
tree delay, average tree delay (i.e., sum of delays to
all the pins), or any other well-behaved delay func-
tion.

Because the typical CAD environment consists of
a large network of workstations and servers, there
is tremendous potential for improvement of running
times through parallel/distributed implementations
[2] [5]. We note that algorithms described in this
paper are highly parallelizable, e.g. the BBORT
method can use p processors to simultaneously ex-
plore routing topologies in di�erent regions of the
solution space. Similarly, the LDT algorithm can
employ separate processors to determine the e�ects
on delay of adding di�erent candidate edges to the
growing routing topology.
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IC2 jN j = 4 jN j = 5 jN j = 7
(delay) ave max ave max ave max
ORT 1.000 1.000 1.000 1.000 1.000 1.000
LDT 1.003 1.114 1.010 1.147 1.023 1.164
SPT 1.033 1.280 1.061 1.365 1.114 1.555
MST 1.165 2.370 1.240 2.375 1.381 2.960

IC2 jN j = 4 jN j = 5 jN j = 7
(cost) ave max ave max ave max
MST 1.000 1.000 1.000 1.000 1.000 1.000
SPT 1.207 2.106 1.283 2.605 1.381 2.725
LDT 1.103 1.666 1.147 1.917 1.201 1.731
ORT 1.100 1.666 1.131 1.652 1.162 1.673

Table 6: Simulation results using IC2 parameters.
Standard errors for the average delay di�erence between
LDT and ORT are 0:0006 for jN j = 4; 0:0010 for jN j = 5;
and 0:0014 for jN j = 7.

IC3 jN j = 4 jN j = 5 jN j = 7
(delay) ave max ave max ave max
ORT 1.000 1.000 1.000 1.000 1.000 1.000
LDT 1.0003 1.035 1.001 1.051 1.005 1.061
SPT 1.142 1.844 1.120 2.226 1.268 2.377
MST 1.007 1.161 1.014 1.170 1.025 1.208

IC3 jN j = 4 jN j = 5 jN j = 7
(cost) ave max ave max ave max
MST 1.000 1.000 1.000 1.000 1.000 1.000
SPT 1.207 2.106 1.283 2.605 1.381 2.273
LDT 1.006 1.139 1.010 1.142 1.012 1.143
ORT 1.006 1.139 1.012 1.140 1.019 1.722

Table 7: Simulation results using IC3 parameters.
Standard errors for the average delay di�erence between
LDT and ORT are 0:0001 for jN j = 4; 0:0003 for jN j = 5;
and 0.0005 for jN j = 7.

cent cost-radius tradeo� construction which yields
less tree cost (and signal delay) for given tree radius
bounds when compared with the BRBC construc-
tion of Cong et al.[6]. Each value in a given column
represents an average over the same set of 500 ran-
dom signal nets. Data shown include average tree
delay, maximum tree delay, the respective delay ra-
tios, and average tree costs. Because of the size
of this test set, all delays in Table 8 are calculated
using the Two-Pole simulator. Our results indicate
that the LDT algorithm is highly e�ective for larger
nets, and also outperforms the best known direct
tradeo� between tree radius and cost (i.e., AHHK).
For nets with 16 sinks, the LDT construction re-
duces average sink delay by 35% compare to MSTs
and by 6:2% compared to AHHK trees.

6 Conclusions and Future Directions

Many previous approaches to interconnect delay
minimization have been hampered by their ad hoc

IC2
jN j = 5 jN j = 9 jN j = 17

Ave. MST 3.72 5.58 8.37
Tree SPT 3.28 4.49 6.31
Delay AHHK 3.24 4.31 5.77
(ns) LDT 3.11 4.11 5.41

Tree Delay LDT/MST .836 .737 .646
Ratios LDT/AHHK .960 .954 .938
Average MST 1.65 2.43 3.46
wirelength SPT 2.14 3.51 5.53

(cm) AHHK 1.84 2.75 4.05
LDT 1.91 2.99 4.32

Table 8: Simulation results for IC2 comparing LDT
with MST and the AHHK algorithm on nets with up to
17 pins. Averages in each column are taken over 500
signal nets with pin locations chosen randomly from the
layout region. Reported delays are all calculated using
the Two-Pole simulator.

selection and use of delay estimates in the routing
construction. To �nd an easily computed delay es-
timate for use in constructing a high-quality inter-
connection tree, we begin from �rst principles. We
have addressed the issue of the accuracy and �delity
of the Elmore [10] and Two-Pole [21] delay models
by comparing the rankings of tree topologies ac-
cording to these estimates with rankings according
to the SPICE simulator. Our studies indicate that
algorithms which minimize the Elmore and Two-
Pole delay estimates should also e�ectively mini-
mize actual delay. We have also used the branch-
and-bound BBORT method to determine optimal
routing trees for any given monotonic delay func-
tion.

To achieve a practical and near-optimal routing
methodology, we have proposed the greedy Low De-
lay Tree (LDT) heuristic. LDT can be implemented
using any given model of delay; because of the
demonstrated �delity of Elmore delay, we have im-
plemented LDT using that model. Experimental re-
sults show that LDT performs essentially as well as
exhaustive search on nets with up to 7 pins. In ad-
dition, for large sets of benchmarks, LDT achieves
reductions in delay of up to 35% (depending on cir-
cuit technology and net size) over the MST routing,
as measured by the Two-Pole simulator.

Our LDT algorithm is formulated to construct a
spanning tree, but can easily be extended to yield
a Steiner Low Delay Tree (SLDT) algorithm. For
example, we may allow each newly selected pin to
connect to an arbitrary point in an existing tree
edge, possibly inducing a Steiner point. Simulation
results in [4] indicate that the SLDT algorithm us-
ing Elmore delay is also highly e�ective. LDT can
also be generalized to \critical-sink routing" (recall
Footnote 1) by modifying the objective function in
the LDT and SLDT algorithms to minimize delay at
prescribed critical sinks [4]. Furthermore, our con-
structions can be adapted to minimize maximum



lay at all pins can be calculated in O(k) time (as is
the case with Elmore delay), then LDT can easily
be implemented in O(k3) time by using the follow-
ing observation4: if a new tree edge incident to sink
v 2 V (Line 3 of Figure 4) minimizes the maximum
delay max

i
tED(ni), in general it must connect v to

the sink u 62 V that is closest to v. Consequently, at
each pass through the while loop in Figure 4, we can
update the shortest \outside connections" for every
v 2 V (in time O(k2) in the worst-case), and then
simply add each of these O(k) outside connections
to T in turn. The delays to all sinks of the result-
ing trees can be evaluated in O(k) time per tree.
We then choose the outside connection that results
in the least increase in tree delay. Hence, each pass
through the while loop requires O(k2) time, yielding
the O(k3) complexity result. In practice this time
complexity is not a hindrance, since k is small. As
shown in the next section, Elmore-based LDTs have
delay within 2:3% of optimal Elmore-delay trees; in
combination with our studies of �delity, this pro-
vides strong evidence that the LDT heuristic pro-
duces trees of near-optimal quality.

5 Experimental Results

We have implemented both the BBORT and
LDT methods, based on Elmore delay and using
C in the UNIX/Sun environment. We have run tri-
als on sets of 500 nets for each of several net sizes;
pin locations were randomly chosen from a uniform
distribution in a square layout region. Our inputs
correspond to the same IC parameters studied in
Section 3.

Table 5 compares Elmore delays of the Elmore-
based ORT (i.e., BBORT) and LDT constructions,
and of the minimum spanning tree (MST) and
shortest path tree (SPT) constructions, for the IC1
technology.5 Delay for each tree is normalized to
the ORT delay of the same net. Wirelengths are
similarly compared, with the cost of each tree nor-
malized to the MST cost of the net. Tables 6 and 7
give analogous results for the IC2 and IC3 technol-
ogy parameters.

In Table 5 we see that under the IC1 technology,
LDTs over 7 pins have an average maximumElmore
delay only 1:1% greater than optimal, while MSTs
have delay 124% greater than optimal on average.
For smaller nets, LDTs are even closer to optimal:
for nets with 4 pins, LDT delays are only 0:9%
above optimal on average, while MSTs are 41:6%
above optimal. Our con�dence in the average dif-
ference computed between LDTs and ORTs is very
high: for instance, the 1:1% di�erence obtained for

4Note that this observation assumes constant loading ca-
pacitances, unit resistances, and unit capacitances for the
Elmore model.

5The SPT construction is the tree which minimizes cost
subject to each source/sink path having minimum length.

IC1 jN j = 4 jN j = 5 jN j = 7
(delay) ave max ave max ave max
ORT 1.000 1.000 1.000 1.000 1.000 1.000
LDT 1.009 1.059 1.008 1.025 1.011 1.037
SPT 1.009 1.059 1.028 1.199 1.094 1.540
MST 1.416 1.907 1.708 2.745 2.237 4.056

IC1 jN j = 4 jN j = 5 jN j = 7
(cost) ave max ave max ave max
MST 1.000 1.000 1.000 1.000 1.000 1.000
SPT 1.288 1.604 1.367 1.797 1.466 1.810
LDT 1.288 1.604 1.395 1.797 1.466 1.892
ORT 1.209 1.520 1.286 1.571 1.444 1.326

Table 5: Elmore delays and wirelengths of various
constructions using using IC1 parameters. Simulations
were run on 500 random nets for each net size. Cost
values are normalized to MST cost and tree delays are
normalized to the (Elmore-based) ORT delay. Standard
errors for LDT-Elmore are 0:0006 for jN j = 4; 0:0003 for
jN j = 5; and 0:0004 for jN j = 7.

7 pins has a standard error6 of 0:04%, indicating
a 95% con�dence interval between 1:0% and 1:2%
(i.e., an interval of within two times the standard
error of the average). Even in the worst case, LDTs
are close to optimal: over 500 random nets, the
highest di�erence between LDT and ORT delays is
only 5:9% for 4-pin nets and 3:7% for 7-pin nets.
The high performance of LDTs is achieved with an
average wirelength penalty compared to MSTs that
ranges from 28:8% for 4-pin nets to 46:6% for 7-pin
nets.

Table 6 contains what seem to be our worst re-
sults in terms of the optimality of LDTs. For the
IC2 parameters and 7-pin nets, LDT gives an av-
erage value within 2:3% of ORT with a 95% con�-
dence interval of 2:0% to 2:6%. In Table 7, we see
that the Elmore-based LDT constructions are very
close to optimal for IC3 parameters: they are on
average within 0:5% of ORT delay for 7-pin nets.
Note that for IC3, the MST performance improves
signi�cantly, while the SPT performance worsens.
By contrast, the LDT algorithmproduces very good
results for each of the three technologies, as is ex-
pected since it optimizes Elmore delay directly.

Table 8 compares delays in Elmore-based LDTs
with those of the MST and AHHK [1] constructions
for nets with up to 17 pins under the IC2 technol-
ogy. The AHHK algorithm of Alpert et al. is a re-

6As used here, the term standard error is de�ned as fol-
lows. For a random variable X, let X̂ =

P
n

i=1
Xi be an

estimator for the expected value of X. The standard error of
X̂ is an estimate of its standard deviation over multiple sam-
ple sets, and is equal to the standard deviation of X divided
by

p
n. Because delays are recorded as ratios to the ORT

delay, the standard error of the average di�erence between
LDT and ORT delays is equivalent to the standard error of
average LDT delay.



IC1
1-25 26-50 51-75 76-100 101-125
1.000 1.651 2.341 3.150 4.102
1.042 1.671 2.382 3.190 4.127
1.083 1.679 2.392 3.223 4.177
1.114 1.725 2.415 3.234 4.221
1.136 1.771 2.450 3.262 4.275
1.150 1.782 2.476 3.307 4.357
1.181 1.794 2.501 3.352 4.413
1.219 1.805 2.570 3.365 4.479
1.238 1.841 2.590 3.391 4.567
1.261 1.856 2.636 3.416 4.633
1.272 1.876 2.662 3.441 4.717
1.283 1.895 2.702 3.494 4.754
1.313 1.942 2.713 3.511 4.817
1.329 1.998 2.758 3.544 4.905
1.337 2.019 2.799 3.591 4.990
1.364 2.051 2.815 3.621 5.064
1.415 2.091 2.844 3.677 5.183
1.452 2.112 2.913 3.706 5.248
1.478 2.140 2.931 3.759 5.325
1.495 2.169 2.947 3.800 5.422
1.508 2.194 2.982 3.845 5.530
1.537 2.227 3.015 3.898 5.788
1.574 2.268 3.061 3.956 6.027
1.596 2.294 3.101 3.994 6.380
1.619 2.326 3.121 4.045 6.665

Table 4: SPICE delay ratios of all 125 topologies for
jN j = 5 using IC1 technology parameters. All values are
normalized to the delay value for the best topology, and
are averaged over 20 random sets of pin locations.

Branch-and-Bound
Optimal Routing Tree (BBORT) Method

Input: signal net N with source n0 2 N
Output: optimal-delay tree Topt over N
1. T = (V;E) = (fn0g; ;)
2. tmin =1
3. Call Add Edges(T )
4. Output Topt
Procedure Add Edges(Tree: T = (V;E))
5. While there exist v 2 V and u 62 V such that

T 0 = (V [ fug; E [ f(u; v)g)
is a new tree topology Do

6. Compute tree delay t(T 0)
7. If t(T 0) � tmin Then
8. If jT 0j = jN j Then Topt = T 0

tmin = t(T 0)
9. Else Call Add Edges(T 0)

Figure 2: The branch-and-bound ORT template (re-
cursive implementation).

prune the search and backtrack to select a di�erent
edge at the previous step. Figure 2 depicts a re-
cursive implementation of this Branch-and-Bound
ORT (BBORT) search.

BBORT will �nd the optimal-delay tree as long
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Figure 3: (a)-(e): A growing LDT. (f): An MST
on the same net.

as the delay function possesses amonotonicity prop-
erty, i.e., the tree delay does not decrease with the
addition of a new edge. The number of topolo-
gies considered can be further reduced by initial-
izing the value of tmin in Figure 2 to the maximum
source/sink delay of some \good" heuristic routing
tree over N . Despite this pruning of the solution
space, however, the worst-case time complexity of
BBORT is still exponential.

To avoid the exponential running time of exhaus-
tive enumeration, we propose the following greedy
heuristic to approximate ORTs. Our method is
analogous to Prim's minimum spanning tree con-
struction [18]: starting with a trivial tree containing
only the source, we iteratively �nd a pin ni in the
tree and a sink nj outside the tree so that adding
edge eij yields a tree with minimumdelay. The con-
struction terminates when the entire net is spanned
by the growing tree. Pseudo-code for this Low De-
lay Tree (LDT) algorithm is given in Figure 4.

Low Delay Tree (LDT) Heuristic
Input: signal net N with source n0 2 N
Output: low-delay routing tree T over N
1. T = (V;E) = (fn0g; ;)
2. While jV j < jN j Do
3. Find ni 2 V and nj 62 V minimizing the

tree delay t((V [ fug; E [ feijg))
4. V = V [ fnjg
5. E = E [ feijg
6. Output resulting spanning tree T = (V;E)

Figure 4: The Low Delay Tree heuristic: a greedy
approximation of optimal routing trees.

The LDT heuristic may be viewed as generalizing
the Elmore Routing Tree algorithmof Boese, Kahng
and Robins [4] to any given delay model. If the de-



some measure of �delity: i.e., how likely it is for an
optimal or near-optimal routing solution according
to a given estimator to also be nearly optimal ac-
cording to actual (SPICE-simulated) delay. We de-
�ne a measure of �delity vis-a-vis an exhaustive enu-
meration of all possible routing solutions: we �rst
rank all tree topologies by the given delay model,
then rank the topologies again by SPICE delay, and
then �nd the average di�erence between the two
rankings for each topology. We have run simula-
tions to estimate this measure of �delity for nets of
size 4 and 5 using the various delay estimators and
each of the three IC technologies. (An early theo-
rem of Cayley [11] implies that there are jN jjNj�2

distinct spanning tree topologies for any given net
N ; see Figure 1 for the case jN j = 4.)

Figure 1: An inventory of all 44�2 = 16 tree
topologies over 4 pins.

Table 3 assesses the �delity to SPICE of the lin-
ear, Elmore, and Two-Pole delay estimators. We
report the average di�erence in ranking over all
topologies; the average rank di�erence for the topol-
ogy which has lowest delay according to the estima-
tor; and the average di�erence for the �ve topologies
which have lowest delay according to the estimator.
Our results show that Elmore delay has high �delity,
particularly when we compare the SPICE ranking
of the optimal topology for Elmore delay with the
optimal topology for linear delay: for nets of size
5 using technology IC3, optimal topologies under
Elmore delay were on average 2.3 rank positions
away from optimal according to SPICE. In compar-
ison, the best topology under linear delay averaged
distance 24.7 from its correct SPICE ranking. For
5-pin nets under the IC1 and IC2 technologies, the
best topology under Elmore delay also has a near-
optimal SPICE ranking: on average the distance
from its SPICE ranking is 3.5 for IC1 (versus 4.6

Linear Elmore
vs SPICE vs SPICE

Topologies jN j = 4 jN j = 5 jN j = 4 jN j = 5
IC1 All 0.84 6.44 0.71 3.30

Best 0.70 4.61 0.65 3.50
5 Best 1.00 3.58 1.11 3.54

IC2 All 1.33 8.69 0.82 4.75
Best 2.05 6.25 0.70 1.45
5 Best 1.47 6.24 1.05 3.30

IC3 All 2.57 23.01 0.43 9.18
Best 3.10 24.65 0.05 2.30
5 Best 2.84 29.60 0.39 3.08

2-Pole Elmore
vs SPICE vs 2-Pole

Topologies jN j = 4 jN j = 5 jN j = 4 jN j = 5
IC1 All 0.48 1.71 0.66 3.37

Best 0.40 1.50 0.45 2.50
5 Best 0.75 1.86 1.02 3.63

IC2 All 0.44 2.93 0.56 2.83
Best 0.10 0.45 0.55 0.90
5 Best 0.53 1.24 0.86 2.49

IC3 All 0.44 9.46 0.23 1.57
Best 0.05 2.30 0.00 0.00
5 Best 0.38 3.17 0.13 0.35

Table 3: Average di�erence in rankings of topologies
according to di�erent delay models. The sample consists
of 20 random nets of each cardinality. Note that the total
number of topologies for each net is 16 for jN j = 4 and
125 for jN j = 5.

under linear delay) and 1.5 for IC2 (versus 6.3 un-
der linear delay).

For IC1, the di�erence of 3:5 positions leads to
an average 12.4% penalty in SPICE-computed de-
lay. This can be seen from Table 4, which shows
the drop-o� in IC1 SPICE delay quality for each
rank, when compared with optimal delay. For IC2
(an actual 0:8� CMOS process), the distance of 1:5
positions implies a di�erence of approximately 6.6%
in actual SPICE-computed delay.

Table 3 shows that the Two-Pole simulator has
somewhat better �delity than Elmore delay. How-
ever, the relatively small improvement in �delity
does not seem to justify the much greater computa-
tion that is required to search over solution topolo-
gies using Two-Pole as opposed to using the linear-
time Elmore delay computation.

4 Near-Optimal Routing Trees

We can solve the ORT problem optimally for
any delay model using a backtracking enumera-
tion of tree topologies with branch-and-bound prun-
ing. Starting with a trivial tree containing only
the source pin, we incrementally add one edge at
a time to the growing tree. At each step we com-
pute the maximum delay from the source to any
sink in the tree. If this value exceeds the maximum
delay of any complete candidate tree seen so far, we



and Elmore delay in both accuracy and speed of
computation.

3 Accuracy and Fidelity of Delay Es-
timators

3.1 Accuracy

In choosing a delay simulator, one traditionally
measures the accuracy of the available choices. The
accuracy of a delay model is likely to vary with the
circuit technology and the speci�cs of a net (for in-
stance, the number of pins it contains, the size of
the layout, etc.). Our �rst studies measure how
close linear, Elmore, and Two-Pole delay estimates
are to actual delay in a net.2 We use nets of 4
to 7 pins using three technology �les, representing
three di�erent resistance ratios. Table 1 gives pa-
rameters for three interconnect technologies which
we call IC1, IC2, and IC3. (IC2 is representative of
a typical 0:8� CMOS process).

parameter IC1 IC2 IC3
driver

resistance (
) 10 100 1000
wire

resistance (
=�m) 0.03 0.03 0.03
wire

capacitance (fF=�m) 0.352 0.352 0.352
wire

inductance (fH=�m) 492 492 492
sink loading

capacitance (fF ) 15.3 15.3 15.3

layout area (mm2) 102 102 102

Table 1: Parameter values for the three IC interconnect
technologies.

Table 2 contains experimental results on the ac-
curacy of the Elmore and Two-Pole models for each
of the three IC technologies. The table shows the
average ratio between SPICE delay and each of the
two estimators; it also contains measures of the con-
sistency of this ratio, in terms of both its standard

2Again, we equate SPICE results with \actual delay".
Our SPICE delay model uses constant resistance and capac-
itance values per unit of interconnect (i.e., both resistance
and capacitance are proportional to wirelength). The root
of the tree is driven by a resistor connected to the source.
Thus we remove some physical characteristics of the driver
in order to measure delay within the interconnect only, ig-
noring delay within the driver, which is dependent on the
speci�c driver technology. Typically, a routing tree drives
other CMOS devices; to model this, we attach uniformly-
sized 2-transistor CMOS inverters to each pin. This is more
realistic than using, e.g., pure capacitive pin loads, since the
SPICE inverter model also captures the transient behavior
associated with CMOS devices, which impacts signal propa-
gation delay [15].

jN j = 4
standard 95%

average deviation con�dence
IC1 SPICE/Elmore 1.27 0.15 � 0.32

SPICE/2-Pole 0.48 0.05 � 0.09
IC2 SPICE/Elmore 1.51 0.19 � 0.37

SPICE/2-Pole 0.64 0.09 � 0.21
IC3 SPICE/Elmore 4.40 0.56 � 2.06

SPICE/2-Pole 2.22 0.31 � 1.11

jN j = 7
standard 95%

average deviation con�dence
IC1 SPICE/Elmore 1.09 0.10 � 0.20

SPICE/2-Pole 0.47 0.03 � 0.06
IC2 SPICE/Elmore 1.31 0.13 � 0.26

SPICE/2-Pole 0.60 0.06 � 0.12
IC3 SPICE/Elmore 3.24 0.48 � 0.92

SPICE/2-Pole 1.67 0.26 � 0.51

Table 2: Accuracy of the Elmore and Two-Pole esti-
mators. The average ratio between \actual" SPICE delay
and estimated delay is computed over 100 random nets
with pin locations uniformly distributed over the layout
area. The nets are connected using MST constructions.
For each net size, we also compute the standard deviation
and the 95% con�dence interval of the ratios.

deviation and 95%-con�dence interval.3 For each
net size, the results are computed from 100 random
nets connected using the minimum cost spanning
tree (MST) construction. We use MSTs rather than
random tree topologies so that our comparisons will
be for relatively good (although not necessarily op-
timal) routing solutions; note that for these test
sets, �nding optimal-delay topologies using SPICE
would be prohibitively time-consuming.

The results of Table 2 indicate that neither the
Elmore or Two-Pole delay models give accurate esti-
mates of delay. Only for 7-pin nets in IC1 is Elmore
delay within 10% of SPICE on average; Two-Pole
estimates of delay are not within 35% of SPICE on
average for any of the net sizes and technologies
tested. However, it should be noted that for each
net size and technology, the Elmore and Two-Pole
delay estimators are very consistent: the standard
deviations and 95% con�dence intervals for the are
generally quite small, e.g., the standard deviations
range from 8% to 16% of the average. Thus, use
of precomputed \correction factors" may possibly
compensate for the inaccuracy of these estimates.

3.2 Fidelity

The key observation underlying our work is that
precise accuracy is not required of our delay es-
timates when using them to build routing trees.
Rather, we require good estimators according to

3The 95%-con�dence interval is the smallest value d > 0
such that 95% of the sample ratios are within distance d of
the average.



In particular, we study the Elmore delay for-
mula [10] and �nd it to be a high-�delity rout-
ing objective: the minimum Elmore delay rout-
ing solution is very close in quality to the solu-
tion which minimizes SPICE-computed delay. Be-
cause exhaustive enumeration of all possible routing
topologies is infeasible, we complement our studies
of �delity with a practical, greedy construction (the
Low-Delay Tree, or LDT heuristic). According to
our simulation results, the Elmore-based LDT solu-
tions closely match (to within 2%, on average) the
delays of Elmore-optimal solutions. LDT routings
improve delays over those of traditional minimum
spanning tree topologies by an average of up to 35%,
depending on the size of the net and the technology
parameters used.

2 Tree Delay Minimization

A signal net N = fn0; n1; :::; nkg is a �xed set
of pins in the Manhattan plane to be connected by
a routing tree T (N ), which is a spanning tree over
N . Pin n0 is the source, and the remaining pins are
sinks. Each edge eij in T (n) has an associated edge
cost, dij, equal to the Manhattan distance between
its two endpoints ni and nj ; the cost of T (n) is
the sum of its edge costs. We use t(ni) to denote
the signal propagation delay from the source to pin
ni. Our goal is to construct a routing tree which
minimizes the maximum source-sink delay:

Optimal Routing Tree (ORT) Problem:
Given a signal net N = fn0; n1; :::; nkg with
source n0, construct a routing tree T (N ) such that

t(T (N )) =
k

max
i=1

t(ni) is minimized.1

1 The ORT problem minimizes delay for individual nets
without regard to the interdependence of nets in the overall
circuit. In other words, the ORT problem concentrates on
net-dependentobjectives, rather than path-dependent objec-
tives based on pre-de�ned critical paths. A path-dependent
variant of the ORT problem can be de�ned by associating a
criticality �i � 0 with each sink ni re
ecting timing infor-
mation obtained during the performance-driven placement
phase. The goal is then to construct a routing tree T (N)
which minimizes the weighted sum of the sink delays:

Critical-Sink Routing Tree (CSRT) Problem: Given a
signal net N = fn0; n1 ; :::; nkg with source n0 and possibly
varying sink criticalities �i � 0, i = 1; : : : ; k, construct a

routing tree T (N) such that
P

k

i=1
�i � t(ni) is minimized.

The CSRT problem formulation is quite general and cap-
tures traditionalperformance criteria for routing trees: (i) we
canminimizeaverage delay to all sinks by using all �i � some
positive constant, then taking the L1 sum of the weighted
delays; and (ii) we can minimize the maximum delay to any
sink by using all �i � some positive constant, then taking
the L1 sum of the weighted delays. Yet a third variation can
be used to solve the simple, yet realistic case where exactly
one critical sink nCS has been identi�ed, i.e., �CS = 1 and
all other �i = 0. The CSRT problem is studied in [4].

The speci�c routing tree that solves the ORT
problem will depend on the method used to esti-
mate delay. Ideally, we would like to compute and
optimize delay according to the complete physical
attributes of the circuit. To this end, the circuit
simulator SPICE is generally regarded as the best
available tool for obtaining precise estimates of in-
terconnect delay. However, the computation times
required by SPICE are too large for use during rout-
ing tree construction. The linear delay approxima-
tion has been used in the past [6] [20], but is known
to be inaccurate. Thus, the Elmore delay formula
[10] and the \Two-Pole" approximation developed
by Zhou et al. [21] are both of interest, because
they are more accurate than linear delay while also
requiring less computation time than SPICE.

Elmore delay is de�ned as follows. Given routing
tree T (N ) rooted at n0, let ei denote the edge from
pin ni to its parent. The resistance and capacitance
of edge ei are denoted by rei and cei , respectively.
Let Ti denote the subtree of T rooted at ni, and
let ci denote the sink capacitance of ni. We use
Ci to denote the tree capacitance of Ti, namely the
sum of sink and edge capacitances in Ti. Using this
notation, the Elmore delay along edge ei is equal
to rei(cei=2 + Ci). Let rd denote the output driver
resistance at the net's source. Then the Elmore
delay tED(ni) from source n0 to sink ni is computed
as follows:

tED(ni) = rdCn0 +
X

ej2path(n0;ni)

rej (cej=2 + Cj):

We can extend the tED function to entire trees

by de�ning tED(T (N )) =
k

max
i=1

tED(ni). If rej and

cej are proportional to the length of ej , the delay
tED(ni) is quadratic in the length of the n0-ni path
and also linear in total wirelength (which is pro-
portional to Cn0). Because of its relatively simple
form, Elmore delay can be calculated in O(k) time,
as noted by Rubinstein et al. [19].

We note that the relative magnitude of the driver
resistance rd (i.e., versus unit wire resistance) can
have a signi�cant e�ect on the topology of the opti-
mal routing tree: if rd is large, the optimal routing
tree is a minimum cost spanning tree, while if rd
is close to 0, the ORT will possess a \star" topol-
ogy. Typical relative magnitudes of rd are large for
current generation CMOS, but decrease in, for ex-
ample, submicron CMOS IC and MCM substrate
interconnects.

Although Elmore delay has a compact de�nition
and can be quickly computed, it does not capture
all of the factors that account for delay. For ex-
ample, the Two-Pole simulator of Zhou et al. [21]
considers the impedance in a routing tree in addi-
tion to the capacitance and resistance modeled by
the Elmore formula. According to [3] and [21], the
Two-Pole simulator is intermediate between SPICE
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Abstract

We address the e�cient construction of inter-
connection trees with near-optimal delay properties.
We begin from �rst principles, and study the ac-
curacy and �delity of easily-computed delay mod-
els (speci�cally, Elmore delay) with respect to de-
tailed simulation of underlying physical phenomena
(e.g., SPICE-computed delays). Our studies show
that minimization of Elmore delay is a high-�delity
interconnect objective within a range of IC inter-
connect technologies. We then propose a greedy low
delay tree (LDT) heuristic which for any (mono-
tone) delay function can e�ciently minimize maxi-
mum delay. For comparison, we also generate opti-
mal routing trees (ORTs) with respect to Elmore de-
lay, using exhaustive search with branch-and-bound
pruning. Experimental results show that the LDT
heuristic approximates ORTs very accurately: for
nets with up to seven pins, LDT trees have on av-
erage a maximum sink delay within 2% of opti-
mum. Moreover, compared with traditional mini-
mum spanning tree constructions, the LDT achieves
average reductions in delay of up to 35% depending
on the net size and technology parameters.

1 Introduction

Over the last several decades, advances in VLSI
fabrication technology have steadily improved the
packing density of integrated circuits. As fea-
ture sizes decrease, device switching speeds tend
to increase; however, smaller wire geometries imply
higher resistance, so that signal propagation delay
through the interconnect increases [17]. Thus, in-
terconnection delay has had an increasing impact on
circuit speed, and indeed it has been reported that
interconnection delay contributes up to 70% of the
clock cycle in the design of dense, high-performance
circuits [20]. In light of this trend, performance-
driven physical layout has become central to the
design of leading-edge digital systems. Early work
focused on performance-driven placement, with the
usual objective being the close placement of cells in
timing-critical paths, e.g., [8] [13] [14].

�Partial support for this work was provided by a
GTE GraduateFellowship, ARO DAAK-70-92-K-0001, ARO
DAAL-03-92-G-0050, NSF MIP-9110696, and NSF MIP-
9257982.

While timing-driven placement has a large ef-
fect on layout performance, the lack of optimal-
delay interconnection algorithms will prevent de-
signers from fully exploiting a high-quality place-
ment. Certainly, once a module placement has
been �xed, good timing-driven interconnection al-
gorithms are key to enhancing the performance of
the layout solution. For a given signal net, the
typical objective has been to minimize the maxi-
mum signal delay to any sink. Many approaches
have appeared in the literature, e.g., Dunlop et al.
[9] determine net priorities based on static timing
analysis, and process higher priority nets earlier us-
ing fewer feedthroughs; Jackson, Kuh and Marek-
Sadowska [12] outline a hierarchical approach to
timing-driven routing; and Prastjutrakul and Ku-
bitz [16] use A* heuristic search and the Elmore de-
lay formula [10] in their tree construction. Cong
et al. have proposed �nding minimum spanning
trees with bounded source-sink pathlength [6], i.e.,
by simultaneously minimizing both tree cost and
the maximum source-sink pathlength (i.e., tree ra-
dius); another cost-radius tradeo� was achieved by
Alpert and coauthors [1]. More recently, Cong,
Leung and Zhou [7] have shown that the use of
rectilinear arborescence structures for interconnect
topology design leads to substantial reduction in
interconnection delays. Furthermore, Boese et al.
[4] have developed a \critical sink" routing ap-
proach which signi�cantly reduces delay to speci�ed
sinks, thereby exploiting the critical-path informa-
tion available during iterative timing-driven layout.

The objective of our research is to identify
and exploit a high-quality, algorithmically tractable
model of interconnect delay. Previous methods have
often relied on simple abstractions, e.g., geometric
notions of \minimum tree cost", \bounded tree ra-
dius", or \low pathlength skew". Such models can
simplify algorithm design, but may diverge from
physical reality. We begin our work from \�rst prin-
ciples": we exhaustively enumerate all routing so-
lutions for particular signal nets using a range of
interconnect technology parameters. Our goal is to
determine a delay approximation that has both high
accuracy and high �delity with respect to physical
models (i.e., SPICE-simulated delays).


