NP-Completeness

- Tractability
- Polynomial time
- Computation vs. verification
- Non-determinism
- Encodings
- Transformation & reducibilities
- P vs. NP
- "completeness"
A problem L is NP-hard if:

1) all problems in NP reduce to L in polynomial time.

A problem L is NP-complete if:

1) L is NP-hard; and
2) L is in NP.

- One NPC problem is in $\text{P} \Rightarrow \text{P}=\text{NP}$

Open question: is $\text{P}=\text{NP}$?
Satisfiability

SAT: is a given n-variable boolean formula (in CNF) satisfiable?

CNF (Conjunctive Normal Form): i.e., product-of-sums
"satisfiable" \Rightarrow can be made "true"

Ex: $(x+y)(\overline{x} +z)$ is satisfiable

$(x+z)(\overline{x})(\overline{z})$ is not satisfiable

3-SAT: is a given n-var boolean formula (in 3-CNF) satisfiable?

3-CNF: three literals per clause

Ex: $(x_1+x_5+x_7)(x_3+\overline{x}_4+\overline{x}_5)$
Cook's Theorem

Thm: SAT is NP-complete [Cook 1971]

Pf idea: given a non-deterministic polynomial-time TM M and input w, construct a CNF formula that is satisfiable iff M accepts w.

Use variables:
- $q[i,k] \Rightarrow$ at step i, M is in state k
- $h[i,k] \Rightarrow$ at step i, read-write head scans tape cell k
- $s[i,j,k] \Rightarrow$ at step i, tape cell j contains symbol Σ_k

M always halts in polynomial time
\Rightarrow # of variables is polynomial
Clauses for necessary restrictions:

- At each time i:
 - M is in exactly 1 state
 - r/w head scans exactly 1 cell
 - all cells contain exactly 1 symb
- Time 0 \Rightarrow initial state
- Time $P(n)$ \Rightarrow final state
- Transitions from time i to time $i+1$ obey M's transition function

Resulting formula is satisfiable iff M accepts w.

Thm: 3-SAT is NP-complete

Pf idea: convert each long clause to an equivalent set of short ones:

$$(x+y+z+u+v+w)$$

$$\Rightarrow (x+y+a)(\overline{a} +z+b)(\overline{b} +u+c)(\overline{c} +v+w)$$
Q: is 1-SAT NP-complete?

Q: is 2-SAT NP-complete?
COLORABILITY: given a graph G and integer k, is G k-colorable?
(different colors for adjacent nodes)

Ex:

Thm: 3-COLORABILITY is NPC

Proof: reduction from 3-SAT

\[(x+y+z) \Rightarrow \]

gadget is 3-colorable $\iff x+y+z$ is true
Ex: \((x+y+z)(\overline{x} + \overline{y} + z)(\overline{x} + y + \overline{z})\)
Ex (cont.): a 3-coloring:

Solution $\Rightarrow x=\text{true}, \ y=\text{false}, \ z=\text{false}$
Thm: 3-COLORABILITY is NPC for graphs with max degree 4.

Pf: degree-reduction "gadget":

a) max degree 4
b) 3-colorable but not 2-colorable
c) all corners get same color

"Super"-gadgets:

Use these "fanout" components to reduce node degrees to 4 or less
Ex:

\[G: \]

\[G': \]

\[G \text{ is 3-colorable} \iff G' \text{ is 3-colorable} \]
Q: is 3-COLORABILITY NPC for graphs with max degree 3?
Thm: 3-COLORABILITY is NPC for planar graphs.

Pf: planarity-preserving "gadget":

a) planar and 3-colorable
b) Opposite Corners get same color
c) "independence" of pairs of OC's

Use gadget to avoid edge crossings:
Ex:

G:

G' :

G is 3-colorable \iff G' is 3-colorable