
Signal Constellation Design Tool:
A Case study in User Interface Synthesis

Gabriel Robins

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90024, USA
gabriel@vaxb.isi.edu

Abstract

Signal constellation design is a major subtask of constructing an efficient communication
system; it essentially entails trading-off error frequency against information throughput, a chief
occupation of modem designers. We propose and implement an interactive tool for designing and
simulating arbitrary signal constellations. 'To construct the user interface we have utilized Interface
Builder, a new interactive tool that greatly facilitates the synthesis of arbitrary user interfaces
through an object-oriented methodology. Using the Interface Builder package and the Signal
Constellation Design Tool as the target prototype, we show how an order-of-magnitude improvement
can be achieved in the effort required to produce a complex user interface. Our secondary goal is to
try to dispel some of the mystique surrounding user interface synthesis on state-of-the-art
workstations by describing in detail the construction of an interactive tool for computer-assisted
learning.

Keywords: User interfaces, User interface tools, Human computer instruction, Man-machine
interaction, Computer-assisted learning, Simulation tools, Object-oriented systems.

1. Introduction

Signal constellation design is a major part of constructing an efficient communication system.
This task essentially entails trading off error frequency against information throughput, a chief
occupation of modem designers. We propose and implement an interactive tool for designing and
simulating arbitrary signal constellations. While the actual code that simulates signal constellations
is rather trivial in itself, the user interface to this code is quite complex. To design and construct
this user interface we have used Interface Builder, a new interactive tool that greatly facilitates the
synthesis of user interfaces through an object-oriented methodology. Using the Interface Builder
package and the Signal Constellation Design Tool as the target prototype, we show how an order-of-
magnitude improvement can be achieved in the effort required to produce a complex user interface,
and then draw some conclusions regarding the synthesis of user interfaces in general.

Our secondary goal is to try to dispel some of the mystique surrounding user interface synthesis
on state-of-the-art workstations. Many otherwise informed researchers have very little experience
in user-interface design, and consequently view user interface design as some sort of a black art, best
left to specialized hackers to dabble in. By user interface design I mean a collection of functionality
(running on a bit-mapped display workstation with a mouse) that interacts with the user in a
friendly manner via menus, scroll bars, control buttons, icons, mouse clicks, and key strokes.

We intend to show that, quite to the contrary of these myths, given the proper tools and
methodology, the synthesis of complex user interfaces could be rather trivial. As a case in point, the
user interface described in this document was implemented on a Macintosh, requiring only several
days of coding, including the time to read the manuals and learn how to use the software. As a by-
product of our inquiry, we have synthesized an interactive tool for computer-assisted learning.

1

The first half of this document explains signal constellation design in general and how Interface
Builder was used to synthesis the user interface; numerous examples and illustrations are given. The
rest of this document describes and illustrates the functionality and usage of the resulting signal
constellation design tool. The annotated Common LISP source code is available upon request both in
hardcopy and on a Macintosh diskette.

2. Signal Constellation Design

In designing an efficient communication scheme for band-limited channels, invariably of chief
concern are the effects of noise and other kind of interference on the system [Forney, Gallager, Lang,
Longstaff, and Qureshi]. To combat such interference, and while still aiming to achieve high
throughput, one must carefully design an appropriate signal constellation [Carlyle] [Schwartz]
[Sklar].

The task of signal constellation design essentially entails trading off error frequency against
information throughput and is a chief occupation of modem designers. We propose and implement an
interactive tool to alleviate the task of designing and simulating arbitrary signal constellations. We
would like our tool to graphically display the signal constellation in two dimensions, allowing the user
to visually observe the progressing simulation under interactive modifications to the interference
parameters of the system.

2.1. The Desired Functionality

In this section we describe in more detail the functionality that we would like our Signal
Constellation Design Tool to exhibit. Later we explain how this functionality was actually achieved in
the implementation.

First, we would like to allow the user to select any of a number of "canned" standard signal
constellations. For example, the user may elect to simulate an N-in-a-circle signal constellation and
observe its performance under various levels of noise and distortion. Such selections should be done
via mouse and menu interaction. Next the user may wish to select a certain probability distribution
that would control the generation of random signal points. For example, the user may wish to select a
Gaussian distribution with a specified variance.

Once the user has selected a particular constellation to simulate/observe, as well as a
probability distribution, that constellation should be drawn on the screen and the simulation may
proceed. During the simulation, the user may interactively modify a number of system parameters,
such as the phase jitter and the additive white Gaussian noise level. This would be accomplished by
dragging "scroll-bars" identified with the corresponding parameters, or by directly typing in the
desired values.

Using a random number generator, random signals are generated, according to the probability
distribution function specified earlier, and are plotted on the signal constellation diagram. After a
few minutes, a cumulative scatter-plot of the received signals will become apparent, giving the user
an indication of how that signal constellation is performing under the distortion parameter values set
previously. A cumulative running total of the number of errors encountered so far should be
displayed, as is the empirically derived error-probability (the number of errors divided by the
number of signals transmitted.)

The various commands should be also be accessible via clicking appropriate buttons, and
alternatively also via menus and keystrokes. In addition, we wish to provide the user with some on-
line help and information.

2

2.2. The Main Panel

To make the appearance of the user interface more concrete, we give an illustration of how the
main panel might appear:

F, El Sina Coselto Deig Too - by 6 e Roin

S

S

S
S

U
S

S

S

Noise Leuel (AWGN)

u •Phase Jitter

SClearD

Simulate)j Suspendi

• IChange Constellation

• IChange Distribution

Signals Sent: 0

Misses: 0

% error: 0

To the left we see the main drawing area where the signal constellation appears; in this case the
signal constellation itself consists of 20 points uniformly distributed on 4 concentric circles. At the
top right we note the interference parameters, as well as the scroll bars and click boxes used to
modify them. Below that we observe several "buttons" each of which will invoke a command if the
user clicks it with the mouse. To the lower right we have the running statistics and error-ratio as
the simulation progresses.

The user may invoke several operations simply by clicking the corresponding buttons. In
addition, all of these commands are also available from the pull-down menus, as well as through
keystrokes (i.e. single character keyboard inputs). We may also have at the top a pull-down menu
bar, representing the various commands the user may invoke; the menu bar is not visible in this
diagram.

After a simulation has been underway for some time, the main panel might appear as follows:

3

I

[Sina Coselto Deig Too - by GabrielRobins

The clouds around the signal points represent where the randomly generated signals fell around the
actual signal constellation points. In this simulation, given the specified noise parameters, we are
observing an error rate over over one percent, an undesirable situation.

2.3. The Constellation Editor

The panel that allows the user to select and edit a signal constellation is called the Constellation
Editor and may appear as follows:

4

_ _1[li]i~i~i l

Noise Level (fAWGN)

L l! *ii IzHHO-2 I ".. *. 1 1. 1 !!!
Phase Jitter

Clear

Simulate Suspend]

Change Constellation)

(Change Distributionj

Signals Sent: 6310

Misses: 70

% error: 1.109350

==E-D Constellation Editor

0 N on a circle

0 N by M rectangle
(N on M circles

0 User Specified

R Activate Grid

0 rectangular
® Polar

OK

N: I'
M:I I

Jot Size:

Circles:

ays: ,
Help---

(Redraw) "

Cancel R [Recompute) Delete 1[Add

At the top left the user may select one of several "canned" signal constellations, parametrized by
the variables M and N; these parameters are also user-specified: to change them, the user simply
clicks in the corresponding box and types in the new value. An optional editing grid is available, and
may be either rectangular or polar; the purpose of this grid is to make placement of individual
constellation points more precise. The resolution of the grid may be controlled by the user; in the
case of the rectangular grid, the number horizontal and vertical lines may be specified, and in the
case of the polar grid, the number of circles and rays may be specified.

The user may add or delete constellation points, redraw the display, or obtain on-line help,
simply by clicking the corresponding buttons. In addition, all of these commands are also available
from the pull-down menus, as well as through keystrokes (i.e. single character keyboard inputs).
Note that one of the points of the constellation is highlighted; this is accomplished when the mouse is
clicked anywhere in the drawing area, whereupon the closest point to the click becomes highlighted. A
"delete" command would subsequently remove the highlighted point, while an "add" command would
wait for a new mouse click and a new point would be added to the constellation at the location of that
click.

The on-line help consists of several screens of information and will be discussed later. "Ok"
saves the current signal constellation and uses it from now on in all future calculations, while
"Cancel" reverts back to the signal constellation previously in effect. Had the user selected a
rectangular grid instead on a polar grid, the display might have appeared as follows:

5

-E-D Constellation Editor

0 N on a circle

(§ N by M rectangle
0 N on M circles

O User Specified I

[Activate Grid

* rectangular
0 Polar

OK Re

Cancel =Reci

Dot Si;

Horiz:

Uert:

Helpu]

draw

ompute 1

2.4. The Distribution Editor

The panel that allows the user to select and edit a signal constellation is called the Distribution
Editor and may appear as follows:

Uniform Distibution

Gaussian Distribution

Interval: E100

Suspend

-Clear _

1570

0.67834

-1.3751

IPloti
graph

Data points:

H Average:

Y Average: He I p OK Cancel

The user may select from either a uniform distribution on a given interval, or a Gaussian
distribution with a given variance. The "Plot" command starts generating and plotting random points

6

EI"I

"N:

Me':

Delete] L Add

I0 Distribution Editor

0

ED

• :. • ., :;= " ,:. . -Z

* 0

Distribution Editor

according to the distribution specified by the user. The "Graph" command draws a graph of the
probability density function in the X/Y plane. The "Help" command provides some on-line
help/information, while the "Clear" command clears all the old points from the display. The average
X and Y coordinates for the points generated so far are displayed to the lower left. "Ok" saves the
current probability distribution and uses it from now on in all future calculations, while "Cancel"
reverts back to the probability distribution previously in effect.

The following diagram illustrates a "Plot" of the Gaussian distribution:

-0I- Distribution Editor

0 Uniform Distibution

® Gaussian Distribution

Variance:

Z Plot suspend

graph F Clear _

Data points:

H Average:

Y Average:

1990

-0.1984

0.94623

4.. •-

-;A

WH..

Help OK J (Cancel

By now the reader would agree that although simulating a given signal constellation may by
itself indeed constitute a trivial programming task, the construction of a user interface that would
behave as described above is by contrast quite a formidable programming task. In practical terms,
the former could be easily accomplished in a couple of hours, while the later may take many weeks to
construct. Using Interface Builder and an object-oriented programming methodology, all of these
tasks were implemented on a Macintosh in only several days of coding, including the time to read the
manuals and learn how to use the software.

3. Using Interface Builder

The process of constructing the user interface using Interface Builder simply entails
specifying inside an interactive environment the various menus, dialogue-boxes, scroll-bars, and
menu-buttons, as well as where they should appear on the screen, and what should happened when
each is clicked, selected, or dragged. The latter is accomplished by providing the relevant LISP code
associated with each object. Experlnterface Builder performs all of the user-specified functions at
the right times by usurping the workstation's "main event loop" and substituting the user-specified
functionality as the default.

The result is an attractive user interface which is easy to build and modify. This tool was
pioneered by ExperTelligence and recently has met with competition from Apple Inc., namely the
HyperCard program [Goodman]. The importance of such tools has only recently been fully
appreciated, although it has been known for quite some time that most of the effort associated with
constructing computer software is invariably spent in programming the user interface; moreover, in

7

. W"t
'ýA

many cases the user interface directly determines the utility of a piece of software [Kaczmarek]
[Robins].

3.1. The Methodology of Interface Builder

Interface Builder uses an object-oriented paradigm to create a user interface. Objects are
rather general entities and may include windows, bitmaps, icons, records, scroll bars, buttons, text
strings, regions, points, lines, files, and mouse clicks, among others. Objects communicate by
sending messages to one another, and each object has a set of messages that it knows how to respond to;
for example, a "redraw" message sent to an icon may cause the icon to redraw itself on the display. In
addition to various useful default messages (or methods), a user may specify additional customized
methods to be associated with an object. Messages may contain zero or more arguments and are
essentially equivalent to function calls.

An Interface Builder editor is simply a panel consisting of a collection of objects, each with an
associated set of methods. In addition to methods, an object may also have some local variables that
may store arbitrary values, including other objects. When an object is defined it is specified as a
child of some other object, and thus automatically inherits all the methods that apply to its parent; in
addition, new methods may be added to the child, specializing it from its parent. An object may have
multiple parents, in which case it inherits all of their methods. The astute reader will note that this
schema necessitates a conflict-resolution or priority scheme when methods clash through
inheritance, but we do not consider these details particularly relevant and therefore do not pursue
them any further here.

As a concrete example, let us consider the Distribution Editor described earlier, whose panel
inside Interface Builder appears as follows:

ED ________ Panel of CHOOSEDISTFIIBUTION __________

0 Uniform Distibution

) Gaussian Distribution

Lariance ~• ~ r a c:................................... O

Plot suspend

graph Clear

Data points: ý0

............... fH Average:

:Y fluerage:
.. _ _............... .. ,: :.............

Help 7 OK) (Cancel J

Each visible item is an object to which we may send various messages, and with which there is
associated functionality that is invoked whenever during execution it is clicked, dragged, resized, etc.
The icons at the lower left side are Interface Builder commands and are used to create the various
types of objects that they represent pictorially. Once such an object is created, it may be further

8

il--]•
Panel of CHOOSEDISTRIBUTION

modified, resized, and redefined.

For example, the "Click" method of the main drawing area to the right may be specified by
double-clicking on the main drawing area and filling in the required fields in the resulting dialogue
panel as follows:

Click Method

(editor '<method> item point when modifiers):

Display Method (editor '<method> item):

IREDRAW-MAIN-CANUAS

Init Method (editor '<method> item):

NOOP

Free Method (editor '<method> item):

NOaP

® En�ibIed 0 Diso bled
OK (CancelT

The function REDRAW-MAIN-CANVAS is a piece of code that will clear out and redraw that area.
Similarly a text item may be specified to have a certain "click" method by creating it, double-clicking
it, and filling in the appropriate fields in the resulting dialogue panel, as follows:

Arbitrary icons and bitmaps may also be included as part of the editor panel being constructed.
This is done by a dialogue as in the following example, in which a previously created bitmap is
designated as part of the display of the forth Distribution Editor help screen:

9

TeHt:

I -
Return Method (editor '<method> item):

TYPE-PHASE-JITTER

0IOK Cancel

@ Enabled 0 Disabled

Scroll bars of arbitrary sizes may be similarly created and placed in arbi
specifying the appropriate "click" method, as well as minimum and maximum va
interval:

ary locations by
es for the scroll

Each editor panel has associated with it a pull-down menu bar containing several menus, each
containing several menu items. A menu item is an entry in a menu that when selected causes some
code to be executed. Menus are also constructed interactively in Interface Builder. For each named
menu entry the user specifies a function to be called when that entry is selected. In addition the user
may optionally specify a keystroke (denoted by a slash and a letter) that will execute the same
functionality without having to go through the menu system. This is useful to experienced users who
would find it easier to memorize a keystroke rather than waste a longer time pulling down and
clicking a menu item. The following example illustrates the process of defining a menu, and is part of

10

Click Method
(editor '<method> item point when modifiers):

'IN.

pictID: 124340

28395 M. ® Enabled 0 Disabled
27594 l0 Original Size

N•W IN ý N Ui I I
,Gd.4hi1 W.ft

Click Method (editor '<method> scrollbar):

IS RLL PH RS- UTE

Min: Val: 0 Ma.: jjooJ
Page Increment: IJ

L OK Cancel]

I

OK j (Cancel

the main panel of the Signal Constellation Design Tool:

File
Edit
Help / Information

Menu Title:

Clear/L

InsertBefore»

I nsertFlfter>>

Delete>>

Control

Menu Name (optional):

Method (editor '<method> indeH):

Suspend/Z

Item Title:

Method (editor '<method>):

SI MULATE

The shape and characteristics of the panel window may itself be modified; a window may be optionally
movable, scrollable, resizable, closable, have a title, etc. Here is an example of how these attributes
are interactively specified via a dialogue with Interface Builder:

Left: K 1 r flTnn a I

Title: I Signal Constellation I

.1 __ __

I
Right: ±519 1 l]
Bottom:f327 procID:

v visible] goRway

L_ OK 1 Cancel]

To make the placement of fields more precise, Interface Builder provides a facility for aligning fields
and also making groups of fields the same size. Such alignment/resizing helps to make the resulting
panel more uniform in appearance; the alignment command is invoked by clicking on the appropriate

11

MIoS

T

Simulate/SI

Menus of SC-TOOL

I I

icon in the following dialogue panel:

Proceeding in this manner we then construct inside Interface Builder the panel for the
Constellation Editor, which appears as follows:

* N on a circle

o N by M rectangle

o N on M circles

o User Specified

E-] Actiuate Grid
* rectangular
0 Polar

ot ize: 1 I

Horiz::

Vert:
EL
EL

Help

Redraw

[-Reompute Delete--- Add

Finally we construct inside Interface Builder the main panel for the Signal Constellation Design
Tool, which appears as follows:

12

Cancel

Panel of CHOOSECONSTELLATION

0nK

cancel

fL ED TD Te ED 6ýi1+ 1+(ý)1+01+Xt1+ 1+01+01+ 1 121

After several editor panels have been constructed, we obtain the following Interface Builder
display window, where every line corresponds to an editor panel. The icons on the left (in top to
bottom order) correspond to control item editing, menu editing, keymap editing, and subeditor
editing, respectively:

=--[SC-Tool.rsrc
if ABOUTD I STR IBUT IONED ITOR3

ti CHOOSECONSTELLATION

SABOUTCONSTELLAT I ONED ITOR3

A BO0UT D ISTR I BUTIO0N ED I TOR 4
SCHOOSEDISTRIBUTION M

'S ABOUTSCTOOL }

Control item and menu editing has been discussed previously. Keymap editing entails binding
various functionality to keyboard keys. If a function F is bound to a keyboard key K, then during
execution, whenever the key K is pressed, function F gets called. This provides an easy means to
quickly invoke certain user-defined commands and functions. A common practice is to bind certain
keys to important menu items in order to save experienced users the time to pull down a menu;
instead, only a single key needs to be pressed. The dialogue panel in which such key bindings are
specified in Interface Builder is given here:

13

..•.

iPhase Jitter

[Clear]

(Sim late Suspend)

Change Constellation

Change Distribution

................

Misses 0.M......e r
i.e rror": O

K=IM KeyMap of SC-TOOL

4. Correctness and Functional Orthogonality

Since the underlying paradigm of Interface Builder is object-oriented in nature, a certain
functional orthogonality exists in the finished software in the following sense. Messages sent to an
object do not directly affect any other object, and moreover objects can only communicate by passing
"messages" to one another (actually there is another way for objects to communicate, namely by
assignment/reading of global variables, but this practice is not encouraged). This implies that flow
of control is highly constrained and therefore the formation of side-effects, although possible, is
nevertheless tightly controlled.

If a set of objects has been created and debugged and is found to operate correctly, adding new
objects is not likely to affect any of the old objects or the correctness of their behavior. Moreover,
the functionality of any of the objects may be invoked at any point in time via an appropriate message
from any other object. Although at first glance this would seem to give rise to a certain "non-
determinism" in execution, in practice, the programmer will be very informed about what code
should/would execute under various circumstances, and my experience has shown that if the
programmer has adhered to the standard object-oriented programming conventions, the "right thing"
usually happens under even the most pathological circumstances.

The programmer's code does not have to worry about a "main-event-loop" and about dispatching
certain pieces of code depending upon what event has transpired, because Interface Builder usurps the
system's "main-event-loop" already and does all the necessary dispatching based on the
programmer's specifications. This takes much of the complexity out of the application code,
complexity that would otherwise have had to be duplicated from scratch in each application. Thus
considerable programmer effort is saved by this scheme.

5. The On-Line Help Screens

As part of our user interface design, we provide a mechanism for presenting some interactive
on-line help to the user. This help may be invoked via clicking a button, pulling a menu, or pressing
a key. The help itself consists of one of more screens full of information, directions, and diagrams.
The user may jump between these screens, or quit and return to the original mode before calling the
help. Each screen (except the first) contains a "Previous" command button, that will expose and
activate the screen that immediately precedes the current one in the logical continuation of the help.
In addition, each screen (except the last) contains a "Next" command button, that will expose and
activate the screen that immediately succeeds the current one in the logical continuation of the help
sequence.

14

L REDRAW-MAIN-CANUAS
c DOCHANGECONSTELLATIO1
d DOCHANGEDISTRIBUTION
h DOFIBOUTSCDESIGNI
q DOCLOSE

W I1

Key:
s

Method (editor '<method>):

SSIMULATE

E-- L --

Having some on-line help is essential in many applications and often saves considerable (manual
look-up) time for the user, especially if the help is also crossed referenced or indexed in some
manner. A good example of useful on-line help facilities is contained in the MicroSoft Word 3.01 text
processing program.

5.1. On-Line Help Screens for Signal Constellation Design

As an example of this discussion we depict here some of the help screens included in the user
interface, beginning with the two on-line help screens for the "About signal constellation design"
item:

a a�r"I

Stunoi Lonsteulatton -- ,
Dlesig~n

/

Signal constellation design
entails specifying a set of /
signal points in the plane .in
such a way as to minimize the
probability of error during to
signal transmission subject to
given interference parameters
such as additive white Gaussian
noise and phase jitter.

To the right is a typical signal N

I-

-
-

_

II

I-I

15

constellation; this example
consists of 8 signal points
uniformly spaced around a unit
circle. L Next Quit

5.2. On-Line Help Screens for Additive White Gaussian Noise

Here are the three on-line help screens for the "additive white Gaussian noise" item:

16

Once the user has specified
the signal constellation and set
the values of the interference
parameters, the simulation of
this signal constellation begins:
random signals are generated
with added distortion produced
in accordance with the proper
probability distribution, and the
resulting received signals are
plotted against the original
signals.

A record is kept of the error
rate observed. After a while,
the picture for our example may
appear as in the diagram on the
right:

Acditive white Gaussian noise (AWaN)

The term noise refers to unwanted electrical signals that are
superimposed on the transmitted signal and tend to obscure it; it limits
the receivers ability to make correct symbol decisions, and thereby
limits the rate of information transmission.

Usually we model noise as being of the additive white Gaussian type;
that is, as a random process whose value n(t) at time t is statistically
characterized by the Gaussian density function p(n):

p(n) = Qr exp (__ (9I2J

where y2 is the variance and the mean is zero.

A_ý Nt (Quith

I

IPrevious Quit

The central limit theorem of statistics states that under very
general conditions the probability distribution of a sum of k
statistically independent random variables approaches the Gaussian
distribution as k approaches infinity, no matter what the individual
distribution functions may be.

Therefore, even though individual noise mechanisms might have other
than Gaussian distributions, the aggregate of many such mechanisms
will tend toward the Gaussian distribution. We are therefore justified in
modelling noise in our system using the Gaussian distribution.

The term white in AWGN refers to the fact that the power spectral
density of thermal noise is the same for all frequencies of interest in
most communication systems; that is, a thermal noise source emanates
an equal amount of noise power per unit bandwidth at all frequencies.

cPrevious Next CZ Quit

The term additive refers to the fact that the noise is added to, or
superimposed on the signal during transmission; there are no
multiplicative mechanisms at work. The noise affects each transmitted
signal independently, and a communication channel of this nature is
called a memory/ess channel.

Diagrammatically, the situation appears as follows:

Input Sigýnd

S(t)

Output

y(t) = S(t) + N(t)

AWGN N(t)

•Preuiaus ! = Quit

Note that such help screens may contain both text, equations, graphics, and active control
objects such as buttons and scroll bars; the functionality of the latter is completely user-controlled,
as is the general layout, placement, and appearance of these items.

17

5.3. On-Line Help Screens for Distribution Editor

Here are the four on-line help screens for the Distribution Editor:

The Probbtbility Distribution Eittor

0 Uniform Distibution

® Gaussian Distribution

Dariance: I46

® Uniform Distibution

0 Gaussian Distribution

Interu.a: i

The Distribution Editor allows the user to
select and inspect a particular probability
distribution, which will in turn determine the
likelihood of certain points being selected for
the various simulation parameters such as
noise and phase jitter.

If a uniform distribution is selected, the
user may specify the range from which values
will be selected uniformly. If a Gaussian
distribution is selected, the user may specify
its variance.

C Quit

li-stribuition Editor Commands

Plot :

suspend I

graph J

clear _

Data points:

H average:

6170

-1.0332

V fluerage: 0.43128

Plot will
points in the
distribution,
plotting proce

randomly select and
plane according to the
while Suspend will
ss.

display
specified
halt the

Graph will produce a graph of the selected
distribution.

Clear will redraw the
erase all points previously

coordinate axis and
plotted/graphed.

A running total is kept of the number of
points plotted so far, as well as their average
x and y coordinates.

J Previous L 3 Next Quit

18

[1ý Nextit

T1w Gaussian Disi

The Gaussian distr
normal distribution v
variance. Shown her
for a two-dimension
distribution, and alsw
of the Gaussian
distribution function.

Lribution ": " .' . " •• " -" • "". "4." • • ;1 ° _ Z=.t_ t:'4 .. .

ibution is a
ith a given

e is a plot
al Gaussian
o the graph
probability -

5.4. On-Line Help Screens for Constellation Editor

Here are the three on-line help screens for the Constellation Editor:

19

The UniJorn Distribution

A uniform distribution is
simply a random selection with
equal probability of a point from
a given interval. Shown here to
the right is a two dimensional
uniform distribution.

In such a distribution both the
X and the Y components are
chosen both uniformly and
independently.

[-Quit[4 FNext

.o .

.•." "•.

Previous Quit

SPrevious

0 N on a circle

N bu

N on

M rectangle
M circles

o User Specified

N:

°: I

Dot Size: fl

I

[KNext

20

0

Constellation Editor Commands

Redraw will clear and redraw the current signal constellation.

Recompute will recompute and redraw the current signal constellation.

Delete will remove the highlighted signal from the constellation.

Add will add a signal to the signal constellation, in the location
specified by the next mouse-click.

Clicking on the signal constellation itself will highlight the signal
closest to the position of the mouse-click. Most of the commands are
also available through the menus, as well as through key-strokes.

Quit

J

The Constedation Editor

The Constellation Editor
allows the user to select one of
several canned/standard signal
constellations, or specify an
arbitrary one.

The parameters N and M are
also user specified and allow
considerable flexibility in
parametrizing the standard
signal constellations. The dot-
size determines how large the
dots (representing the signals)
will be on the display.

S Quit

SPrevious LbNext)

The Editingu arid

For convenience the user may
turn on an editing grid in either
polar or rectangular coordinates.
This should make the placement
of signal dots more precise. The
user also may control the
resolution of the grid. To the
right is an example of a signal
constellation embedded in a
polar grid.

Circles: _

Rayrs :

5.5. On-Line Help Screen for Phase Jitter

Here is the on-line help screen for the "phase jitter" item (note that when there is only one
screen-full of help, there are no "Next" or "Previous" command buttons):

21

Pfiase Jitter

Phase jitter is a type of
noise that affects the phase
angle of the transmitted signal.
Phase jitter is superimposed
(added) to the other noises
affecting the signal, and may be
set to some user-specified
level independently of the other
parameters. To the left is an
example of a simulation with
considerable phase jitter (but
very little AWGN.)

Liizz

Z fictivate Grid

0 rectangular
n, Polar

revious

5.6. On-Line Help Screen for the Acknowledgements

Here is the on-line help screen for the "acknowledgements" item:

5.7. On-Line Help Screen for the References

Here is the on-line help screen for the "references" item:

5.8. On-Line Help Screen for the "About..." Item

Here is the on-line help screen for the "About..." item; this screen contains some general
information regarding the Signal Constellation Design Tool and is displayed when the user selects the
"About..." menu item from the main menu anytime during execution:

22

Acknowledgements

I thank Professor Jack Carlyle for igniting my interest in this
subject, and for his helpful advice on numerous occasions. I thank
ExperTelligence Inc. for providing the software which made possible
the implementation of the signal constellation design tool:
ExperCommon LISP® version 2.3B, and Experinterface Builder®.

I ~OKk

BibligraphFyJ

Carlyle, J., Lnalog Transmission/Reception for Digital Communication, CS214 Class
Notes, Computer Science Department, University of California, Los Angeles, Winter,
1988,

Forney, D., Gallager, R., Lang, G., Longstaff, F., Qureshi, S., Efficient Modulation for
Band-Limited Channels, IEEE Journal on Selected Areas in Communication, Yol. SAC-2,
No. 5, September, 1985.

Schwartz, M., Information Transmission, Modulation, and Noise, McGraw-Hill, Third
Edition, pp. 212-235, 1980.

Sklar, B., Digital Communications: Fundamentals and Applications, Prentice Hall, New
Jersey, pp. 412-424, 1988.

6. The Software/Hardware Used

The Signal Constellation Design Tool is implemented in ExperCommon LISP® (version 2.3B),
marketed by ExperTelligence, Inc. [Bollay, McConnell, Reali, and Ritz]. ExperCommon LISP is a
production LISP system that runs on the Macintosh family of machines. The user interface was
constructed with Experlnterface Builder@, an interactive package that allows a user to quickly and
easily design a graphical (menu and icon-based) user interface from scratch on an object-oriented
paradigm [Hullot]. The hardware used was the Macintosh Plus with 2 megabytes of memory and a
20-megabyte hard disk. ExperCommon LISP@ and Experlnterface Builder@ may be purchased
directly from ExperTelligence Inc., 5638 Hollister Avenue, 3rd Floor, Goleta, California 93117,
U.S.A., (805) 967-1797..

7. Obtaining the sources

The annotated Common LISP sources for the Signal Constellation Design Tool are available upon
request. Although this tool was developed on the Macintosh, it should be portable to any system which
supports Common LISP and reasonable window and graphics conventions. To obtain the sources, both
in hardcopy and on a Macintosh diskette, please send $10 to Gabriel Robins, UCLA Computer Science
Department, Los Angeles, California, 90024.

8. Summary

Signal constellation design essentially entails trading off error frequency against information
throughput, a chief occupation of modem designers. We proposed and implemented an interactive tool
for designing and simulating arbitrary signal constellations. While the actual code that simulates
signal constellations is rather trivial in itself, the user interface to this code is not.

To design and construct the user interface we have used Interface Builder, a new interactive tool
that greatly facilitates the synthesis of user interfaces through an object-oriented methodology.
Using the Interface Builder package and the Signal Constellation Design Tool as the target prototype,

23

Signnl Consteffation Dlesig3n To

Gabriel Robins

Computer Science Department
University of California, Los Angeles

Winter, 1988

To obtain a complete and annotated copy of the Common LISP
sources for this program (both in hardcopy and on a Macintosh
diskette), please send $10 and your postal address to:

Gabriel Robins
P.O. Box 0369
Van Nuys, Ca 91409 Wow!

Copyright (1 1988 by Gabriel Robins

we showed how an order-of-magnitude improvement can be achieved in the effort required to produce
a complex user interface.

We hope that we have helped to dispel some of the mystique surrounding user interface synthesis
on state-of-the-art workstations by showing that given the proper tools and methodology, the
synthesis of complex user interfaces could be rather trivial. In particular, designing and
implementing the user interface specified here took only a few days, and that includes the overhead to
read the user manuals and learn (from scratch) how to use the software.

9. Acknowledgements

I thank Professor Jack Carlyle for igniting my interest in this subject, and for his helpful
advice on numerous occasions. I thank ExperTelligence Inc. for providing the software which made
possible the implementation of the Signal Constellation Design Tool.

10. Bibliography

Bollay, D., McConnell, J., Reali, R., Ritz, D., ExperCommon LISP Documentation: Volume I. II. and Ill,
The ExperTelligence Press, Santa Barbara, California, 1987.

Carlyle, J., Analoa Transmission/Reception for Digital Communication, CS214 Class Notes, Computer
Science Department, University of California, Los Angeles, Winter, 1988,

Forney, D., Gallager, R., Lang, G., Longstaff, F., Qureshi, S., Efficient Modulation for Band-Limited
Channels, IEEE Journal on Selected Areas in Communication, Vol. SAC-2, No. 5, September, 1985.

Goodman, D., The Complete HyperCard Handbook, Bantham Books, New York, 1987.

Hullot, J., Experlnterface Builder Documentation, The ExperTelligence Press, Santa Barbara,
California, 1987.

Kaczmarek, T., Mark, W., & Wilczynski, D., The CUE Proiect, Proceedings of SoftFair, July, 1983.

Robins, G. The ISI Grapher: A Portable Tool for Displaying Graphs Pictorially, Invited Talk in
Symboliikka '87, Helsinki, Finland, August, 17-18, 1987. Reprinted in Multicomputer Vision,
Levialdi, S., Chapter 12, Academic Press, London, 1988.

Schwartz, M., Information Transmission. Modulation. and Noise, McGraw-Hill, Third Edition, pp.
212-235, 1980.

Sklar, B., Digital Communications: Fundamentals and Applications, Prentice Hall, New Jersey, pp.
412-424, 1988.

24

