Zero Knowledge for NP

APR 8
abhi shelat
3-COLORING OF A GRAPH

NP-COMPLETE
ZK-PROOF OF 3-COLORABILITY

Alice(G, C) Bob(G)
ZK-PROOF OF 3-COLORABILITY

Alice(G, C)
PICK A COLOR PERM

Bob(G)
ZK-PROOF OF 3-COLORABILITY

\[\text{Alice}(G, C) \]

- Pick a color perm
- Color the graph with new perm

\[\text{Bob}(G) \]
ZK-PROOF OF 3-COLORABILITY

Alice(G, C)

- Pick a color perm
- Color the graph
- Place cups over nodes

Bob(G)
ZK-PROOF OF 3-COLORABILITY

Alice(G, C)

PICK A COLOR PERM

COLOR THE GRAPH
PLACE CUPS OVER NODES

Bob(G)
ZK-PROOF OF 3-COLORABILITY

Alice(\(G, C\))

- Pick a color perm
- Color the graph
- Place cups over nodes

Bob(\(G\))

- Pick a random edge
ZK-PROOF OF 3-COLORABILITY

Alice(G, C)

- Pick a color perm
- Color the graph
- Place cups over nodes
- Reveals chosen edge

Bob(G)

- Pick a random edge
ZK-PROOF OF 3-COLORABILITY

Alice(G, C)

- Pick a color perm
- Color the graph
- Place cups over nodes
- Reveals chosen edge

Bob(G)

- Pick a random edge
- Check colors
HOW TO MAKE THIS PROTOCOL INTERNET-READY?

WHAT FUNCTION DID THE CUPS PLAY?
HOW TO MAKE THIS PROTOCOL INTERNET-READY?

WHAT FUNCTION DID THE CUPS PLAY?

(binding) prover could not change color
(hiding) verifier could not see color
COMMITMENT SCHEMES

TWO PROTOCOLS:
\text{\underline{commit}()} \quad \text{\underline{open}()}
COMMITMENT SCHEMES

TWO PROTOCOLS: COMMIT() OPEN()

\[(c, s) \leftarrow \text{COMMIT}(\mathbf{m}, r)\]

Sender \hspace{1cm} Receiver
COMMITMENT SCHEMES

TWO PROTOCOLS: COMMIT() OPEN()

\((c, s) \leftarrow \text{COMMIT}(m; r)\)

Sender \[\rightarrow\] Receiver

\(\text{OPEN}_s(m, s)\)

Sender \[\rightarrow\] Receiver

\(\text{OPEN}_r(c, m, s) = m\)

SECURITY PROPERTIES

computational

HIDE FOR ALL \(m_0, m_1 \)

\[
\{ \text{commit}(m_0, r) \}_n \equiv \{ \text{commit}(m_1, r) \}_n
\]

Perfectly

BIND \(\exists (c^*, m_0, m_1, s_0, s_1) \) S.T. \(m_0 + m_1 \) and

\[
\text{open}(c^*, m_0, s_0) = m_0 \quad \text{and} \quad \text{open}(c^*, m_1, s_1) = m_1
\]
SECURITY PROPERTIES

(COMPUTATIONAL)

HIDE FOR ALL \(m_0, m_1\)

BIND
SECURITY PROPERTIES

(COMPUTATIONAL)
HIDE FOR ALL m_0, m_1

(PERFECT)
BIND
SECURITY PROPERTIES

HIDE FOR ALL m_0, m_1

BIND
SECURITY PROPERTIES

HIDE FOR ALL \(m_0, m_1 \)

\[\text{COMMIT}(m_0, r) \quad \text{COMMIT}(m_1, r) \]

BIND
SECURITY PROPERTIES

HIDE

FOR ALL m_0, m_1

\[
\{ \text{COMMIT}(m_0,r) \} \approx \{ \text{COMMIT}(m_1,r) \}
\]

BIND
SECURITY PROPERTIES

HIDE

FOR ALL m_0, m_1

\[
\{ \text{COMMIT}(m_0, r) \} \approx \{ \text{COMMIT}(m_1, r) \}
\]

BIND

IMPOSSIBLE FOR ANY SENDER TO PRODUCE c^*, m_0, s_0, m_1, s_1 SUCH THAT $m_0 \neq m_1$ AND

\[
\text{OPEN}_R(c^*, m_0, s_0) = m_0 \\
\text{OPEN}_R(c^*, m_1, s_1) = m_1
\]
SECURITY PROPERTIES

(COMPUTATIONAL)

HIDE FOR ALL m_0, m_1

\[
\{ \text{COMMIT}(m_0, r) \} \approx \{ \text{COMMIT}(m_1, r) \}
\]

BIND IMPOSSIBLE FOR ANY SENDER TO PRODUCE c^*, m_0, s_0, m_1, s_1 SUCH THAT $m_0 \neq m_1$ AND

\[
\text{OPEN}_R(c^*, m_0, s_0) = m_0 \\
\text{OPEN}_R(c^*, m_1, s_1) = m_1
\]
SECURITY PROPERTIES

(COMPUTATIONAL)

HIDE

FOR ALL m_0, m_1

\[
\{ \text{COMMIT}(m_0, r) \} \approx \{ \text{COMMIT}(m_1, r) \}
\]

(PERFECT)

BIND

IMPOSSIBLE FOR ANY SENDER TO PRODUCE c^*, m_0, s_0, m_1, s_1 SUCH THAT $m_0 \neq m_1$ AND

\[
\text{OPEN}_R(c^*, m_0, s_0) = m_0 \\
\text{OPEN}_R(c^*, m_1, s_1) = m_1
\]
CAN BE IMPLEMENTED

WITH OWF

\[f : \mathbb{Z}_p \to \mathbb{Z}_p \]

\[
\text{commit} (m) : \quad r \leftarrow \$
\]
\[
c \leftarrow (f(r), b(r) \oplus m)
\]
\[
s \leftarrow r
\]

\[
\text{open}(c, m, s) : \quad \text{check that } c = (f(s), b(s) \oplus m)
\]
\[
\text{if yes, output } m,
\]
\[
\text{else } \perp
\]

ZK-PROOF OF 3-COLORABILITY

\[Alice(G, C) \]

1. Picks a color perm \(p \)
2. Commits to \(p(C) \cdot G \)
3. \(S_i, S_j \)

\[Bob(G) \]

1. \(v_i, v_j \)
ZK-PROOF OF 3-COLORABILITY

$\text{Alice}(G, C)$

$\text{Bob}(G)$
ZK-PROOF OF 3-COLORABILITY

Alice(G, C)
PICK A COLOR PERM p

Bob(G)
Alice \((G, C)\)
PICK A COLOR PERM \(p\)
COLOR GRAPH WITH \(p(C)\)

Bob \((G)\)
ZK-PROOF OF 3-COLORABILITY

Alice(G, C)

PICK A COLOR PERM p
COLOR GRAPH WITH p(C)
COMMIT TO COLORS:

(c_i, s_i) ← COMMIT(p(C)(v_i); r_i)

Bob(G)
ZK-PROOF OF 3-COLORABILITY

Alice(G, C)
- Pick a color perm p
- Color graph with $p(C)$
- Commit to colors:
 $$(c_i, s_i) \leftarrow \text{COMMIT}(p(C)(v_i); r_i)$$
- Send commitments c_1, \ldots, c_m

Bob(G)
ZK-PROOF OF 3-COLORABILITY

\[\textbf{Alice}(G, C) \]

- **PICK A COLOR PERM** \(p \)
- **COLOR GRAPH WITH** \(p(C) \)
- **COMMIT TO COLORS:**
 \[(c_i, s_i) \leftarrow \text{COMMIT}(p(C)(v_i); r_i) \]
- **SEND COMMITMENTS**

\[c_1, \ldots, c_m \]

\[v_i, v_j \]

\[\textbf{Bob}(G) \]

- **PICK RANDOM EDGE**

Diagram shows a graph with vertices colored in green and red, and arrows indicating the flow of commitments and communication between Alice and Bob.
ZK-PROOF OF 3-COLORABILITY

Alice\((G, C)\)

PICK A COLOR PERM \(p\)

COLOR GRAPH WITH \(p(C)\)

COMMIT TO COLORS:

\[(c_i, s_i) \leftarrow \text{COMMIT}(p(C)(v_i); r_i)\]

SEND COMMITMENTS

\[c_1, \ldots, c_m\]

PICK RANDOM EDGE

Bob\((G)\)

OPEN EDGE

\[s_i, s_j, p(C)(v_i), p(C)(v_j)\]
ZK-PROOF OF 3-COLORABILITY

Alice \((G, C) \)

- Pick a color permutation \(p \)
- Color graph with \(p(C) \)
- Commit to colors:
 \[(c_i, s_i) \leftarrow \text{COMMIT}(p(C)(v_i); r_i) \]
- Send commitments: \(c_1, \ldots, c_m \)

Bob \((G) \)

- Pick random edge
- Open edge
- Check colors

\(s_i, s_j, p(C)(v_i), p(C)(v_j) \)
ZK-PROOF OF 3-COLORABILITY

\[\text{Alice}(G, C) \]

\[(c_i, s_i) \leftarrow \text{COMMIT}(p(C')(v_i); r_i) \]

SEND COMMITMENTS

\[c_1, \ldots, c_m \]

PICK RANDOM EDGE

\[v_i, v_j \]

OPEN EDGE

\[s_i, s_j, p(C)(v_i), p(C')(v_j) \]

Bob(G)

COMPLETENESS:

\[\text{Inspection.} \]
ZK-PROOF OF 3-COLORABILITY

\[Alice(G, C) \]
\[(c_i, s_i) \leftarrow \text{COMMIT}(p(C')(v_i); r_i) \]

SEND COMMITMENTS \[c_1, \ldots, c_m \]

PICK RANDOM EDGES

OPEN EDGE \[v_i, v_j \]

\[s_i, s_j, p(C)(v_i), p(C')(v_j) \]

SOUNDNESS:

must rely on the perfect binding property

We must be sound against even unbounded P*
ZK-PROOF OF 3-COLORABILITY

SOUNDNESS: Consider first P^* msg. By perfect binding, each commitment c_i has at most one opening color. If $G \not\in 3\text{col}$, then \exists a pair c_i, c_j s.t. \nexists s_i, s_j

$$\text{open}(c_i, s_i) = \text{open}(c_j, s_j). \quad (\text{Rest as before})$$

or INVALID
ZK-PROOF OF 3-COLORABILITY

Alice\((G, C)\)
\((c_i, s_i) \leftarrow \text{COMMIT}(p(C)(v_i); r_i) \)

Bob\((G)\)

SEND COMMITMENTS
\(c_1, \ldots, c_m \)

PICK RANDOM EDGE
\(v_i, v_j \)

\(s_i, s_j, p(C)(v_i), p(C)(v_j) \)

ZERO-KNOWLEDGE: (must rely on the hiding property)
We must exhibit a simulator \(S \)
ZK-PROOF OF 3-COLORABILITY

\[Alice(G, C) \]

\[(c_i, s_i) \leftarrow \text{COMMIT}(p(C')(v_i); r_i) \]

SEND COMMITMENTS

\[c_1, \ldots, c_m \]

\[v_i, v_j \]

PICK RANDOM EDGE

OPEN EDGE

\[s_i, s_j, p(C)(v_i), p(C')(v_j) \]

ZERO-KNOWLEDGE:
ZK-PROOF OF 3-COLORABILITY

\[Alice(G, C) \]
\[(c_i, s_i) \leftarrow \text{COMMIT}(p(C')(v_i); r_i) \]

SEND COMMITMENTS
\[c_1, \ldots, c_m \]

PICK RANDOM EDGE
\[v_i, v_j \]

\[Bob(G) \]

OPEN EDGE
\[s_i, s_j, p(C)(v_i), p(C)(v_j) \]

REPEAT \[m^2 \] **TIMES**

ZERO-KNOWLEDGE:
ZK-PROOF OF 3-COLORABILITY

\[Alice(G, C) \]
\[(c_i, s_i) \leftarrow \text{COMMIT}(p(C'(v_i); r_i) \]

SEND COMMITMENTS

\[c_1, \ldots, c_m \]

PICK RANDOM EDGE

\[v_i, v_j \]

\[s_i, s_j, p(C)(v_i), p(C')(v_j) \]

ZERO-KNOWLEDGE:

\[x \in L \]
zk-proof of 3-colorability

$\text{Alice}(G, C) \downarrow (c_i, s_i) \leftarrow \text{COMMIT}(p(C')(v_i); r_i)$

SEND COMMITMENTS

c_1, \ldots, c_m

$\text{Bob}(G)$

PICK RANDOM EDGI

v_i, v_j

OPEN EDGE

$s_i, s_j, p(C)(v_i), p(C')(v_j)$

ZERO-KNOWLEDGE:

$x \in L$
ZK-PROOF OF 3-COLORABILITY

Alice\((G, C)\)

\((c_i, s_i) \leftarrow \text{COMMIT}(p(C')(v_i); r_i)\)

SEND COMMITMENTS

Bob\((G)\)

\(c_1, \ldots, c_m\)

PICK RANDOM EDGE

\(v_i, v_j\)

OPEN EDGE

REPEAT \(m^2\) TIMES

ZERO-KNOWLEDGE:

\(x \in L\)
ZK-PROOF OF 3-COLORABILITY

Alice \((G, C)\):
\[(c_i, s_i) \leftarrow \text{COMMIT}(p(C'(v_i); r_i)\]
SEND COMMITMENTS
\[c_1, \ldots, c_m\]
OPEN EDGE
\[v_i, v_j\]
REPEAT \(m^2\) TIMES

Bob \(G)\):
PICK RANDOM EDGI
\[s_i, s_j, p(C)(v_i), p(C)(v_j)\]

ZERO-KNOWLEDGE:

MUST EXHIBIT A P.P.T. SIMULATOR S.T.
FOR ALL VERIFIERS \(V^*\) AND FOR ALL
\[\text{View}_{V^*}(\langle P(x, w), V^*(x) \rangle) \approx \frac{x \in L}{S^{V^*}(x)}\]
ZERO-KNOWLEDGE

\[S^{V^*}(G) \]

1. pick edge e & color w/diff. colors.

2. commit all vertices to RED except \(e = (v_i, v_j) \) which we commit to according to 1.
 call this msg \(C^* = (c_1, \ldots, c_{|V|}) \)

3. Feed \(V(C^*) \rightarrow (i_j, j_i) = e \)

4. If \(e^1 = e \), then open \((s_i, s_j) \)
 Else Repeat \(\frac{n|E|}{n} \) times
 Else FAIL
ZERO-KNOWLEDGE

$S^{V^*}(G)$
ZERO-KNOWLEDGE

$S^{V^*}(G)$

PICK & COLOR A RANDOM EDGE $e = v_i, v_j$
ZERO-KNOWLEDGE

\[S^{V^*}(G) \]

PICK & COLOR A RANDOM EDGE \(e = v_i, v_j \)
COLOR THE REMAINING NODES WITH 0
ZERO-KNOWLEDGE

$S^V\ast(G)$

1. **Pick & Color a Random Edge**: $e = v_i, v_j$
2. **Color the Remaining Nodes with 0**
3. **Commit to Graph**

 $$(c_i, s_i) \leftarrow \text{COM}(\text{color}_i; r_i)$$
ZERO-KNOWLEDGE

\[S^{V^*}(G) \]

Pick & Color a random edge \(e = v_i, v_j \)
Color the remaining nodes with 0
Commit to graph
\[
(c_i, s_i) \leftarrow \text{COM}(\text{color}_i; r_i)
\]
Send \(V^* \) first msg
\[S^{V^*}(G) \]

1. **Pick & Color a Random Edge** \(e = v_i, v_j \)
2. **Color the Remaining Nodes with** \(0 \)
3. **Commit to Graph**

 \[(c_i, s_i) \leftarrow \text{COM}(\text{color}_i; r_i)\]
4. **Send \(V^* \) First MSG**
5. **If Challenge** \(c = e \) **Output View**
6. **Else Repeat Up to** \(N|E| \) **Times**
ZERO-KNOWLEDGE

\[S^{V^*}(G) \]

- PICK & COLOR A RANDOM EDGE \(e = v_i, v_j \)
- COLOR THE REMAINING NODES WITH \(\emptyset \)
- COMMIT TO GRAPH
 \[(c_i, s_i) \leftarrow \text{COM}(\text{color}_i; r_i)\]
- SEND \(V^* \) FIRST MSG \(\rightarrow c \)
- IF CHALLENGE \(c = e \) OUTPUT VIEW
- ELSE REPEAT UP TO \(N|E| \) TIMES

ARGUE: ALGORITHM TERMINATES IN POLY TIME.
(COMPUTATIONAL)

HIDE FOR ALL m_0, m_1

\[
\left\{ \text{COMMIT}(m_0, r) \right\} \approx \left\{ \text{COMMIT}(m_1, r) \right\}
\]
INTUITION

$\langle P(G, C), V^*(G) \rangle$

$\text{COM}(c_1) \text{COM}(c_2) \cdots \text{COM}(c_i) \cdots \text{COM}(c_j) \cdots \text{COM}(c_v) \quad e \quad c_i, c_j$

$\text{COM}(0) \text{COM}(c_2) \cdots \text{COM}(c_i) \cdots \text{COM}(c_j) \cdots \text{COM}(c_v) \quad e \quad c_i, c_j$

$\text{COM}(0) \text{COM}(0) \cdots \text{COM}(c_i) \cdots \text{COM}(c_j) \cdots \text{COM}(c_v) \quad e \quad c_i, c_j$

$\text{COM}(0) \text{COM}(0) \cdots \text{COM}(c_i) \cdots \text{COM}(c_j) \cdots \text{COM}(0) \quad e \quad c_i, c_j$

$S^*(G)$
ZERO-KNOWLEDGE

Proof: \(\exists x \in L \) s.t. for inf. many \(n \), \(\exists \) a dist. \(D \) that distinguishes \(\{ \text{View}_{x}^{*}(P(x), U(x)) \} \) from \(\{ S^{u_{*}}(x) \} \).

\[S \]

Note:

\[\exists \{ S^{u_{*}}(x) \} = \{ S^{u_{*}}(x) \} \]

\(\text{STEP} \)

\(S \) \(\Rightarrow \) \(S' \) \(\Rightarrow \) \(S' \) same as \(S \) except it also receives the coloring \(C \), and it picks a random \(\pi \) & colors \(C_{c} = \pi(v_{i}) \), \(C_{j} = \pi(v_{j}) \).
ZERO-KNOWLEDGE

\(\text{VIEW}_{\nu} (p(x) \oplus V^*(x)) \quad S''(x) \)

same as \(S \) except:
1. \(\nu \) also receives coloring \(C \)
2. \(\nu \) commits to \(p(C) \) random coloring
3. \(\nu \) also picks \(e \) like \(S \)
4. \(\nu \) rewinds if \(e' \neq e \) (just like \(S \))

Lemma: \(\textbf{\{VIEW}_{\nu} (p(x) \oplus V^*(x)) \} \approx_s \{ S''(x) \} \)

They only differ when \(S''(x) \) fails after \(n |E| \) times.

This only happens w/negligible probability.
ZERO-KNOWLEDGE

D distinguishes these 2

\(\frac{1}{2^{\text{poly}(n)}} \)

S’’

S’

S’

S’

S’

S’

S’

S’

S’

Si = runs S’ for the first i iterations,

Δ S’’ for the rest.

By hybrid lemma, exists a pair i, i+1 s.t. D distinguishes

\(S'k \) and \(S'k+1 \) w/probability \(\frac{1}{2^{(\text{poly}(n)) \cdot n \cdot \text{HE}}} \)
ZERO-KNOWLEDGE

Define \(G \) \(E \) \(\text{more} \) hybrids

\(S_{k+1}' \)

\(S_{k+1} \) : if \((i, j, \tau) \) that are chosen are \(\leq \varepsilon \), then run \(S_{k+1}' \). Else run \(S_{k+1} \).

ORDER \((i, j, \tau) \) tuples.

\(U \rightarrow \tau \)

\(|E| \rightarrow 6 \) permutations

\(\text{Com}(0) \ldots \text{Com}(v_i) \quad \text{Com}(v_j) \ldots \text{Com}(0) \)

(\text{FULL colors})
Why does S get the coloring??

\(\chi(u) \) can be given as non-uniform advice to break the commitment scheme.
ROUND COMPLEXITY OF ZK

ONE ITERATION
ROUND COMPLEXITY OF ZK

ONE ITERATION

REPEAT k TIMES

n \mid t

$3 \times n \mid t \mid \text{G}$
ROUND COMPLEXITY OF ZK

ONE ITERATION

REPEAT k TIMES

O(k) ROUNDS!
CONSTANT ROUND ZK?

ONE ITERATION