	Course Outline
Algorithms	Historical perspectives
	Foundations
University of Virginia	Data structures
Gabriel Robins	Sorting
	Graph algorithms
	Geometric algorithms
	Statistical analysis
	NP-completeness
	Approximation algorithms
1	2

Prerequisites

Some discrete math / algorithms knowledge would be helpful (but is not necessary)

Textbook

Cormen, Leiserson, Rivest, and Stein, <u>Introduction to</u> <u>Algorithms</u>, Second Edition, McGraw-Hill, 2001.

Suggested Reading

Polya, How to Solve it, Princeton University Press, 1957.

Preparata and Shamos, <u>Computational Geometry</u>, an <u>Introduction</u>, Springer-Verlag, 1985.

Miyamoto Musashi, <u>Book of Five Rings</u>, Overlook Press, 1974.

"This book fills a much-needed gap." - Moses Hadas (1900-1966) in a review

4

Grading scheme	• Homeworks
Homeworks: 25%	• Solutions
Midterm: 25%	 Extra-credit In-class
Final: 25%	Find mistakes
Project: 25%	• Office hours: after class
Extra credit:10%	Any timeEmail (preferred)By appointment
"The mistakes are all there waiting to be made." - chessmaster Savielly Grigorievitch Tartakower (1887-1956) on the game's opening position 5	 Q&A posted on the Web Exams: take home?

Contact Information

Prof: Gabriel Robins

Office: 210 Olsson Hall

Phone: (434) 982-2207

EMail: robins@cs.virginia.edu

www.cs.virginia.edu/~robins

"Good teaching is one-fourth preparation and three-fourths theater." - Gail Godwin

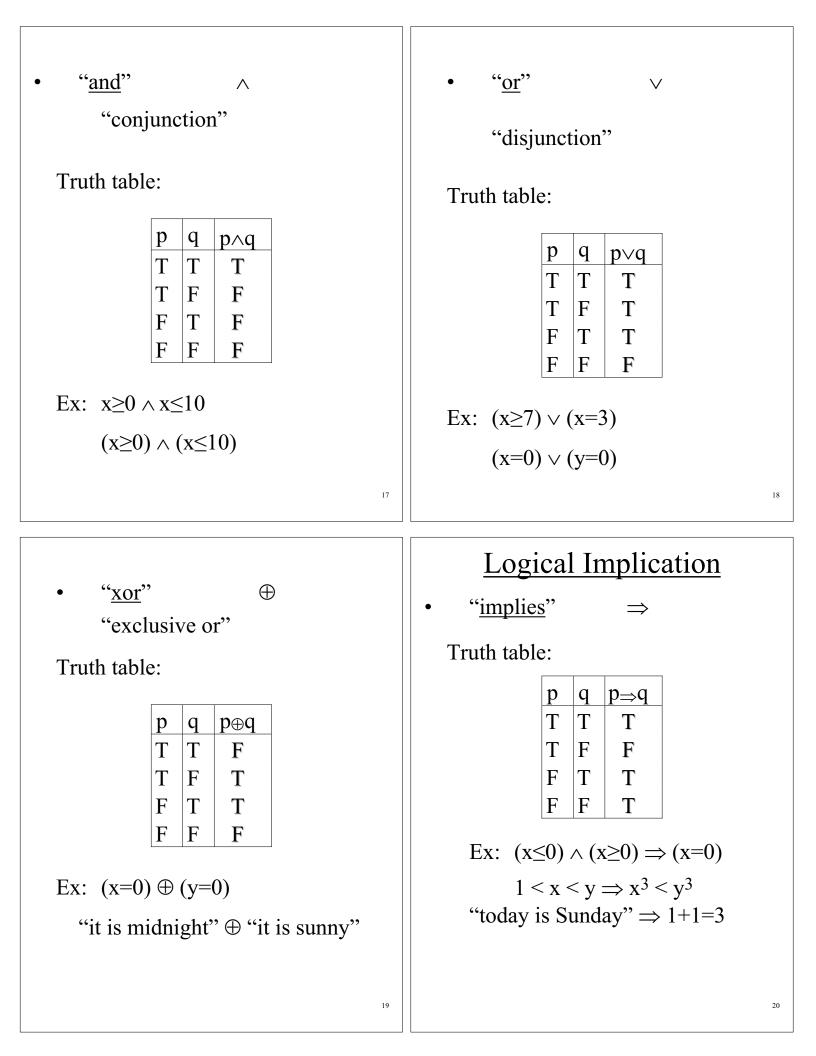
7

Good Advice

- Ask questions ASAP
- Do homeworks ASAP
- <u>Do not</u> fall behind
- "Cramming" won't work
- Start on project early
- Attend every lecture
- Read Email often
- Solve lots of problems

Basic Questions/Goals	Historical Perspectives
Q: How do you solve problems?	
Proof techniques	• Euclid (325BC – 265BC) "Elements"
Q: What <u>resources</u> are needed to compute certain functions?	• Rene Descartes (1596-1650)
• Time / space / "hardware"	Cartesian coordinates
- Thie / Space / hardware	• Pierre de Fermat (1601-1665)
Q: What makes problems <u>hard</u> /easy?	Fermat's Last Theorem
Problem classification	• Blaise Pascal (1623-1662)
Q: What are the fundamental	Probability
limitations of algorithms?	• Leonhard Euler (1707-1783)
Computability / undecidability	Graph theory
9	10
Carl Friedrich Gauss (1777-1855)	• Georg Cantor (1845-1918)
Number theory	Transfinite arithmetic
• George Boole (1815-1864)	• Bertrand Russell (1872-1970)
Boolean algebra	"Principia Mathematica"
• Augustus De Morgan (1806-1871)	• Kurt Godel (1906-1978)
Symbolic logic, induction	Incompleteness
• Ada Augusta (1815-1852)	• Alan Turing (1912-1954)
Babbage's Analytic Engine	Computability
Charles Dodgson (1832-1898) Alice in Wonderland	Alonzo Church (1903-1995) Lambda-calculus
• John Venn (1834-1923) Set theory and logic	 John von Neumann (1903-1957) Stored program
Set meory and logic	
11	12

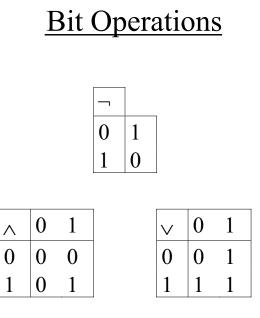
 Claude Shannon (1916-2001) Information theory Stephen Kleene (1909-1994) Recursive functions Noam Chomsky (1928-) Formal languages John Backus (1924-) Functional programming Edsger Dijkstra (1930-2002) Structured programming Paul Erdos (1913-1996) Combinatorics 	Symbolic LogicDef: proposition - statement either true (T) or false (F)Ex: $1+1=2$ $2+2=3$ "today is Monday" $x+4=5$
Boolean Functions• "and"^• "or" \checkmark • "not" \neg • "xor" \oplus • "nand"• "nor"• "implication"• "equivalence"	• "not" ¬ "negation" Truth table: $\frac{p}{p} \frac{p}{p}$ $\frac{p}{p} \frac{p}{p}$ $F \frac{p}{p}$ $F \frac{p}{p}$ $F \frac{p}{p}$ $F \frac{p}{p}$ ="today is Monday"



Other interpretations of $p \Rightarrow q$:	Logical Equivalence
• "p implies q"	• " <u>biconditional</u> " ⇔
• "if p, then q"	or "if and only if" ("iff") or "necessary and sufficient"
• "q only if p"	or "logically equivalent" ≡ Truth table:
• "p is sufficient for q"	\mathbf{p} \mathbf{q} $\mathbf{p} \Leftrightarrow \mathbf{q}$
• "q if p"	$\begin{array}{ c c c c } T & T & T \\ T & F & F \\ \end{array}$
• "q whenever p"	F T F F F T
• "q is necessary for p"	Ex: $p \Leftrightarrow p$
21	$[(x=0) \lor (y=0)] \Leftrightarrow (xy=0)$ $\min(x,y)=\max(x,y) \Leftrightarrow x=y$
logically equivalent (\Leftrightarrow) - means "has same truth table"Ex: p \Rightarrow q is equivalent to (\neg p) \lor qi.e., p \Rightarrow q \Leftrightarrow (\neg p) \lor q p $p \neq p \Rightarrow q \neg p \neg p \lor q$ T	Note: $p \Rightarrow q$ is <u>not</u> equivalent to $q \Rightarrow p$ Thm: $(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$ Q: What is the negation of $p \Rightarrow q$? A: $\neg(p \Rightarrow q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$
	$\begin{vmatrix} p & q & \neg q & p \Rightarrow q & \neg (p \Rightarrow q) & p \land \neg q \end{vmatrix}$
	T T F T F F
	T F T F T T
	F T F T F F
Ex: $(p \Leftrightarrow q) \equiv [(p \Rightarrow q) \land (q \Rightarrow p)]$	FFTTFF
$p \Leftrightarrow q \equiv p \Rightarrow q \land q \Rightarrow p$ $(p \Leftrightarrow q) \equiv [(\neg p \lor q) \land (\neg q \lor p)]$	"Logic is in the eye of the logician." - Gloria Steinem

Example	Order of Operations
let p = "it is raining" let q = "the ground is wet"	negation firstor/and next
$p \Rightarrow q$: "if it is raining, then the ground is wet"	implications last
$\neg q \Rightarrow \neg p$: "if the ground is not wet, then it is not raining"	 parenthesis override others (similar to arithmetic)
$q \Rightarrow p$: "if the ground is wet, then it is raining"	Def: <i>converse</i> of $p \Rightarrow q$ is $q \Rightarrow p$ <i>contrapositive</i> of $p \Rightarrow q$ is $\neg q \Rightarrow \neg p$
$\neg(p \Rightarrow q)$: "it is raining, and the ground is not wet"	Prove: $p \Longrightarrow q \equiv \neg q \Longrightarrow \neg p$
25	26

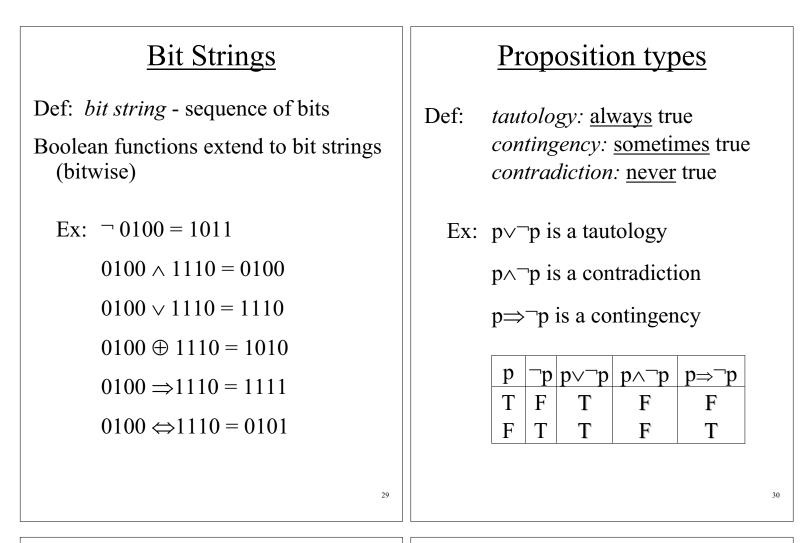
Q: How many distinct 2-variable Boolean functions are there?



 $\Leftrightarrow 0$

\Rightarrow	0	1
0	1	1
1	0	1

2	8	



Logic Laws

Identity:

 $p \land T \Leftrightarrow p$ $p \lor F \Leftrightarrow p$

Domination:

 $p \lor T \Leftrightarrow T$ $p \land F \Leftrightarrow F$

Idempotent:

 $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$

Logic Laws (cont.)

Double Negation:

 $\neg(\neg p) \Leftrightarrow p$

Commutative:

 $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$

Associative:

 $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Logic Laws (cont.)	Example
$\begin{array}{l} \underline{\text{Distributive:}}\\ p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)\\ p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) \end{array}\\\\ \underline{\text{De Morgan's:}}\\ \neg (p \lor q) \Leftrightarrow \neg p \land \neg q\\ \neg (p \land q) \Leftrightarrow \neg p \lor \neg q \end{array}\\\\ \underline{\text{Misc:}}\\ p \lor \neg p \Leftrightarrow T\\ p \land \neg p \Leftrightarrow F\\ (p \Rightarrow q) \Leftrightarrow (\neg p \lor q) \end{aligned}$	Simplify the following: $(p \land q) \Rightarrow (p \lor q)$
PredicatesDef: predicate - a function or formula involving some variablesEx: let $P(x) = "x > 3"$ x is the variable "x>3" is the predicate 	Quantifiers• Universal: "for all" \forall $\forall x P(x)$ $\Leftrightarrow P(x_1) \land P(x_2) \land P(x_3) \land$ $Ex: \forall x \ x < x + 1$ $\forall x \ x < x^3$ • Existential: "there exists" \exists $\exists x P(x)$ $\Leftrightarrow P(x_1) \lor P(x_2) \lor P(x_3) \lor$ $Ex: \exists x \ x = x^2$ $\exists x \ x < x - 1$ • Combinations: $\forall x \ \exists y \ y > x$

Examples	Examples (cont.)
• ∀x ∃y x+y=0	• n is divisible by j (denoted n j):
• $\exists y \forall x x+y=0$	$n j \Leftrightarrow \exists k \in Z n = kj$
 "every dog has his day": ∀d ∃y H(d,y) 	• m is prime (denoted P(m)): P(m) $\Leftrightarrow [\forall i \in \mathbb{Z} (m i) \Rightarrow (i=m) \lor (i=1)]$
• $\lim_{x \to a} f(x) = L$	• "there is no largest prime" $\forall p \exists q \in Z (q > p) \land P(q)$
$\forall \varepsilon \exists \delta \forall x \ (0 < x-a < \delta \Longrightarrow f(x) - L < \varepsilon)$	$\forall p \exists q \in Z (q \geq p) \land \\ [\forall i \in Z (q i) \Rightarrow (i=q) \lor (i=1)]$
	$\forall p \exists q \in Z (q \geq p) \land \\ [\forall i \in Z \{\exists k \in Z q = ki\} \Rightarrow (i = q) \lor (i = 1)]$
37	38
Negation of Quantifiers	Quantification Laws
Thm: $\neg(\forall x P(x)) \Leftrightarrow \exists x \neg P(x)$	Thm: $\forall x (P(x) \land Q(x))$ $\Leftrightarrow (\forall x P(x)) \land (\forall x Q(x))$
Ex: \neg "all men are mortal" \Leftrightarrow "there is a man who is not mortal" $\overline{T1} = \overline{(7 - P(x))} + \overline{(7 - P(x))}$	Thm: $\exists x (P(x) \lor Q(x))$ $\Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$
Thm: $\neg(\exists x P(x)) \Leftrightarrow \forall x \neg P(x)$ Ex: \neg "there is a planet with life on it" \Leftrightarrow "all planets do not contain life"	Q: Are the following true?
${\text{Thm: } \neg \exists x \forall y \ P(x,y) \Leftrightarrow \forall x \exists y \ \neg P(x,y)}$	$ \exists x (P(x) \land Q(x)) \Leftrightarrow (\exists x P(x)) \land (\exists x Q(x)) $
Ex: \neg "there is a man that exercises every day" \Leftrightarrow "every man does not exercise some day" Thm: $\neg \forall x \exists y P(x,y) \Leftrightarrow \exists x \forall y \neg P(x,y)$ Ex: \neg "all things come to an end" \Leftrightarrow "some thing does not come to any end"	$ \forall x (P(x) \lor Q(x)) \Leftrightarrow (\forall x P(x)) \lor (\forall x Q(x)) $

More Quantification Laws	Unique Existence
• $(\forall x Q(x)) \land P \Leftrightarrow \forall x (Q(x) \land P)$	Def: $\exists !x P(x)$ means there exists a <u>unique</u> x such that P(x) holds
• $(\exists x Q(x)) \land P \Leftrightarrow \exists x (Q(x) \land P)$	Q: Express ∃!x P(x) in terms of the other logic operators
• $(\forall x Q(x)) \lor P \Leftrightarrow \forall x (Q(x) \lor P)$	A:
• $(\exists x Q(x)) \lor P \Leftrightarrow \exists x (Q(x) \lor P)$	
41	42
 Mathematical Statements Definition Lemma Theorem Corollary Proof Types Construction 	Sets Def: set - an unordered collection of elements Ex: {1, 2, 3} or {hi, there} Venn Diagram: S.x
 Contradiction Induction Counter-example Existence 	Def: two sets are <i>equal</i> iff they contain the <u>same</u> elements Ex: $\{1, 2, 3\} = \{2, 3, 1\}$ $\{0\} \neq \{1\}$ $\{3, 5\} = \{3, 5, 3, 3, 5\}$

Set <u>construction</u> : or ∋ means "such that"	Common Sets
Ex: $\{k \mid 0 \le k \le 4\}$ $\{k \mid k \text{ is a perfect square}\}$	Naturals:N = $\{1, 2, 3, 4,\}$ Integers:Z = $\{, -2, -1, 0, 1, 2,\}$
• Set <u>membership</u> : $\in \notin$ Ex: $7 \in \{p \mid p \text{ prime}\}$	<u>Rationals</u> : $Q = \{\frac{a}{b} \mid a, b \in Z, b \neq 0\}$
q ∉ {0, 2, 4, 6,} • Sets can contain other sets	Reals: $\Re = \{x \mid x \text{ a real } \#\}$ Empty set: $\emptyset = \{\}$
Ex: $\{2, \{5\}\}$	Z^+ = non-negative integers
$\{\{\{0\}\}\} \neq \{0\} \neq 0$	\Re = non-positive reals, etc.
$S = \{1, 2, 3, \{1\}, \{\{2\}\}\}$	46

<u>Multisets</u>

Def: a set w/repeated elements allowed

(i.e., each element has "multiplier")

Ex: {0, 1, 2, 2, 2, 5, 5}

For multisets: $\{3, 5\} \neq \{3, 5, 3, 3, 5\}$

<u>Sequences</u>

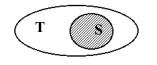
Def: ordered list of elements

Ex: (0, 1, 2, 5) "4-tuple" $(1,2) \neq (2,1)$ "2-tuple"

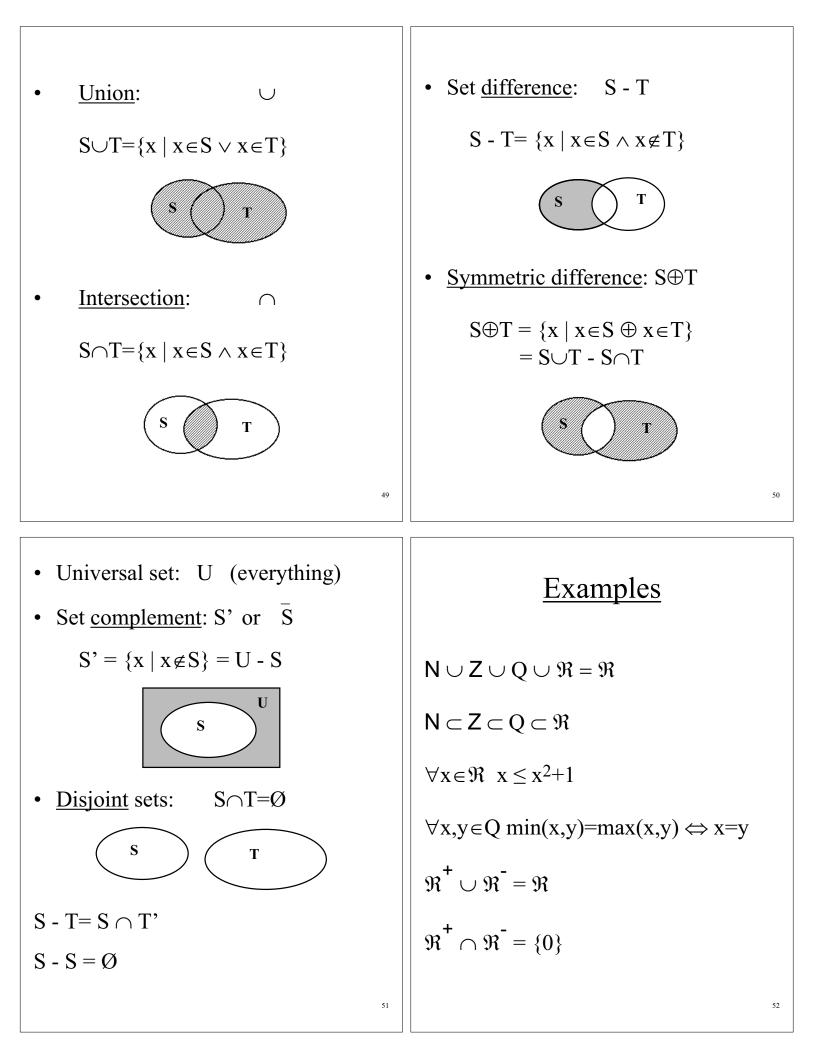
Subsets

<u>Subset</u> notation: \subseteq

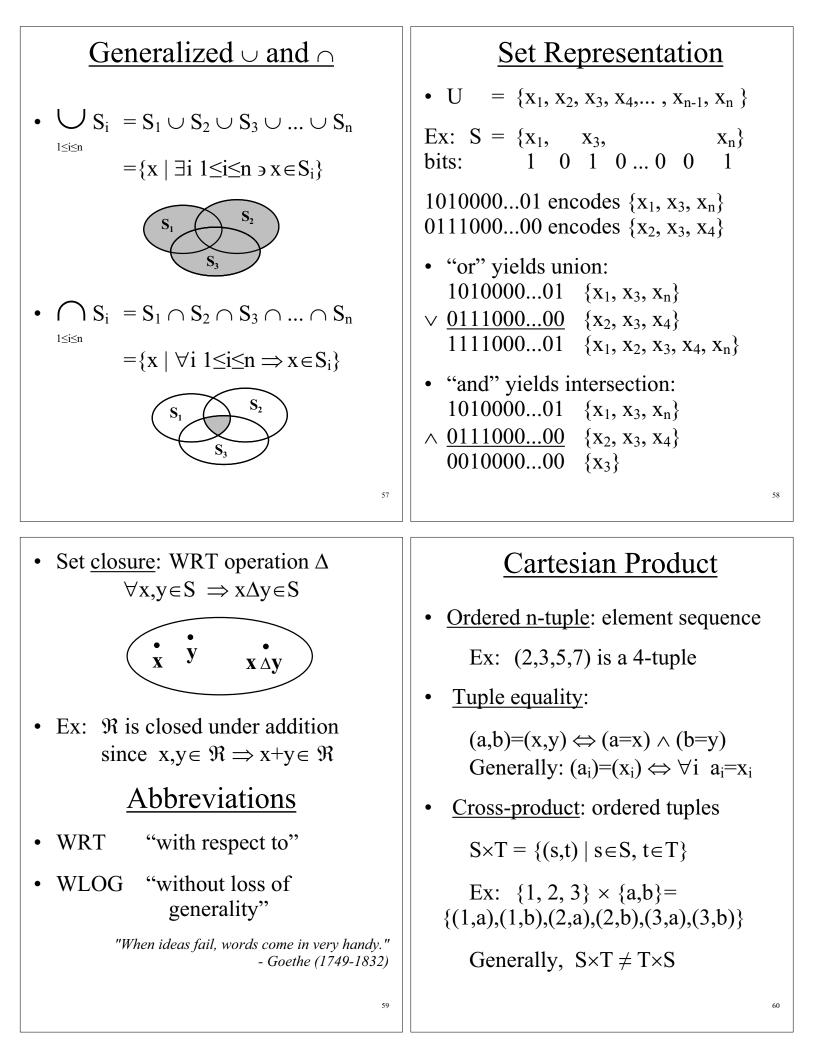
 $S \subseteq T \Leftrightarrow (x \! \in \! S \Rightarrow x \! \in \! T)$

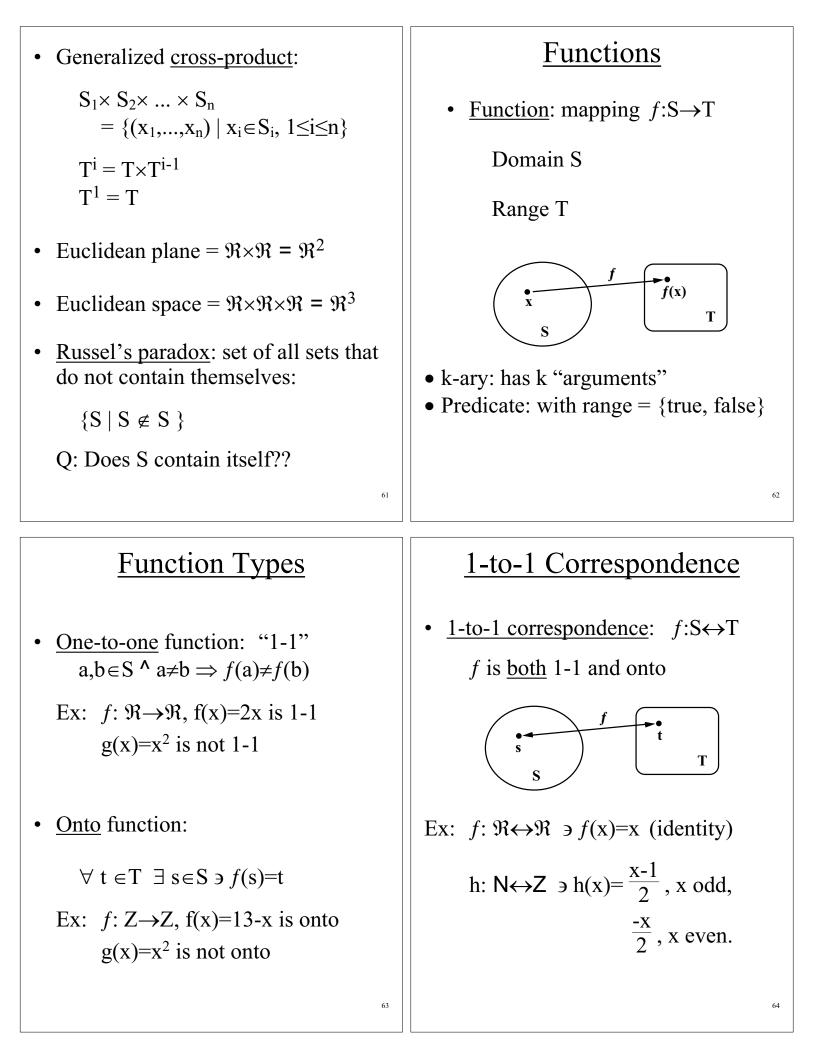


Proper subset: \subset $S \subset T \Leftrightarrow ((S \subseteq T) \land (S \neq T))$ $S=T \Leftrightarrow ((T \subseteq S) \land (S \subseteq T))$ $\forall S \ \emptyset \subseteq S$ $\forall S \ S \subseteq S$



Set Identities	Set Identities (Cont.)
<text><equation-block><text><equation-block><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></text></equation-block></text></equation-block></text>	• Commutative Law: $S \cup T = T \cup S$ $S \cap T = T \cap S$ • Associative Law: $S \cup (T \cup V) = (S \cup T) \cup V$ $S \cap (T \cap V) = (S \cap T) \cap V$
Set Identities (Cont.)	DeMorgan's Laws
• Distributive Law: $S \cup (T \cap V) = (S \cup T) \cap (S \cup V)$ $S \cap (T \cup V) = (S \cap T) \cup (S \cap V)$	$(S \cup T)' = S' \cap T'$ $(S \cap T)' = S' \cup T'$
• <u>Absorption:</u> $S \cup (S \cap T) = S$	
$S \cap (S \cup T) = S$	Boolean logic version: (X^Y)'=X'∨Y'



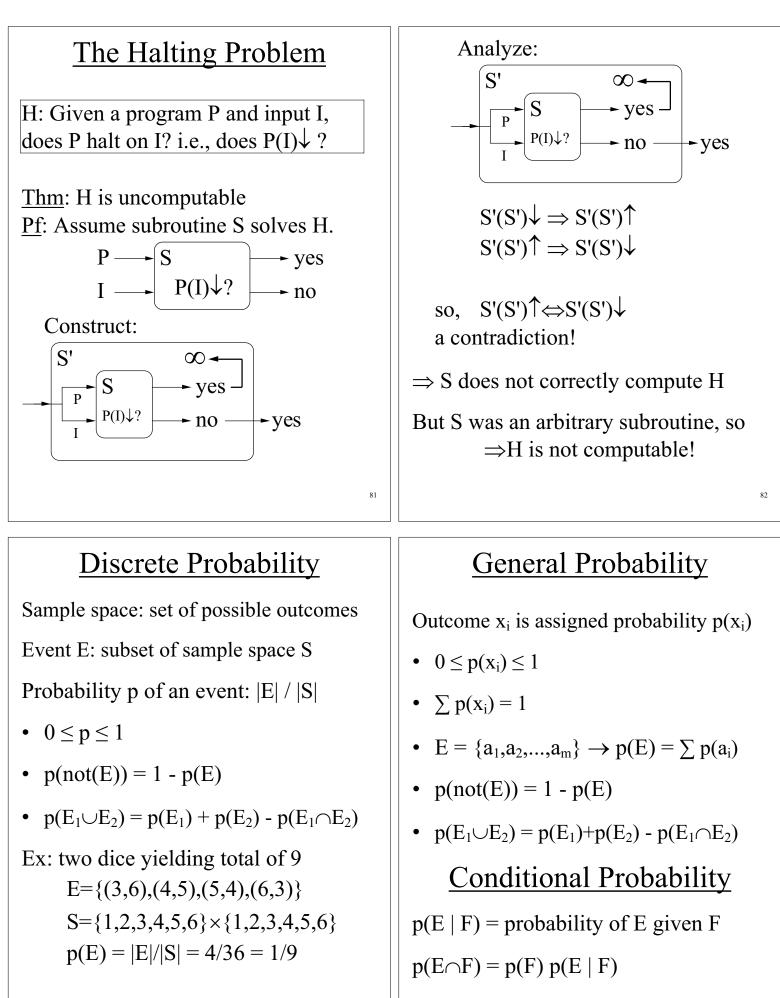


 Inverse function: f:S→T f⁻¹:T→S f⁻¹(t)=s if f(s)=t Ex: f(x)=2x f⁻¹(x)=x/2 Function composition: β:S→T, α:T→V 	Thm: $(f \bullet f^{-1})(\mathbf{x}) = (f^{-1} \bullet f)(\mathbf{x}) = \mathbf{x}$
$\Rightarrow (\alpha \bullet \beta)(x) = \alpha(\beta(x))$ (\alpha \epsilon \beta):S \rightarrow V	
Ex: $\beta(x)=x+1$ $\alpha(x)=x^2$ $(\alpha \bullet \beta)(x)=x^2+2x+1$	
65	66
Set Cardinality	Theorem: $ 2^{S} =2^{ S }$
• <u>Cardinality</u> : $ S = #$ elements in S	Proof:
Ex: $ \{a,b,c\} =3$ $ \{p \mid p \text{ prime } < 9\} =4$	
$ \emptyset =0$	
{{1,2,3,4,5}} = ?	
• <u>Powerset</u> : 2^{S} = set of all subsets	
$2^{S} = \{T \mid T \subseteq S\}$	
Ex: $2^{\{a,b\}} = \{\{\},\{a\},\{b\},\{a,b\}\}$	"Sometimes when reading Goethe, I have the
Q: What is 2^{\emptyset} ?	paralyzing suspicion that he is trying to be funny." - Guy Davenport

Generalized	Cardinality	Infinite Sets
• S is <u>at least as large</u> as T:		• Infinite set: $ S > k \forall k \in Z$
$ \mathbf{S} \ge \mathbf{T} \Longrightarrow \exists f: \mathbf{S} \rightarrow$	T, f onto	or $\exists 1-1 \text{ corres. } f: S \leftrightarrow T, S \subset T$
i.e., "S covers T"		Ex: $\{p \mid p \text{ prime}\}, \Re$
Ex: $r: \Re \rightarrow Z, r(x)$	=round(x)	
$\Rightarrow \Re \ge Z $		• <u>Countable set</u> : $ \mathbf{S} \le \mathbf{N} $
• S and T have <u>sam</u>	-	Ex: \emptyset , {p p prime}, N, Z
$ S = T \Rightarrow S \ge T '$		• S is <u>strictly smaller</u> than T:
\exists 1-1 corresponded	ence S↔T	$ S < T \implies S \le T \land S \ne T $
Generalizes finite	cardinality:	• <u>Uncountable set</u> : $ N < S $
$\{1, 2, 3, 4, 5\} \geq \{$	•	Ex: $ \mathbf{N} < \Re$ $ \mathbf{N} < [0,1] = \{x \mid x \in \Re, 0 \le x \le 1\}$
$\{1, 2, 3, 7, 3\} \leq \{$	a, 0, 0;	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Thm: $ \Re > N $ Pf (diagonalization):Assume \exists 1-1 corres. $f: \Re \leftrightarrow N$ Construct $X \in \Re$: $f(1) = 2. \forall 18281828 \rightarrow \otimes$ $f(2) = 1.4 \ddagger 4213562 \rightarrow 2$ $f(3) = 1.61 \circledast 033989 \rightarrow \Im$ $X = 0. \circledast 2 \Im \neq f(K) \forall K \in \mathbb{N}$ $\Rightarrow f$ not a 1-1 correspondence \Rightarrow contradiction $\Rightarrow \Re$ is uncountable
	71	72

Q: Is $ 2^{Z} = \Re $?	Q: Is $ \Re > [0,1] $?
Thm: any set is "smaller" than its powerset. $ \mathbf{S} < 2^{\mathbf{S}} $	$ \frac{\text{Infinities}}{ N = \aleph_0} $ • $ \Re = \aleph_1$
1	 ℜ = ℵ₁ ℵ₀ < ℵ₁ = 2^{ℵ₀} "Continuum Hypothesis" ∃? ω ⇒ ℵ₀ < ω < ℵ₁ Independent of the axioms! [Cohen, 1966] Axiom of choice [Godel 1938] Parallel postulate

$ \begin{array}{c} \underline{\text{Infinity Hierarchy}}\\ \bullet \ \aleph_{i} < \aleph_{i+1} = 2^{\aleph_{i}}\\ 0, 1, 2, \dots, k, k+1, \dots, \aleph_{0},\\ \aleph_{1}, \aleph_{2}, \dots, \aleph_{k}, \aleph_{k+1}, \dots,\\ \aleph_{\aleph_{0}}, \aleph_{\aleph_{1}}, \dots, \aleph_{\aleph_{k}}, \aleph_{\aleph_{k+1}}, \dots \end{array} $	<u>Thm</u> : # algorithms is countable. <u>Pf</u> : sort programs by size: "main(){}" . "main(){int k; k=7;}" .
 First inaccessible infinity: ω For an informal account on infinities, see e.g.: Rucker, <u>Infinity and the Mind</u>, Harvester Press, 1982. 	\Rightarrow # algorithms is countable!
77	78
Thm: # of functions is uncountable.Pf: Consider 0/1-valued functions(i.e., functions from N to $\{0,1\}$): $\{(1,0), (2,1), (3,1), (4,0), (5,1),\}$ $\Rightarrow \{ 2, 3, 5,\} \in 2^N$ So, every subset of N corresponds to a different 0/1-valued function $ 2^N $ is uncountable (why?) \Rightarrow # functions is uncountable!	 <u>Thm</u>: most functions are uncomputable! <u>Pf</u>: # algorithms is countable # functions is <u>not</u> countable ⇒∃ <u>more</u> functions than algorithms / programs! ⇒ some functions <u>do not</u> have algorithms! Ex: The <u>halting problem</u> Given a program P and input I, does P halt on I? Def: H(P,I) = 1 if P halts on I 0 otherwise
79	U Otherwise



Ex: what is the probability of two siblings being both male, given that one of them is male?

Let (x,y) be the two siblings Sample space: {(m,m),(m,f),(f,m),(f,f)} Let E = both are male = {(m,m)} Let F = at least one is male = {(m,m),(m,f),(f,m)}

 $E \cap F = \{(m,m)\}\$ = both are male

$$p(E \cap F) = p(F) p(E | F)$$

$$p(E | F) = p(E \cap F) / p(F)$$

$$= (1/4) / (3/4) = 1/3$$

Relations

Relation: a set of "ordered tuples"

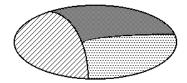
Ex: {	((a,1),(b,2), (b,3)}
"<" {	$(x,y) \mid x,y \in Z, x < y\}$
Reflexive:	$\mathbf{x} \mathbf{v} \mathbf{x} \ \forall \mathbf{x}$
Symmetric	$: x \checkmark y \Rightarrow y \checkmark x$
Transitive:	$\mathbf{x} \mathbf{\forall} \mathbf{y}^{\mathbf{\wedge}} \mathbf{y} \mathbf{\forall} \mathbf{z} \Longrightarrow \mathbf{x} \mathbf{\forall} \mathbf{z}$
Antisymme	$\underline{\text{etric}}: \mathbf{x} \mathbf{\Psi} \mathbf{y} \Rightarrow \neg (\mathbf{y} \mathbf{\Psi} \mathbf{x})$
Ex: \leq is	s reflexive transitive not symmetric

Equivalence Relations

Def: reflexive, symmetric, & transitive

Ex: standard equality "=" x=x $x=y \Rightarrow y=x$ $x=y \land y=z \Rightarrow x=z$

Partition - disjoint equivalence classes:



Closures

• <u>Transitive closure</u> of \mathbf{V} : TC smallest superset of \mathbf{V} satisfying $x \mathbf{V} y^{\wedge} y \mathbf{V} z \Rightarrow x \mathbf{V} z$

Ex: "predecessor" $\{(x-1,x) \mid x \in Z\}$ TC(predecessor) is "<" relation

 Symmetric closure of ♥: smallest superset of ♥ satisfying

```
\mathbf{x} \mathbf{\Psi} \mathbf{y} \Rightarrow \mathbf{y} \mathbf{\Psi} \mathbf{x}
```

87

85

Algorithms

- Existence
- Efficiency

Analysis

- Correctness
- Time
- Space
- Other resources

Worst case analysis (as function of input size |w|)

Asymptotic growth: O $\Omega \Theta o$

Upper Bounds

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow \exists \ c,k > 0\\ &\Rightarrow |f(n)| \le c \cdot |g(n)| \quad \forall \ n > k\\ \\ Lim \ f(n) \ / \ g(n) \ exists\\ & n \rightarrow \infty\\ ``f(n) \ is \ big-O \ of \ g(n)''\\ \\ Ex: \ n &= O(n^2)\\ & 33n+17 = O(n)\\ & n^8-n^7 = O(n^{123})\\ & n^{100} = O(2^n)\\ & 213 = O(1) \end{split}$$

Lower Bounds

 $\mathbf{f}(\mathbf{n}) = \Omega(\mathbf{g}(\mathbf{n})) \Leftrightarrow \mathbf{g}(\mathbf{n}) = O(\mathbf{f}(\mathbf{n}))$

 $\underset{n \to \infty}{\text{Lim } g(n) / f(n) \text{ exists}}$

"f(n) is Omega of g(n)"

Ex: $100n = \Omega(n)$

$$33n+17 = \Omega(\log n)$$

 $n^8-n^7 = \Omega(n^8)$
 $213 = \Omega(1/n)$
 $1 = \Omega(213)$

Tight Bounds

 $f(n) = \Theta(g(n)) \Leftrightarrow$ $f(n)=O(g(n)) \land g(n)=O(f(n))$

"f(n) is Theta of g(n)"

```
Ex: 100n = \Theta(n)

33n+17 + \log n = \Theta(n)

n^8-n^7-n^{-13} = \Theta(n^8)

213 = \Theta(1)

3+\cos(2^n) = \Theta(1)
```

91

89

Loose Bounds

 $f(n) = o(g(n)) \Leftrightarrow$ $f(n)=O(g(n)) \wedge f(n)\neq\Omega(g(n))$ $\lim_{n\to\infty} f(n)/g(n) = 0$ $\stackrel{n\to\infty}{}^{"}f(n) \text{ is little-o of } g(n)"$ Ex: 100n = o(n log n) $33n+17 + \log n = o(n^2)$ $n^8-n^7-n^{-13} = o(2^n)$ $213 = o(\log n)$ $3+\cos(2^n) = o(\sqrt{n})$

Growth Laws

Let $f_1(n)=O(g_1(n))$ and $f_2(n)=O(g_2(n))$

Thm: $f_1(n) + f_2(n)$ = $O(max(g_1(n),g_2(n)))$

Thm: $f_1(n) \cdot f_2(n)$ = $O(g_1(n) \cdot g_2(n))$

Thm: $n^k = O(c^n) \quad \forall c, k > 0$

Ex: $n^{1000} = O(1.001^n)$

Recurrences

$$T(n) = a \cdot T(n/b) + f(n)$$

let $c = \log_{b} a$

Thm:

$$\begin{split} &f(n) = O(n^{c \cdot \epsilon}) \Rightarrow T(n) = \Theta(n^c) \\ &f(n) = \Theta(n^c) \Rightarrow T(n) = \Theta(n^c \log n) \\ &f(n) = \Omega(n^{c + \epsilon}) \wedge a \cdot f(n/b) \leq d \cdot f(n) \\ &\forall d < 1, n > n_0 \Rightarrow T(n) = \Theta(f(n)) \end{split}$$

Ex: $T(n) = 9T(n/3) + n \Rightarrow T(n) = \Theta(n^2)$

 $T(n) = T(2n/3)+1 \Rightarrow T(n)=\Theta(\log n)$

Pigeon-Hole Principle

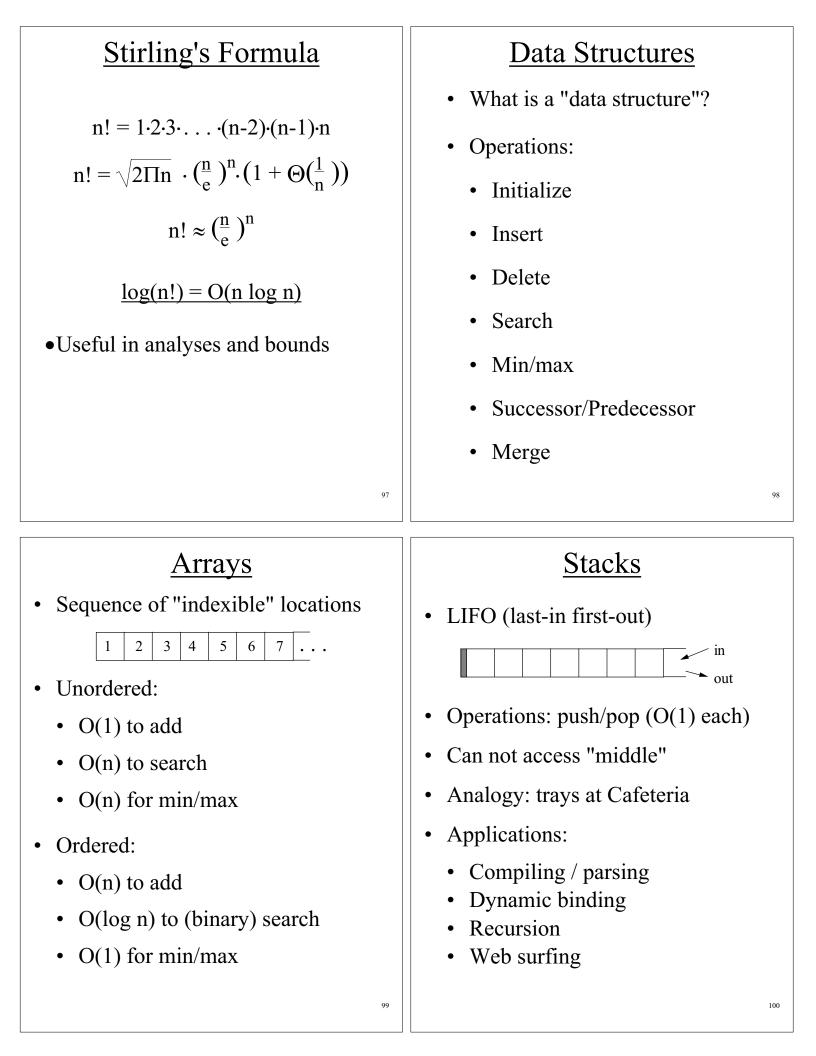
If N+1 objects are placed into N boxes $\Rightarrow \exists$ a box with 2 objects.

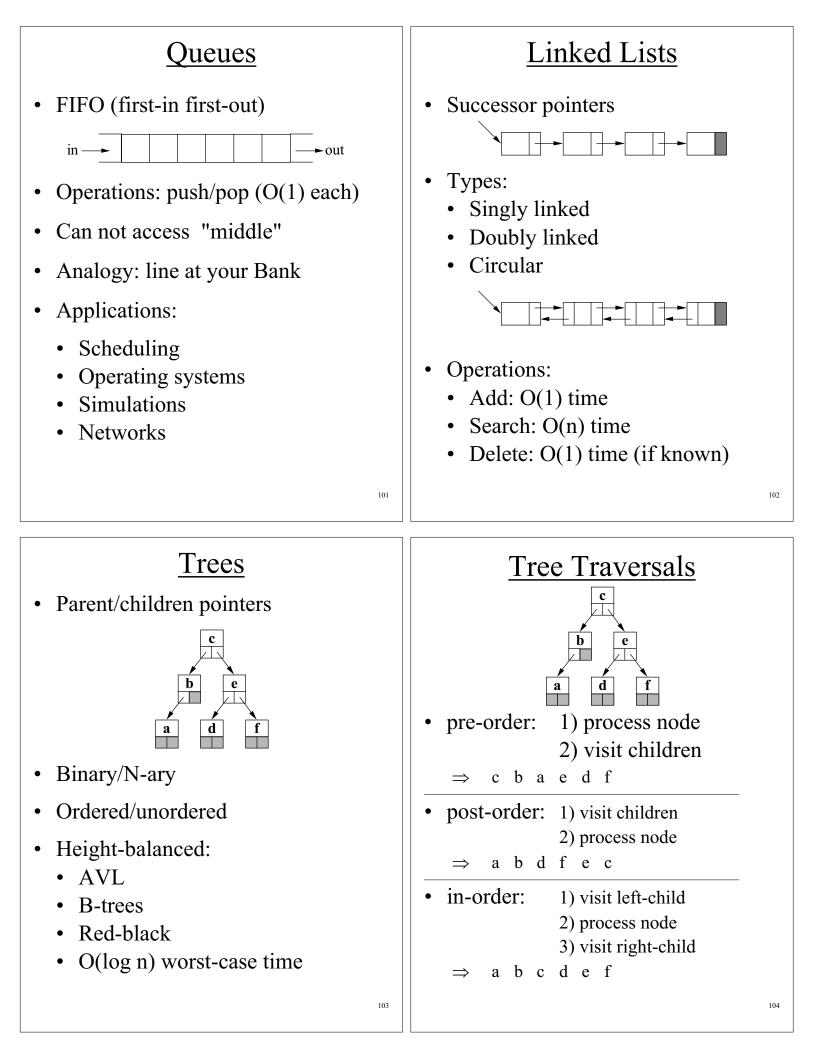
If M objects are placed into N boxes & $M \ge N \Rightarrow \exists box with \left(\frac{M}{N} \right) objects.$

• Useful in proofs & analyses

95

93





 Heaps A tree where all of a node's children have smaller "keys" Can be implemented as a binary tree Can be implemented as an array Operations: Find max: O(1) time Add: O(log n) time Delete: O(log n) time Search: O(n) time 	 Hash Tables Direct access Hash function Collision resolution: Chaining Linear probing Double hashing Universal hashing O(1) average access O(n) worst-case access time be improved to O(log n)?
105	106
SortingFact: almost half of <u>all</u> CPU cycles are spent on sorting!!• Input: array X[1n] of integers Output: sorted array• Decision tree modelThm: Sorting takes $\Omega(n \log n)$ time Pf: n! different permutations⇒decision tree has n! leaves⇒tree height is: $log(n!)$ $> log((n/e)^n)$ $= \Omega(n \log n)$	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>

• <u>Bubble Sort:</u> For k=1 to n For i=1 to n-1 If X[i+1]>X[i] Then Swap(X,i,i+1) $\Rightarrow \Theta(n^2)$ time • <u>Insertion Sort:</u> For i=1 to n-1 For j=i+1 to n If X[j]>X[i] Then Swap(X,i,j) $\Rightarrow \Theta(n^2)$ time	 QuickSort: QuickSort(X,i,j) If i<j p="Partition(X,i,j)<br" then="">QuickSort(X,p) QuickSort(X,p+1,j)</j> ⇒O(n log n) time (ave-case) C.A.R. Hoare, 1962 Good news: usually best in practice Bad news: worst-case O(n²) time Usually avoids worst-case Only beats O(n²) sorts for n>40
• <u>Merge Sort</u> : MergeSort(X,i,j) if i <j <math="" then="">m=l(i+j)/2l MergeSort(X,i,m) MergeSort(X,m+1,j) Merge(X,i,m,j) T(n) = 2 T(n/2) + n $\Rightarrow \Theta(n \log n) time$ • <u>Heap Sort</u>: InitHeap For i=1 to n HeapInsert(X(i)) For i=1 to n M=HeapMax Print(M) HeapDelete(M) $\Rightarrow \Theta(n \log n) time$</j>	 Counting Sort: Assumes integers in small range 1k For i=1 to k C[i]=0 For i=1 to k C[X[i]]++ For i=1 to k If C[i]>0 Then print(i) C[i] times ⇒O(n) time (worst-case) Assumes d digits in range 1k For i=1 to d StableSort(X on digit i) ⇒O(dn+kd) time (worst-case)

• <u>Bucket Sort</u> :	Order Statistics
Assumes <u>uniform</u> inputs in range 01	• <u>Exact</u> comparison count
For i=1 to n Insert X[i] into Bucket [n·X[i]] For i=1 to n <u>Sort</u> Bucket i Concat contents of Buckets 1 thru n ⇒O(n) time (expected) O(<u>Sort</u>) time (worst)	 Minimum element k=X[1] For i=2 to n If X[i]<k k="X[i]</li" then=""> ⇒n-1 comparisons </k> Thm: Min requires n-1 comparisons. Proof:
113	114
• Min <u>and</u> Max:	Effect of comparisons:
(a)Compare all pairs	Origin Target
(b)Find Min of min's of all pairs	$\langle \rangle$

- (c)Find Max of max's of all pairs
- \Rightarrow n/2+n/2+n/2 =3n/2 comparisons

Thm: Min&Max require 3n/2 comparisons. <u>Pf</u>: Represent known info by four sets:

(Unknown A	Not Min <u>B</u>	Not Max	Neither D
Initial:	n	0	0	0
Final:	0	1	1	n-2

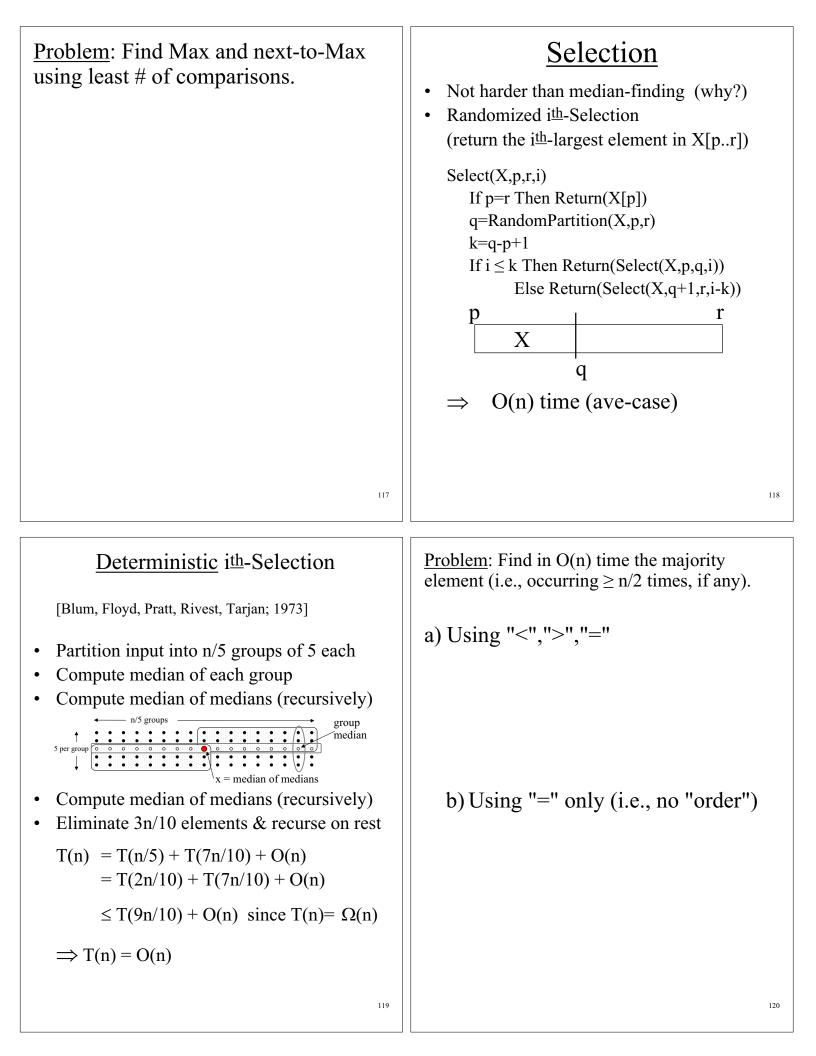
Track movement of elements between sets.

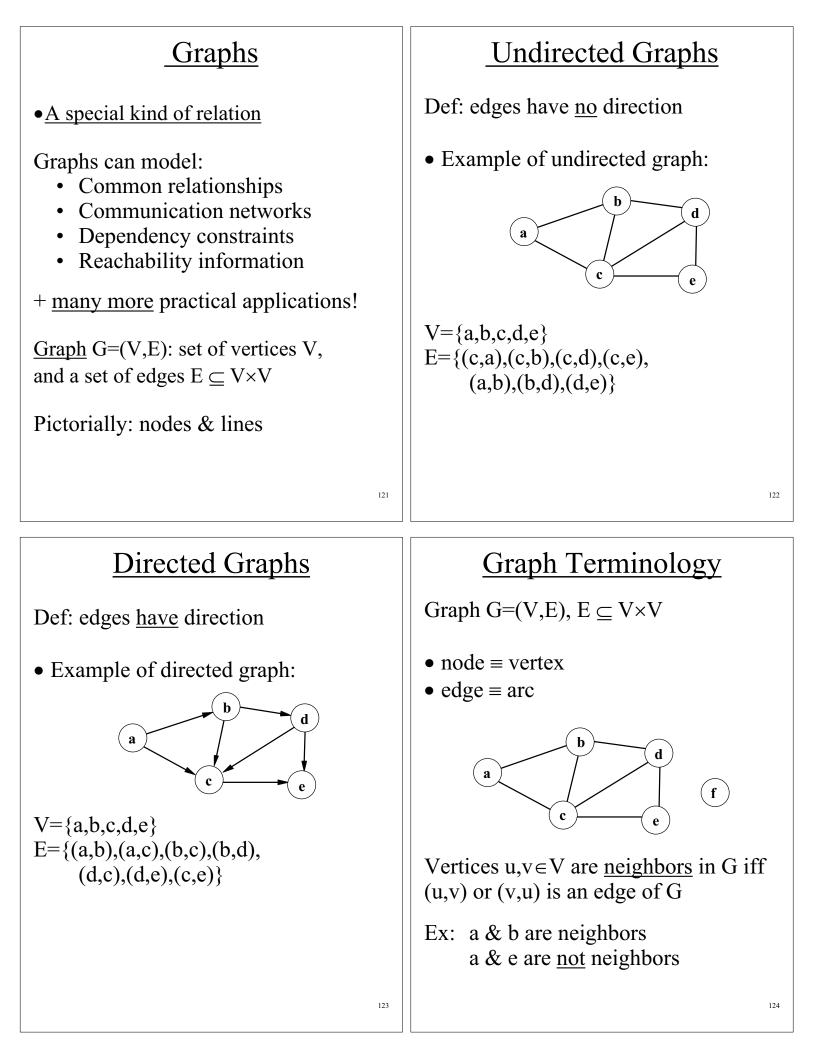
<u>Origin</u>	Target
	< >
A&A	C&B B&C
A&B	C&B B&D
A&C	C&D B&C
A&D	C&D B&D

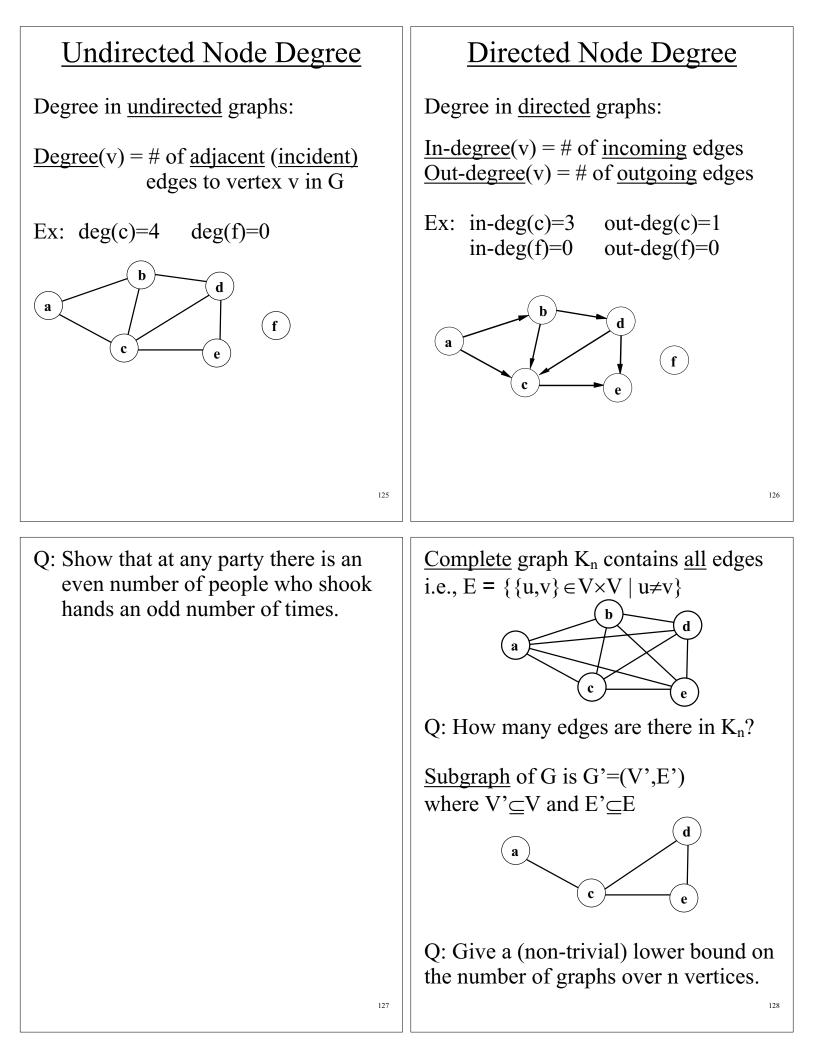
B&B	$D\&B \mid B\&D(2)$
B&C	D&D B&C
B&D	D&D B&D
C&C	C&D D&C(3)
C&D	C&D D&D
D&D	D&D D&D

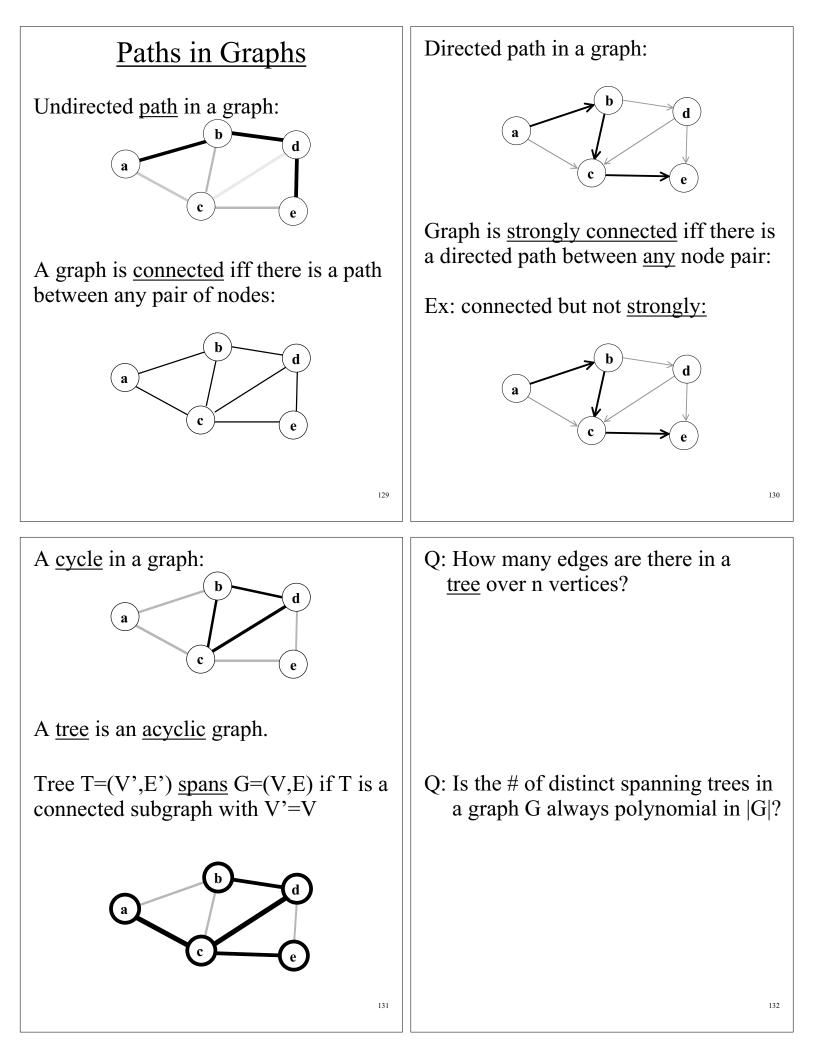
(1)

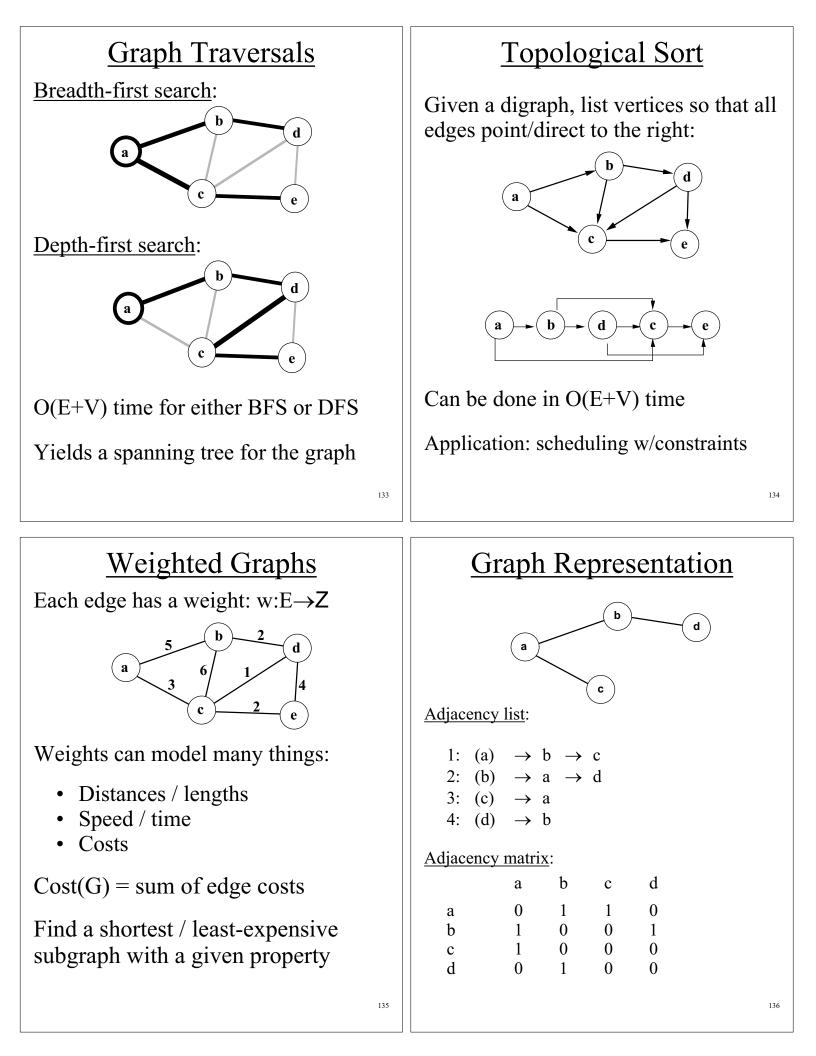
- Going from A to D forces passing through B or C •
- "Emptying" A into B&C takes n/2 comparisons (1)
- "Almost emptying" B takes n/2-1 comparisons (2) •
- "Almost emptying" C takes n/2-1 comparisons (3) ٠
- Other moves will not reach the "final state" faster •
- Total comparisons required: 3n/2-2 •

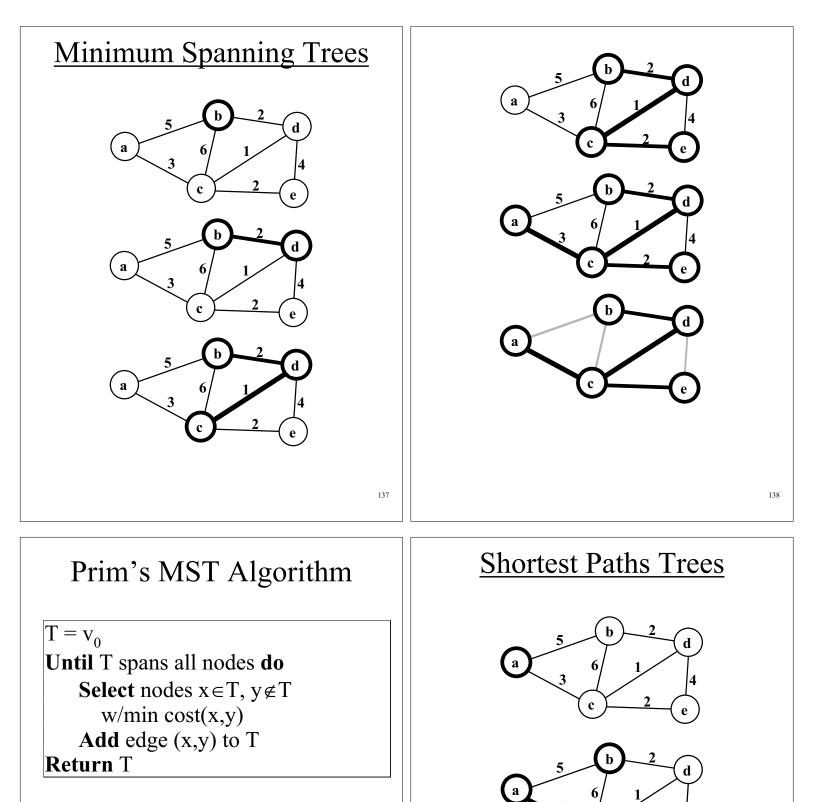




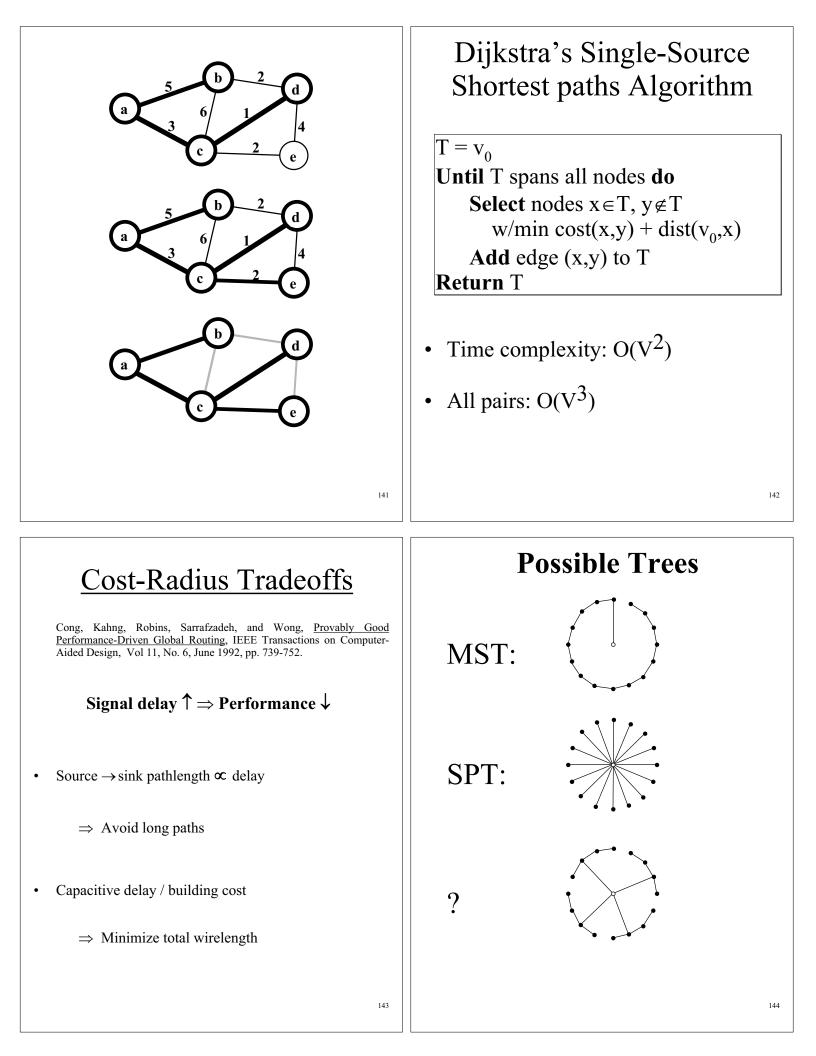


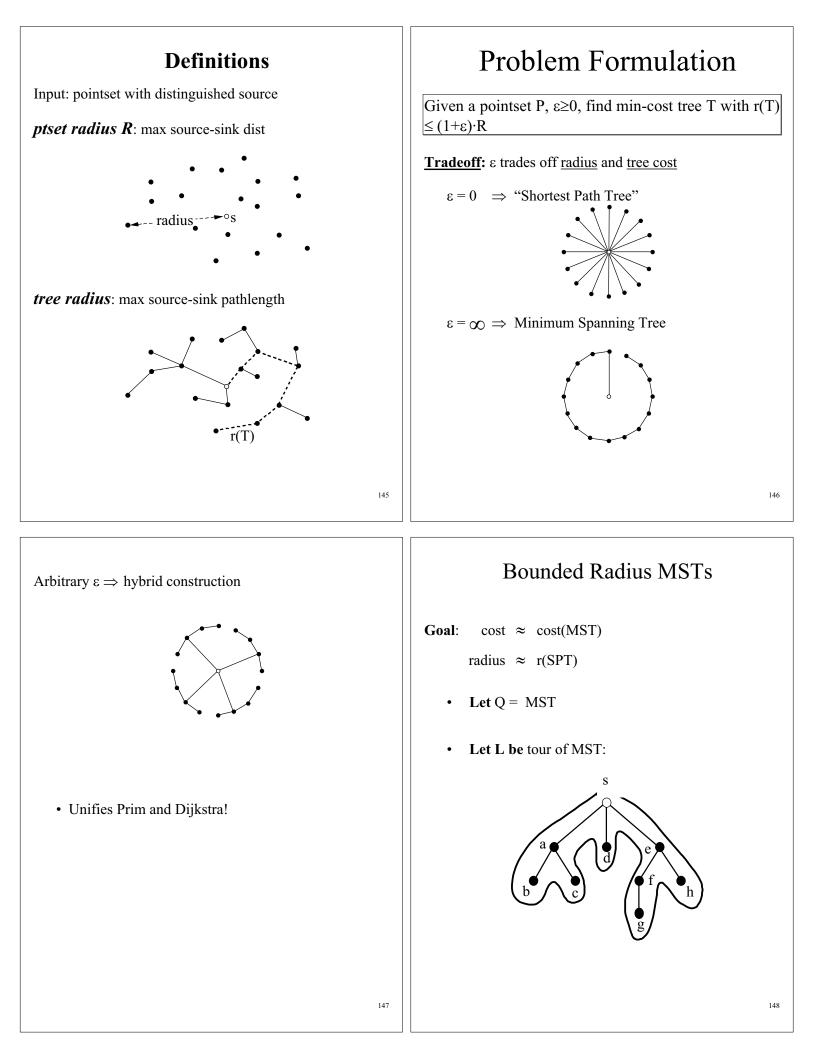


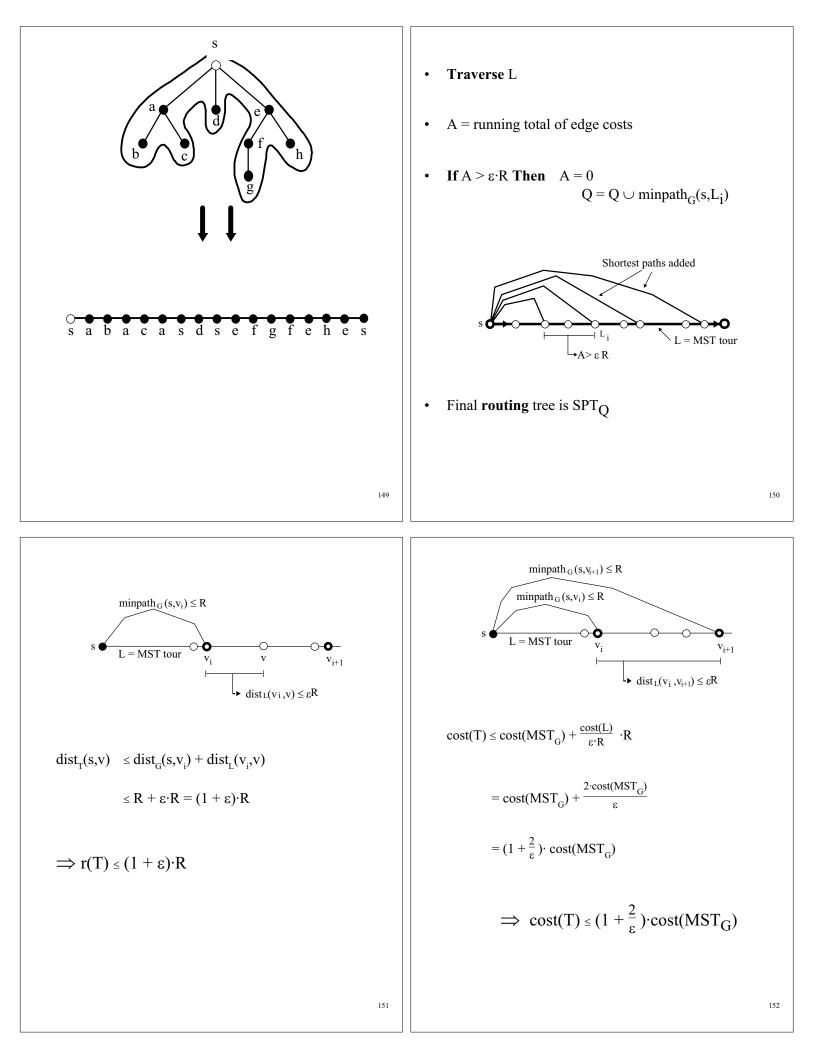


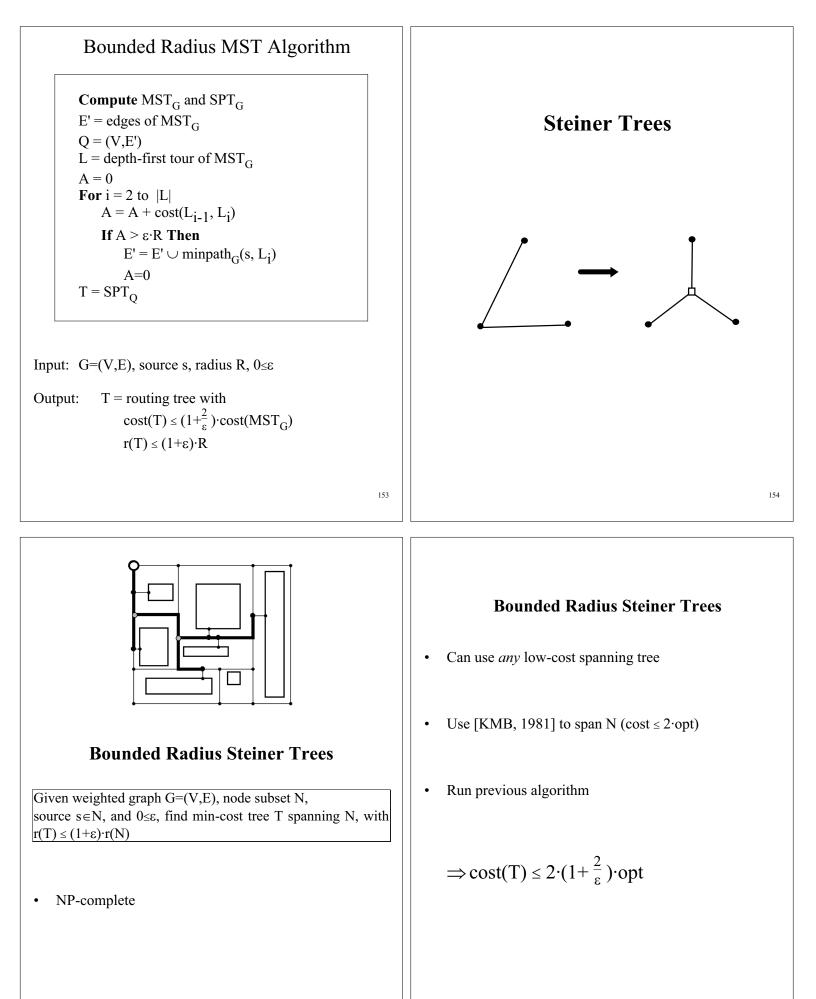


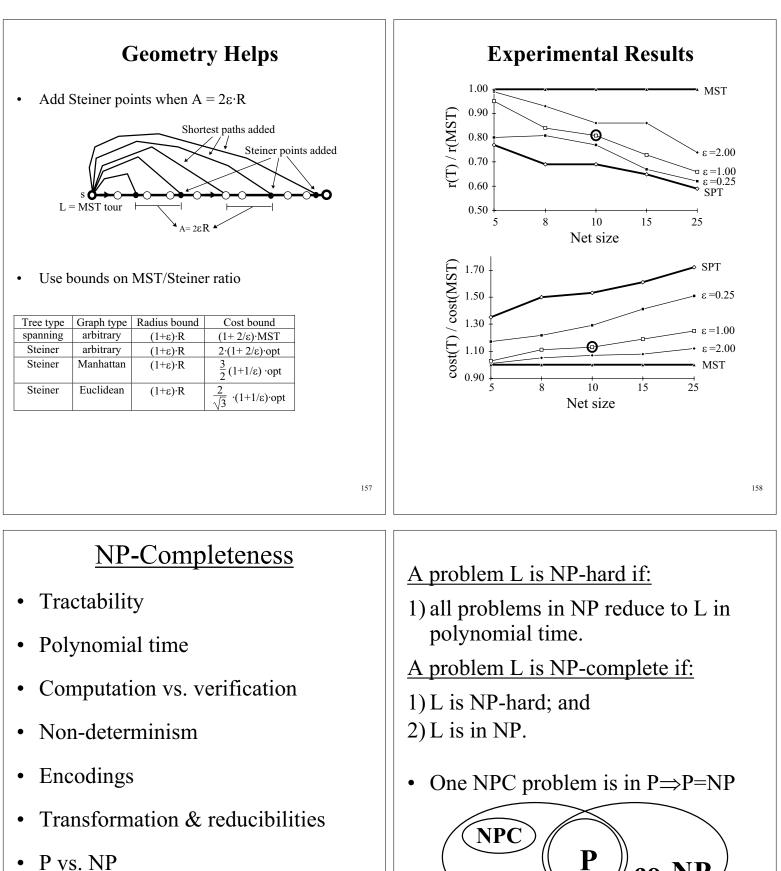
- Time complexity: O(E log E)
- Kruskal: O(E log V)
- Fibonacci heaps: O(E+VlogV)











- P vs. NP
- "completeness"

NP

Open question: is P=NP ?

co-NP

<u>Satisfiability</u>	Cook's Theorem
 SAT: is a given n-variable boolean formula (in CNF) satisfiable? CNF (Conjunctive Normal Form): i.e., product-of-sums "satisfiable" ⇒ can be made "true" Ex: (x+y)(x̄ +z) is satisfiable (x+z)(x̄)(z̄) is not satisfiable 3-SAT: is a given n-var boolean formula (in 3-CNF) satisfiable? 3-CNF: three literals per clause Ex: (x₁+x₅+x₇)(x₃+x̄ 4+x̄ 5) 	 Thm: SAT is NP-complete [Cook 1971] Pf idea: given a non-deterministic polynomial-time TM M and input w, construct a CNF formula that is satisfiable iff M accepts w. Use variables: q[i,k] ⇒ at step i, M is in state k h[i,k] ⇒ at step i, read-write head scans tape cell k s[i,j,k] ⇒ at step i, tape cell j contains symbol Σ_k M always halts in polynomial time ⇒ # of variables is polynomial time
Clauses for necessary restrictions: • At each time i: M is in exactly 1 state r/w head scans exactly 1 cell all cells contain exactly 1 symb • Time 0 \Rightarrow initial state • Time P(n) \Rightarrow final state • Transitions from time i to time i+1 obey M's transition function Resulting formula is satisfiable iff M accepts w. <u>Thm</u> : 3-SAT is NP-complete <u>Pf idea</u> : convert each long clause to an equivalent set of short ones: (x+y+z+u+v+w) \Rightarrow (x+y+a)(\overline{a} +z+b)(\overline{b} +u+c)(\overline{c} +v+w)	Q: is 1-SAT NP-complete? Q: is 2-SAT NP-complete?

