
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 12
Prof. Erik Demaine

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.2

Computational geometry
Algorithms for solving “geometric problems”
in 2D and higher.
Fundamental objects:

point line segment line
Basic structures:

polygon point set

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.3

Computational geometry
Algorithms for solving “geometric problems”
in 2D and higher.
Fundamental objects:

point line segment line
Basic structures:

convex hull triangulation

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.4

Orthogonal range searching

Input: n points in d dimensions
• E.g., representing a database of n records
 each with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)
• Report on the points inside the box:

• Are there any points?
• How many are there?
• List the points.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.5

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box
Goal: Preprocess points into a data structure
 to support fast queries

• Primary goal: Static data structure
• In 1D, we will also obtain a
 dynamic data structure
 supporting insert and delete

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.6

1D range searching
In 1D, the query is an interval:

First solution using ideas we know:
• Interval trees

• Represent each point x by the interval [x, x].
• Obtain a dynamic structure that can list
 k answers in a query in O(k lg n) time.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.7

1D range searching
In 1D, the query is an interval:

Second solution using ideas we know:
• Sort the points and store them in an array

• Solve query by binary search on endpoints.
• Obtain a static structure that can list
 k answers in a query in O(k + lg n) time.

Goal: Obtain a dynamic structure that can list
k answers in a query in O(k + lg n) time.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.8

1D range searching
In 1D, the query is an interval:

New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:
 Store points in the leaves of the tree.
• Internal nodes store copies of the leaves
 to satisfy binary search property:

• Node x stores in key[x] the maximum
 key of any leaf in the left subtree of x.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.9

Example of a 1D range tree

1

6 8 12 14

17

26 35 41 42

43

59 61

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.10

Example of a 1D range tree

12 1

6 8 12 14

17

26 35 41 42

43

59 61

6 26 41 59

1 14 35 43

42 8

17
x

≤ x > x

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.11

12

8 12 14

17

26 35 41

26

14

Example of a 1D range query

1

6 42

43

59 61

6 41 59

1

12

8 12 14

17

26 35 41

26

14 35 43

42 8

17

RANGE-QUERY([7, 41])

x

≤ x > x

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.12

General 1D range query
root

split node

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.13

Pseudocode, part 1:
Find the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]
while w is not a leaf and (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
then w ← left[w]
else w ← right[w]

⊳ w is now the split node
[traverse left and right from w and report relevant subtrees]

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.14

Pseudocode, part 2: Traverse
left and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node]
⊳ w is now the split node
if w is a leaf
 then output the leaf w if x1 ≤ key[w] ≤ x2
 else v ← left[w] ⊳ Left traversal

 while v is not a leaf
do if x1 ≤ key[v]
 then output the subtree rooted at right[v]
 v ← left[v]
 else v ← right[v]

 output the leaf v if x1 ≤ key[v] ≤ x2
 [symmetrically for right traversal]

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.15

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented
by O(lg n) subtrees found in O(lg n) time.
Thus:

• Can test for points in interval in O(lg n) time.
• Can count points in interval in O(lg n) time
 if we augment the tree with subtree sizes.
• Can report the first k points in
 interval in O(k + lg n) time.

Space: O(n)
Preprocessing time: O(n lg n)

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.16

2D range trees
Store a primary 1D range tree for all the points
based on x-coordinate.
Thus in O(lg n) time we can find O(lg n) subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.17

2D range trees
Idea: In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.18

Analysis of 2D range trees
Query time: In O((lg n)2) time, we can represent
the answer to range query by O((lg n)2) subtrees.
Total cost for reporting k points: O(k + (lg n)2).

Preprocessing time: O(n lg n)

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n lg n).

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.19

d-dimensional range trees (d ≥ 2)

Query time: O(k + (lg n)d) to report k points.
Space: O(n (lg n)d – 1)
Preprocessing time: O(n (lg n)d – 1)

Each node of the secondary y-structure stores
a tertiary z-structure representing the points
in the subtree rooted at the node, etc.

Best data structure to date:
Query time: O(k + (lg n)d – 1) to report k points.
Space: O(n (lg n / lg lg n)d – 1)
Preprocessing time: O(n (lg n)d – 1)

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.20

Primitive operations:
Crossproduct

Given two vectors v1 = (x1, y1) and v2 = (x2, y2),
is their counterclockwise angle θ

• convex (< 180º),
• reflex (> 180º), or
• borderline (0 or 180º)?

v1

v2
θ v2

v1

θ
convex reflex

Crossproduct v1 × v2 = x1 x2 – y1 y2
 = |v1| |v2| sin θ .
Thus, sign(v1 × v2) = sign(sin θ) > 0 if θ convex,
 < 0 if θ reflex,
 = 0 if θ borderline.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.21

Primitive operations:
Orientation test

Given three points p1, p2, p3 are they
• in clockwise (cw) order,
• in counterclockwise (ccw) order, or
• collinear?

(p2 – p1) × (p3 – p1)
 > 0 if ccw
 < 0 if cw
 = 0 if collinear p1

p3

p2
cw p1

p2

p3

ccw

p1

p2

p3

collinear

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.22

Primitive operations:
Sidedness test

Given three points p1, p2, p3 are they
• in clockwise (cw) order,
• in counterclockwise (ccw) order, or
• collinear?

Let L be the oriented line from p1 to p2.
Equivalently, is the point p3

• right of L,
• left of L, or
• on L?

p1

p3

p2
cw p1

p2

p3

ccw

p1

p2

p3

collinear

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.23

Line-segment intersection
Given n line segments, does any pair intersect?
Obvious algorithm: O(n2).

a

b

c

d
e

f

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.24

Sweep-line algorithm
• Sweep a vertical line from left to right
 (conceptually replacing x-coordinate with time).
• Maintain dynamic set S of segments
 that intersect the sweep line, ordered
 (tentatively) by y-coordinate of intersection.
• Order changes when

• new segment is encountered,
• existing segment finishes, or
• two segments cross

• Key event points are therefore segment endpoints.

segment
endpoints

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.25

a

b

c

d
e

f

a
a
b b b b b b f f f f

c
a

c
a d d e d b e e
d

c c d b d d d
e e e b

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.26

Sweep-line algorithm
 Process event points in order by sorting segment
 endpoints by x-coordinate and looping through:

• For a left endpoint of segment s:
• Add segment s to dynamic set S.
• Check for intersection between s
 and its neighbors in S.

• For a right endpoint of segment s:
• Remove segment s from dynamic set S.
• Check for intersection between
 the neighbors of s in S.

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.27

Analysis

Use red-black tree to store dynamic set S.
Total running time: O(n lg n).

© 2001 by Erik D. Demaine Introduction to Algorithms October 24, 2001 L12.28

Correctness
Theorem: If there is an intersection,
the algorithm finds it.
Proof: Let X be the leftmost intersection point.
Assume for simplicity that

• only two segments s1, s2 pass through X, and
• no two points have the same x-coordinate.

At some point before we reach X,
s1 and s2 become consecutive in the order of S.
Either initially consecutive when s1 or s2 inserted,
 or became consecutive when another deleted.

	Introduction to Algorithms�6.046J/18.401J/SMA5503�
	Computational geometry
	Computational geometry
	Orthogonal range searching
	Orthogonal range searching
	1D range searching
	1D range searching
	1D range searching
	Example of a 1D range tree
	Example of a 1D range tree
	Example of a 1D range query
	General 1D range query
	Pseudocode, part 1:�Find the split node
	Pseudocode, part 2: Traverse left and right from split node
	Analysis of 1D-RANGE-QUERY
	2D range trees
	2D range trees
	Analysis of 2D range trees
	d-dimensional range trees (d 2)
	Primitive operations: Crossproduct
	Primitive operations:�Orientation test
	Primitive operations:�Sidedness test
	Line-segment intersection
	Sweep-line algorithm
	Slide Number 25
	Sweep-line algorithm
	Analysis
	Correctness

