Begin each problem on a separate page.

Problem 1 Oblivious Transfer

Recall that in the 1-out-of-2 oblivious transfer functionality, the sender has two bits m_0 and m_1, and the receiver has a bit b. At the end of the protocol, the receiver is able to compute m_b, but learn nothing about m_{1-b}. Meanwhile, the sender learns nothing about the receiver’s choice b. In class, we constructed a protocol for 1-out-of-2 oblivious transfer that is secure against honest-but-curious adversaries.

Imagine that there is a physical device that implements 1-out-of-2 oblivious transfer for malicious adversaries. Show how to use this physical mechanism to achieve 1-out-of-3 oblivious transfer against malicious adversaries. You do not have to provide a formal definitions or proofs, but have to argue that:

(a) Your construction computes 1-out-of-3 oblivious transfer correctly.
(b) The sender does not learn the choice of the receiver.
(c) The receiver learns only one out of the 3 bits.

Hint: You might need to use the 1-out-of-2 device more than once.

Problem 2 Secure 3-Party Computation

In class we saw Yao’s construction of secure 2-party computation protocols, assuming honest but curious adversaries. Give a similar, constant-round protocol for secure 3-party computation. Informally (but convincingly) justify that your protocol is secure and correct.

Problem 3 Combining ZK proofs

Construct a ZK proof with soundness $1/2$ for the language $L = \{(G,H) \mid G$ or H has a Hamiltonian path$\}$. Do not transform the input instance (e.g., using Cook’s reduction or some gadget, into a regular graph Hamiltonicity instance). Instead, construct a protocol based on Blum’s Hamiltonicity protocol. Your techniques should apply analogously for the graph isomorphism protocol. Show that your protocol is complete, sound, and zero knowledge. Hints:

- What would you do if L requires both G and H to have Hamiltonian paths?
- In fact, the same techniques can give a ZK protocol for the language $L = \{(G,H_1,H_2) \mid G$ has a Hamiltonian path, or H_1 is isomorphic to $H_2\}$.

Identify a general class of ZK protocols that can be combined using your techniques.