
1

Algorithms

University of Virginia

Gabriel Robins

2

Course Outline

• Historical perspectives
 • Foundations
 • Data structures
 • Sorting
 • Graph algorithms
 • Geometric algorithms
 • Statistical analysis
 • NP-completeness
 • Approximation algorithms

3

Prerequisites
Some discrete math / algorithms knowledge
would be helpful (but is not necessary)

Textbook
Cormen, Leiserson, Rivest, and Stein, Introduction to
Algorithms, Second Edition, McGraw-Hill, 2001.

4

Suggested Reading

Polya, How to Solve it, Princeton University Press, 1957.

Preparata and Shamos, Computational Geometry, an
Introduction, Springer-Verlag, 1985.

Miyamoto Musashi, Book of Five Rings, Overlook
Press, 1974.

“This book fills a much-needed gap.”
 - Moses Hadas (1900-1966) in a review

5

Grading scheme

 Homeworks: 25%

 Midterm: 25%

 Final: 25%

 Project: 25%

 Extra credit: 10%

“The mistakes are all there waiting to be made.”
 - chessmaster Savielly Grigorievitch Tartakower (1887-1956)

on the game’s opening position

6

Specifics

 • Homeworks

 • Solutions

 • Extra-credit
 • In-class
 • Find mistakes

 • Office hours: after class
 • Any time
 • Email (preferred)
 • By appointment
 • Q&A posted on the Web

 • Exams: take home?

7

Contact Information

 Prof: Gabriel Robins

 Office: 210 Olsson Hall

 Phone: (434) 982-2207

 EMail: robins@cs.virginia.edu

 www.cs.virginia.edu/~robins

“Good teaching is one-fourth preparation
and three-fourths theater.” - Gail Godwin

8

Good Advice
 • Ask questions ASAP

 • Do homeworks ASAP

 • Do not fall behind

 • “Cramming” won’t work

 • Start on project early

 • Attend every lecture

 • Read Email often

 • Solve lots of problems

9

Basic Questions/Goals
Q: How do you solve problems?

 Proof techniques

Q: What resources are needed to
 compute certain functions?

 Time / space / “hardware”

Q: What makes problems hard/easy?

 Problem classification

Q: What are the fundamental
 limitations of algorithms?

 Computability / undecidability

10

Historical Perspectives

• Euclid (325BC – 265BC)
 “Elements”

• Rene Descartes (1596-1650)
 Cartesian coordinates

• Pierre de Fermat (1601-1665)
 Fermat’s Last Theorem

• Blaise Pascal (1623-1662)
 Probability

• Leonhard Euler (1707-1783)
 Graph theory

11

• Carl Friedrich Gauss (1777-1855)
 Number theory

• George Boole (1815-1864)
 Boolean algebra

• Augustus De Morgan (1806-1871)
 Symbolic logic, induction

• Ada Augusta (1815-1852)
 Babbage’s Analytic Engine

• Charles Dodgson (1832-1898)
 Alice in Wonderland

• John Venn (1834-1923)
 Set theory and logic

12

• Georg Cantor (1845-1918)
 Transfinite arithmetic

• Bertrand Russell (1872-1970)
 “Principia Mathematica”

• Kurt Godel (1906-1978)
 Incompleteness

• Alan Turing (1912-1954)
 Computability

• Alonzo Church (1903-1995)
 Lambda-calculus

• John von Neumann (1903-1957)
 Stored program

13

• Claude Shannon (1916-2001)
 Information theory

• Stephen Kleene (1909-1994)
 Recursive functions

• Noam Chomsky (1928-)
 Formal languages

• John Backus (1924-)
 Functional programming

• Edsger Dijkstra (1930-2002)
 Structured programming

• Paul Erdos (1913-1996)
 Combinatorics

14

Symbolic Logic
 Def: proposition - statement
 either true (T) or false (F)

 Ex: 1+1=2

 2+2=3

 “today is Monday”

 “what time is it?”

 x + 4 = 5

15

Boolean Functions
 • “and” ^

 • “or”

 • “not” ¬

 • “xor”

 • “nand”

 • “nor”

 • “implication”

 • “equivalence”

16

 • “not” ¬

 “negation”

 Truth table:

p ¬p
T FF
F TT

 Ex: let p=“today is Monday”

 ¬p =“today is not Monday”

17

• “and”

 “conjunction”

 Truth table:

p q p q
T T TT
T F FF
F T FF
F F FF

 Ex: x 0 x 10

 (x 0) (x 10)

18

 • “or”

 “disjunction”

 Truth table:

p q p q
T T TT
T F TT
F T TT
F F FF

 Ex: (x 7) (x=3)

 (x=0) (y=0)

19

 • “xor”
 “exclusive or”

 Truth table:

p q p q
T T FF
T F TT
F T TT
F F FF

 Ex: (x=0) (y=0)

 “it is midnight” “it is sunny”

20

Logical Implication
• “implies”

 Truth table:

p q p q
T T TT
T F FF
F T TT
F F TT

 Ex: (x 0) (x 0) (x=0)
 1 < x < y x3 < y3

 “today is Sunday” 1+1=3

21

Other interpretations of p q:

 • “p implies q”

 • “if p, then q”

 • “q only if p”

 • “p is sufficient for q”

 • “q if p”

 • “q whenever p”

 • “q is necessary for p”

22

Logical Equivalence
• “biconditional”
 or “if and only if” (“iff”)
 or “necessary and sufficient”
 or “logically equivalent”
Truth table:

p q p q
T T TT
T F FF
F T FF
F F TT

Ex: p p

 [(x=0) (y=0)] (xy=0)
min(x,y)=max(x,y) x=y

23

logically equivalent () - means “has
same truth table”

Ex: p q is equivalent to (¬p) q
 i.e., p q (¬p) q

p q p q ¬p ¬p q
T T TT F TT
T F FF F FF
F T TT T TT
F F TT T TT

Ex: (p q) [(p q) (q p)]
p q p q q p
 (p q) [(¬p q) (¬q p)]

24

 Note: p q is not equivalent to q p

Thm: (P Q) (¬Q ¬P)

Q: What is the negation of p q?

A: ¬(p q) ¬(¬p q) p ¬q

p q ¬q p q ¬(p q) p ¬q
T T F T FF FF
T F T F TT TT
F T F T FF FF
F F T T FF FF

“Logic is in the eye of the logician.”
 - Gloria Steinem

25

Example

let p = “it is raining”
let q = “the ground is wet”

p q : “if it is raining,
 then the ground is wet”

¬q ¬p : “if the ground is not wet,
 then it is not raining”

q p : “if the ground is wet,
 then it is raining”

¬(p q) : “it is raining, and
 the ground is not wet”

26

Order of Operations

 • negation first

 • or/and next

 • implications last

 • parenthesis override others

(similar to arithmetic)

Def: converse of p q is q p
contrapositive of p q is ¬q ¬p

Prove: p q ¬q ¬p

27

Q: How many distinct 2-variable
Boolean functions are there?

28

Bit Operations

¬
0 1
1 0

0 1 0 1
0 0 0 0 0 1
1 0 1 1 1 1

0 1 0 1
0 1 1 0 1 0
1 0 1 1 0 1

29

Bit Strings

Def: bit string - sequence of bits

Boolean functions extend to bit strings
(bitwise)

 Ex: ¬ 0100 = 1011

 0100 1110 = 0100

 0100 1110 = 1110

 0100 1110 = 1010

 0100 1110 = 1111

 0100 1110 = 0101

30

Proposition types

Def: tautology: always true
contingency: sometimes true
contradiction: never true

 Ex: p ¬p is a tautology

 p ¬p is a contradiction

 p ¬p is a contingency

p ¬p p ¬p p ¬p p ¬p
T F TT FF FF
F T TT FF TT

31

Logic Laws

Identity:

 p T p
 p F p

Domination:

 p T T
 p F F

Idempotent:

 p p p
 p p p

32

Logic Laws (cont.)

Double Negation:

¬(¬p) p

Commutative:

 p q q p
 p q q p

Associative:

 (p q) r p (q r)
 (p q) r p (q r)

33

Logic Laws (cont.)

Distributive:

 p (q r) (p q) (p r)
 p (q r) (p q) (p r)

De Morgan’s:

¬(p q) ¬p ¬q
¬(p q) ¬p ¬q

Misc:

 p ¬p T
 p ¬p F
 (p q) (¬p q)

34

 Example

Simplify the following:

 (p q) (p q)

35

 Predicates

Def:predicate - a function or formula
involving some variables

Ex: let P(x) = “x > 3”
 x is the variable
 “x>3” is the predicate

 P(5)

 P(1)

Ex: Q(x,y,z) = “ x2+y2=z2 ”

 Q(2,3,4)

 Q(3,4,5)
36

 Quantifiers

• Universal: “for all”
x P(x)

P(x1) P(x2) P(x3)
 Ex: x x < x + 1

x x < x3

• Existential: “there exists”
x P(x)

P(x1) P(x2) P(x3) ...
 Ex: x x x2

x x < x - 1

 Combinations:
x y y>x

37

Examples
• x y x+y=0

• y x x+y=0

• “every dog has his day”:

d y H(d,y)

• Lim ƒ(x) = L
x a

x (0<|x-a|< |ƒ(x)-L|<)

38

Examples (cont.)
• n is divisible by j (denoted n|j):

 n|j k Z n=kj

• m is prime (denoted P(m)):

 P(m) i Z (m|i) i m i 1

• “there is no largest prime”

p q Z (q>p) P(q)

p q Z (q>p)
[i Z q|i) i q i 1

p q Z (q>p)
[i Z k Z q=ki i q i 1

39

Negation of Quantifiers

Thm: ¬(x P(x)) x ¬P(x)

Ex: ¬ “all men are mortal”
 “there is a man who is not mortal”

Thm: ¬(x P(x)) x ¬P(x)

Ex: ¬ “there is a planet with life on it”
“all planets do not contain life”

Thm: ¬ x y P(x,y) x y ¬P(x,y)
Ex: ¬ “there is a man that exercises every day”

“every man does not exercise some day”

Thm: ¬ x y P(x,y) x y ¬P(x,y)
Ex: ¬ “all things come to an end”

“some thing does not come to any end”
40

Quantification Laws
Thm: x (P(x) Q(x))

 (x P(x)) (x Q(x))
Thm: x (P(x) Q(x))

 (x P(x)) (x Q(x))

Q: Are the following true?

x (P(x) Q(x))
x P(x)) (x Q(x))

x (P(x) Q(x))
x P(x)) x Q(x))

41

More Quantification Laws

• x Q(x)) P x (Q(x) P)

• x Q(x)) P x (Q(x) P)

• x Q(x)) P x (Q(x) P)

• x Q(x)) P x (Q(x) P)

42

Unique Existence

Def: x P(x) means there exists a
unique x such that P(x) holds

Q: Express x P(x) in terms of the
other logic operators

A:

43

Mathematical Statements

 Definition
 Lemma
 Theorem
 Corollary

Proof Types

 Construction
 Contradiction
 Induction
 Counter-example
 Existence
 …

44

Sets
Def: set - an unordered collection of

elements

 Ex: {1, 2, 3} or {hi, there}

Venn Diagram:

S
x

Def: two sets are equal iff they contain
the same elements

 Ex: {1, 2, 3} = {2, 3, 1}

 {0} {1}
 {3, 5} {3, 5, 3, 3, 5}

45

• Set construction:
 | or means “such that”

 Ex: {k | 0<k<4}
 {k | k is a perfect square}

• Set membership:
 Ex: 7 {p | p prime}
 q {0, 2, 4, 6,...}

• Sets can contain other sets
 Ex: {2, {5}}

 {{{0}}} {0} 0

 S = {1, 2, 3, {1}, {{2}}}

46

Common Sets

Naturals: N = {1, 2, 3, 4, ...}

Integers: Z = {..,-2, -1, 0, 1, 2,..}

Rationals: Q = { a
b | a,b , b 0}

Reals: = {x | x a real #}

Empty set: Ø = {}

Z+ = non-negative integers
-= non-positive reals, etc.

47

Multisets
Def: a set w/repeated elements allowed

(i.e., each element has “multiplier”)

Ex: {0, 1, 2, 2, 2, 5, 5}

For multisets: {3, 5} {3, 5, 3, 3, 5}

Sequences

Def: ordered list of elements

Ex: (0, 1, 2, 5) “4-tuple”
 (1,2) (2,1) “2-tuple”

48

Subsets

• Subset notation:

 S T (x S x T)

ST

• Proper subset:
 S T ((S T) ^ (S T))
 S=T ((T S) ^ (S T))

S Ø S
S S S

49

• Union:

 S T={x | x S x T}

S T

• Intersection:

 S T={x | x S x T}

S T

50

• Set difference: S - T

 S - T= {x | x S x T}

S T

• Symmetric difference: S T

 S T = {x | x S x T}
 = S T - S T

S T

51

• Universal set: U (everything)
 _
• Set complement: S’ or S

 S’ = {x | x S} = U - S

S
U

• Disjoint sets: S T=Ø

S T

S - T= S T’

S - S = Ø

52

Examples

N Z Q

N Z Q

x x x2+1

x y Q min(x,y)=max(x,y) x=y

+ - =

+ - = {0}

53

Set Identities

• Identity:
 S Ø = S
 S U = S

• Domination:
 S U = U
 S Ø = Ø

• Idempotent:
 S S = S
 S S = S

• Complementation:
 (S’)’ = S

54

Set Identities (Cont.)

 • Commutative Law:

 S T=T S

 S T=T S

 • Associative Law:

 S (T V)= (S T) V

 S (T V) = (S T) V

55

Set Identities (Cont.)

• Distributive Law:

 S (T V)=(S T) (S V)

 S (T V) = (S T) (S V)

• Absorption:

S (S T)=S

 S (S T)=S

56

DeMorgan's Laws

 (S T)' = S' T'

 (S T)' = S' T'

 Boolean logic version:
 (X^Y)'=X' Y'
 (X Y)'=X'^Y'

57

Generalized and

• Si = S1 S2 S3 Sn
 1 i n

 ={x | i 1 i n x Si}

S3

S2S1

• Si = S1 S2 S3 Sn
 1 i n

 ={x | i 1 i n x Si}

S3

S2S1

58

Set Representation
• U = {x1, x2, x3, x4,... , xn-1, xn }

Ex: S = {x1, x3, xn}
bits: 1 0 1 0 ... 0 0 1

1010000...01 encodes {x1, x3, xn}
0111000...00 encodes {x2, x3, x4}

• “or” yields union:
 1010000...01 {x1, x3, xn}

0111000...00 {x2, x3, x4}
 1111000...01 {x1, x2, x3, x4, xn}

• “and” yields intersection:
 1010000...01 {x1, x3, xn}

0111000...00 {x2, x3, x4}
 0010000...00 {x3}

59

• Set closure: WRT operation
x,y S x y S

x y x y

• Ex: is closed under addition
 since x,y x+y

Abbreviations
• WRT “with respect to”

• WLOG “without loss of
 generality”

"When ideas fail, words come in very handy."
 - Goethe (1749-1832)

60

Cartesian Product

• Ordered n-tuple: element sequence

 Ex: (2,3,5,7) is a 4-tuple

• Tuple equality:

 (a,b)=(x,y) (a=x) (b=y)
 Generally: (ai)=(xi) i ai=xi

• Cross-product: ordered tuples

 S T = {(s,t) | s S, t T}

 Ex: {1, 2, 3} {a,b}=
{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

 Generally, S T T S

61

• Generalized cross-product:

 S1 S2 ... Sn

= {(x1,...,xn) | xi Si, 1 i n}

 Ti = T Ti-1

 T1 = T

• Euclidean plane = = 2

• Euclidean space = = 3

• Russel’s paradox: set of all sets that
do not contain themselves:

 {S | S S }

 Q: Does S contain itself??
62

Functions

 • Function: mapping ƒ:S T

 Domain S

 Range T

S
T

ƒ(x)
x

ƒ

 k-ary: has k “arguments”
 Predicate: with range = {true, false}

63

Function Types

• One-to-one function: “1-1”
 a,b S ^ a b ƒ(a) ƒ(b)

 Ex: ƒ: , f(x)=2x is 1-1
 g(x)=x2 is not 1-1

• Onto function:

 t T s S ƒ(s)=t

 Ex: ƒ: , f(x)=13-x is onto
 g(x)=x2 is not onto

64

1-to-1 Correspondence

• 1-to-1 correspondence: ƒ:S T

ƒ is both 1-1 and onto

S
T

t
s

ƒ

Ex: ƒ: ƒ(x)=x (identity)

 h: N Z h(x)=
x-1
2 , x odd,

-x
2 , x even.

65

• Inverse function:

 ƒ:S T ƒ-1:T S

 ƒ-1(t)=s if ƒ(s)=t

 Ex: ƒ(x)=2x ƒ-1(x)=x/2

• Function composition:

:S T :T V
 (•)(x)= ((x))

 (•):S V

 Ex: (x)=x+1 (x)=x2

 (•)(x)= x2 + 2x + 1

66

Thm: (ƒ•ƒ-1)(x) = (ƒ-1•ƒ)(x) = x

67

Set Cardinality
• Cardinality: |S| = #elements in S

Ex: |{a,b,c}|=3

 |{p | p prime < 9}| = 4

 |Ø|=0

 |{{1,2,3,4,5}}| = ?

• Powerset: 2S = set of all subsets

 2S ={T | T S}

 Ex: 2{a,b} = {{},{a},{b},{a,b}}

Q: What is 2Ø ?

68

Theorem: |2S|=2|S|

Proof:

“Sometimes when reading Goethe, I have the
paralyzing suspicion that he is trying to be funny.”

- Guy Davenport

69

Generalized Cardinality
• S is at least as large as T:
 |S| |T| ƒ:S T, ƒ onto
 i.e., “S covers T”

 Ex: r: Z, r(x)=round(x)

 | | | |

• S and T have same cardinality:
 |S|=|T| |S| |T| ^ |T| |S|

or
 1-1 correspondence S T

• Generalizes finite cardinality:

{1, 2, 3, 4, 5} {a, b, c}
70

Infinite Sets
• Infinite set: |S| > k k Z

or
 1-1 corres. ƒ:S T, S T

 Ex: {p | p prime},

• Countable set: |S| |N|

 Ex: Ø, {p | p prime},

• S is strictly smaller than T:

 |S| < |T| |S| |T| ^ |S| |T|

• Uncountable set: |N| < |S|
 Ex: |N| <

|N| < [0,1] = {x | x , x }

71

Thm: 1-1 correspondence Q N
Pf (dove-tailing):
 • • • • • •
 • • • • • •
 • • • • • •

1
6

2
6

3
6

4
6

5
6

6
6 ...

1
5

2
5

3
5

4
5

5
5

6
5 ...

1
4

2
4

3
4

4
4

5
4

6
4 ...

1
3

2
3

3
3

4
3

5
3

6
3 ...

1
2

2
2

3
2

4
2

5
2

6
2 ...

1
1

2
1

3
1

4
1

5
1

6
1 ...

72

Thm: | |>|N|
Pf (diagonalization):
 Assume 1-1 corres. ƒ: N

Construct x :
 ƒ(1)=2. 18281828...
 ƒ(2)=1.4 4213562...
 ƒ(3)=1.61 033989...

x = 0. ... ƒ(K) K N

ƒ not a 1-1 correspondence

contradiction

 is uncountable

73

Q: Is | |

74

Q: Is | | > |[0,1]| ?

75

Thm: any set is "smaller" than its powerset.

 |S| < |2S|

76

Infinities
 • |N| = 0

 • | | = 1

 • 0 < 1 = 2 0

 • “Continuum Hypothesis”

? 0 < < 1

 Independent of the axioms!
 [Cohen, 1966]

 • Axiom of choice [Godel 1938]

 • Parallel postulate

77

Infinity Hierarchy

• i < i+1 = 2 i

 0, 1, 2,..., k, k+1,..., 0,

1, 2,..., k, k+1,...,

0
,

1
,...,

k
,

k+1
,...

• First inaccessible infinity:

For an informal account on infinities, see e.g.:
Rucker, Infinity and the Mind, Harvester Press, 1982.

78

Thm: # algorithms is countable.
Pf: sort programs by size:
 "main(){}"
 •
 •

 "main(){int k; k=7;}"
 •
 •

 "<all of UNIX>"
 •
 •

 “<Windows XP>"
 •
 •

 "<intelligent program>"
 •
 •

 # algorithms is countable!

79

Thm: # of functions is uncountable.
Pf: consider 0/1-valued functions
(i.e., functions from N to {0,1}):

{(1,0), (2,1), (3,1), (4,0), (5,1), ...}

 { 2, 3, 5, ...} 2N

So, every subset of N corresponds to a
different 0/1-valued function

|2N| is uncountable (why?)

functions is uncountable!

80

Thm: most functions are uncomputable!

Pf: # algorithms is countable
 # functions is not countable

 more functions than
 algorithms / programs!

some functions do not have
algorithms!

Ex: The halting problem

Given a program P and input I,
does P halt on I?

Def: H(P,I) = 1 if P halts on I
 0 otherwise

81

The Halting Problem

H: Given a program P and input I,
does P halt on I? i.e., does P(I)

Thm: H is uncomputable
Pf: Assume subroutine S solves H.

SP
I

yes
noP(I) ?

 Construct:

S
P

I

S'
yes
no yesP(I) ?

82

 Analyze:

S
P

I

S'
yes
no yesP(I) ?

 S'(S') S'(S')
 S'(S') S'(S')

 so, S'(S') S'(S')
 a contradiction!

S does not correctly compute H

But S was an arbitrary subroutine, so
 H is not computable!

83

Discrete Probability
Sample space: set of possible outcomes

Event E: subset of sample space S

Probability p of an event: |E| / |S|

• 0 p 1

• p(not(E)) = 1 - p(E)

• p(E1 E2) = p(E1) + p(E2) - p(E1 E2)

Ex: two dice yielding total of 9
 E={(3,6),(4,5),(5,4),(6,3)}
 S={1,2,3,4,5,6} {1,2,3,4,5,6}
 p(E) = |E|/|S| = 4/36 = 1/9

84

General Probability

Outcome xi is assigned probability p(xi)

• 0 p(xi) 1

• p(xi) = 1

• E = {a1,a2,...,am} p(E) = p(ai)

• p(not(E)) = 1 - p(E)

• p(E1 E2) = p(E1)+p(E2) - p(E1 E2)

Conditional Probability
p(E | F) = probability of E given F

p(E F) = p(F) p(E | F)

85

Ex: what is the probability of two
siblings being both male, given that
one of them is male?

Let (x,y) be the two siblings
Sample space: {(m,m),(m,f),(f,m),(f,f)}
Let E = both are male
 = {(m,m)}
Let F = at least one is male
 = {(m,m),(m,f),(f,m)}
E F = {(m,m)}
 = both are male
p(E F) = p(F) p(E | F)
p(E | F) = p(E F) / p(F)
 = (1/4) / (3/4) = 1/3

86

Relations
Relation: a set of “ordered tuples”

Ex: {(a,1),(b,2), (b,3)}

 “<” {(x,y) | x,y Z, x<y}

 Reflexive: x x x

 Symmetric: x y y x

 Transitive: x y ^ y z x z

 Antisymmetric: x y ¬(y x)

 Ex: is reflexive
 transitive

not symmetric

87

Equivalence Relations

Def: reflexive, symmetric, & transitive

 Ex: standard equality “=”
 x=x
 x=y y=x
 x=y ^ y=z x=z

Partition - disjoint equivalence classes:

88

Closures
• Transitive closure of TC
 smallest superset of satisfying

x y ^ y z x z

 Ex “predecessor”
 {(x-1,x) | x Z}

TC(predecessor) is “<” relation

• Symmetric closure of
 smallest superset of satisfying

x y y x

89

 Algorithms
• Existence
• Efficiency

Analysis
 • Correctness
 • Time
 • Space
 • Other resources

Worst case analysis
(as function of input size |w|)

Asymptotic growth:

90

Upper Bounds

f(n) g(n) c,k > 0
|f(n)| c |g(n)| n>k

 Lim f(n) / g(n) exists
 n

 “f(n) is big-O of g(n)”
Ex: n = O(n2)
 33n+17 = O(n)
 n8-n7 = O(n123)
 n100 = O(2n)
 213 = O(1)

91

Lower Bounds

f(n) g(n) g(n)= f(n)

 Lim g(n) / f(n) exists
 n

 “f(n) is Omega of g(n)”

Ex: 100n = (n)

 33n+17 = (log n)
 n8-n7 = (n8)
 213 = (1/n)

1= (213)

92

Tight Bounds

f(n) g(n)
f(n) g(n) ^ g(n) f(n)

“f(n) is Theta of g(n)”

Ex: 100n = (n)
 33n+17 + log n = (n)
 n8-n7-n-13 = (n8)
 213 = (1)
 3+cos(2n) = (1)

93

Loose Bounds
f(n) g(n)
f(n) g(n) ^ f(n) g(n)

Lim f(n)/g(n) 0
 n

 “f(n) is little-o of g(n)”

Ex: 100n = (n log n)
 33n+17 + log n = (n2)
 n8-n7-n-13 = (2n)
 213 = (log n)
 3+cos(2n) = (n)

94

Growth Laws

Let f1(n)=O(g1(n)) and
f2(n)=O(g2(n))

Thm: f1(n) + f2(n)
 = O(max(g1(n),g2(n)))

Thm: f1(n) • f2(n)
 = O(g1(n) • g2(n))

Thm: nk = O(cn) c,k>0

Ex: n1000 = O(1.001n)

95

Recurrences

 T(n) = a•T(n/b) + f(n)

 let c = logba

Thm:
 f(n)=O(nc-) T(n)= (nc)
 f(n)= (nc) T(n)= (nc log n)
 f(n)= (nc+) ^ a•f(n/b) d•f(n)

 d<1, n>n0 T(n)= (f(n))

Ex: T(n) = 9T(n/3)+n T(n)= (n2)

T(n) = T(2n/3)+1 T(n)= (log n)

96

Pigeon-Hole Principle

If N+1 objects are placed into N boxes
 a box with 2 objects.

If M objects are placed into N boxes &
M>N box with M

N objects.

 Useful in proofs & analyses

97

Stirling's Formula

n! = 1•2•3• . . . •(n-2)•(n-1)•n

n! = 2 n • (n
e)

n
• (1 + (1

n))

n! (n
e)

n

log(n!) = O(n log n)

Useful in analyses and bounds

98

Data Structures
 • What is a "data structure"?

 • Operations:

 • Initialize

 • Insert

 • Delete

 • Search

 • Min/max

 • Successor/Predecessor

 • Merge

99

Arrays
• Sequence of "indexible" locations

1 2 3 4 5 6 7 . . .

• Unordered:

 • O(1) to add
 • O(n) to search
 • O(n) for min/max

• Ordered:
 • O(n) to add
 • O(log n) to (binary) search
 • O(1) for min/max

100

Stacks

• LIFO (last-in first-out)
in

out

• Operations: push/pop (O(1) each)

• Can not access "middle"

• Analogy: trays at Cafeteria

• Applications:

 • Compiling / parsing
 • Dynamic binding
 • Recursion
 • Web surfing

101

Queues

• FIFO (first-in first-out)

in out

• Operations: push/pop (O(1) each)

• Can not access "middle"

• Analogy: line at your Bank

• Applications:

 • Scheduling
 • Operating systems
 • Simulations
 • Networks

102

Linked Lists

• Successor pointers

• Types:
 • Singly linked
 • Doubly linked
 • Circular

• Operations:
 • Add: O(1) time
 • Search: O(n) time
 • Delete: O(1) time (if known)

103

Trees
• Parent/children pointers

c

b e

d fa

• Binary/N-ary

• Ordered/unordered

• Height-balanced:
 • AVL
 • B-trees
 • Red-black
 • O(log n) worst-case time

104

Tree Traversals
c

b e

d fa

• pre-order: 1) process node
 2) visit children

 c b a e d f

• post-order: 1) visit children
 2) process node

 a b d f e c

• in-order: 1) visit left-child
2) process node
3) visit right-child

 a b c d e f

105

Heaps
• A tree where all of a node’s children

have smaller “keys”

• Can be implemented as a binary tree

• Can be implemented as an array

• Operations:
 • Find max: O(1) time
 • Add: O(log n) time
 • Delete: O(log n) time
 • Search: O(n) time

106

Hash Tables
• Direct access

• Hash function

• Collision resolution:

 • Chaining
 • Linear probing
 • Double hashing

• Universal hashing
• O(1) average access
• O(n) worst-case access

Q: How can worst-case access time be
improved to O(log n)?

107

Sorting
Fact: almost half of all CPU
 cycles are spent on sorting!!

• Input: array X[1..n] of integers
 Output: sorted array
• Decision tree model

Thm: Sorting takes (n log n) time
Pf: n! different permutations

decision tree has n! leaves

tree height is: log(n!)
 > log((n/e)n)
 = (n log n)

108

Sort Properties

 • Worst case?

 • Average case?

 • In practice?

 • Input distribution?

 • Randomized?

 • Stability?

 • In-Situ?

 • Stack depth?

 • Internal vs. external?

109

• Bubble Sort:

 For k=1 to n
 For i=1 to n-1
 If X[i+1]>X[i]
 Then Swap(X,i,i+1)

(n2) time

• Insertion Sort:

 For i=1 to n-1
 For j=i+1 to n
 If X[j]>X[i] Then Swap(X,i,j)

(n2) time

110

• Quicksort:

 QuickSort(X,i,j)
 If i<j Then p=Partition(X,i,j)
 QuickSort(X,i,p)
 QuickSort(X,p+1,j)

O(n log n) time (ave-case)

• C.A.R. Hoare, 1962
• Good news: usually best in practice

• Bad news: worst-case O(n2) time
• Usually avoids worst-case

• Only beats O(n2) sorts for n>40

111

• Merge Sort:
 MergeSort(X,i,j)
 if i<j then m= (i+j)/2
 MergeSort(X,i,m)
 MergeSort(X,m+1,j)
 Merge(X,i,m,j)

 T(n) = 2 T(n/2) + n
(n log n) time

• Heap Sort:
 InitHeap
 For i=1 to n HeapInsert(X(i))
 For i=1 to n M=HeapMax
 Print(M)
 HeapDelete(M)

(n log n) time

112

• Counting Sort:

 Assumes integers in small range 1..k

 For i=1 to k C[i]=0
 For i=1 to k C[X[i]]++
 For i=1 to k
 If C[i]>0 Then print(i) C[i] times

(n) time (worst-case)

• Radix Sort:

Assumes d digits in range 1..k

 For i=1 to d StableSort(X on digit i)

O(dn+kd) time (worst-case)

113

• Bucket Sort:

Assumes uniform inputs in range 0..1

 For i=1 to n
 Insert X[i] into Bucket n•X[i]
 For i=1 to n Bucket i
 Concat contents of Buckets 1 thru n

O(n) time (expected)
O() time (worst)

114

Order Statistics
• Exact comparison count

• Minimum element

 k=X[1]
 For i=2 to n
 If X[i]<k Then k = X[i]

n-1 comparisons

Thm: Min requires n-1 comparisons.
Proof:

115

• Min and Max:

 (a) Compare all pairs
 (b) Find Min of min’s of all pairs
 (c) Find Max of max’s of all pairs

n/2+n/2+n/2 =3n/2 comparisons

Thm: Min&Max require 3n/2 comparisons.
Pf: Represent known info by four sets:

Unknown Not Min Not Max Neither

 A B C D

Initial: n 0 0 0
Final: 0 1 1 n-2

Track movement of elements between sets.

116

Effect of comparisons:

 Origin Target
 < >
 A&A C&B | B&C (1)
 A&B C&B | B&D
 A&C C&D | B&C
 A&D C&D | B&D
 B&B D&B | B&D (2)
 B&C D&D | B&C
 B&D D&D | B&D
 C&C C&D | D&C (3)
 C&D C&D | D&D
 D&D D&D | D&D

• Going from A to D forces passing through B or C
• "Emptying" A into B&C takes n/2 comparisons (1)
• "Almost emptying" B takes n/2-1 comparisons (2)
• "Almost emptying" C takes n/2-1 comparisons (3)
• Other moves will not reach the "final state" faster
• Total comparisons required: 3n/2-2

117

Problem: Find Max and next-to-Max
using least # of comparisons.

118

Selection
• Not harder than median-finding (why?)
• Randomized ith-Selection
 (return the ith-largest element in X[p..r])

 Select(X,p,r,i)
 If p=r Then Return(X[p])
 q=RandomPartition(X,p,r)
 k=q-p+1
 If i k Then Return(Select(X,p,q,i))
 Else Return(Select(X,q+1,r,i-k))

q

p r
X

O(n) time (ave-case)

119

Deterministic ith-Selection

 [Blum, Floyd, Pratt, Rivest, Tarjan; 1973]

• Partition input into n/5 groups of 5 each
• Compute median of each group
• Compute median of medians (recursively)

• Compute median of medians (recursively)
• Eliminate 3n/10 elements & recurse on rest

T(n) = T(n/5) + T(7n/10) + O(n)
= T(2n/10) + T(7n/10) + O(n)

 T(9n/10) + O(n) since T(n)= (n)

 T(n) = O(n)

5 per group

x = median of medians

n/5 groups group
median

120

Problem: Find in O(n) time the majority
element (i.e., occurring n/2 times, if any).

a) Using "<",">","="

b) Using "=" only (i.e., no "order")

121

 Graphs

A special kind of relation

Graphs can model:
 • Common relationships
 • Communication networks
 • Dependency constraints
 • Reachability information

+ many more practical applications!

Graph G=(V,E): set of vertices V,
and a set of edges E V V

Pictorially: nodes & lines

122

Undirected Graphs

Def: edges have no direction

 Example of undirected graph:

a

b

c e

d

V={a,b,c,d,e}
E={(c,a),(c,b),(c,d),(c,e),
 (a,b),(b,d),(d,e)}

123

Directed Graphs

Def: edges have direction

 Example of directed graph:

a

b

c e

d

V={a,b,c,d,e}
E={(a,b),(a,c),(b,c),(b,d),
 (d,c),(d,e),(c,e)}

124

Graph Terminology
Graph G=(V,E), E V V

 node vertex
 edge arc

f
a

b

c e

d

Vertices u,v V are neighbors in G iff
(u,v) or (v,u) is an edge of G

Ex: a & b are neighbors
 a & e are not neighbors

125

Undirected Node Degree

Degree in undirected graphs:

Degree(v) = # of adjacent (incident)
 edges to vertex v in G

Ex: deg(c)=4 deg(f)=0

f
a

b

c e

d

126

Directed Node Degree

Degree in directed graphs:

In-degree(v) = # of incoming edges
Out-degree(v) = # of outgoing edges

Ex: in-deg(c)=3 out-deg(c)=1
in-deg(f)=0 out-deg(f)=0

a

b

c e

d

f

127

Q: Show that at any party there is an
even number of people who shook
hands an odd number of times.

128

Complete graph Kn contains all edges
i.e., E = {{u,v} V V | u v}

a

b

c e

d

Q: How many edges are there in Kn?

Subgraph of G is G’=(V’,E’)
where V’ V and E’ E

a

c e

d

Q: Give a (non-trivial) lower bound on
the number of graphs over n vertices.

129

Paths in Graphs

Undirected path in a graph:

a

b

c e

d

A graph is connected iff there is a path
between any pair of nodes:

a

b

c e

d

130

Directed path in a graph:

a

b

c e

d

Graph is strongly connected iff there is
a directed path between any node pair:

Ex: connected but not strongly:

a

b

c e

d

131

A cycle in a graph:
b

c e

d
a

A tree is an acyclic graph.

Tree T=(V’,E’) spans G=(V,E) if T is a
connected subgraph with V’=V

a

b

c e

d

132

Q: How many edges are there in a
 tree over n vertices?

Q: Is the # of distinct spanning trees in
a graph G always polynomial in |G|?

133

Graph Traversals
Breadth-first search:

a

b

c e

d

Depth-first search:

a

b

c e

d

O(E+V) time for either BFS or DFS

Yields a spanning tree for the graph

134

Topological Sort

Given a digraph, list vertices so that all
edges point/direct to the right:

a

b

c e

d

a b c ed

Can be done in O(E+V) time

Application: scheduling w/constraints

135

Weighted Graphs
Each edge has a weight: w:E Z

a

b5

3

2

c e

d

4
1

2

6

Weights can model many things:

 • Distances / lengths
 • Speed / time
 • Costs

Cost(G) = sum of edge costs

Find a shortest / least-expensive
subgraph with a given property

136

Graph Representation

a

b
d

c

Adjacency list:

 1: (a) b c
 2: (b) a d
 3: (c) a
 4: (d) b

Adjacency matrix:
 a b c d
 a
 b 1 0 0 1
 c 1 0 0 0

 d 0 1 0 0

137

Minimum Spanning Trees

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

138

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

a

b

c e

d

139

Prim’s MST Algorithm

T = v0
Until T spans all nodes do

 Select nodes x T, y T
 w/min cost(x,y)

Add edge (x,y) to T
Return T

• Time complexity: O(E log E)

• Kruskal: O(E log V)

• Fibonacci heaps: O(E+VlogV)

140

Shortest Paths Trees

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

141

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

a

b

c e

d

142

Dijkstra’s Single-Source
Shortest paths Algorithm

T = v0
Until T spans all nodes do

 Select nodes x T, y T
 w/min cost(x,y) + dist(v0,x)

Add edge (x,y) to T
Return T

• Time complexity: O(V2)

• All pairs: O(V3)

143

Cost-Radius Tradeoffs
 Cong, Kahng, Robins, Sarrafzadeh, and Wong, Provably Good

Performance-Driven Global Routing, IEEE Transactions on Computer-
Aided Design, Vol 11, No. 6, June 1992, pp. 739-752.

Signal delay Performance

• Source sink pathlength delay

Avoid long paths

• Capacitive delay / building cost

Minimize total wirelength

144

Possible Trees

 MST:

 SPT:

 ?

145

Definitions
Input: pointset with distinguished source

ptset radius R: max source-sink dist

radius s

tree radius: max source-sink pathlength

r(T)

146

Problem Formulation
Given a pointset P, , find min-cost tree T with r(T)

 (1+)·R

Tradeoff: trades off radius and tree cost

= 0 “Shortest Path Tree”

= Minimum Spanning Tree

147

Arbitrary hybrid construction

 • Unifies Prim and Dijkstra!

148

Bounded Radius MSTs

Goal: cost cost(MST)

radius r(SPT)

 • Let Q = MST

 • Let L be tour of MST:

s

a

b c

d e

f

g

h

149

s

a

b c

d e

f

g

h

a b a cs a s d s e f g f e h e s

150

• Traverse L

• A = running total of edge costs

• If A > ·R Then A = 0
 Q = Q minpathG(s,Li)

L = MST tour
L i

s

Shortest paths added

A> R

• Final routing tree is SPTQ

151

dist (v ,v) RiL

s
L = MST tour

minpath (s,v) RG i

vi+1vi v

distT(s,v) distG(s,vi) + distL(vi,v)

 R + ·R = (1 +)·R

r(T) (1 +)·R

152

dist (v ,v) RiL

s
L = MST tour

minpath (s,v) RG i

vi+1vi

i+1

minpath (s,v) RG i+1

cost(T) cost(MSTG) + cost(L)
·R ·R

 = cost(MSTG) +
2·cost(MSTG)

 = (1 + 2)· cost(MSTG)

 cost(T) (1 + 2)·cost(MSTG)

153

Bounded Radius MST Algorithm

 Compute MSTG and SPTG
 E' = edges of MSTG
 Q = (V,E')
 L = depth-first tour of MSTG
 A = 0
 For i = 2 to |L|
 A = A + cost(Li-1, Li)

If A > ·R Then
 E' = E' minpathG(s, Li)
 A=0
 T = SPTQ

Input: G=(V,E), source s, radius R, 0

Output: T = routing tree with
 cost(T) (1+2)·cost(MSTG)
 r(T) (1+)·R

154

Steiner Trees

155

Bounded Radius Steiner Trees

Given weighted graph G=(V,E), node subset N,
source s N, and 0 , find min-cost tree T spanning N, with
r(T) (1+)·r(N)

• NP-complete

156

Bounded Radius Steiner Trees

• Can use any low-cost spanning tree

• Use [KMB, 1981] to span N (cost 2·opt)

• Run previous algorithm

 cost(T) 2·(1+ 2)·opt

157

Geometry Helps

• Add Steiner points when A = 2 ·R

L = MST tour
s

A= 2 R

Shortest paths added

Steiner points added

• Use bounds on MST/Steiner ratio

Tree type Graph type Radius bound Cost bound
spanning arbitrary (1+)·R (1+ 2/ ·MST
Steiner arbitrary (1+)·R 2·(1+ 2/ ·opt
Steiner Manhattan (1+)·R 3

2 (1+1/ ·opt

Steiner Euclidean (1+)·R 2
3 ·(1+1/ ·opt

158

Experimental Results

0.50

0.60

0.70

0.80

0.90

1.00

Net size
5 10 15 258

r(
T)

 /
r(

M
ST

)

SPT

MST

 =0.25
 =1.00

 =2.00

0.90

1.10

1.30

1.50

1.70

co
st

(T
) /

 c
os

t(M
ST

) SPT

 =0.25

 =1.00
 =2.00

MST

Net size
5 10 15 258

159

NP-Completeness
• Tractability

• Polynomial time

• Computation vs. verification

• Non-determinism

• Encodings

• Transformation & reducibilities

• P vs. NP

• "completeness"

160

A problem L is NP-hard if:
1) all problems in NP reduce to L in

polynomial time.
A problem L is NP-complete if:
1) L is NP-hard; and
2) L is in NP.

• One NPC problem is in P P=NP

P co-NPNP

NPC

Open question: is P=NP ?

161

Satisfiability

SAT: is a given n-variable boolean
formula (in CNF) satisfiable?

CNF (Conjunctive Normal Form):
i.e., product-of-sums
"satisfiable" can be made "true"

Ex: (x+y)(x
_

 +z) is satisfiable

 (x+z)(x
_

)(z
_

) is not satisfiable

3-SAT: is a given n-var boolean
formula (in 3-CNF) satisfiable?
3-CNF: three literals per clause

Ex: (x1+x5+x7)(x3+x
_

4+x
_

5)
162

Cook's Theorem
Thm: SAT is NP-complete [Cook 1971]

Pf idea: given a non-deterministic
polynomial-time TM M and input w,
construct a CNF formula that is
satisfiable iff M accepts w.
Use variables:
• q[i,k] at step i, M is in state k
• h[i,k] at step i, read-write head
 scans tape cell k
• s[i,j,k] at step i, tape cell j
 contains symbol k

M always halts in polynomial time
 # of variables is polynomial

163

Clauses for necessary restrictions:
• At each time i:
 M is in exactly 1 state
 r/w head scans exactly 1 cell
 all cells contain exactly 1 symb
• Time 0 initial state
• Time P(n) final state
• Transitions from time i to time
 i+1 obey M's transition function

Resulting formula is satisfiable iff M
accepts w.

Thm: 3-SAT is NP-complete
Pf idea: convert each long clause to an
equivalent set of short ones:
 (x+y+z+u+v+w)

(x+y+)(
_

 +z+)(
_

 +u+)(
_

 +v+w)

164

Q: is 1-SAT NP-complete?

Q: is 2-SAT NP-complete?

165

COLORABILITY: given a graph G
and integer k, is G k-colorable?
(different colors for adjacent nodes)
Ex:

Thm: 3-COLORABILITY is NPC
Proof: reduction from 3-SAT

(x+y+z)
z

T

x

y

gadget is 3-colorable x+y+z is true
T

F

x

x
x

166

Ex: (x+y+z)(x
_

 +y
_

 +z)(x
_

 +y+z
_

)

z

F

z

x

T

y

x

y

167

Ex (cont.): a 3-coloring:

z

F

x

T

x

y

z

y

Solution x=true, y=false, z=false

168

Thm: 3-COLORABILITY is NPC for
graphs with max degree 4.

Pf: degree-reduction "gadget":

a) max degree 4
b) 3-colorable but not 2-colorable
c) all corners get same color

"Super"-gadgets:

Use these "fanout" components to
reduce node degrees to 4 or less

169

Ex:

G:

G':

G is 3-colorable G' is 3-colorable

170

Q: is 3-COLORABILITY NPC for
graphs with max degree 3?

171

Thm: 3-COLORABILITY is NPC for
planar graphs.

Pf: planarity-preserving "gadget":

a) planar and 3-colorable
b) Opposite Corners get same color
c) "independence" of pairs of OC's

Use gadget to avoid edge crossings:

a b

x

y

a b

x

y

172

Ex:

G:

1

2 3

4
5

G':
1

2

3

5
4

G is 3-colorable G' is 3-colorable

