Begin each problem on a separate page.

Problem 1 Hard-Core Predicates

(a) Let f be a (strong) one-way function. Consider $g(x_1 x_2 \cdots x_n) = f(x_2 x_3 \cdots x_n)$ (where each x_i is a bit). Show that g is also a one-way function and has a hard-core bit.

(b) Assume the existence of one-way functions. Show that there does not exist a single hard-core predicate that works for every one-way function.

Problem 2 Trapdoor One-Way Functions

Let f be a one-way permutation. In this problem, we will use f to construct a family of trapdoor one-way functions G (not one-way permutations!). The idea is to evaluate the function f as usual. The only exception is that when the input is a special value α, then g operates in a way that makes it easy to invert. Define $G = \{ g_\beta \}_{\beta \in \{0,1\}^*}$ as follows: g_β is a function $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$, where $|\beta| = n$.

$$g_\beta(e,v) = \begin{cases} v & \text{if } f(e) = \beta \\ f(v) & \text{otherwise} \end{cases}$$

Define Gen and the sampling function for the domain of g_β and prove that G is a collection of trapdoor one-way functions. (You can think about how to extend this argument when f is any one-way function.)

Problem 3 Pseudorandom Generators

Let $f : \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$ and $g : \{0,1\}^{n'} \rightarrow \{0,1\}^{m'(n)}$ be two pseudo-random generators, where m and m' are polynomials. Prove or disprove the following:

(a) The function h defined as $h(x) = g(f(x))$ is a PRG.

(b) The function rev(f) defined as rev$(f)(x) = (f(x))^R$ is a PRG, where y^R stands for the reverse of the string y.

(c) The function h defined as $h(x) = f(x) \oplus g(x)$ is a PRG (\oplus is bitwise xor) m and m' are the same polynomial.

(d) The function h defined as $h(s\|s') = s\|f(s')$, where $|s| = |s'| = n$ is a PRG.

(e) The function h defined as $h(s\|s') = s\|f(s\|s')$, where $|s| = |s'| = \frac{n}{2}$ is a PRG.
Problem 4 Pseudorandom Functions

Let \(\mathcal{F} = \{ f_s : \{0, 1\}^{|s|} \to \{0, 1\}^{|s|}, s \in \{0, 1\}^* \} \) be a PRF. Let \(\mathcal{G} = \{ g_s : \{0, 1\}^{l(|s|)} \to \{0, 1\}^*, s \in \{0, 1\}^* \} \). Prove or disprove that \(\mathcal{G} \) is a PRF in the following cases. For all \(s \in \{0, 1\}^* \), \(x \in \{0, 1\}^{l(|s|)} \) define \(g_s \) as:

(a) \(g_s(x) = f_s(x) \| f_s(x + 1 \mod 2^{|s|}) \) where \(l(n) = n \).

(b) \(g_s(x) = f_{0^{|s|}}(x) \| f_s(x) \) where \(l(n) = n \).

(c) \(g_s(x) = f_{s_1}(x) \| f_{s_2}(x + 1 \mod 2^{|s|}) \), where \(s_1 \) is the first \(|s|/2 \) bits of \(s \), \(s_2 \) is the second \(|s|/2 \) bits of \(s \), and \(l(n) = n/2 \).

(d) \(g_s(x) = f_s(x) \oplus s \)

Problem 5 Secure Encryption

Definition 1 Given two strings \(x, y \) of length \(n \), the Hamming distance between \(x \) and \(y \), denoted by \(H(x, y) \), is the number of positions in which \(x \) and \(y \) differ, e.g., \(H(00, 01) = 1, H(01010, 11110) = 2 \).

Let us give possible definitions of next-message secure encryption schemes. For each of the cases given below, determine whether the private-key encryption scheme is secure. Prove or provide a counter-example. An encryption scheme \((\text{Gen}, \text{Enc}, \text{Dec})\) is next-message secure iff

(a) For all messages \(m_0 \) and \(m_1 \) such that \(H(m_0, m_1) = 1 \), the encryptions of \(m_0 \) and \(m_1 \) are indistinguishable. Formally, for all distinguishers \(D \), there exists a negligible function \(\epsilon(\cdot) \), such that for all \(n \), and \(m_0, m_1 \in \{0, 1\}^n \) such that \(H(m_0, m_1) = 1 \),

\[
\left| \Pr[D(\text{Enc}(m_0)) = 1] - \Pr[D(\text{Enc}(m_1)) = 1] \right| \leq \epsilon(n)
\]

(b) For all messages \(m \) (\(m \neq 1^n \)), the encryptions of \(m \) and \(m + 1 \) are indistinguishable.