
Using Groupings of Static Analysis Alerts to Identify
Files Likely to Contain Field Failures

Mark S. Sherriff, Sarah Smith
Heckman

NC State University, IBM
890 Oval Drive

Raleigh, NC, USA
+1-919-513-5082

{mssherri, sesmith5}@ncsu.edu

J. Michael Lake
IBM

3901 S. Miami Blvd.
Durham, NC, USA

johnlake@us.ibm.com

Laurie A. Williams
NC State University

890 Oval Drive
Raleigh, NC, USA
+1-919-513-4151

williams@csc.ncsu.edu

ABSTRACT
In this paper, we propose a technique for leveraging historical field
failure records in conjunction with automated static analysis alerts
to determine which alerts or sets of alerts are predictive of a field
failure. Our technique uses singular value decomposition to
generate groupings of static analysis alert types, which we call alert
signatures, that have been historically linked to field failure-prone
files in previous releases of a software system. The signatures can
be applied to sets of alerts from a current build of a software system.
Files that have a matching alert signature are identified as having
similar static analysis alert characteristics to files with known field
failures in a previous release of the system. We performed a case
study involving an industrial software system at IBM and found
three distinct alert signatures that could be applied to the system.
We found that 50% of the field failures reported since the last static
analysis run could be discovered by examining the 10% of the files
and static analysis alerts indicated by these three alert signatures.
The remaining failures were either not detected by a signature
which could be an indication of a new type of error in the field, or
they were on areas of the code where no static analysis alerts were
detected.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Symbolic
execution, Testing tools

General Terms
Management, Measurement, Reliability, Experimentation

Keywords
Static Analysis, Singular Value Decomposition, Field Failures

1. INTRODUCTION
Static analysis is the process of evaluating a system or component
based on its form, structure, content, or documentation [2] without
execution of the code. Static analysis tools search for
implementation problems associated with a predefined set of rules
of potential anomalies in the source code. The static analysis rule
types range from possible mistypes in the code (e.g. = instead of
==) to more complex errors in the system logic (e.g. memory leaks).
We term the use of static analysis tools automated static analysis
(ASA). An ASA alert is a report from the ASA tool indicating an
area of the code base that has broken a specific type of ASA rule.

Research has shown that ASA alerts can identify certain
classifications of faults and field failures [8]. However, the number
and pervasiveness of certain alert types might indicate that nearly all
the files in the system are potentially failure-prone1. The number of
static analysis alerts reported by the static analyzer could
overwhelm the development team. Certain alert types, and certain
combinations of alerts found together, could be used to reduce the
number of identified failure-prone files to those that are most likely
to actually contain failures based upon previous versions of the
system.

Our research goal is to provide a methodology for highlighting files
that contain groups of static analysis alerts historically associated
with field failures. To address this goal, we have developed a
technique that leverages historical field failures and change records
in conjunction with ASA alerts to generate ASA alert signatures.
An ASA alert signature is a set of static analysis alert types that has
historically been associated with one or more field failures in a
particular project. We generate ASA alert signatures by using
singular value decomposition (SVD). The SVD provides a means
for associating files with field failures and ASA alerts with those
files. A set of files that has changed together are identified as
failure-prone if a future version of the set of files contains all of the
alert types in an ASA alert signature.

Our hypothesis is that automated static analysis alert signatures
generated from historical information through singular value
decomposition can identify files that failure-prone. To test our
hypothesis, we performed an experiment on three components of a
large industrial software system. Over a year of static analysis and
field failure information was analyzed from an industrial software
system in this research.

2. RELATED WORK
In this section, we will discuss related work and background
literature in automated static analysis.

2.1 Automated Static Analysis
ASA may be run throughout the development process since this
analysis does not require execution [1]. However, static analysis
tools suffer from several problems. The main problem is that many
of these tools have a high rate of false positives due to
approximations made to the analysis [1]. Because ASA tool
generates false positive alerts, developers must inspect the alerts
generated from ASA tools to verify the accuracy of the alerts for
fault fixes [1].

1 A failure-prone file is any file that contains a field failure [8].

Copyright is held by the author/owner(s).
ESEC-FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
ACM 978-1-59593-812-1/07/0009.

565

We used an internal IBM ASA tool in our investigation. One of the
main goals of this tool is to avoid as many false positives as
possible while not requiring any extra specification from the user.
The tool spends extra execution cycles traversing paths that it
identifies as leading to an error to ensure that the path is indeed
executable. This extra computation increases the runtime of the tool
in comparison to other ASA tools.
The ASA tool classifies its 74 different ASA alerts into five
categories: error, mistake, warning, security, and portability. An
error alert is a high priority alert, with mistake and warning as
medium and low priority, respectively. Security alerts indicate
areas where the program may be subverted, such as unverified
inputs. Portability alerts are for problems that would only appear if
the code is ported to another machine with a different bit depth
(such as 32-bit to 64-bit). Each alert category can be enabled or
disabled according to the developer’s preferences.

2.2 Using ASA Alert to Separate High Quality
Components
Other studies have analyzed the ability of ASA alerts to narrow the
focus on fault- or failure prone areas of code. Static analysis alerts
were used to predict the pre-release fault density of Windows Server
2003 [4]. The research demonstrated a positive correlation between
the ASA fault density and pre-release testing fault density and that
discriminant analysis of ASA faults could be used to separate high-
from low-quality components with 83% accuracy. Additionally, a
study was conducted of the use of static analysis at Nortel [5, 8].
ASA and failure data from three products (over three million lines
of code) that underwent ASA during test were analyzed [5, 8]. The
data demonstrated a statistically-significant correlation between the
number of ASA alerts and field failures in a module (a grouping of
files). These results indicate that when a module has a large
quantity of ASA faults, the module is likely to be problematic in the
field. Finally, discriminant analysis indicated that ASA faults could
be used to separate fault-prone from non-fault prone modules with
87.5% accuracy. In both of these studies, only the quantity of ASA
alerts was used. In our study, we use information about the types of
the alerts and about historical relationships of sets of alerts that
historically appear together in code with field failures.

3. GENERATING ALERT SIGNATURES
Historical records of field failures, change records, and static
analysis results are all required to generate accurate ASA alert
signatures. First, we must identify appropriate data sources and be
reasonably confident that the data is accurate in associating distinct
code changes with specific failures. With these data sets, we can
find associations between files and static analysis alerts based upon
what files changed together due to repairing field failures. We
outline the steps in the algorithm for generating signatures in Figure
1.
We begin by gathering source code change records and fault
information to populate a matrix M that indicates how many times
files have changed together in response to a field failure. The rows
and columns of the matrix are comprised of every file in the system.
The values within the matrix indicate the number of times that the
files assigned to that row and column combination have changed
together to repair a specific fault. The values on the diagonal of the
matrix represent the total number of times that a file has changed
because of a field failure.

1 Pick two builds separated by enough time
that field failures have been reported
between the two builds.
2 Run ASA on the two builds and record
results.
3 M = [Files in system x Files in system]
s.t. M = where the values in the matrix
indicate the number of times two files have
changed together to repair a field failure
between the two builds.
4 File/Field Failure Clusters =
gatherClusters(M)
13 M’ = [File/Field Failure Clusters x Alert
Types] s.t. M’ = delta in the number of ASA
alerts reported between the two builds.
5 Clusters of Alerts (Signautres) =
gatherClusters(M’)
6 Set of clusters = gatherClusters(M)
7 [U, S, V] = svd(M’);
8 for i:size of U
9 Gather signature i information
10 for j:size of U
11 if |U(j, i)| > threshold
12 Store element of cluster i
13 end
14 end
15 end
16 end

Figure 1. Algorithm for generating signatures.

After matrix M has been populated, we perform SVD on the matrix
M to determine what files tend to be associated with field failures.
When we perform SVD on the matrix M, matrices U, S, and V are
generated. The columns of the U and V matrices provide
information as to the structure of the association clusters, while the
singular values from the S matrix represent the amount of variability
each association cluster contributes to the original analysis matrix.
An association cluster is formed by taking the files in each column
of the matrix U is over a given threshold. We are interested in these
association clusters because our overall goal is to find out what sets
of ASA alerts are associated with field failures. To detect the
association between ASA alerts and field failures, we need to
analyze the files that are common between the field failures and the
ASA alerts.

Using the singular values from the S matrix, we can determine how
many of the association clusters we will use in our analysis. We do
not use all of the generated clusters due to cluster duplication and
because clusters that have relatively small singular values are not
strongly linked and thus have less value. A cluster’s strength,
represented by the size of the singular value coupled with it,
indicates the amount of variability that the association cluster
provides to the original analysis matrix [7]. Osinski used a threshold
of 90% of the variability to determine the appropriate number of
clusters to examine [6].

Once we know what files are strongly associated with field failures,
we can then determine how the ASA alerts compare with these file
clusters. In this step, we will create a new matrix M. However, this
matrix will be an asymmetric matrix with the previously generated
clusters on one axis and the different types of static analysis alerts
on the other. The values in the matrix M will be the difference in
the number of ASA alerts found between the ASA runs on the two

566

selected system builds. We are interested in the difference between
two baselines because this will highlight any possible correlation
between the removal of ASA alerts with fewer field failures and
visa-versa. Performing a SVD on the new matrix M yields another
set of U, S, and V matrices. We can interpret these matrices in
much the same way as before, where the columns of U indicate
clusters of ASA alerts.

After the ASA alert signatures have been generated and identified,
each subset of ASA alert types found in a given signature can be
compared to a full set of ASA alerts from a future version of the
code base. However, since these ASA alert signatures were
generated based on clusters of files, the signatures need to be
applied to clusters of files instead of individual files. We can
generate clusters of files to apply the signatures to in a way similar
to how we generated the signatures. However, in this case, we will
use all changes in the system that were made to modify all faults, as
opposed to just those changes made to repair field failures, so that
we can examine all areas of the system for potential faults. Once
these clusters have been generated, the alerts contained in each
cluster can be gathered based upon the files within each cluster.
ASA alert signatures can then be compared with alerts associated
with each file cluster to determine which areas of the system may
require further V&V efforts.

4. IBM CASE STUDY
During the spring of 2007, we performed a case study of our
technique with a large IBM software system. In this section, we
will describe our case study experience and our results.

4.1 Case Study Setup
We selected Matlab 7.2 R2006a as our SVD tool and used an
internal ASA tool for generating ASA alerts. We performed our
case study on three modules of a large industrial project. We
selected these particular modules because they were primarily
written in C and C++, which are two of the languages that this
particular version of the ASA tool could analyze. We generated
ASA signatures from data from two builds of the system, one from
late October 2005 and the other from mid-December 2006. ASA
was run on each build of the software, and we gathered information
on the files, alert types, and line numbers where the alerts appeared.
All 74 alert types from the five categories of alerts were included.
ASA alerts were associated with clusters of files and the difference
between the two releases was calculated for generating the ASA
alert signature clusters.

4.2 ASA Alert Signatures
Using our technique, three ASA alert signatures were created in this
case study. The three signatures were:

ASA Alert Signature 1: A Misstep in the Path
• M5: Expression always evaluates true or false
• W5: Operator “=“ in the Boolean expression should

possibly be “==“
• W13: Function never used
• P2: The cast (int)long will cause truncation on the

portability target machine
• S2: Passing untrusted input to argument

ASA Alert Signature 2: Common Errors
• W15: then/else/loop not surrounded by braces
• W16: Function accesses the same variable through two

parameters

• M18: Comparing pointers to strings
• E18: Function lacks a return statement with a value

ASA Alert Signature 3: Memory Leaks
• E23h: Heap memory leak
• W9: Return of function not used
• M21: Advisory has been issued for this function

4.3 Applying the ASA Alert Signatures
We examined the ASA alerts that were generated on the December
2006 release of the software system using the alert signatures. In
this release, the tool generated ASA alerts on 2,448 files. We then
collected field failure information from December 2006 to March
2007 to determine failure-prone files. A summary of the effects of
applying the ASA alert signatures can be found in Table 1.

Table 1. Summary of Effects of Applying Alert Signatures.

 Before Applying
ASA Signatures

After Applying
ASA Signatures

of Files 2,448 393

% Reduction in
Files to Examine

N/A 70%

% Field Failures
Covered

79.6% 49.5%

% Absolute False
Positive Rate
Improvement

N/A 20%

Using the ASA alert signatures, there was a significant reduction in
the number of files and ASA alerts that need to be analyzed. As
mentioned, the ASA tool reported at least one alert each of the
2,448 files that it was run against. After applying the ASA alert
signatures, 393 of the 2,448 files were identified as belonging to a
file clusters containing alert types similar to alerts associated with a
previous field failure. There is, however, a reduction in the number
of field failures found verses checking every file that contained at
least one static analysis alert. Note that our technique highlights
areas of the code base that may contain field failures based upon
previous development efforts and field failure reports. The field
failures that could not be identified by the ASA alert signatures do
not match any previous alert patterns in reported field failures.
Nearly 50% of the field failures fall under a similar ASA alert
pattern from previous releases, indicating that a large percentage of
field failures come from a relatively common and consistent set of
mistakes. If every file that contained a static analysis alert was
examined, only 79.6% of the field failures could be detected.
Research has shown that ASA tools can only find certain types of
programmer errors [8] and, thus, cannot be expected to find all
faults that lead to field failures.

4.4 Comparison to Other Techniques
We also examined the efficacy of our technique against the models
proposed by Zheng et al. [8] and Nagappan and Ball [3] Both Zheng
et al. and Nagappan and Ball proposed that ASA alert density could
be a predictor of pre-release fault density. The main difference
between the research presented in this paper and these two studies is
the granularity level throughout the work. Zheng et al. and
Nagappan and Ball use the overall number of alerts or the alert
density to identify potential fault-prone modules, while we focus on

567

fault-prone files. Therefore, we also investigated whether there was
a correlation between the number ASA alerts and field failures at
the file level to better compare our technique to theirs. The results
of the correlation analysis at the file level can be found in Table 2.

Table 2. Summary of Spearman Rank Correlation for Files

 # ASA
alerts

test
faults

field
failures

total
failures

Correlation
Coefficient

1 .182 .139 .212 # ASA
alerts

Sig. . .001 .001 .001

Correlation
Coefficient

 1 .143 .924 # test
failures

Sig. . .001 .001

Correlation
Coefficient

 1 .510 # field
failures

Sig. . .001

As shown in Table 2, we did not find a strong correlation between
the number of non-clustered ASA alerts and the number of field
failures (.139). We also used a discriminant analysis to predict the
fault-prone files in a similar fashion to Zheng. We found that our
technique had a 15.4% improvement in true positive rate over their
discriminant analysis at the file level for this data set. From this we
conclude that while we found similar results as Zheng and
Nagappan at the module level, our technique showed some
improvement at the file level.

Another difference in the techniques is that the previous two studies
focus on identifying fault-prone modules, the boundaries of which
are specifically identified by the development teams. By using
SVD to isolate areas of change, we are comparing our ASA alert
signatures against files that tend to changed together in response to
failures, regardless of the files’ location or module. Functionality
can often be spread among various modules, and thus by examining
how ASA alerts affect these functional areas, we are targeting
specific, customer-facing requirements where field failures are
likely to be found and could cause difficulties in the field

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a technique for combining a
project’s historical field failure information, change records, and
static analysis alerts to generate ASA alert signatures. These alert
signatures consist of groupings of ASA alert types that have been
directly linked to field failures in previous releases. By applying
these signatures to a current set of ASA alerts, developers can
isolate specific files and alert types that historically have led to field
failures.

We performed a case study with an industrial software system at
IBM to evaluate our technique. Field failure information, change

records, and ASA alerts were gathered on two releases of the
system over a 14-month period. The data from these releases were
used to build ASA alert signatures that correspond to field failures
found between those two releases. We then applied these ASA alert
signatures to the alert set from the latest release to predict the
failure-prone files for the following three months. We found that
50% of the field failures could be discovered by examining the 10%
of the files and their associated alert signature(s). The remaining
failures were either not detected by a signature which could be an
indication of a new type of error in the field, or they were on areas
of the code where no static analysis alerts were detected.

The analyses presented in this paper using SVD, both in the
background section and in the current work, show examples of how
relationships between files can be detected using software
development artifacts, such as faults, field failures, and ASA alerts.
We are currently continuing to examine the various different types
of development artifacts that could be used to help drive
development decisions.

6. REFERENCES
[1] B. Chess and G. McGraw, “Static Analysis for Security,”

in IEEE Security and Privacy, November/December 2004
ed, 2004, pp. 32-35.

[2] IEEE, “IEEE Standard 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology,” 1990.

[3] N. Nagappan and T. Ball, “Static Analysis Tools as Early
Indicator of Pre-Release Defect Density,” in International
Conference on Software Engineering, St. Louis, MO,
USA, 2005, pp. 580-586.

[4] N. Nagappan and T. Ball, “Static Analysis Tools as Early
Indicators of Pre-Release Defect Density,” in
International Conference on Software Engineering
(ICSE), St. Louis, MO, 2005.

[5] N. Nagappan, L. Williams, M. Vouk, J. Hudepohl, and
W. Snipes, “A Preliminary Investigation of Automated
Software Inspection,” in IEEE International Symposium
on Software Reliability Engineering (ISSRE), St. Malo,
France, 2004, pp. 429-439.

[6] S. Osinski, J. Stefanowski, and D. Weiss, “Lingo: Search
Results Clustering Algorithm Based on Singular Value
Decomposition,” in Advances in Soft Computing,
Intelligent Information Processing and Web Mining,
Zakopane, Poland, 2004, pp. 359-368.

[7] T. Will, “Introduction to the Singular Value
Decomposition.” vol. 2006: UW-La Crosse, 1999.

[8] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J.
Hudepohl, and M. Vouk, “On the Value of Static
Analysis for Fault Detection in Software,” IEEE
Transactions on Software Engineering, vol. 32, no. 4, pp.
240-253, April 2006.

568

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

