Course Outline

AlgOI'itth « Historical perspectives
* Foundations
University of Virginia Data structures
* Sorting

* Graph algorithms

* Geometric algorithms

Gabriel Robins o)
» Statistical analysis
* NP-completeness
» Approximation algorithms
Suggested Reading
Prerequisites

Polya, How to Solve it, Princeton University Press, 1957. |

Some discrete math / a}gonthms knowledge Preparata and Shamos, Computational Geometry, an
would be helpful (but is not necessary) Introduction, Springer-Verlag, 1985.

Miyamoto Musashi, Book of Five Rings, Overlook
Press, 1974.

Textbook

Cormen, Leiserson, Rivest, and Stein, Introduction to
Algorithms, Second Edition, McGraw-Hill, 2001.

“This book fills a much-needed gap.”
- Moses Hadas (1900-1966) in a review

(Grading scheme

Homeworks: 25%
Midterm: 25%
Final: 25%
Project: 25%

Extra credit: 10%

“The mistakes are all there waiting to be made.”
- chessmaster Savielly Grigorievitch Tartakower (1887-1956)
on the game’s opening position

Specifics

Homeworks

Solutions

Extra-credit
e In-class
* Find mistakes

Office hours: after class
* Any time
* Email (preferred)
* By appointment

* Q&A posted on the Web

Exams: take home?

Contact Information

Prof: Gabriel Robins

Office: 210 Olsson Hall
Phone: (434) 982-2207
EMail: robins(@cs.virginia.edu

www.cs.virginia.edu/~robins

“Good teaching is one-fourth preparation
and three-fourths theater.” - Gail Godwin

Good Advice

Ask questions ASAP

Do homeworks ASAP
Do not fall behind
“Cramming” won’t work
Start on project early
Attend every lecture
Read Email often

Solve lots of problems

Basic Questions/Goals

Q: How do you solve problems?

e Proof techniques

Q: What resources are needed to
compute certain functions?

e Time / space / “hardware”

Q: What makes problems hard/easy?

e Problem classification

Q: What are the fundamental
limitations of algorithms?

e Computability / undecidability

Historical Perspectives

Euclid (325BC — 265BC)
“Elements”

Rene Descartes (1596-1650)
Cartesian coordinates

Pierre de Fermat (1601-1665)
Fermat’s Last Theorem

Blaise Pascal (1623-1662)
Probability

Leonhard Euler (1707-1783)
Graph theory

» Carl Friedrich Gauss (1777-1855)
Number theory

» George Boole (1815-1864)
Boolean algebra

» Augustus De Morgan (1806-1871)
Symbolic logic, induction

» Ada Augusta (1815-1852)
Babbage’s Analytic Engine

* Charles Dodgson (1832-1898)
Alice in Wonderland

» John Venn (1834-1923)
Set theory and logic

Georg Cantor (1845-1918)
Transfinite arithmetic

Bertrand Russell (1872-1970)
“Principia Mathematica”

Kurt Godel (1906-1978)
Incompleteness

Alan Turing (1912-1954)
Computability

Alonzo Church (1903-1995)
Lambda-calculus

John von Neumann (1903-1957)
Stored program

Claude Shannon (1916-2001)
Information theory

Stephen Kleene (1909-1994)
Recursive functions

Noam Chomsky (1928-)
Formal languages

John Backus (1924-)
Functional programming

Edsger Dijkstra (1930-2002)
Structured programming

Symbolic Logic

Def: proposition - statement
either true (T) or false (F)

Ex: 1+1=2
2+2=3

“today is Monday”

“what time 1s 1t?”

x+4=35
Paul Erdos (1913-1996)
Combinatorics

Boolean Functions . aop .
* “and” " “negation”
° 6601,” \/

— Truth table:
. “n_Ot” —

P [p

° “X_Or” @ T F
° “nand” F T
) oL Ex: let p="today is Monday”
“implication” =

. “equivalence” <&

—p =“today 1s not Monday”

“and” A

“conjunction”

Truth table:

PAq

o 4o
- T |e
T ™ T

Ex: x>0 Ax<10

(x=0) A (x<10)

[] g \/
“disjunction”
Truth table:

pvq

e o
4 ™ e
o~ o~

Ex: (x>7) v (x=3)

(x=0) v (y=0)
Logical Implication
¢ “X_Or” @ «: SR)
. . implies =
“exclusive or”
Truth table:

Truth table:

peq

™4 Ao
o 3 ™ 4o
o = =

Ex: (x=0) @ (y=0)

“it 1s midnight” @ “it is sunny”

- - o
- T e
>y

F

Ex: (x<0) A (x>0) = (x=0)

I<x<y=x3<y3
“today 1s Sunday” = 1+1=3

20

Other interpretations of p = q:
e “pimplies q”
* “if p, then q”
« “gqonlyifp”
* “p is sufficient for q”
o “qifp”
* “q whenever p”

* “qis necessary for p”

21

Logical Equivalence
* “biconditional” S
or “if and only if” (“iff”)
or ‘“necessary and sufficient”
or “logically equivalent” =

Truth table:
P 19 [P=q
T T | T
T|F | F
F T | F
F F | T

Ex: p&=p
[(x=0) v (y=0)] < (xy=0)
min(x,y)=max(x,y) < x=y

22

logically equivalent (<) - means “has
same truth table”

Ex: p=q is equivalent to (Tp) v q
1.e., p=>q < (Tp)vq

P |q4 [p=9 ~p |"pvq
TIT| T F| T
TF F |F| F
FIT| T T| T
FIF|T T| T

Ex: (p&=q) = [(p=9) A (q=p)]
p<q=p=>q A q=p

(p==[Cpva A(TqVvp)]

23

Note: p—q is not equivalent to q—=p
Thm: (P=Q)=("Q = ~P)
Q: What is the negation of p—q?

A: ~(p=q) = ~(-pvq) =pArq

P 19 |7q|P=9 ~(p=9) pATq
TTIF|T F F
T F|T F T T
FITIF|T F F
FF|T|T F F

“Logic is in the eye of the logician.”
- Gloria Steinem

24

Example

let p = “it is raining”
let q = “the ground 1s wet”

pP=q: “if 1t 1s raining,
then the ground is wet”

—q=—p : “if the ground is not wet,
then it 1s not raining”

q=p: “if the ground is wet,
then it is raining”

—(p=q) : “it is raining, and
the ground is not wet”

25

Order of Operations

negation first

or/and next

* implications last

parenthesis override others

(similar to arithmetic)

Def: converse of p—q is q=p
contrapositive of p—q 1s ~q=-p

Prove: p=q=—q=p

26

Q: How many distinct 2-variable
Boolean functions are there?

27

Bit Operations

0 |1
1 (0
/\01 \/01
00 O 0 (0
1 0 1 I |1
=10 1 0 1
01 1 0O/1 O
0 1 1 10 1

28

Bit Strings

Proposition types

Def: bit string - sequence of bits Def: tautology: always true
Boolean functions extend to bit strings contingency: sometimes true
(bitwise) contradiction: never true
Ex: —0100=1011 Ex: pvp is a tautology
0100 A 1110 =0100 pPATp 1s a contradiction
0100 v 1110=1110 p="p is a contingency
0100 ® 1110=1010
0100 =1110=1111 P Ppvp prp p=
T|IF| T F F
0100 <1110=0101 FIT T F T
Logic Laws Logic Laws (cont.)
Identity: Double Negation:
pAT < p “(Cp)&=p
pvF <p
Commutative:
Domination:
pvq < qvp
p\/T =T PAQ < QAP
pAF < F
Associative:
Idempotent:
(pv@)vr < pv(qvr)
pvp =P (PAQ)AT <= pA(QAT)

PAP < P

Logic Laws (cont.) Example

Distributive: Simplify the following:

p v (gqar) < (pvq) A (pvr) (PAQ) = (pvq)

p A (qvr) < (pAq) v (pAr)
De Morgan’s:

“(pv@) = pATq

~(pAqQ) = TPV Tq
Misc:

pvpe T

pATp < F

(p=9) < (Tpvq)

Predicates Quantifiers
Def:predicate - a function or formula . Universal: “for all” \4
involving some variables Vx P(x)

< P(x1) A P(x2) A P(x3) A ...
Ex: let P(x) = “x > 3” Ex: Vx x<x+1
X is the variable VX X<X°

“x>3" 1s the predicate
P(5)
P(1)

Ex: Q(x,y,2z) = “ x*+y™=z>"
Q(2,3,4)
Q(@3.4,5)

. Existential: “there exists” 3

dx P(x)
< P(x1) v P(x3) v P(x3) Vv ...
Ex: 3x x =x2

dx x<x-1

Combinations:
Vx dy y>x

Examples
e Vxdy x+y=0
e dy Vx x+y=0

» “every dog has his day”:

vd dy H(d,y)
« Lim f(x)=L

VedoVx (0<[x-a|<o=|f(x)-L|< €)

Examples (cont.)
* n s divisible by j (denoted nlj):
n|j << JkeZ n=kj
* m is prime (denoted P(m)):
P(m) < [VieZ (m|i) = (i=m)v(i=1)]
 “there is no largest prime”
Vp 3qeZ (¢>p) A P(q@)

Vp 3qeZ (g>p) A
[VieZ (q]i) = (i=q)v(i=1)]

Vp 3qeZ (g>p) A
[VieZ {IkeZ q=ki} = (i=q)v(i=1)]

38

Negation of Quantifiers

Thm: —(Vx P(x)) < 3x 7P(x)

Ex: — “all men are mortal”
< “there 1s a man who 1s not mortal”

Thm: —(3x P(x)) < Vx 7P(x)

Ex: ™ “there is a planet with life on it”
< “all planets do not contain life”

Thm: ~"3xVy P(x,y) ©Vx3y “P(x,y)

Ex: = “there is a man that exercises every day”

<>“every man does not exercise some day”

Thm: ~Vx3y P(x,y) <3xVy “P(x.y)

Ex: = “all things come to an end”

<>*“some thing does not come to any end”

Quantification Laws
Thm: Vx (P(x) A Q(x))
< (Vx P(x)) A (Vx Q(x))
Thm: 3x (P(x) v Q(x))
< (Fx P(x)) v (Ix Q(x))

Q: Are the following true?

3x (P(x) A Q(x))
< (X P(Xx) A (Fx Q(x))

Vx (P(x) v Q(x))
< (Vx P(x)) v (Vx Q(x))

40

More Quantification Laws

(Vx Q(x)) AP < Vx (Q(x) AP)

(Fx Q(x)) AP < Ix (Q(x) A P)

(Vx Q(x)) vP < Vx (Q(x) v P)

(@x Q(x)) v P < Ix (Q(x) v P)

41

Unique Existence

Def: 3!x P(x) means there exists a
unique x such that P(x) holds

Q: Express 3!x P(x) in terms of the
other logic operators

A:

42

Mathematical Statements

e Definition
e [emma

e Theorem

e Corollary

Proof Types

e Construction

e Contradiction

¢ Induction

e Counter-example

e Existence
o ...

43

Sets

Def: set - an unordered collection of
elements

{1, 2, 3} or {hi, there}

Ex:

Venn Diagram:

CL>

Def: two sets are equal iff they contain
the same elements

Ex: {1,2,3}=1{2,3,1}

10} # 15
{3,5}=13,5,3,3,5}

44

. Set construction:
| or > means ‘“‘such that”

Ex: {k|0<k<4}
{k| kis a perfect square}

. Set membership: e ¢

Ex: 7 € {p|p prime}
qe {0,2,4,6,..}

e Sets can contain other sets
Ex: {2, {5}}

1105} #1035 20
S={1,2,3, {1}, {{2}}}

45

Common Sets

Naturals: N=1{1,2,3,4,..}
Integers: Z=1.,2,-1,0,1,2,.}
Rationals: Q= {% |a,beZ, b0}
Reals: R = {x|x areal #}
Empty set: O = {}

+ ..
Z =non-negative integers

R = non-positive reals, etc.

46

Multisets

Def: a set w/repeated elements allowed
(i.e., each element has “multiplier”)
Ex: {0,1,2,2,2,5,5}

For multisets: {3, 5} # {3, 5, 3, 3, 5}

Sequences

Def: ordered list of elements

Ex: (0,1,2,5)
(1,2) = (2,1)

“4-tuple”
“2-tuple”

47

Subsets

* Subset notation: -

Sc T (xeS=xeT)

» Proper subset: C
ScT< ((ScT) ?(S=T))
S=T< (T<S)MScT))
VS O cS
vS ScS

48

Union: v » Set difference: S-T

SUT={x | xeS v xeT} S-T={x[xeSAxeT}

0o

* Symmetric difference: S®T

Intersection: N
SOT = {x | xeS ® xeT}
SNT={x | xeS A xeT} =SUT - ST
>

e Universal set: U (everything) Examples

o Set complement: S or S

$'=x|xg8;=U-S§ NUZUQUR=R

U
@ NcZcQc®R

VxeR x <x2+1

 Disjoint sets: SNT=0

: : VX,y€Q min(X,y)=max(X,y) < x=y

+ -
R UR =R
S-T=S"T’

R AR ={0)
S-S=0

Set Identities

 Identity:
Sud=S
SNU=S

 Domination:
SuU=U
SNO=0

* Idempotent:
SuS=S
SNS=S

 Complementation:
(S’ =S

Set Identities (Cont.)

 Commutative Law:

SUT=TUS

SNT=TNS

* Associative Law:

SU(TUV)= (SUT) UV

SN(TNV) =(SNT)nV

Set Identities (Cont.)

* Distributive Law:

SU(TNV)=(SUT)N(SUV)

SN(TUV) = (SNT)u(SNV)

* Absorption:

SU(SAT)=S

SA(SUT)=S

DeMorgan's L.aws

(SUT) = S'AT'

(SAT) = S'UT'

Boolean logic version:
(XMY)=X'vY'
(XVvY)'=X""Y"

Generalized U and ~

e US, =S;,UuS,US;uU...US,

1<i<n

={x | Ji 1<i<n >xeS;}
7S
G2
N

e MS =SSN S;N...NS,

1<i<n

={x | Vi 1<i<n = x€S§;}

57

Set Representation

- U = {Xh X2y X35 X44eee 5 Xp-1, Xp }
Ex: S = {xy, X3, Xn}
bits: 1 01 0.0 0 1

1010000...01 encodes {xi, X3, Xy}
0111000...00 encodes {x,, X3, X4}

* “or” yields union:
1010000...01 {xy, X3, Xu}

v 0111000...00 {x5, X3, X4}
1111000...01 {xy, X2, X3, X4, Xpn}

* “and” yields intersection:
1010000...01 {xy, X3, Xn}

A 0111000...00 {x3, X3, X4}
0010000...00 {x3}

» Set closure: WRT operation A
VXx,yeS = xAyeS

 Ex: R is closed under addition
since x,ye R = xtye R

Abbreviations
« WRT “with respect to”
« WLOG “without loss of

generality”

"When ideas fail, words come in very handy."
- Goethe (1749-1832)

59

Cartesian Product

» Ordered n-tuple: element sequence

Ex: (2,3,5,7) is a 4-tuple

* Tuple equality:

(a,b)=(x,y) & (a=x) A (b=y)
Generally: (a))=(Xx;) < V1 a=x;

* Cross-product: ordered tuples

SxT = {(s,t) | s€S, teT}

Ex: {1,2,3} x {a,b}=
1(1,2),(1,b),(2,2),(2,b),(3,2),(3,b)}

Generally, SxT # TxS

60

Generalized cross-product:

Six Sox ... x Sy

= (X1, %) [Xi€S;, 1<i=n;j
T! = TxT"!
TI=T

Euclidean plane = RxR = R2

Euclidean space = RxRxR = R3

Russel’s paradox: set of all sets that
do not contain themselves:

{S|SeS}

Q: Does S contain itself??

61

Functions

* Function: mapping f:S—T

Domain S

Range T

e k-ary: has k “arguments”
e Predicate: with range = {true, false}

62

Function Types

One-to-one function: “1-17
a,beS " a#zb = f(a)=f(b)

Ex: f: RoR, f(x)=2x is 1-1
g(x)=x? is not 1-1

Onto function:

VteT dseSs f(s)=t

Ex: f:Z—Z, f(x)=13-x is onto
g(x)=x? is not onto

63

1-to-1 Correspondence

» 1-to-1 correspondence: f:S<T

f 1s both 1-1 and onto

Ex: f: RoR > f(x)=x (identity)

h: N>Z 3 h(x)= "21 x odd,
-X
5 »Xeven.

64

* Inverse function:
ST fhT-S

fl=s if f(s)=t
Ex: f(x)=2x f'(x)=x/2

* Function composition:

B:S—>T, . T>V

= (o P)x)=a(B(x))
(a* B):S—>V

Ex: B(x)=x+1 a(x)=x’
(a* P)x)=x"+2x+ 1

65

Thm: (fof (X)) =(f")(x)=x

66

Set Cardinality

» Cardinality: |S| = #elements in S

Ex: |{ab,c}|=3
I{p | p prime <9}| =4
D=0
1£41,2,3,4,5}}| =2

« Powerset: 25 = set of all subsets
25=(T|TcS}

Ex: 21" = {{},{a},{b},{a,b}}
Q: What is 2° ?

67

Theorem: [25=2/SI

Proof:

“Sometimes when reading Goethe, | have the
paralyzing suspicion that he is trying to be funny.”
- Guy Davenport

68

Generalized Cardinality Infinite Sets

» Sis at least as large as T: * Infinite set: [S| >k VkeZ

IS|>|T| = 3 f:S—T, f onto o1
3 1-1 corres. f:S&T, ST

1.e., “S covers T”

Ex: 1:R—Z, r(x)=round(x) Ex: {p|p prime}, R

» Countable set: |S| < |N|

= |R[2|Z]
« S and T have same cardinality: Ex: @, {p | p prime}, N, Z
IS=IT| = [SIZ|T| * [T|Z[S] e S is strictly smaller than T:
or
3 1-1 correspondence S<>T S| <[T| = [S|<[T| * [S|AT]

» Uncountable set: [N| <|S|

* Generalizes finite cardinality:

Ex: IN|<®R
{1,2,3,4,5} >{a,b,c} IN| <[0,1]= {x| xeR, 0<x<1}
Thm: 3 1-1 correspondence Q<>N -
Pf (dove-tailing): Thm: [R>[N|
L ; ; ; ; Pf (diagonalization):
¢ 1 o2 3 4 5 6 Assume 3 1-1 corres. f: RN
6 6 6 6 6 6 .
Construct X € ‘R:
S % § % % % % f1)y=2.718281828... — &
g1 o2 3 4 s 6 f(2)=1.414213562... — 2
L A S S f(3)=1.618033989. .. — 9
3 3 5 3 5 3 3 X = 0.820...#fK) VKeN
2 % % % % % % = f nota 1-1 correspondence
;L2 3 4 5 6 = contradiction
o1 1 1 11

1 2 3 4 5 6 = R 1s uncountable

71 72

Q: Is 24| = |R| 2

73

Q: Is [®] > (0,11 ?

74

Thm: any set is "smaller" than its powerset.

S| <125

75

Infinities
* IN| =X,
* IR =K,

* N0< N1:2NO

o “Continuum Hypothesis™

70 3 Ny <o <N,

Independent of the axioms!
[Cohen, 1966]

» Axiom of choice [Godel 1938]

» Parallel postulate

76

Infinity Hierarchy

¢ N <N =2N
0,1,2,.,k k+1,...,,
N1, Noseeey N Nt 1oeees

 First inaccessible infinity: ...

For an informal account on infinities, see e.g.:
Rucker, Infinity and the Mind, Harvester Press, 1982.

77

Thm: # algorithms is countable.
Pf: sort programs by size:
"main(){}"
"main() {int k; k=7;}"
"<all of UNIX>"
“<Windows XP>"

"<intelligent program>"

— # algorithms 1s countable!

78

Thm: # of functions is uncountable.

Pf: consider 0/1-valued functions
(i.e., functions from N to {0,1}):

{(1,0), (2,1), (3,1), (4,0), (5,1), ..}
= { 2, 3, 5,..1e2N

So, every subset of N corresponds to a
different 0/1-valued function

12N| is uncountable (why?)

— # functions is uncountable!

79

Thm: most functions are uncomputable!

Pf: # algorithms is countable
functions 1s not countable

—3 more functions than
algorithms / programs!

— some functions do not have
algorithms!

Ex: The halting problem

Given a program P and input I,
does P halt on I?

Def: H(P,I) = 1 if P haltson I
0 otherwise

80

The Halting Problem

H: Given a program P and input I,
does P halt on 1? i.e., does P(I){. ?

Thm: H is uncomputable
Pf: Assume subroutine S solves H.

SR

P—=S — yes
[~ PAON? o
Construct:
s N\

S' o0
- S Hye‘s‘—l

B

I

- J

81

Analyze:

[S' 0 N
;S Hy;S-_I

~ P2 | o no —=yes
I \ J

- J

S'(SW = S'(sHT
S'(S"HT = S'(SH

so, S'(SHT<=S'(SH
a contradiction!

= S does not correctly compute H

But S was an arbitrary subroutine, so
—H is not computable!

82

Discrete Probability

Sample space: set of possible outcomes
Event E: subset of sample space S
Probability p of an event: |E|/ |S]

« 0<p<l

* p(not(E)) =1 - p(E)

* p(E1VEz) =p(E1) + p(E) - p(EiNE>)

Ex: two dice yielding total of 9
E={(3,6),(4,5),(5,4),(6,3)}
S={1,2,3,4,5,6}x{1,2,3,4,5,6}
p(E) = [E|/|S| =4/36 =1/9

83

General Probability

Outcome x; is assigned probability p(x;)

e 0<pxp=1

2. p(xi) =1

E = {a;,a,,...,an} = p(E) =3 p(a)

p(not(E)) =1 - p(E)

p(E1VE>) = p(E))*p(E>) - p(EinE,)
Conditional Probability

p(E | F) = probability of E given F

p(ENF) =p(F) p(E | F)

84

Ex: what 1s the probability of two
siblings being both male, given that
one of them is male?

Let (x,y) be the two siblings
Sample space: {(m,m),(m,f),(f,m),(f,f)}
Let E = both are male
= {(m,m)}
Let F = at least one is male
= {(m,m),(m,f),(f;m)}
ENF = {(mm)}
= both are male
p(ENF) =p(F) p(E | F)
p(E | F) = p(ENF) / p(F)
=(1/4)/ (3/4)=1/3

85

Relations

Relation: a set of “ordered tuples”
Ex: {(a,l),(b,Z), (b93)}

<y Ixyeld, x<y)
Reflexive: x¥x Vx

Symmetric: Xy = y¥x

Transitive: x¥y " yvwz = xvz

Antisymmetric: x¥y = ~(y¥x)

Ex: < 1s reflexive
transitive
not symmetric

86

Equivalence Relations

Def: reflexive, symmetric, & transitive

C__%

Ex: standard equality
X=X
X=y = y=X
X=y " y=zZ = X=7Z

Partition - disjoint equivalence classes:

87

Closures

Transitive closure of v: TC

smallest superset of ¥ satisfying

XWy N yOZ = XV¥7

Ex: “predecessor”
{(x-1.x) | xeZ}
TC(predecessor) is “<” relation

Symmetric closure of ¥:
smallest superset of ¥ satisfying

XYy = y¥X

88

Algorithms

» Existence
» Efficiency

Analysis

» Correctness
 Time

* Space

* Other resources

Worst case analysis
(as function of input size |w|)

Upper Bounds

f(n) =0O(g(n)) < dck>0
> [f(n)] < c[g(n)| v n>k

Lim f(n) / g(n) exists
n—oo
“f(n) 1s big-O of g(n)”
Ex: n = O(n?)
33n+17 = O(n)
n8_n7: O(n123)

n'%= O(2")
Asymptotic growth: O Q 0 o 213=0(1)
Lower Bounds Tight Bounds

f(n)=C(g(n)) < g(n)=0((n))
Lim g(n) / f(n) exists

“f(n) 1s Omega of g(n)”
Ex: 100n = Q(n)
33n+17 = Q(log n)
nd-n’= (2(n?)
213=C(1/n)
1= Q(213)

f(n) = ©(gn)) <
f(n)=0(g(n)) * g(n)=O(f(n))

“f(n) 1s Theta of g(n)”

Ex: 100n = ©(n)
33n+17 + log n = ©(n)
n®-n’-n"3= O(n?)
213=0(1)
3+cos(2M)=0(1)

Loose Bounds
f(n) = o(g(n)) &
f(n)=O(g(n)) * f(n)=L2(g(n))
Lim f(n)/g(n) =0
“f(n) 1s little-o of g(n)”
Ex: 100n = o(n log n)
33n+17 + log n = o(n?)
né-n’-n">= o(2")
213=o(log n)
3+cos(2")= o(\n)

Growth Laws

Let f;(n)=0(g;(n)) and
f2(n)=0(g2(n))

Thm: fi(n) + f(n)
= O(max(g;(n),g>(n)))

Thm: fi(n) - f,(n)
= 0(gi(n) - g2(n))

Thm: nk=0O(c") Vv c,k>0
Ex: n'%=0Q(1.001")

Recurrences

T(n) = a-T(n/b) + f(n)

let c =log,a

Thm:
f(n)=0(n®*) = T(n)=O(n°)
f(n)=O(n°) = T(n)=B(n° log n)
f(n)=Q(n°*¢) * a-f(n/b) < d-f(n)
vV d<1,n>n, = T(n)=0(f(n))

Ex: T(n)=9T(n/3)+n = T(n)=0O(n")

T(n) =T(2n/3)+1 = T(n)=O(log n)

Pigeon-Hole Principle

If N+1 objects are placed into N boxes

— 3 a box with 2 objects.

If M objects are placed into N boxes &

M>N = 3 box with [M] objects.

e Useful in proofs & analyses

Stirling's Formula

n!=123-...-(n-2)(n-1)n
n! =+/2IIn - (g)L(1+ @)(11l)

=)

log(n!) = O(n log n)

eUseful in analyses and bounds

97

Data Structures

 What is a "data structure"?

» Operations:
 Initialize
* Insert
e Delete
» Search
* Min/max
» Successor/Predecessor

e Merge

98

Arrays

* Sequence of "indexible" locations

11234 |56 7]|...

* Unordered:
* O(1)toadd
* O(n) to search
e O(n) for min/max
* Ordered:
* O(n) to add
* O(log n) to (binary) search
* O(1) for min/max

99

Stacks

LIFO (last-in first-out)

I - in

T~

out
Operations: push/pop (O(1) each)
Can not access "middle"
Analogy: trays at Cafeteria
Applications:

« Compiling / parsing
* Dynamic binding

* Recursion

* Web surfing

100

g 21161165

FIFO (first-in first-out)

n— —=out

Operations: push/pop (O(1) each)
Can not access "middle"
Analogy: line at your Bank

Applications:

» Scheduling

» Operating systems
» Simulations

» Networks

101

Linked Lists

* Successor pointers

NGB
e Types:
 Singly linked
* Doubly linked
 Circular

N 0T E

» Operations:
¢ Add: O(1) time
* Search: O(n) time
* Delete: O(1) time (if known)

102

Trees

Parent/children pointers

AR
RV
Py
me
Binary/N-ary
Ordered/unordered
Height-balanced:
« AVL
e B-trees
* Red-black

* O(log n) worst-case time

103

Tree Traversals

1) process node
2) visit children
= c¢cbaedf

 pre-order:

» post-order: 1) visit children
2) process node
= abdfec

e in-order: 1) visit left-child
2) process node
3) visit right-child

= abcde f

104

Heaps

A tree where all of a node’s children
have smaller “keys”

Can be implemented as a binary tree

Can be implemented as an array

Operations:

* Find max: O(1) time
* Add: O(log n) time

* Delete: O(log n) time
» Search: O(n) time

105

Hash Tables

Direct access

Hash function
Collision resolution:

* Chaining
» Linear probing
* Double hashing

Universal hashing
O(1) average access
O(n) worst-case access

Q: How can worst-case access time be

improved to O(log n)?

106

Sorting

Fact: almost half of all CPU
cycles are spent on sorting!!

Input: array X[1..n] of integers
Output: sorted array

Sort Properties

* Worst case?
« Average case?

* In practice?

 Decision tree model * Input distribution?

Thm: Sorting takes Q(n log n) time » Randomized?

. | 1 1
Pf: n! different permutations + Stability?

—>decision tree has n! leaves e In-Situ?
—tree height is: log(n!) Stack depth?
> log((n/e)")

* Internal vs. external?
= Q(n log n)

107 108

 Bubble Sort:

For k=1ton
For i=1 to n-1
If X[i+1]>X[i]
Then Swap(X,1,i+1)

—0(n?) time

Insertion Sort:

For i=1 to n-1
For j=i+1 ton
If X[j]>X[i] Then Swap(X,1i,j)
—=0(n?) time

109

* Quicksort:

QuickSort(X,1,))
If i<j Then p=Partition(X,1,j)
QuickSort(X.i,p)
QuickSort(X,p+1,))

—=0O(n log n) time (ave-case)

C.A.R. Hoare, 1962

Good news: usually best in practice

Bad news: worst-case O(nz) time

Usually avoids worst-case

Only beats O(nz) sorts for n>40

110

Merge Sort:

MergeSort(X,1,))
if i<j then m=|(i+j)/2)
MergeSort(X,i,m)
MergeSort(X,m+1,j)
Merge(X,1,m,])

T(n)=2T1m/2) +n
—=0O(n log n) time

* Heap Sort:

InitHeap

For 1=1 to n Heaplnsert(X(1))

Fori=1ton M=HeapMax
Print(M)
HeapDelete(M)

=0(n log n) time

111

Counting Sort:

Assumes integers in small range 1..k

For 1=1 to k C[1]=0
For i=1 to k C[X[i]]*++
Fori=1tok
If C[1]>0 Then print(i) C[1] times

—=0(n) time (worst-case)

Radix Sort:

Assumes d digits in range 1..k

For i=1 to d StableSort(X on digit 1)

=0(dn+kd) time (worst-case)

112

* Bucket Sort:

Assumes uniform inputs in range 0..1

Fori=1ton

Insert X[1i] into Bucket Ln-X[i] J
For i=1 to n Sort Bucket i
Concat contents of Buckets 1 thru n

—=0(n) time (expected)
O(Sort) time (worst)

113

Order Statistics

« Exact comparison count

e Minimum element

k=X[1]
Fori=2 ton
If X[1]<k Then k = X[i]

—n-1 comparisons

Thm: Min requires n-1 comparisons.
Proof:

114

* Min and Max:

(a) Compare all pairs
(b)Find Min of min’s of all pairs
(¢)Find Max of max’s of all pairs

= n/2+n/2+n/2 =3n/2 comparisons

Thm: Min&Max require 3n/2 comparisons.
Pf: Represent known info by four sets:

[Unknownj [Not Minj [Not Maxj (Neither]

A B C D
Initial: n 0 0 0
Final: 0 1 1 n-2

Track movement of elements between sets.

115

Effect of comparisons:

Origin Target

< >
A&A C&B|B&C (1)
A&B C&B|B&D
A&C C&D |B&C
A&D C&D | B&D
B&B D&B|B&D(2)
B&C D&D|B&C
B&D D&D | B&D
C&C C&D|D&C(3)
C&D C&D|D&D
D&D D&D | D&D

* Going from A to D forces passing through B or C
* "Emptying" A into B&C takes n/2 comparisons (1)
* "Almost emptying" B takes n/2-1 comparisons (2)
* "Almost emptying" C takes n/2-1 comparisons (3)
* Other moves will not reach the "final state" faster
* Total comparisons required: 3n/2-2

116

Problem: Find Max and next-to-Max
using least # of comparisons.

117

Selection

» Not harder than median-finding (why?)
« Randomized ith-Selection
(return the ith-largest element in X[p..r])

Select(X,p,r,1)
If p=r Then Return(X[p])
g=RandomPartition(X,p,r)
k=q-p+1
If 1 <k Then Return(Select(X,p,q,1))
Else Return(Select(X,q+1,r,1-k))

p r
X

q
= O(n) time (ave-case)

118

Deterministic ith-Selection

[Blum, Floyd, Pratt, Rivest, Tarjan; 1973]

 Partition input into n/5 groups of 5 each
* Compute median of each group
» Compute median of medians (recursively)

<«——— n/5 groups group

Spergroup/o 0 o o o o o o @) o 0 o o o o o4 o)
e ERE

x = median of medians

« Compute median of medians (recursively)
* Eliminate 3n/10 elements & recurse on rest

T(n) =T(m/5)+ T(7n/10) + O(n)
=T(2n/10) + T(7n/10) + O(n)

<T(9n/10) + O(n) since T(n)= Q(n)

— T(n) = O(n)

119

Problem: Find in O(n) time the majority
element (i.e., occurring > n/2 times, if any).

a) USing H<H,">H’H:"

b) Using "=" only (i.e., no "order")

120

Graphs

e A special kind of relation

Graphs can model:
« Common relationships
» Communication networks
* Dependency constraints
* Reachability information

+ many more practical applications!

Graph G=(V,E): set of vertices V,
and a set of edges E < VxV

Pictorially: nodes & lines

121

Undirected Graphs

Def: edges have no direction

e Example of undirected graph:

o‘:z:

V={a,b,c,d,e}
E={(c,a),(c,b),(c,d),(c,e),
(a,b),(b,d),(d,e)}

122

Directed Graphs

Def: edges have direction

e Example of directed graph:

(5
S
()
V={a,b,c,d,c}

E={(a,b),(a,c),(b,c),(b,d),
(d.c).(d.e),(c.0)}

123

Graph Terminology

Graph G=(V.E), E c VxV

¢ node = vertex
e edge = arc

°o
- O
—©
Vertices u,veV are neighbors in G iff

(u,v) or (v,u) is an edge of G

Ex: a & b are neighbors
a & e are not neighbors

124

Undirected Node Degree

Degree in undirected graphs:

Degree(v) = # of adjacent (incident)
edges to vertex vin G

deg(f)=0

o‘:z: &

Ex: deg(c)=4

125

Directed Node Degree

Degree in directed graphs:

In-degree(v) = # of incoming edges
Out-degree(v) = # of outgoing edges

Ex: in-deg(c)=3
in-deg(f)=0

e‘:hz o

out-deg(c)=1
out-deg(f)=0

126

Q: Show that at any party there is an
even number of people who shook
hands an odd number of times.

127

Complete graph K, contains all edges
ie, E= {{uv}eVxV |uzv}

Q: How many edges are there in K,,?

Subgraph of G is G’=(V’,E’)
where V’cV and E’cE

Q: Give a (non-trivial) lower bound on
the number of graphs over n vertices.

128

Paths in Graphs

Undirected path in a graph:

)
(o—®)

A graph is connected iff there is a path
between any pair of nodes:

129

Directed path in a graph:
P
(o)
(o)

Graph is strongly connected iff there is
a directed path between any node pair:

Ex: connected but not strongly:
a0

(a)
(o)

130

A cycle in a graph:

. :'

A tree 1s an acyclic graph.

Tree T=(V’,E’) spans G=(V,E) if T is a
connected subgraph with V’=V

131

Q: How many edges are there in a
tree over n vertices?

Q: Is the # of distinct spanning trees in
a graph G always polynomial in |G|?

132

Graph Traversals
Breadth-first search:

Depth-first search:

O(E+V) time for either BFS or DFS

Yields a spanning tree for the graph

133

Topological Sort

Given a digraph, list vertices so that all
edges point/direct to the right:

:

@

P-C-Q

Can be done in O(E+V) time

Application: scheduling w/constraints

134

Weighted Graphs
Each edge has a weight: w:E—Z

Weights can model many things:

 Distances / lengths
» Speed / time
* Costs

Cost(G) = sum of edge costs

Find a shortest / least-expensive
subgraph with a given property

135

Graph Representation

Adjacency list:

I. @ > b —>c
2: (b)) > a > d
3: (¢ —> a
4. (d —> Db
Adjacency matrix:
a b c d
a 0 1 1 0
b 1 0 0 1
c | 0 0 0
d 0 1 0 0

136

Minimum Spanning Trees

Prim’s MST Algorithm

Shortest Paths Trees

T=v,
Until T spans all nodes do
Select nodes xeT, ygT
w/min cost(X,y)
Add edge (x,y)to T
Return T

* Time complexity: O(E log E)
» Kruskal: O(E log V)

 Fibonacci heaps: O(E+VlogV)

140

141

Dijkstra’s Single-Source
Shortest paths Algorithm

T=v,
Until T spans all nodes do
Select nodes xeT, yeT
w/min cost(x,y) + dist(v,,x)
Add edge (x,y)to T
Return T

» Time complexity: O(Vz)

» All pairs: O(V3)

142

Cost-Radius Tradeoffs

Cong, Kahng, Robins, Sarrafzadeh, and Wong, Provably Good
Performance-Driven Global Routing, IEEE Transactions on Computer-
Aided Design, Vol 11, No. 6, June 1992, pp. 739-752.

Signal delay T = Performance {

Source — sink pathlength oc delay

= Avoid long paths

Capacitive delay / building cost

= Minimize total wirelength

143

Possible Trees

MST:

SPT:

144

Definitions

Input: pointset with distinguished source

ptset radius R: max source-sink dist

: I o
o=~ Tadius;~~"S

145

Problem Formulation

Given a pointset P, €20, find min-cost tree T with r(T)
< (1+¢)R

Tradeoff: ¢ trades off radius and tree cost

£=0 = “Shortest Path Tree”

€ =00 = Minimum Spanning Tree

146

Arbitrary € = hybrid construction

* Unifies Prim and Dijkstra!

147

Bounded Radius MSTs

Goal: cost = cost(MST)

radius = r(SPT)

- LetQ= MST

* Let L be tour of MST:

148

O 00000000000 0090
sabacasdsefgfehes

149

Traverse L
A = running total of edge costs

IfA>&RThen A=0
Q = Q U minpath(s,L;)

Shortest paths added

/

\ L =MST tour

A>¢gR

Final routing tree is SPTQ

150

minpathg (s,v;) <R

o0

\ v Vit

1
L distr(vi,v) <eR

L =MST tour

dist (s,v) <dist(s,v) +dist (v,V)

<R+egR=(1+¢)R

=>1r(T)<(1+¢)R

151

minpath g (s,v4) <R

minpathg(s,v;) <R

L =MST tour V.

L distr(vi,vis) < eR

L
cost(T) < cost(MST) + %J ‘R

2-cost(MST))

€

= cost(MST) +

2
=(1+7%) cost(MST)

= cost(T) = (1 +2)-cost(MSTg)

152

Bounded Radius MST Algorithm

Compute MST; and SPT
E'=edges of MST,
Q=(V.E)
L = depth-first tour of MST;
A=0
Fori=2to |L]
A=A +cost(Lj_q, L;)
If A> &R Then
E'=E'U minpath(s, L;)
A=0
T =SPT,

Input: G=(V,E), source s, radius R, O<¢

Output: T = routing tree with
cost(T) < (17%)-cost(MST,;)

Steiner Trees

r(T) < (1+¢) R
153 154

@ —

|

a Bounded Radius Steiner Trees
1
| I:l—l Can use any low-cost spanning tree
m—

Bounded Radius Steiner Trees

Given weighted graph G=(V,E), node subset N,
source seN, and O<g, find min-cost tree T spanning N, with
r(T) < (1+e)r(N)

* NP-complete

155

Use [KMB, 1981] to span N (cost < 2-opt)

Run previous algorithm

= cost(T) < 2:(1+ -)-opt

156

Geometry Helps

* Add Steiner points when A = 2¢-R

Shortest paths added

Steiner points added

s
L = MST tour ’_Y| 7|
A=2eR

e Use bounds on MST/Steiner ratio

Tree type | Graph type | Radius bound Cost bound
spanning | arbitrary (1+g)R (1+ 2/e) MST
Steiner arbitrary (1+g)R 2-(1+ 2/¢)-opt
Steiner | Manhattan (1+e)R % (1+1/¢) -opt
tei Eucli . 2
Steiner uclidean (1+e)R % (1+1/g) opt

157

Experimental Results

1.00 - MST
£ 090
5]
S 0.80
N
= £=2.00
= 070
= £=1.00
: SPT
0.50
g 1.70 SPT
E/ 1.50 £=0.25
g
2 130 2100
~~
€ 10 £=2.00
§ MST

Net size

158

NP-Completeness

 Tractability

* Polynomial time

« Computation vs. verification

* Non-determinism

* Encodings

» Transformation & reducibilities
 Pvs.NP

« "completeness"

159

A problem L is NP-hard if:

1) all problems in NP reduce to L in
polynomial time.

A problem L is NP-complete if:

1)L is NP-hard; and
2) L 1s in NP.

* One NPC problem is in P=P=NP

NP

Open question: is P=NP ?

160

Satisfiability

SAT: is a given n-variable boolean
formula (in CNF) satisfiable?

CNF (Conjunctive Normal Form):
i.e., product-of-sums

"satisfiable" = can be made "true"
Ex: (xty)(X +z) is satisfiable
(x+z)(X)(Z) is not satisfiable

3-SAT: is a given n-var boolean
formula (in 3-CNF) satisfiable?

3-CNF: three literals per clause

Ex: (X +X51X7)(X37X 41X 5)

161

Cook's Theorem

Thm: SAT 1s NP-complete [Cook 1971]

Pfidea: given a non-deterministic
polynomial-time TM M and input w,
construct a CNF formula that is
satisfiable 1ff M accepts w.

Use variables:

* q[1,k] = at step i, M is in state k

* h[1k] = at step 1, read-write head
scans tape cell k

* s[1,j,k] = at step 1, tape cell j
contains symbol X,

M always halts in polynomial time
— # of variables is polynomial

162

Clauses for necessary restrictions:
» Ateach time i:

M is in exactly 1 state

r/w head scans exactly 1 cell

all cells contain exactly 1 symb

 Time 0 = initial state

* Time P(n) = final state

e Transitions from time 1 to time
i+1 obey M's transition function

Resulting formula is satisfiable iff M
accepts w.

Thm: 3-SAT is NP-complete

Pfidea: convert each long clause to an

equivalent set of short ones:
(xty+tztutvtw)

=(xt+y+ta)(a +z+b)(b +utc)(c +v+w)

163

Q:1s 1-SAT NP-complete?

Q:1s 2-SAT NP-complete?

164

COLORABILITY: given a graph G
and integer k, 1s G k-colorable?

(different colors for adjacent nodes)

Ex: —

Thm: 3-COLORABILITY is NPC
Proof: reduction from 3-SAT

(xty+z) =

®

gadget is 3-colorable <> x+y+z is true

ol

165

Ex: (xty+z)(X +¥ +z2)(X ty+Z)

N)

166

Ex (cont.): a 3-coloring:

z/: 7 SR
X
y

il

Solution = x=true, y=false, z=false

167

Thm: 3-COLORABILITY is NPC for
graphs with max degree 4.

Pf: degree-reduction "gadget":

A s

a) max degree 4
b) 3-colorable but not 2-colorable
c) all corners get same color

"Super"-gadgets:

Use these "fanout" components to
reduce node degrees to 4 or less

168

Ex:
G:
G" ﬁksj-‘-" 'ﬁ%&a‘%ﬁ.&z‘iﬁ.
. '.b"-*"'b'- .‘

G 1s 3-colorable < G' 1s 3-colorable

169

Q: 1s 3-COLORABILITY NPC for
graphs with max degree 3?

170

Thm: 3-COLORABILITY is NPC for
planar graphs.

Pf: planarity-preserving "gadget":

G

a) planar and 3-colorable
b) Opposite Corners get same color
¢) "independence" of pairs of OC's

Use gadget to avoid edge crossings:

171

Ex:

G 1s 3-colorable < G' 1s 3-colorable

172

