(lg n) time.
- Can count points in interval in O(lg *n*) time if we augment the tree with subtree sizes.
- Can report the first k points in interval in $O(k + \lg n)$ time.
- **Space:** O(*n*) **Preprocessing time:** O(*n* lg *n*)



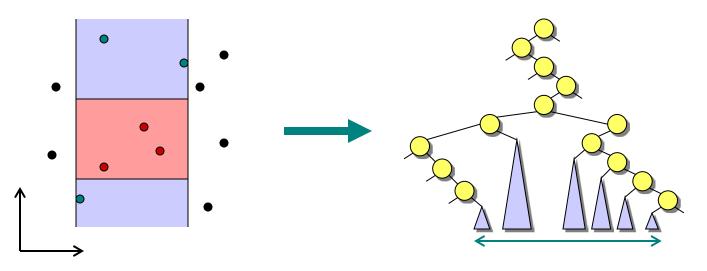
© 2001 by Erik D. Demaine

Introduction to Algorithms

2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

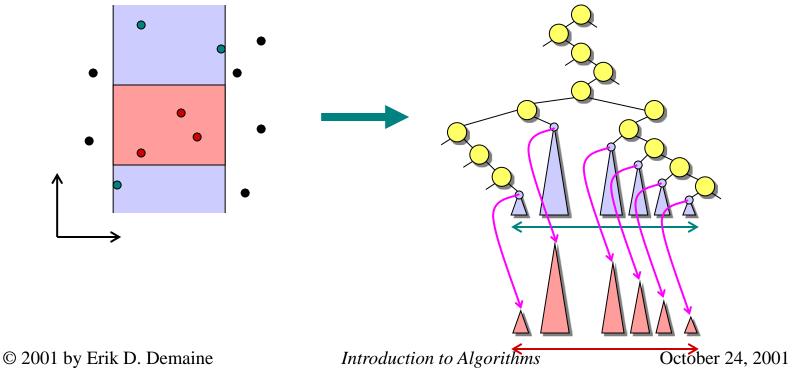
Thus in $O(\lg n)$ time we can find $O(\lg n)$ subtrees representing the points with proper *x*-coordinate. How to restrict to points with proper *y*-coordinate?



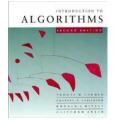
© 2001 by Erik D. Demaine

2D range trees

Idea: In primary 1D range tree of *x*-coordinate, every node stores a *secondary* 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.



L12.17



Analysis of 2D range trees

Query time: In O((lg n)²) time, we can represent the answer to range query by O((lg n)²) subtrees. Total cost for reporting k points: O($k + (lg n)^2$).

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \lg n)$.

Preprocessing time: O(*n* lg *n*)

© 2001 by Erik D. Demaine

d-dimensional range trees $(d \ge 2)$

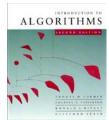
Each node of the secondary *y*-structure stores a tertiary *z*-structure representing the points in the subtree rooted at the node, etc.

Query time: $O(k + (\lg n)^d)$ to report k points. Space: $O(n (\lg n)^{d-1})$

Preprocessing time: $O(n (\lg n)^{d-1})$

Best data structure to date: Query time: $O(k + (\lg n)^{d-1})$ to report k points. Space: $O(n (\lg n / \lg \lg n)^{d-1})$ Preprocessing time: $O(n (\lg n)^{d-1})$

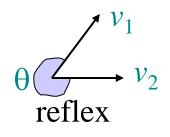
© 2001 by Erik D. Demaine



Primitive operations: Crossproduct

Given two vectors $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$, is their counterclockwise angle θ

- *convex* (< 180°),
- *reflex* (> 180°), or
- borderline (0 or 180°)? convex



Crossproduct $v_1 \times v_2 = x_1 x_2 - y_1 y_2$ = $|v_1| |v_2| \sin \theta$. Thus, $\operatorname{sign}(v_1 \times v_2) = \operatorname{sign}(\sin \theta) > 0$ if θ convex, < 0 if θ reflex, = 0 if θ borderline.

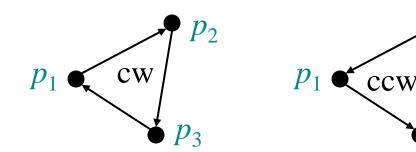
Primitive operations: Orientation test

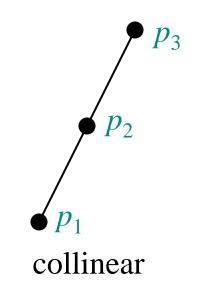
Given three points p_1, p_2, p_3 are they

- in *clockwise* (*cw*) order,
- in *counterclockwise (ccw) order*, or
- collinear?

$$(p_2 - p_1) \times (p_3 - p_1)$$

> 0 if ccw
< 0 if cw
= 0 if collinear





 p_3

 D_{γ}

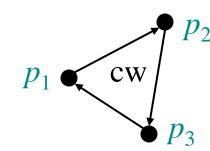
Primitive operations: Sidedness test

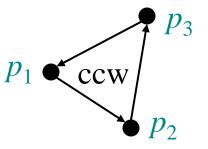
Given three points p_1, p_2, p_3 are they

- in *clockwise* (*cw*) order,
- in counterclockwise (ccw) order, or
 collinear?

Let *L* be the oriented line from p_1 to p_2 . Equivalently, is the point p_3

- *right* of *L*,
- *left* of *L*, or
- on L?





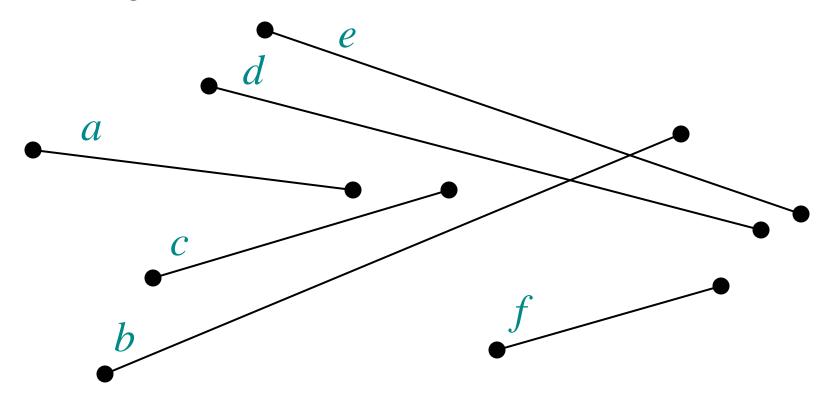
 p_3

 p_{2}

collinear

Line-segment intersection

Given *n* line segments, does any pair intersect? Obvious algorithm: $O(n^2)$.



Sweep-line algorithm

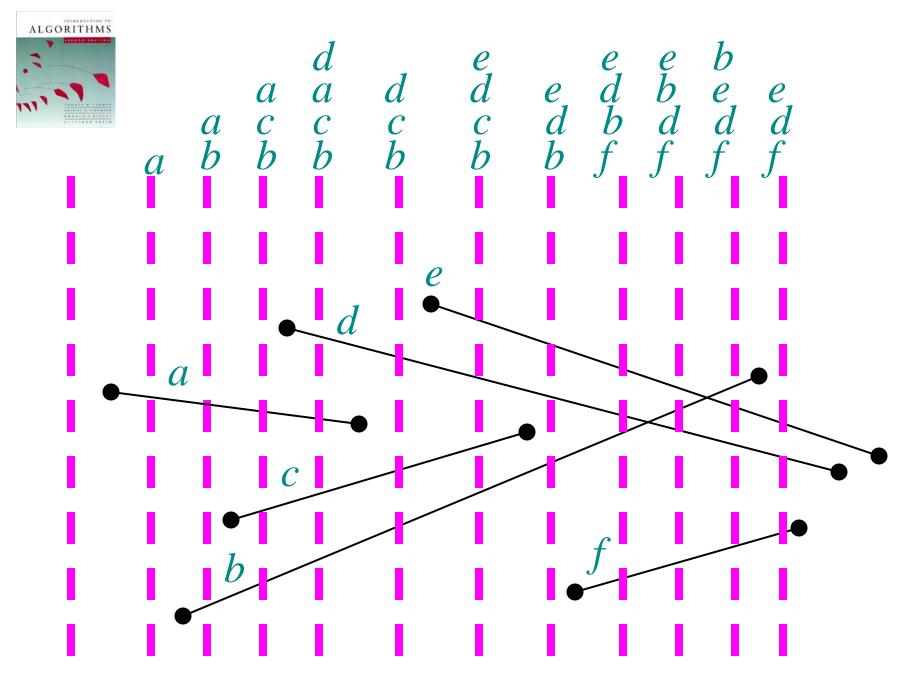
- Sweep a vertical line from left to right (conceptually replacing *x*-coordinate with time).
- Maintain dynamic set *S* of segments that intersect the sweep line, ordered (tentatively) by *y*-coordinate of intersection.
- Order changes when

 - existing segment finishes, or \int endpoints
 - two segments cross

• Key *event points* are therefore segment endpoints.

Introduction to Algorithms

segment



© 2001 by Erik D. Demaine

Sweep-line algorithm

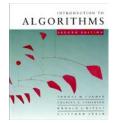
Process event points in order by sorting segment endpoints by *x*-coordinate and looping through:

- For a left endpoint of segment *s*:
 - Add segment *s* to dynamic set *S*.
 - Check for intersection between *s* and its neighbors in *S*.
- For a right endpoint of segment s:
 - Remove segment *s* from dynamic set *S*.
 - Check for intersection between the neighbors of *s* in *S*.

© 2001 by Erik D. Demaine

Use red-black tree to store dynamic set S.

Total running time: $O(n \lg n)$.



Correctness

Theorem: If there is an intersection, the algorithm finds it. *Proof:* Let *X* be the leftmost intersection point.
Assume for simplicity that

- only two segments s_1 , s_2 pass through X, and
- no two points have the same *x*-coordinate. At some point before we reach *X*,

 s_1 and s_2 become consecutive in the order of S. Either initially consecutive when s_1 or s_2 inserted, or became consecutive when another deleted.

© 2001 by Erik D. Demaine