
I E E E S O F T W A R E 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 I E E E 1 7

Barry W. Boehm, University of Southern California
Tom DeMarco, The Atlantic Systems Guild

In mature engineering disciplines, risk management has been de rigeur for
centuries. When Michelangelo set out to raise the dome of St. Peters in
1547, he was well aware of the potential collapse zones under the staging,
the possibility of materials failure, and the human capacity for error. For
each of these major risks he prepared a mitigation plan: a fallback, a safety
factor, or an alternative.
Today, we routinely practice risk management in our stewardship of the
environment, in planning financial strategy, in construction engineer-
ing, and in medicine. But how do we apply it to the ultimate risky busi-
ness, software development?

Software Risk
Management
Software Risk
Management

g u e s t e d i t o r s ’ i n t r o d u c t i o n

.

RISK VS. “CAN-DO”

Software development’s risky nature
is easy enough to acknowledge in the ab-
stract, but sadly, harder to acknowledge
in real-world situations. Our culture has
evolved such that owning up to risks is
often confused with defeatism. Thus, a
manager faced with a nearly impossible
schedule may deliberately ignore risks to
project a confident, “can-do” attitude.

Or is that assessment too severe? After
all, you wouldn’t ignore risks on your pro-
ject. Or would you? To understand how
risks get ignored, we must look beyond
the kinds of risk that are subject to easy,
obvious mitigation, such as: “If we don’t
add two folks to the test team right away,
we are never going to complete accep-
tance testing in time for a June 1 deliv-
ery.” Any manager capable of staying
awake during the work day will leap at
solving this one; ignoring it means miss-
ing a chance to take early and efficient
corrective action.

Fatal risks, on the other hand, offer
an entirely different challenge. These
risks are either beyond effective mitiga-
tion or unacceptably costly to mitigate.
An example of fatal risk is: “We can now
see that the June 1 estimate was hope-

lessly flawed; we have no chance of mak-
ing that date, we never had a chance of
making it, and most actions we might
now take (such as adding more people)
can only lengthen the time it will take us
to eventually deliver the product.” Fatal
risks are often ignored by the can-do
manager. An attitude that would be ob-
viously stupid in the presence of small
risks is somehow considered less stupid
for large ones.

FOCUS ON ESSENTIALS

The key concepts of risk management
can help software managers assess prob-
lem situations and formulate proactive
solutions. A good example is the key risk
management concept of risk exposure.
For each source of problems causing a
potential loss to the project, the exposure
is defined as the product of the probabil-
ity of the potential loss, Prob(Loss), mul-
tiplied by the size of the loss, Size(Loss):

Risk Exposure = Prob(Loss) × Size(Loss).

A recent gathering of Indian software
managers revealed that they perceived
personnel turnover as their biggest
source of risk. Huge demand for experi-
enced software people—as in the US and
elsewhere—confronted the typical soft-
ware project manager in India with the
likely departure of one or more key peo-
ple, which would potentially result in a
substantial and costly disruption of the
project’s schedule.

The notion of risk exposure helped
focus these managers on reducing both
Prob(Loss) and Size(Loss). Prob(Loss)
can be reduced by assessing, addressing,
and monitoring the annual turnover rate.
Good strategies for this include empow-
ering performers, teambuilding, estab-
lishing significant incentive bonuses for
successful project completion, recogniz-
ing outstanding efforts, and structuring
career paths around an organization’s
product lines.

Size(Loss) can be reduced signifi-
cantly too. Software inspections not only
find defects, they also spread information
on the software product’s components
across the organization, as do other ap-
proaches such as egoless programming
and Cleanroom techniques. Modular
software architectures and encapsulation
confine the effects of personnel turnover
to small parts of the system. Software de-
velopment files and good configuration
management make it easier for new re-
placements to master existing software
modules. In combination, a focus on

these strategies can make an organiza-
tion not only more competitive in a high-
turnover marketplace, but also a more
satisfying place to work.

RISK MANAGEMENT’S DIRTY
LITTLE SECRET

Software managers would be more in-
clined to acknowledge and manage their
risks if they were more aware of compa-
rable organizations that had already cho-
sen to move in that direction. Although
there is evidence that software risk man-
agement is beginning to affect many
companies and government agencies,
published word of that experience re-
mains minimal. There is a reason why
this has been and will probably continue
to be true: Doing software risk manage-
ment makes good sense, but talking
about it can expose you to legal liabili-
ties. If a software product fails, the exis-
tence of a formal risk plan that acknowl-
edges the possibility of such a failure
could complicate and even compromise
the producer’s legal position. There is
reason to suspect that most risk manage-
ment practitioners have adopted a “don’t
ask, don’t tell” attitude toward publica-
tion of their successes.

Given this tendency, we feel particu-
larly lucky to have a lively “Point/
Counterpoint” and eight fine articles on
risk management in this issue. A ninth
risk management article appears in the
May issue of our sister publication,
Computer. Together, these 10 pieces es-
tablish a coherent baseline for how risk
management is and should be practiced
in software organizations.

THE ARTICLES

If you are new to risk management
and wondering if you should get involved
with it—or at least feel guilty about not
yet being involved—start by reading Tim
Lister’s “Point,” which maintains that
risk management is project management

1 8 M A Y / J U N E 1 9 9 7

Our culture has
evolved such that
owning up to risks
is often confused
with defeatism.

g u e s t e d i t o r s ’ i n t r o d u c t i o n

.

for adults. Next, look into Marvin Carr’s
cautionary “Counterpoint,” which as-
serts that risk management can itself be
risky, particularly if it’s not done on an
institutional basis.

Moving on to the theme articles,
“The RAMP Architecture for Assessing
and Managing Risk” by Paul Garvey,
Douglas Phair, and John Wilson de-
scribes a Web-based risk management
information system used to capture and
apply corporate experience in risk man-
agement across a wide variety of projects.
Tony Moynihan’s “How Experienced
Project Managers Assess Risk” summa-
rizes how several managers in medium-
sized commercial projects assess the risk
implications of a project’s situational fac-
tors. (He also provides an intriguing par-
tial confirmation of the SEI’s risk taxon-
omy.) Robert Charette, Kevin Adams,
and Mary White explore the application
of risk management techniques to the
world of legacy software in “Managing
Risk in Software Maintenance.”

Three articles address the interaction
of risk management with cost and sched-
ule estimation. Raymond Madachy’s
“Heuristic Risk Assessment Using Cost
Factors” describes an operational expert-
system tool that analyzes patterns of cost-
driver ratings submitted for a Cocomo
cost estimate to determine and rank as-
sociated sources of project risk. Kari
Känsälä’s “Integrating Risk Assessment
with Cost Estimation” describes the
checklist-based RiskMethod and corre-
sponding RiskTool used to generate
both cost and risk estimates, which have
been used successfully in several Finnish
software companies. In “Estimates, Risk,
and Uncertainty,” Barbara Kitchenham
and Stephen Linkman analyze each of
the four major sources of error in using
cost and schedule estimation models—
measurement error, model error, as-
sumption error, and scope error—and
show how each must be considered when
managing software cost and schedule un-
certainty and risk.

In “Putting Risk Management into
Practice,” the Software Engineering

Institute’s Ray C. Williams, Julie A.
Walker, and Audrey J. Dorofee use an
SEI-designed road map as a guide to dis-
cussing effective and ineffective risk man-
agement methods in software-intensive
Department of Defense programs.
Finally, in “Implementing Risk Manage-
ment” Edmund Conrow and Patty
Shishido provide experience-based risk
management guidelines from a highly

successful distributed command-and-
control project that uses several innova-
tive risk management practices. And in
the May issue of Computer, Art
Gemmer’s “Risk Management: Moving
Beyond Process” examines how one or-
ganization approached risk management
from the perspective of functional be-
havior, specifically “how to communicate
risk more effectively.”

A s reported in this special issue, soft-
ware risk management is quickly

becoming a mature discipline. To
achieve the promise of fully effective soft-
ware risk management, the software in-
dustry still must address several contin-
uing challenges.

♦ Achieve commitment of all key
stakeholders (developers, customers,
users, maintainers, and others) to a risk
management approach.

♦ Establish an evolving knowledge
base of risk management experience and
expertise, organized for easy and collab-
orative use by all stakeholders.

♦ Define and propagate mature guide-
lines on when and how to avoid, prevent,
transfer, or accept and manage risk.

♦ Develop metrics and tools for rea-
soning about risk management’s return-
on-investment issues, including guidelines
for deciding how much of a risk reduction
activity is enough. Tools that might be

used in this way include risk-focused pro-
totyping, specifying, testing, formal veri-
fication and validation, configuration
management, and quality assurance.

The promising benefits of risk man-
agement are evident in the articles
we’ve gathered here. We hope they’ll
inspire you to think of how you your-
self might contribute to further pro-
gress in this area. ◆

I E E E S O FT W A R E 1 9

Carr says risk
management itself
can be risky.

Barry W. Boehm is the
TRW Professor of
Software Engineering and
Director of the Center for
Software Engineering at
the University of Southern
California. His current
research involves the
WinWin groupware sys-
tem for software require-
ments negotiation, archi-

tecture-based models of software quality attributes,
and the Cocomo 2.0 cost-estimation model.

Boehm received a BA in mathematics from
Harvard University and an MS and a PhD in math-
ematics from the University of California, Los
Angeles. He is a fellow of the IEEE and the AIAA,
and a member of the National Academy of
Engineering.

Tom DeMarco is a princi-
pal of The Atlantic
Systems Guild. He is au-
thor of Why Does Software
Cost So Much? (Dorset
House, 1995), an editor of
Software State of the Art
(Dorset House, 1990), and
co-author (along with Tim
Lister) of Peopleware:
Productive Projects and

Teams (Dorset House, 1987). DeMarco is also the
winner of the 1986 J.D. Warnier Prize for Lifetime
Contribution to the Information Sciences.

Address questions about this article to Boehm at
boehm@sunset.usc.edu or to DeMarco at
tdemarco@atlsysguild.com.

.

