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Algorithms

University of Virginia 

Gabriel Robins 
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Course Outline

• Historical perspectives 
 • Foundations 
 • Data structures 
 • Sorting 
 • Graph algorithms 
 • Geometric algorithms 
 • Statistical analysis 
 • NP-completeness 
 • Approximation algorithms 

3

Prerequisites
Some discrete math / algorithms knowledge 
would be helpful (but is not necessary) 

Textbook
Cormen, Leiserson, Rivest, and Stein, Introduction to 
Algorithms, Second Edition, McGraw-Hill, 2001. 
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Suggested Reading

Polya, How to Solve it, Princeton University Press, 1957. 

Preparata and Shamos, Computational Geometry, an 
Introduction, Springer-Verlag, 1985. 

Miyamoto Musashi, Book of Five Rings, Overlook 
Press, 1974. 

“This book fills a much-needed gap.” 
 - Moses Hadas (1900-1966) in a review 
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Grading scheme

   Homeworks: 25% 

   Midterm:   25% 

   Final:    25% 

   Project:   25% 

   Extra credit: 10% 

“The mistakes are all there waiting to be made.” 
 - chessmaster Savielly Grigorievitch Tartakower (1887-1956)

on the game’s opening position 
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Specifics

  • Homeworks 

  • Solutions 

  • Extra-credit 
    • In-class  
    • Find mistakes 

  • Office hours: after class 
    • Any time  
    • Email (preferred) 
    • By appointment 
    • Q&A posted on the Web 

  • Exams: take home? 
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Contact Information

  Prof:    Gabriel Robins 

  Office:    210 Olsson Hall

  Phone:   (434) 982-2207

  EMail:    robins@cs.virginia.edu

 www.cs.virginia.edu/~robins 

“Good teaching is one-fourth preparation
and three-fourths theater.”   - Gail Godwin
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Good Advice
 • Ask questions ASAP 

 • Do homeworks ASAP 

 • Do not fall behind 

 • “Cramming” won’t work 

 • Start on project early 

 • Attend every lecture 

 • Read Email often 

 • Solve lots of problems 



9

Basic Questions/Goals
Q: How do you solve problems? 

 Proof techniques 

Q: What resources are needed to 
  compute certain functions? 

  Time / space / “hardware” 

Q: What makes problems hard/easy?

  Problem classification 

Q: What are the fundamental
  limitations of algorithms? 

  Computability / undecidability 

10

Historical Perspectives

• Euclid (325BC – 265BC) 
  “Elements” 

• Rene Descartes (1596-1650) 
  Cartesian coordinates 

• Pierre de Fermat (1601-1665) 
  Fermat’s Last Theorem 

• Blaise Pascal (1623-1662) 
  Probability 

• Leonhard Euler (1707-1783) 
  Graph theory 
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• Carl Friedrich Gauss (1777-1855) 
  Number theory 

• George Boole (1815-1864) 
  Boolean algebra 

• Augustus De Morgan (1806-1871) 
  Symbolic logic, induction 

• Ada Augusta (1815-1852) 
  Babbage’s Analytic Engine 

• Charles Dodgson (1832-1898) 
  Alice in Wonderland 

• John Venn (1834-1923) 
  Set theory and logic 
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• Georg Cantor (1845-1918) 
  Transfinite arithmetic 

• Bertrand Russell (1872-1970) 
  “Principia Mathematica” 

• Kurt Godel (1906-1978) 
  Incompleteness 

• Alan Turing (1912-1954) 
  Computability 

• Alonzo Church (1903-1995) 
  Lambda-calculus 

• John von Neumann (1903-1957) 
  Stored program 
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• Claude Shannon (1916-2001) 
  Information theory 

• Stephen Kleene (1909-1994) 
  Recursive functions 

• Noam Chomsky (1928-) 
  Formal languages 

• John Backus (1924-) 
  Functional programming 

• Edsger Dijkstra (1930-2002) 
  Structured programming 

• Paul Erdos (1913-1996) 
  Combinatorics 
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Symbolic Logic
 Def:  proposition - statement 
    either true (T) or false (F) 

 Ex: 1+1=2 

   2+2=3 

   “today is Monday” 

   “what time is it?” 

   x + 4 = 5 
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Boolean Functions
 •  “and”     ^

 •  “or”      

 •  “not”     ¬

 •  “xor”     

 •  “nand”     

 •  “nor”     

 •  “implication”

 •  “equivalence”    
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 •  “not”     ¬

   “negation” 

 Truth table: 

p ¬p
T FF
F TT

 Ex: let p=“today is Monday” 

   ¬p =“today is not Monday” 
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•  “and”     

   “conjunction” 

 Truth table: 

p q p q
T T TT
T F FF
F T FF
F F FF

 Ex: x 0 x 10

   (x 0)  (x 10)

18

 •  “or”      

   “disjunction” 

 Truth table: 

p q p q
T T TT
T F TT
F T TT
F F FF

 Ex: (x 7)  (x=3) 

   (x=0)  (y=0) 
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 •  “xor”     
   “exclusive or” 

 Truth table: 

p q p q
T T FF
T F TT
F T TT
F F FF

 Ex: (x=0)  (y=0) 

  “it is midnight”  “it is sunny” 
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Logical Implication
•  “implies”    

 Truth table: 

p q p q
T T TT
T F FF
F T TT
F F TT

  Ex: (x 0)  (x 0)  (x=0) 
    1 < x < y  x3 < y3

  “today is Sunday”  1+1=3
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Other interpretations of p  q:

 • “p implies q” 

 • “if p, then q” 

 • “q only if p” 

 • “p is sufficient for q” 

 • “q if p” 

 • “q whenever p” 

 • “q is necessary for p” 
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Logical Equivalence
•  “biconditional”    
 or  “if and only if” (“iff”) 
 or   “necessary and sufficient” 
 or   “logically equivalent” 
Truth table: 

p q p q
T T TT
T F FF
F T FF
F F TT

Ex: p p

  [(x=0)  (y=0)]  (xy=0) 
min(x,y)=max(x,y)  x=y 
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logically equivalent ( ) - means “has 
same truth table” 

Ex: p q is equivalent to (¬p) q
  i.e., p q  (¬p) q

p q p q ¬p ¬p q
T T TT F TT
T F FF F FF
F T TT T TT
F F TT T TT

Ex: (p q)  [(p q)  (q p)]
p q  p q  q p
 (p q)  [(¬p q)  (¬q p)]
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 Note: p q is not equivalent to q p

Thm: (P Q) (¬Q ¬P)

Q: What is the negation of p q?

A: ¬(p q) ¬(¬p q)  p ¬q

p q ¬q p q ¬(p q) p ¬q
T T F T FF FF
T F T F TT TT
F T F T FF FF
F F T T FF FF

“Logic is in the eye of the logician.” 
      - Gloria Steinem 
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Example

let p = “it is raining” 
let q = “the ground is wet” 

p q :   “if it is raining, 
      then the ground is wet” 

¬q ¬p : “if the ground is not wet,
     then it is not raining” 

q p :   “if the ground is wet, 
     then it is raining” 

¬(p q) : “it is raining, and
     the ground is not wet” 
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Order of Operations

 •  negation first 

 •  or/and next 

 •  implications last 

 •  parenthesis override others 

(similar to arithmetic) 

Def: converse of p q is q p
contrapositive of p q is ¬q ¬p

Prove:  p q ¬q ¬p
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Q: How many distinct 2-variable 
Boolean functions are there? 
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Bit Operations

¬
0 1 
1 0 

0 1   0 1
0 0 0   0 0 1 
1 0 1   1 1 1 

0 1   0 1
0 1 1   0 1 0 
1 0 1   1 0 1 
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Bit Strings

Def: bit string - sequence of bits 

Boolean functions extend to bit strings 
(bitwise)

 Ex:  ¬ 0100 = 1011 

   0100  1110 = 0100 

   0100 1110 = 1110 

   0100  1110 = 1010 

   0100 1110 = 1111 

   0100 1110 = 0101 
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Proposition types

Def: tautology: always true 
contingency: sometimes true 
contradiction: never true 

  Ex:  p ¬p is a tautology 

   p ¬p is a contradiction 

   p ¬p is a contingency 

p ¬p p ¬p p ¬p p ¬p
T F TT FF FF
F T TT FF TT
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Logic Laws

Identity:

  p T  p 
  p F  p 

Domination:

  p T  T 
  p F  F 

Idempotent:

  p p  p 
  p p  p 
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Logic Laws (cont.)

Double Negation:

¬(¬p)  p 

Commutative:

  p q  q p
  p q  q p

Associative:

  (p q) r  p (q r)
  (p q) r  p (q r)
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Logic Laws (cont.)

Distributive:

  p  (q r)  (p q) (p r)
  p (q r)  (p q) (p r)

De Morgan’s:

¬(p q) ¬p ¬q
¬(p q) ¬p ¬q

Misc:

  p ¬p  T 
  p ¬p  F 
  (p q)  (¬p q)
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 Example 

Simplify the following: 

  (p q)  (p q)
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 Predicates

Def:predicate - a function or formula 
involving some variables 

Ex: let P(x) = “x > 3” 
  x is the variable 
  “x>3” is the predicate 

  P(5) 

  P(1) 

Ex: Q(x,y,z) = “ x2+y2=z2 ”

  Q(2,3,4) 

  Q(3,4,5)
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  Quantifiers

•  Universal:  “for all”   
x P(x)

P(x1) P(x2) P(x3)
  Ex:   x x < x + 1 

x x < x3

•  Existential: “there exists”
x P(x)

P(x1) P(x2) P(x3)  ... 
  Ex:   x x x2

x x < x - 1 

 Combinations: 
x y  y>x 
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Examples
• x y  x+y=0 

• y x  x+y=0 

• “every dog has his day”:  

d y H(d,y) 

• Lim ƒ(x) = L 
x a

x (0<|x-a|< |ƒ(x)-L|< )
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Examples (cont.) 
• n is divisible by j (denoted n|j ): 

 n|j k Z n=kj 

• m is prime (denoted P(m)): 

 P(m) i Z (m|i) i m i 1

• “there is no largest prime” 

p q Z (q>p)  P(q) 

p q Z (q>p) 
[ i Z q|i) i q i 1

p q Z (q>p) 
[ i Z k Z q=ki i q i 1
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Negation of Quantifiers

Thm: ¬( x P(x)) x ¬P(x)

Ex: ¬ “all men are mortal”
 “there is a man who is not mortal” 

Thm: ¬( x P(x)) x ¬P(x)

Ex: ¬ “there is a planet with life on it” 
“all planets do not contain life” 

Thm: ¬ x y P(x,y) x y ¬P(x,y)
Ex: ¬ “there is a man that exercises every day” 

“every man does not exercise some day”

Thm: ¬ x y P(x,y) x y ¬P(x,y)
Ex: ¬ “all things come to an end” 

“some thing does not come to any end”
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Quantification Laws
Thm: x (P(x) Q(x))

 ( x P(x)) ( x Q(x)) 
Thm: x (P(x) Q(x))

 ( x P(x)) ( x Q(x)) 

Q: Are the following true? 

x (P(x) Q(x))
x P(x)) ( x Q(x)) 

x (P(x) Q(x))
x P(x)) x Q(x)) 
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More Quantification Laws

• x Q(x)) P x (Q(x) P)

• x Q(x)) P x (Q(x)  P) 

• x Q(x))  P x (Q(x)  P) 

• x Q(x))  P x (Q(x)  P) 
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Unique Existence

Def: x P(x) means there exists a 
unique x such that P(x) holds 

Q: Express x P(x) in terms of the 
other logic operators 

A:
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Mathematical Statements

 Definition 
 Lemma 
 Theorem 
 Corollary 

Proof Types

 Construction 
 Contradiction 
 Induction 
 Counter-example 
 Existence 
 … 
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Sets
Def: set - an unordered collection of 

elements

   Ex: {1, 2, 3} or {hi, there} 

Venn Diagram: 

S
x

Def: two sets are equal iff they contain 
the same elements 

  Ex: {1, 2, 3} = {2, 3, 1} 

    {0}  {1} 
    {3, 5}  {3, 5, 3, 3, 5} 
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•  Set construction:
   |  or means “such that” 

  Ex: {k | 0<k<4} 
    {k |  k is a perfect square} 

•  Set membership:
   Ex:  7 {p | p prime} 
     q {0, 2, 4, 6,...} 

• Sets can contain other sets 
  Ex:  {2, {5}} 

     {{{0}}}  {0}  0 

     S = {1, 2, 3, {1}, {{2}}} 
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Common Sets

Naturals:   N = {1, 2, 3, 4, ...} 

Integers:   Z = {..,-2, -1, 0, 1, 2,..} 

Rationals:  Q = { a
b | a,b , b 0}

Reals:    = {x | x a real #} 

Empty set:  Ø = {} 

Z+ = non-negative integers 
-= non-positive reals, etc. 
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Multisets
Def: a set w/repeated elements allowed 

(i.e., each element has “multiplier”) 

Ex: {0, 1, 2, 2, 2, 5, 5}

For multisets: {3, 5}  {3, 5, 3, 3, 5} 

Sequences

Def: ordered list of elements 

Ex: (0, 1, 2, 5)  “4-tuple” 
  (1,2)  (2,1)  “2-tuple” 
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Subsets

• Subset notation:   

  S  T  (x S  x T)

ST

•  Proper subset:    
  S  T  ((S  T) ^ (S T))
  S=T  ((T  S) ^ (S  T)) 

S  Ø  S 
S  S  S 
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•  Union:      

  S T={x | x S  x T}

S T

•  Intersection:

  S T={x | x S  x T}

S T
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• Set difference:  S - T 

  S - T= {x | x S  x T}

S T

• Symmetric difference: S T

  S T = {x | x S  x T}
     = S T - S T

S T
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• Universal set:  U   (everything) 
           _ 
• Set complement: S’  or S 

  S’ = {x | x S} = U - S 

S
U

• Disjoint sets:  S T=Ø

S T

S - T= S  T’ 

S - S = Ø
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Examples

N Z  Q 

N Z  Q 

x   x  x2+1

x y Q min(x,y)=max(x,y)  x=y 

+ - =

+ - = {0} 
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Set Identities

• Identity:   
  S  Ø = S 
  S  U = S 

• Domination:   
  S  U = U 
  S  Ø = Ø 

• Idempotent:   
  S  S = S 
  S  S = S 

• Complementation:   
  (S’)’ = S 
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Set Identities (Cont.)

 • Commutative Law:

  S T=T S

  S T=T S

 • Associative Law:

  S (T V)= (S T) V

  S (T V) = (S T) V
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Set Identities (Cont.)

• Distributive Law:

  S (T V)=(S T) (S V)

  S (T V) = (S T) (S V)

• Absorption:    

S (S T)=S

  S (S T)=S
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DeMorgan's Laws

  (S T)' = S' T'

  (S T)' = S' T'

 Boolean logic version: 
   (X^Y)'=X' Y'
   (X Y)'=X'^Y'
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Generalized  and 

• Si = S1 S2 S3 Sn
 1 i n

  ={x | i 1 i n x Si}

S3

S2S1

• Si = S1 S2 S3 Sn
 1 i n

  ={x | i 1 i n x Si}

S3

S2S1
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Set Representation
• U  = {x1, x2, x3, x4,... , xn-1, xn } 

Ex: S =  {x1,   x3,      xn}
bits:     1 0  1   0 ... 0   0  1 

1010000...01 encodes {x1, x3, xn}
0111000...00 encodes {x2, x3, x4}

• “or” yields union: 
 1010000...01 {x1, x3, xn}

0111000...00 {x2, x3, x4}
 1111000...01 {x1, x2, x3, x4, xn}

• “and” yields intersection: 
 1010000...01 {x1, x3, xn}

0111000...00 {x2, x3, x4}
 0010000...00 {x3}
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• Set closure: WRT operation 
x,y S x y S

x y x y

• Ex:  is closed under addition 
   since  x,y x+y

Abbreviations
• WRT  “with respect to” 

• WLOG “without loss of  
      generality” 

"When ideas fail, words come in very handy." 
        - Goethe (1749-1832) 
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Cartesian Product

• Ordered n-tuple: element sequence 

  Ex: (2,3,5,7) is a 4-tuple

•  Tuple equality:

  (a,b)=(x,y)  (a=x)  (b=y) 
  Generally: (ai)=(xi) i  ai=xi

•  Cross-product: ordered tuples 

  S T = {(s,t) | s S, t T}

  Ex: {1, 2, 3}  {a,b}=
{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

  Generally,  S T  T S
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• Generalized cross-product:

  S1  S2  ...  Sn

= {(x1,...,xn) | xi Si, 1 i n}

  Ti = T Ti-1

  T1 = T 

• Euclidean plane =  = 2

• Euclidean space =  = 3

• Russel’s paradox: set of all sets that 
do not contain themselves: 

  {S | S  S } 

 Q: Does S contain itself?? 
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Functions

 • Function: mapping  ƒ:S T

   Domain S 

   Range T 

S
T

ƒ(x)
x

ƒ

 k-ary: has k “arguments” 
 Predicate: with range = {true, false} 
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Function Types

• One-to-one function: “1-1” 
  a,b S ^ a b  ƒ(a) ƒ(b)

 Ex: ƒ: , f(x)=2x is 1-1 
   g(x)=x2 is not 1-1 

• Onto function: 

 t T  s S  ƒ(s)=t 

 Ex: ƒ: , f(x)=13-x is onto 
   g(x)=x2 is not onto 
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1-to-1 Correspondence

• 1-to-1 correspondence: ƒ:S T

ƒ is both 1-1 and onto 

S
T

t
s

ƒ

Ex: ƒ:  ƒ(x)=x (identity) 

  h: N Z  h(x)= 
x-1
2  , x odd, 

-x
2  , x even. 
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• Inverse function:

 ƒ:S T ƒ-1:T S

 ƒ-1(t)=s  if  ƒ(s)=t 

 Ex: ƒ(x)=2x ƒ-1(x)=x/2

• Function composition:

:S T :T V
  (  • )(x)= ( (x))

   (  • ):S V

 Ex: (x)=x+1 (x)=x2

   (  • )(x)= x2 + 2x + 1 
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Thm: (ƒ•ƒ-1)(x) = (ƒ-1•ƒ)(x) = x 
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Set Cardinality
• Cardinality: |S| = #elements in S 

Ex: |{a,b,c}|=3 

   |{p | p prime < 9}| = 4 

   |Ø|=0 

   |{{1,2,3,4,5}}| = ?  

• Powerset: 2S = set of all subsets 

  2S ={T | T  S} 

  Ex: 2{a,b} = {{},{a},{b},{a,b}} 

Q: What is 2Ø ?
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Theorem:  |2S|=2|S|

Proof:

“Sometimes when reading Goethe, I have the
paralyzing suspicion that he is trying to be funny.” 

- Guy Davenport 
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Generalized Cardinality
• S is at least as large as T:
 |S| |T|  ƒ:S T, ƒ onto 
 i.e., “S covers T” 

 Ex: r: Z, r(x)=round(x) 

    | | | |

• S and T have same cardinality:
 |S|=|T|  |S| |T| ^ |T| |S|

or
 1-1 correspondence S T

• Generalizes finite cardinality:  

{1, 2, 3, 4, 5}  {a, b, c} 
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Infinite Sets
• Infinite set: |S| > k k Z

or
 1-1 corres. ƒ:S T, S T

 Ex: {p | p prime},  

• Countable set: |S|  |N|

 Ex: Ø, {p | p prime}, 

• S is strictly smaller than T:

 |S| < |T|  |S| |T| ^ |S| |T|

• Uncountable set: |N| < |S|
 Ex:  |N| < 

|N| < [0,1] = {x | x , x }
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Thm:  1-1 correspondence Q N
Pf (dove-tailing):
 • • • • • •
 • • • • • •
 • • • • • • 

1
6   

2
6   

3
6   

4
6   

5
6   

6
6 ...

1
5   

2
5   

3
5   

4
5   

5
5   

6
5 ...

1
4   

2
4   

3
4   

4
4   

5
4   

6
4 ...

1
3   

2
3   

3
3   

4
3   

5
3   

6
3 ...

1
2   

2
2   

3
2   

4
2   

5
2   

6
2 ...

1
1   

2
1   

3
1   

4
1   

5
1   

6
1 ...
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Thm: | |>|N|
Pf (diagonalization):
 Assume  1-1 corres. ƒ: N

Construct x :
 ƒ(1)=2. 18281828...
 ƒ(2)=1.4 4213562...
 ƒ(3)=1.61 033989...

x = 0. ... ƒ(K) K N

ƒ not a 1-1 correspondence

contradiction

 is uncountable 
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Q: Is | |

74

Q: Is | | > |[0,1]| ? 
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Thm: any set is "smaller" than its powerset. 

  |S| < |2S|
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Infinities
 • |N|  = 0

 • | |  = 1

 • 0 < 1 = 2 0

 • “Continuum Hypothesis”

? 0 <  < 1

  Independent of the axioms!
  [Cohen, 1966] 

 • Axiom of choice [Godel 1938] 

 • Parallel postulate
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Infinity Hierarchy

• i < i+1 = 2 i

  0, 1, 2,..., k, k+1,..., 0,

1, 2,..., k, k+1,...,

0
,

1
,...,

k
,

k+1
,...

• First inaccessible infinity: 

For an informal account on infinities, see e.g.: 
Rucker, Infinity and the Mind, Harvester Press, 1982.
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Thm: # algorithms is countable. 
Pf: sort programs by size: 
   "main(){}" 
   • 
   • 

   "main(){int k; k=7;}" 
   • 
   • 

   "<all of UNIX>"
   • 
   • 

   “<Windows XP>"
   • 
   • 

   "<intelligent program>"
   • 
   • 

 # algorithms is countable! 
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Thm: # of functions is uncountable. 
Pf: consider 0/1-valued functions 
(i.e., functions from N to {0,1}): 

{(1,0), (2,1), (3,1), (4,0), (5,1), ...} 

 { 2, 3, 5, ...} 2N

So, every subset of N corresponds to a 
different  0/1-valued function 

|2N| is uncountable (why?) 

# functions is uncountable!
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Thm: most functions are uncomputable! 

Pf: # algorithms is countable 
  # functions is not countable 

 more functions than 
   algorithms / programs! 

some functions do not have 
algorithms!

Ex: The halting problem

Given a program P and input I, 
does P halt on I? 

Def: H(P,I) = 1  if P halts on I 
      0  otherwise 
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The Halting Problem

H: Given a program P and input I, 
does P halt on I? i.e., does P(I)

Thm: H is uncomputable 
Pf: Assume subroutine S solves H. 

SP
I

yes
noP(I) ?

 Construct: 

S
P

I

S'
yes
no yesP(I) ?
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 Analyze: 

S
P

I

S'
yes
no yesP(I) ?

   S'(S')  S'(S')
   S'(S')  S'(S')

 so, S'(S') S'(S')
 a contradiction! 

S does not correctly compute H 

But S was an arbitrary subroutine, so 
 H is not computable! 
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Discrete Probability
Sample space: set of possible outcomes 

Event E: subset of sample space S 

Probability p of an event: |E| / |S| 

• 0  p  1 

• p(not(E)) = 1 - p(E) 

• p(E1 E2) = p(E1) + p(E2) - p(E1 E2)

Ex: two dice yielding total of 9 
  E={(3,6),(4,5),(5,4),(6,3)} 
  S={1,2,3,4,5,6} {1,2,3,4,5,6}
  p(E) = |E|/|S| = 4/36 = 1/9 
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General Probability

Outcome xi is assigned probability p(xi)

• 0  p(xi)  1 

•  p(xi) = 1 

• E = {a1,a2,...,am} p(E) =  p(ai)

• p(not(E)) = 1 - p(E) 

• p(E1 E2) = p(E1)+p(E2) - p(E1 E2)

Conditional Probability
p(E | F) = probability of E given F 

p(E F) = p(F) p(E | F) 
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Ex: what is the probability of two 
siblings being both male, given that 
one of them is male? 

Let (x,y) be the two siblings 
Sample space: {(m,m),(m,f),(f,m),(f,f)} 
Let E  = both are male 
   = {(m,m)}
Let F  = at least one is male 
   = {(m,m),(m,f),(f,m)}
E F  = {(m,m)}
   = both are male 
p(E F) = p(F) p(E | F) 
p(E | F) = p(E F) / p(F) 
    = (1/4) / (3/4) = 1/3 
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Relations
Relation: a set of “ordered tuples” 

Ex:    {(a,1),(b,2), (b,3)} 

  “<”  {(x,y) | x,y Z, x<y} 

 Reflexive: x x x

 Symmetric: x y  y x

 Transitive:  x y ^ y z  x z

 Antisymmetric: x y ¬(y x)

 Ex:   is reflexive 
      transitive 

not symmetric
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Equivalence Relations

Def: reflexive, symmetric, & transitive 

 Ex: standard equality “=” 
     x=x 
     x=y  y=x 
     x=y ^ y=z  x=z 

Partition - disjoint equivalence classes: 
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Closures
• Transitive closure of TC
 smallest superset of satisfying

x y ^ y z  x z

 Ex “predecessor”
   {(x-1,x) | x Z}

TC(predecessor) is “<” relation

• Symmetric closure of 
 smallest superset of satisfying

x y  y x
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 Algorithms
• Existence 
• Efficiency 

Analysis
 • Correctness 
 • Time 
 • Space 
 • Other resources 

Worst case analysis
(as function of input size |w|) 

Asymptotic growth:
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Upper Bounds

f(n) g(n) c,k > 0
|f(n)|  c |g(n)| n>k

  Lim f(n) / g(n) exists
 n

 “f(n) is big-O of g(n)” 
Ex: n = O(n2)
  33n+17 = O(n)
  n8-n7 = O(n123)
  n100 = O(2n)
  213 = O(1)
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Lower Bounds 

f(n) g(n) g(n)= f(n)

  Lim g(n) / f(n) exists
 n

 “f(n) is Omega of g(n)”

Ex: 100n = (n)

  33n+17 = (log n)
  n8-n7 = (n8)
  213 = (1/n)

1= (213)
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Tight Bounds

f(n) g(n)
f(n) g(n) ^ g(n) f(n)

“f(n) is Theta of g(n)”

Ex: 100n = (n)
  33n+17 + log n = (n)
  n8-n7-n-13 = (n8)
  213 = (1)
  3+cos(2n) = (1)
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Loose Bounds
f(n) g(n)
f(n) g(n) ^  f(n) g(n)

Lim f(n)/g(n)  0 
 n

 “f(n) is little-o of g(n)”

Ex: 100n = (n log n)
  33n+17 + log n = (n2)
  n8-n7-n-13 = (2n)
  213 = (log n) 
  3+cos(2n) = ( n)
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Growth Laws

Let f1(n)=O(g1(n)) and
f2(n)=O(g2(n))

Thm: f1(n) + f2(n)
   = O(max(g1(n),g2(n)))

Thm: f1(n) • f2(n)
   = O(g1(n) • g2(n))

Thm: nk = O(cn)  c,k>0

Ex:  n1000 = O(1.001n)
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Recurrences

 T(n) = a•T(n/b) + f(n) 

 let c = logba

Thm:
 f(n)=O(nc- ) T(n)= (nc)
 f(n)= (nc) T(n)= (nc log n)
 f(n)= (nc+ ) ^ a•f(n/b)  d•f(n)

 d<1, n>n0 T(n)= (f(n))

Ex: T(n) = 9T(n/3)+n T(n)= (n2)

T(n) = T(2n/3)+1 T(n)= (log n) 
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Pigeon-Hole Principle

If N+1 objects are placed into N boxes 
 a box with 2 objects. 

If M objects are placed into N boxes & 
M>N  box with M

N objects.

 Useful in proofs & analyses 
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Stirling's Formula

n! = 1•2•3• . . . •(n-2)•(n-1)•n

n! = 2 n • (n
e )

n
• (1 + (1

n ))

n! (n
e )

n

log(n!) = O(n log n)

Useful in analyses and bounds 
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Data Structures
 • What is a "data structure"? 

 • Operations: 

  • Initialize 

  • Insert 

  • Delete 

  • Search 

  • Min/max 

  • Successor/Predecessor 

  • Merge 
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Arrays
• Sequence of "indexible" locations 

1 2 3 4 5 6 7 . . .

• Unordered: 

 • O(1) to add 
 • O(n) to search 
 • O(n) for min/max 

• Ordered: 
 • O(n) to add 
 • O(log n) to (binary) search 
 • O(1) for min/max 
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Stacks

• LIFO (last-in first-out) 
in

out

• Operations: push/pop (O(1) each) 

• Can not access "middle" 

• Analogy: trays at Cafeteria  

• Applications: 

 • Compiling / parsing 
 • Dynamic binding 
 • Recursion 
 • Web surfing 
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Queues

• FIFO (first-in first-out)  

in out

• Operations: push/pop (O(1) each) 

• Can not access  "middle" 

• Analogy: line at your Bank 

• Applications: 

 • Scheduling 
 • Operating systems 
 • Simulations 
 • Networks 
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Linked Lists

• Successor pointers 

• Types: 
 • Singly linked 
 • Doubly linked 
 • Circular 

• Operations: 
 • Add: O(1) time 
 • Search: O(n) time 
 • Delete: O(1) time (if known) 
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Trees
• Parent/children pointers 

c

b e

d fa

• Binary/N-ary 

• Ordered/unordered 

• Height-balanced: 
 • AVL 
 • B-trees 
 • Red-black 
 • O(log n) worst-case time 
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Tree Traversals
c

b e

d fa

• pre-order: 1) process node 
      2) visit children 

 c b a e d f 
              

• post-order: 1) visit children 
      2) process node

 a b d f e c 
              

• in-order:  1) visit left-child
2) process node
3) visit right-child

 a b c d e f 
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Heaps
• A tree where all of a node’s children 

have smaller “keys” 

• Can be implemented as a binary tree 

• Can be implemented as an array 

• Operations: 
 • Find max: O(1) time 
 • Add: O(log n) time 
 • Delete: O(log n) time 
 • Search: O(n) time 
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Hash Tables
• Direct access 

• Hash function 

• Collision resolution: 

 • Chaining 
 • Linear probing 
 • Double hashing 

• Universal hashing 
• O(1) average access 
• O(n) worst-case access 

Q: How can worst-case access time be 
improved to O(log n)? 
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Sorting
Fact: almost half of all CPU 
  cycles are spent on sorting!!

• Input: array X[1..n] of integers 
 Output: sorted array 
• Decision tree model 

Thm: Sorting takes (n log n) time 
Pf: n! different permutations

decision tree has n! leaves 

tree height is: log(n!)  
       > log((n/e)n)
       = (n log n) 
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Sort Properties

  • Worst case? 

  • Average case?

  • In practice? 

  • Input distribution? 

  • Randomized? 

  • Stability? 

  • In-Situ? 

  • Stack depth? 

  • Internal vs. external? 
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• Bubble Sort:

 For k=1 to n 
  For i=1 to n-1 
   If X[i+1]>X[i] 
    Then Swap(X,i,i+1) 

(n2) time

• Insertion Sort:

 For i=1 to n-1 
  For j=i+1 to n 
   If X[j]>X[i] Then Swap(X,i,j) 

(n2) time
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• Quicksort:

 QuickSort(X,i,j) 
  If i<j Then p=Partition(X,i,j) 
      QuickSort(X,i,p) 
      QuickSort(X,p+1,j) 

O(n log n) time (ave-case)

• C.A.R. Hoare, 1962 
• Good news: usually best in practice 

• Bad news: worst-case O(n2) time 
• Usually avoids worst-case 

• Only beats O(n2) sorts for n>40 
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• Merge Sort:
 MergeSort(X,i,j) 
  if i<j then m= (i+j)/2
      MergeSort(X,i,m) 
      MergeSort(X,m+1,j) 
      Merge(X,i,m,j) 

   T(n) = 2 T(n/2) + n 
(n log n) time 

• Heap Sort:
  InitHeap 
  For i=1 to n HeapInsert(X(i)) 
  For i=1 to n  M=HeapMax 
       Print(M) 
       HeapDelete(M) 

(n log n) time
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• Counting Sort:

 Assumes integers in small range 1..k 

  For i=1 to k C[i]=0 
  For i=1 to k C[X[i]]++ 
  For i=1 to k  
   If C[i]>0 Then print(i) C[i] times 

(n) time (worst-case) 

• Radix Sort:

Assumes d digits in range 1..k 

  For i=1 to d StableSort(X on digit i) 

O(dn+kd) time (worst-case) 
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• Bucket Sort:

Assumes uniform inputs in range 0..1 

  For i=1 to n  
   Insert X[i] into Bucket n•X[i]
  For i=1 to n  Bucket i 
  Concat contents of Buckets 1 thru n 

O(n) time (expected) 
O( ) time (worst) 
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Order Statistics
• Exact comparison count 

• Minimum element 

  k=X[1] 
  For i=2 to n  
   If X[i]<k Then k = X[i] 

n-1 comparisons 

Thm: Min requires n-1 comparisons. 
Proof:
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• Min and Max: 

  (a) Compare all pairs 
  (b) Find Min of min’s of all pairs 
  (c) Find Max of max’s of all pairs 

n/2+n/2+n/2 =3n/2 comparisons 

Thm: Min&Max require 3n/2 comparisons. 
Pf: Represent known info by four sets: 

Unknown Not Min Not Max Neither

  A B C D

Initial: n 0 0 0 
Final: 0 1 1 n-2 

Track movement of elements between sets.
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Effect of comparisons: 

    Origin  Target
        <  > 
    A&A  C&B | B&C (1) 
    A&B  C&B | B&D 
    A&C  C&D | B&C 
    A&D  C&D | B&D 
    B&B  D&B | B&D (2) 
    B&C  D&D | B&C 
    B&D  D&D | B&D 
    C&C  C&D | D&C (3) 
    C&D  C&D | D&D 
    D&D  D&D | D&D 

• Going from A to D forces passing through B or C 
• "Emptying" A into B&C takes n/2 comparisons (1) 
• "Almost emptying" B takes n/2-1 comparisons (2) 
• "Almost emptying" C takes n/2-1 comparisons (3) 
• Other moves will not reach the "final state" faster 
• Total comparisons required: 3n/2-2 
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Problem: Find Max and next-to-Max 
using least # of comparisons. 
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Selection
• Not harder than median-finding  (why?) 
• Randomized ith-Selection
 (return the ith-largest element in X[p..r]) 

 Select(X,p,r,i) 
  If p=r Then Return(X[p]) 
  q=RandomPartition(X,p,r) 
  k=q-p+1 
  If i  k Then Return(Select(X,p,q,i)) 
    Else Return(Select(X,q+1,r,i-k))

q

p r
X

O(n) time (ave-case) 
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Deterministic ith-Selection

 [Blum, Floyd, Pratt, Rivest, Tarjan; 1973] 

• Partition input into n/5 groups of 5 each 
• Compute median of each group 
• Compute median of medians (recursively)

• Compute median of medians (recursively) 
• Eliminate 3n/10 elements & recurse on rest 

T(n)  = T(n/5) + T(7n/10) + O(n) 
= T(2n/10) + T(7n/10) + O(n) 

 T(9n/10) + O(n)  since T(n)= (n)

 T(n) = O(n)

5 per group 

x = median of medians

n/5 groups group
median

120

Problem: Find in O(n) time the majority 
element (i.e., occurring  n/2 times, if any). 

a) Using "<",">","=" 

b) Using "=" only (i.e., no "order")
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 Graphs

A special kind of relation

Graphs can model: 
 • Common relationships 
 • Communication networks 
 • Dependency constraints 
 • Reachability information 

+ many more practical applications! 

Graph G=(V,E): set of vertices V,
and a set of edges E  V V

Pictorially: nodes & lines 
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Undirected Graphs

Def: edges have no direction 

 Example of undirected graph: 

a

b

c e

d

V={a,b,c,d,e}
E={(c,a),(c,b),(c,d),(c,e),
  (a,b),(b,d),(d,e)} 
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Directed Graphs

Def: edges have direction 

 Example of directed graph: 

a

b

c e

d

V={a,b,c,d,e}
E={(a,b),(a,c),(b,c),(b,d),
  (d,c),(d,e),(c,e)} 
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Graph Terminology
Graph G=(V,E), E  V V

 node  vertex 
 edge  arc 

f
a

b

c e

d

Vertices u,v V are neighbors in G iff 
(u,v) or (v,u) is an edge of G 

Ex: a & b are neighbors 
  a & e are not neighbors 
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Undirected Node Degree

Degree in undirected graphs: 

Degree(v) = # of adjacent (incident)
     edges to vertex v in G 

Ex: deg(c)=4  deg(f)=0 

f
a

b

c e

d
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Directed Node Degree

Degree in directed graphs: 

In-degree(v) = # of incoming edges 
Out-degree(v) = # of outgoing edges 

Ex: in-deg(c)=3  out-deg(c)=1 
in-deg(f)=0  out-deg(f)=0 

a

b

c e

d

f
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Q: Show that at any party there is an 
even number of people who shook 
hands an odd number of times. 

128

Complete graph Kn contains all edges
i.e., E = {{u,v} V V | u v}

a

b

c e

d

Q: How many edges are there in Kn?

Subgraph of G is G’=(V’,E’) 
where V’ V and E’ E

a

c e

d

Q: Give a (non-trivial) lower bound on 
the number of graphs over n vertices. 
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Paths in Graphs

Undirected path in a graph:

a

b

c e

d

A graph is connected iff there is a path 
between any pair of nodes: 

a

b

c e

d
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Directed path in a graph:

a

b

c e

d

Graph is strongly connected iff there is 
a directed path between any node pair: 

Ex: connected but not strongly:

a

b

c e

d
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A cycle in a graph: 
b

c e

d
a

A tree is an acyclic graph. 

Tree T=(V’,E’) spans G=(V,E) if T is a 
connected subgraph with V’=V 

a

b

c e

d
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Q: How many edges are there in a
 tree over n vertices? 

Q: Is the # of distinct spanning trees in 
a graph G always polynomial in |G|? 
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Graph Traversals
Breadth-first search:

a

b

c e

d

Depth-first search:

a

b

c e

d

O(E+V) time for either BFS or DFS 

Yields a spanning tree for the graph 
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Topological Sort

Given a digraph, list vertices so that all 
edges point/direct to the right: 

a

b

c e

d

a b c ed

Can be done in O(E+V) time 

Application: scheduling w/constraints
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Weighted Graphs
Each edge has a weight: w:E Z

a

b5

3

2

c e

d

4
1

2

6

Weights can model many things: 

 • Distances / lengths 
 • Speed / time 
 • Costs 

Cost(G) = sum of edge costs 

Find a shortest / least-expensive 
subgraph with a given property 
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Graph Representation

a

b
d

c

Adjacency list:

 1: (a)  b  c 
 2: (b)  a  d 
 3: (c)  a 
 4: (d)  b 

Adjacency matrix:
    a  b  c  d 
 a 
 b   1  0  0  1 
 c   1  0  0  0

 d   0  1  0  0 
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Minimum Spanning Trees

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d
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6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

a

b

c e

d
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Prim’s MST Algorithm 

T = v0
Until T spans all nodes do

 Select nodes x T, y T
   w/min cost(x,y) 

Add edge (x,y) to T 
Return T 

• Time complexity: O(E log E) 

• Kruskal: O(E log V) 

• Fibonacci heaps: O(E+VlogV) 
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Shortest Paths Trees

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d
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6

5

3

2

4
1

2

a

b

c e

d

6

5

3

2

4
1

2

a

b

c e

d

a

b

c e

d
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Dijkstra’s Single-Source 
Shortest paths Algorithm 

T = v0
Until T spans all nodes do

 Select nodes x T, y T
   w/min cost(x,y) + dist(v0,x)

Add edge (x,y) to T 
Return T 

• Time complexity: O(V2)

• All pairs: O(V3)
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Cost-Radius Tradeoffs
 Cong, Kahng, Robins, Sarrafzadeh, and Wong, Provably Good 

Performance-Driven Global Routing, IEEE Transactions on Computer-
Aided Design,  Vol 11, No. 6, June 1992, pp. 739-752. 

Signal delay Performance

• Source sink pathlength  delay 

Avoid long paths 

• Capacitive delay / building cost 

Minimize total wirelength 
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Possible Trees 

 MST: 
   

 SPT: 

 ? 



145

Definitions
Input: pointset with distinguished source 

ptset radius R: max source-sink dist 

radius s

tree radius: max source-sink pathlength

r(T)
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Problem Formulation 
Given a pointset P, , find min-cost tree T with r(T) 

 (1+ )·R

Tradeoff:  trades off radius and tree cost

= 0  “Shortest Path Tree” 

=  Minimum Spanning Tree 
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Arbitrary  hybrid construction 

 •  Unifies Prim and Dijkstra! 
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Bounded Radius MSTs 

Goal: cost  cost(MST)  

radius  r(SPT) 

 • Let Q =  MST 

 • Let L be tour of MST: 

s

a

b c

d e

f

g

h
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s

a

b c

d e

f

g

h

a b a cs a s d s e f g f e h e s
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• Traverse L 

• A = running total of edge costs 

• If A > ·R Then A = 0 
       Q = Q  minpathG(s,Li)

L = MST tour
L i

s

Shortest paths added

A>  R

• Final routing tree is SPTQ
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dist  (v  ,v) RiL

s
L = MST tour

minpath   (s,v )  RG i

vi+1vi v

distT(s,v)  distG(s,vi) + distL(vi,v)

 R + ·R = (1 + )·R

r(T)  (1 + )·R
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dist  (v  ,v   ) RiL

s
L = MST tour

minpath   (s,v )  RG i

vi+1vi

i+1

minpath   (s,v   ) RG i+1

cost(T)  cost(MSTG) + cost(L)
·R   ·R 

  = cost(MSTG) + 
2·cost(MSTG)

  = (1 + 2 )· cost(MSTG)

 cost(T)  (1 + 2 )·cost(MSTG)
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Bounded Radius MST Algorithm 

 Compute MSTG and SPTG
 E' = edges of MSTG
 Q = (V,E') 
 L = depth-first tour of MSTG
 A = 0 
 For i = 2 to  |L| 
  A = A + cost(Li-1, Li)

If A > ·R Then
   E' = E'  minpathG(s, Li)
   A=0 
 T = SPTQ

Input: G=(V,E), source s, radius R, 0

Output: T = routing tree with 
    cost(T)  (1+2 )·cost(MSTG)
    r(T)  (1+ )·R
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Steiner Trees 
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Bounded Radius Steiner Trees 

Given weighted graph G=(V,E), node subset N,
source s N, and 0 , find min-cost tree T spanning N, with 
r(T)  (1+ )·r(N)

• NP-complete 
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Bounded Radius Steiner Trees

• Can use any low-cost spanning tree 

• Use [KMB, 1981] to span N (cost  2·opt) 

• Run previous algorithm 

 cost(T)  2·(1+ 2 )·opt
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Geometry Helps

• Add Steiner points when A = 2 ·R

L = MST tour
s

A= 2 R

Shortest paths added

Steiner points added

• Use bounds on MST/Steiner ratio 

Tree type Graph type Radius bound Cost bound 
spanning arbitrary (1+ )·R (1+ 2/ ·MST
Steiner arbitrary (1+ )·R 2·(1+ 2/ ·opt
Steiner Manhattan (1+ )·R 3

2 (1+1/  ·opt 

Steiner Euclidean (1+ )·R 2
3  ·(1+1/ ·opt
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Experimental Results 
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NP-Completeness
• Tractability 

• Polynomial time 

• Computation vs. verification 

• Non-determinism 

• Encodings 

• Transformation & reducibilities 

• P vs. NP 

• "completeness" 
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A problem L is NP-hard if:
1) all problems in NP reduce to L in 

polynomial time. 
A problem L is NP-complete if:
1) L is NP-hard; and 
2) L is in NP. 

• One NPC problem is in P P=NP

P co-NPNP

NPC

Open question: is P=NP ? 
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Satisfiability

SAT: is a given n-variable boolean 
formula (in CNF) satisfiable? 

CNF (Conjunctive Normal Form): 
i.e., product-of-sums 
"satisfiable" can be made "true" 

Ex: (x+y)(x
_

 +z) is satisfiable 

  (x+z)(x
_

 )(z
_

) is not satisfiable 

3-SAT: is a given n-var boolean 
formula (in 3-CNF) satisfiable? 
3-CNF: three literals per clause 

Ex: (x1+x5+x7)(x3+x
_

4+x
_

5)
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Cook's Theorem
Thm: SAT is NP-complete [Cook 1971]

Pf idea:  given a non-deterministic 
polynomial-time TM M and input w, 
construct a CNF formula that is 
satisfiable iff M accepts w. 
Use variables: 
• q[i,k] at step i, M is in state k 
• h[i,k] at step i, read-write head 
    scans tape cell k 
• s[i,j,k] at step i, tape cell j
    contains symbol k

M always halts in polynomial time 
 # of variables is polynomial 
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Clauses for necessary restrictions: 
• At each time i: 
  M is in exactly 1 state 
  r/w head scans exactly 1 cell 
  all cells contain exactly 1 symb 
• Time 0 initial state 
• Time P(n) final state 
• Transitions from time i to time  
 i+1 obey M's transition function 

Resulting formula is satisfiable iff M 
accepts w. 

Thm: 3-SAT is NP-complete 
Pf idea: convert each long clause to an 
equivalent set of short ones: 
  (x+y+z+u+v+w) 

(x+y+ )(
_

 +z+ )(
_

 +u+ )(
_

 +v+w)
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Q: is 1-SAT NP-complete? 

Q: is 2-SAT NP-complete? 
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COLORABILITY: given a graph G 
and integer k, is G k-colorable? 
(different colors for adjacent nodes)
Ex:

Thm: 3-COLORABILITY is NPC 
Proof: reduction from 3-SAT

(x+y+z)
z

T

x

y

gadget is 3-colorable  x+y+z is true 
T

F    

x

x
x
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Ex: (x+y+z)(x
_

 +y
_

 +z)(x
_

 +y+z
_

)

z

F

z

x

T

y

x

y
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Ex (cont.): a 3-coloring: 

z

F

x

T

x

y

z

y

Solution  x=true, y=false, z=false
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Thm: 3-COLORABILITY is NPC for 
graphs with max degree 4. 

Pf: degree-reduction "gadget": 

   
a) max degree 4 
b) 3-colorable but not 2-colorable 
c) all corners get same color 

"Super"-gadgets:

Use these "fanout" components to 
reduce node degrees to 4 or less
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Ex:

G:

G':

G is 3-colorable  G' is 3-colorable 
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Q: is 3-COLORABILITY NPC for 
graphs with max degree 3? 

171

Thm: 3-COLORABILITY is NPC for 
planar graphs. 

Pf: planarity-preserving "gadget": 

a) planar and 3-colorable 
b) Opposite Corners get same color 
c) "independence" of pairs of OC's 

Use gadget to avoid edge crossings: 

a b

x

y
    

a b

x

y
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Ex:

G:   

1

2 3

4
5

G':   
1

2

3

5
4

G is 3-colorable  G' is 3-colorable 


