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Abstract— Accurate power maps are useful for power model
validation, process variation characterization, leakageesti-
mation, and power optimization, but are hard to measure
directly. Deriving power maps from measured thermal maps
is the inverse problem of the power-to-temperature mapping,
extensively studied through thermal simulation. Until recently
this inverse heat conduction problem has received little atten-
tion in the microarchitecture research community. This paper
first identifies the source of difficulties for the problem. The
inverse mapping is then performed by applying constraints
from microarchitecture-level observations. The inherent large
sensitivity of the resultant power map is minimized through
thermal map-filtering and constrained least-squares optimiza-
tion. Choices of filter parameters and optimization constraints
are investigated and their effects are evaluated. Furthermore,
the paper highlights the differences between the grid and block
modeling in the inverse mapping which were often ignored by
previous schemes. The proposed methods reduce the mapping
error by more than 10× compared to unoptimized solutions.
To our best knowledge this is the first work to quantitatively
evaluate and minimize the noise effect in the temperature to
power mapping problem at the microarchitecture level for both
grid and block mode, and for the steady and transient case.

I. M OTIVATION FOR POST-SILICON POWER MAPS

The “power wall” has become a critical performance lim-
iter for integrated circuit design. Excessive power consump-
tion leads to short battery life, higher utility costs, large cur-
rents in interconnect, and elevated temperatures. Moreover,
the very power models which are intended to enable power-
aware analysis and optimization are often inaccurate—in
part because of changes in leakage power due to parameter
variation—and need to be validated against silicon measure-
ment. If they could be reliably derived, accuratepower maps
(the temporal and spatial power distribution) would provide
an avenue not only to perform post-silicon power model
validation, but also to characterize process variation over
large regions, complementary to timing based methods like
maximum frequency or critical path delay monitoring [1].
Per unit power consumption could also be used to inform
power/energy-aware task scheduling or reconfiguration, and
to capture long term wearout mechanisms and proactively
eliminate potential reliability and thermal hazards.

Unfortunately, direct fine grain power measurement is ex-
pensive and difficult, and event-counter based power proxies
cannot capture workload induced power variation [2]. How-
ever, accurate and high resolutionthermal maps (temporal
and spatial temperature distribution) can be measured using
infra-red (IR) cameras or thermal sensors. While thedirect
heat conduction problem (DHCP) of solving thermal maps
from power maps is essential for thermal simulation [3], [4],
theinverse heat conduction problem (IHCP) of solving power
maps from thermal maps is a possible approach to obtaining
power maps without the need for actual power measure-
ments. The importance of the microarchitecture level IHCP
has only been recently recognized [5], [6], [7], [8]. While the
power-to-temperature mapping is a pre-silicon design step,
the temperature-to-power mapping is a “closing the loop”
post-silicon task, deriving the very power maps needed to

characterize process variation, validate power models, and
support new techniques to manage runtime power dissipation
on a per-chip basis.

Though IHCP is “simply” the inverse of the well-studied
DHCP, it is also known as a challenging problem [9],
mainly due to the large sensitivity of power maps to ther-
mal measurement noise (or uncertainty). Previous work on
microarchitectural IHCP (named ‘MIHCP’ henceforth) [5],
[6], [7] proposed algorithms without evaluating the impact
of input temperature noise, which can come both from
thermal measurement or from averaging and congregating.
Fortunately, there are a number of characteristics of the
MIHCP that make it more tractable than the general IHCP.

In this paper, we present a novel methodology for solving
the steady-state temperature-to-power mapping problem in
integrated circuits in the presence of thermal map noise. Our
approach applies constraints and filters to the IHCP problem
based on simple observations from real silicon systems.
For example, all power dissipators must be in the silicon
layers of a packaged chip, and spatial temperature must be
continuous. This transforms the direct inverse problem into
an over-constrained optimization problem, and, as a result,
we are able to derive accurate power maps in the presence of
thermal map noise, reducing error by up to 10× compared
to unoptimized solutions. Moreover, unlike prior work, our
methodology is applicable to both common types of compact
thermal models prevalent in the literature, the block model
and the grid model.

The IHCP is formulated in Section II and its challenges
discussed in Section III. Section IV present unoptimized and
optimized solution for the steady state. The transient case
is analyzed in Section V. Section VI comments on related
work and Section VII concludes the paper.

II. T HERMAL CONDUCTION IN M ICROARCHITECTURE

In microarchitecture studies, compact thermal modeling is
extensively adopted [3], [4], [5] for easy modeling and fast
computation compared to distributed models that have to be
solved by finite difference or finite element methods. The
steady-state heat conduction is modeled as

AR ·P = T,or
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(1)
P andT denote power and thermal maps respectively.AR

is the thermal resistance matrix. The name comes from the
well known electrical-thermal analogy in compact modeling,
where heat conduction is modeled with lumped RC (resistors
and capacitors) circuits, and temperature and power are
analogous to voltage and current, respectively. Capacitors are
missing in Eq.1 since they have no effect in steady state (the
transient case will be discussed later).AR can be obtained
either through measurement [5], [8] or modeling [3].

In Eq.1,pi andti (1≤ i≤ n) are the power and temperature
for a geometric nodei in the floorplan. A node represents
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a functional block or a geometric grid cell. Eq.1 states that
temperature at nodei (ti) is influenced by power dissipated by
nodes (p1, p2, ..., pn) with weighting factorsai1, ...,ain. The
direct problem, DHCP, tries to findT from P. The inverse
problem, IHCP, tries to solveP from T . The IHCP:

P = A−1
R T = ACT (2)

is mathematically straightforward but turns out to be
challenging in the presence of thermal noise.

III. PROPERTIES ANDCHALLENGES OFMIHCP

The temperature-to-power mapping is known as an ‘ill-
posed’ problem in that the solution is very sensitive to
input noise [9]. This high sensitivity at the microarchitecture
level has not been discussed in previous work [5], [6],
[7]. Appropriate optimization can only be applied once the
source of the sensitivity is understood. This section dismisses
two plausible reasons and identifies the source of the large
sensitivity in the steady state MIHCP described by Eq.2.

The first common difficulty in solving a linear system
like Eq.2 is the large matrix size. Iterative methods are
often used to avoid intractable computation time, but could
have convergence problems that result in solution instabil-
ity. However, extremely large thermal conduction/impedence
matrices are most likely not needed in MIHCP. Recent
work [10] shows that when power source sizes are 1.5
times larger than the silicon die thickness, the die can be
modeled as a homogeneous 2-D plane with all the metal
layers and detailed circuitry ignored. Furthermore, for state-
of-the-art microprocessors with realistic packaging, power
map granularity of around 400 microns is sufficient for 1◦C
resolution in thermal maps. For many applications mentioned
in Section I even coarser power maps are sufficient.

Even with small sizes, taking the inverse or decomposition
of an ‘ill-conditioned’ or singular matrix can lead to large
sensitivity or non-uniqueness in solution due to numerical
instability or singularity. The numerical stability of a matrix
can be characterized by thecondition number (the ratio of
the largest to the smallest singular value). Large condition
numbers mean small input errors can cause large output
errors. However, a matrix has the same the condition number
as its inverse. Thus the thermal conduction and resistance
matrix AC andAR would cause the same instability in DHCP
and IHCP. Since the large sensitivity to input noise does not
exist in DHCP, it cannot be solely explained by numerical
instability in the inverse problem.

The following example demonstrates the large sensitivity
in the MIHCP even without large matrix sizes and numerical
instability problems. The simulation setup is explained in
Section IV-A. We first applyP=(26 97 150) (Watts) to the
three units respectively in the floorplan in Fig.1(a), and
solve the steady state temperature to beT=(41.7 46.7 65.7)
with Eq.1 (without loss of generality we set the ambient
temperature to 0 (Kelvin) for all simulations in this paper,so
only the temperature raise due to on-chip power dissipationis
shown). Slightly perturbing power numbers toP=(25.8 94.3
150.3) and solving again forT yields a change of less than
2%. Next we start fromT and solve forP, with the intent
of arriving at, or close to, the original power map. Without
thermal noise the obtained power map matches the original
values perfectly with Eq.2. However, when the thermal map
is slightly perturbed toT=(41.4, 45.4 65.8), the power map
becomesP=(4.8 60.7 103.2), with a mean error of more than
50% and maximum error of more than 80%!

What is the reason for the large sensitivity? A close
examination of the above and other examples points to the
relatively large elements with opposite signs of elements in
AC. The intuition is that power can change abruptly both

(a) A simple example (b) Alpha 21364 (EV6)

Fig. 1: Two floorplans in HotSpot download package.

spatially and temporally, but temperature cannot. Trying to
reconstruct high frequency components in power maps from
low frequency thermal maps renders the problem extremely
sensitive to input thermal noise even without large matrix
sizes or condition numbers. The steady-state analysis above
only demonstrates sensitivity due to spatial high frequency
in power maps. The transient analysis in Section V further
addresses temporal high-frequency induced sensitivity.

IV. SOLVING MIHCP IN STEADY-STATE

Our goal is to solve the power map with minimum error
when thermal map uncertainty or noise are present. While
IHCP is very sensitive to thermal-map noise, there are a
number of opportunities to use additional information—
constraints—specific to the inverse problem in a packaged
chip to manage the effect of that noise on the derived
power map. These constraints all proceed naturally from
observations about packaged chips, and include, for example,
the fact that all power is dissipated only in the silicon layers.
We have performed a variety of simulations to quantify the
effect of these constraints in isolation and collectively,all in
comparison with a direct solution of the MIHCP.
A. Simulation Setup

In our simulations, we first use HotSpot [3] to derive
the thermal conduction matrixAC, given a floorplan and
packaging details. We then use Matlab (2009b) to (1) derive
the temperature mapT using the power mapP, (2) permuteT
with Gaussian distributed noise, and (3) derive the observed
power mapP′. All of our constraints and optimizations are
implemented in Matlab.

We elected to use a compact thermal model to generate
AC for several important reasons. Previous work on inverse
mapping obtained thermal maps from either IR cameras or
thermal sensors [5], [6], [8], [11]. In either case, errors cannot
be quantified without also knowing the input power map,
which is challenging for aforementioned reasons. Employing
a compact thermal model gives us the flexibility to evaluate
the influence of variable thermal map noise on the derived
power maps relative to the original power map. Of course,
our optimizations can be applied to temperature measure-
ments derived in any fashion.

A compact thermal model also gives us the flexibility
to explore the effect on power map derivation of different
approaches to thermal measurement, such as the choice of
a block mode or grid mode thermal model.Block mode
supports non-uniform node sizes in silicon, whilegrid mode
imposes a uniform, fixed node size. The former is a better
proxy for the nonuniformly measured thermal maps from
sensors placed over critical components or hotspots, while
the latter approximates the uniformly measured thermal maps
from IR cameras or uniformly distributed thermal sensors.
HotSpot can generate the appropriateAC in either case.
B. Unoptimized MIHCP

We begin our simulations using the 22cm×22cm floorplan
of a testchip developed at UCSC [12], containing 10× 10
identical square blocks. We randomly assign power values
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Fig. 2:Steady state inverse mapping. Thermal noiseµ = 0,σ = 5%

varying from 0.1W to 1.5W to all 100 blocks and the steady
state thermal map is obtained with Eq.1. Thermal noise is
modeled with a normal distribution with mean (µ) set to 0,
since constant offsets can be removed through calibration.
Fig.2(a) illustrates the large error that results from Eq.2
(Unopt vs. Actual Power). The x and y axes denote the blocks
and power values for each block respectively.

C. Initial Optimization Using Least Squares

Applying Eq.2 without any optimization yields large errors
as shown in Section III and Fig.2(a). Our first observation
is that none of the nodes from the TIM (thermal interface
material), the heat spreader and the heat sink dissipate power.
In reality temperature at these nodes may be obtained with a
thermal testbed. We can then rewrite Eq.2 in a block fashion:

[

AR,si AR,12
AR,21 AR,pk

][

Psi
Ppk

]

=

[

Tsi
Tpk

]

(3)

where subscriptsi denotes nodes on the silicon die andpk
denotes nodes associated with cooling and packaging that
have zero power dissipation.Ppk contains only zeros and can
be removed. least-squares (LS) optimization can be applied
to the following over-constrained equation:

[

AR,si
AR,21

]

[

Psi
]

=

[

Tsi
Tpk

]

(4)

Fig.2(a) illustrates the improvement from applying the least-
squares (LS) optimization by Eq.4. Detailed data are reported
later in Section IV-F.

Without thermal noise, the results from Eq.2 match the
original power map perfectly. With thermal noise, the un-
certainty gets amplified by the large entries inAC leading
to large power map errors. On the other hand, the result of
LS is constrained in a subspace that contains the noise-free
solution and the thermal noise simply perturbs that solution
in the subspace.
D. Finding More Constraints for Optimization

Turning Eq.1 into anover-constrained problem by utiliz-
ing microarchitectural information significantly improves the
MIHCP solution. Additional properties can be exploited to
further improve the optimization. Constraints can be thought
of as guiding the optimization away from undesired results.

We observe in Fig.2(a) that unconstrained LS results in
some small but physically impossible negative power num-
bers. Furthermore, although power monitoring at the block
level incurs design costs, the total chip power consumption
is usually available at the power pins, and can serve as
another constraint. We incorporate these constraints intothe
LS solver in Matlab, examine their effects. Fig.2(b) plots
the mapping results for EV6 floorplan with 30 functional
units shown in Fig.1(b). Noticeable mapping improvement
is achieved on node 28 from the constrained LS. Detailed
results are reported later in Section IV-F. The constraints
not only help eliminate negative or non-physical values
individually, but also improve the solution as a whole.
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(b) Thermal noiseµ = 0,σ = 25%

Fig. 3:Gaussian filter parameter study with different thermal noise.
Optimum exists forσ . Odd h better than even numbers.

Lower and upper bounds of the power values for each
block can also be added to the collection of constraints.
However, it is not clear how conveniently or accurately these
values could be obtained, and they are not included here. In
general, the more constraints are applied in the optimization,
the more likely that the results are close to actual values,
although usually at a larger computational cost, which is
discussed in Section IV-I.
E. Thermal Map Preprocessing

Power can change abruptly from block to block, but
temperature has to be continuous and changes gradually
over space. Therefore a low-pass filter can be applied to
the thermal map to get rid of high frequency thermal noise
before the inverse mapping. This has to be performed with
knowledge of the floorplan since the 2-D spatial information
is lost in the 1-D representation in Eq.1. In image processing,
Gaussian filters are often used to ‘blur’ images to get rid
of image details and noise [13]. The impulse response of
a Gaussian filter is the standard Gaussian function. For a
digital Gaussian filterH in Matlab, two parameters need to be
specified, i.e., the filter sizeh (a square 2-D filter is assumed)
and the standard deviationσ f of the Gaussian function.

Fig.3 shows the filter effect on thermal map noise with
varying filter parameters for the UCSC test chip. First,
it is seen that the low pass filter is more effective with
large thermal noise. For carefully chosen parameters, noise
reduction is over 70% forσ = 25%, and 20% forσ = 5%.
On the other hand, bad parameters can actually increase the
error, especially when only small noise exists. For example
filtering a noise-free thermal map would only introduce
errors. Second, the optimal value forσ f increases with the
thermal noiseσ , indicating that with large thermal noise
more weight should be given to neighboring nodes for
filtering. Third, odd values ofh are better than even ones
due to the symmetry in the filtering. Finally, optimal values
of h increase with thermal noise for the same reason asσ f :
the error almost flattens out for large odd-numberedh. In
fact the error increases slowly ash gets larger than 11 in
both figures in Fig.3, since the chip is divided into a 10×10
grid and any weight on non-existent nodes is likely to only
increase error. Therefore the optimumh should be set to the
odd number closest to the grid size, in this case 11.
F. Steady State MIHCP Optimization Results

We first consider two extreme cases. Thermal map noise
with σ = 1.67% (or 3σ = 5%, meaning with 99% confidence
level the noise is within 5% of the true value) represents a
highly accurate thermal map, which can be the case for some
IR cameras [5], [6] or well designed thermal sensors [5],
[11]. The other extreme withσ = 25% is also considered
for demonstration and extrapolation purposes. Practical cases
can fall anywhere in-between.

Five metrics are included in Table I where mapping
results are reported for the UCSC test chip [12] with the



experimental setup described in Section IV-C. For unbiased
evaluation, noise numbers are generated 1000 times and
averaged data are reported. The 1st and 2nd columns show
the maximal and averageabsolute error (in Watts). The 3rd
column shows the averagerelative error. The relative error
for large and small power nodes are evaluated in the last
two columns. ‘Large power nodes’ are nodes that dissipate
power more than half the maximal per block power, and
‘small power nodes’ are the rest. Note that the actual values
of ‘avg rl’ usually decrease with a higher threshold in the
‘large power’ definition, simply due to the ‘relative’ nature.
In practice, the power estimation for large power nodes is
usually the most important. If the MIHCP is solved for power
model validation or process variation characterization, afew
power sources can be formed through scannable focused
laser beams [5] or artificial benchmarks, which essentially
create some ‘large power nodes’. Therefore, we focus more
on reducing errors for these nodes.

algrm max abs avg abs avg rel avg rl avg rs

un- 2.66/39.9 0.76/11.5 1.30/19.6 0.72/10.8 2.08/31.2
opt 0.40/5.95 0.057/0.86 0.13/1.93 0.072/1.08 0.28/4.25

LS 0.29/4.28 0.08/1.22 0.14/2.09 0.076/1.15 0.22/3.34
0 0.044/0.65 0.064/0.10 0.014/0.22 0.0078/0.12 0.032/0.47

LS 0.28/3.40 0.081/0.81 0.14/1.19 0.076/0.85 0.22/1.65
1 0.044/0.66 0.065/0.05 0.013/0.13 0.0078/0.068 0.029/0.30

LS 0.29/3.39 0.082/1.22 0.14/2.09 0.076/1.15 0.22/3.33
2 0.043/0.66 0.0065/0.10 0.014/0.22 0.0078/0.12 0.032/0.47

LS 0.29/3.39 0.081/0.81 0.14/1.19 0.076/0.85 0.22/1.65
3 0.044/0.66 0.0064/0.05 0.013/0.13 0.0078/0.068 0.029/0.30

LS 0.28/2.35 0.081/0.67 0.14/1.10 0.076/0.65 0.22/1.70
3F 0.043/0.41 0.006/0.045 0.014/0.12 0.0077/0.058 0.029/0.27

TABLE I: Inverse mapping error by different algorithms for UCSC
test chip. Thermal noiseµ=0, σ=1.67%/25% (reported on left/right
in each entry). ‘Un-opt’ = un-optimized inverse mapping. For LS, 0
= no constraint,1 = constraint ‘P≥0’. 2 = constraint ‘P=Psum’. 3 =
both constraints.3F = both constraints and filter. Mean/deviation are
reported in upper/lower rows for each algorithm.max/avg denote
maximal/average.rl/rs denote relative error for large/small power
nodes. All values are obtained from 1000 random samples.

Compared to directly solving Eq.1, unconstrained LS
alone (Eq.4) reduces errors by almost 10×. Constrained LS
with non-negative power (P ≥ 0) further leads to another
26% reduction for large power nodes in for very noisy
thermal maps (σ=25%). This is because the large solution
sensitivity often leads to negative values in the solution when
significant noise exists in input thermal maps, which can be
seen in both examples in Fig.2. TheP≥ 0 constraint not only
removes the negative values but also improves the solution
on the whole. For this example the total power dissipation
constraint (P = Psum) has little effect both by itself and when
combined withP ≥ 0, regardless of the thermal noise level.
Finally, when filtering is applied before the constrained LS,
the error is reduced by another 24% for large power nodes
with σ=25% thermal noise. As discussed in Section IV-E,
filtering is much more effective when significant thermal
noise is present. Notice that filtering may reduce error for
large power nodes at the expense of increased error for small
power nodes, since the large error added on the peaks of
thermal maps is likely to be smoothed out, but the smoothing
effect can potentially alter small temperature values. Finally,
the deviation values in Table I are also important since they
indicate the confidence inteval of mapping results.

Fig.4(a) shows how power map error changes with the
noise magnitude in the thermal map for the UCSC test chip.
Again we focus more on the large power nodes for reasons
mentioned earlier, so the power map noise shown here is
essentially the ’avg rl’ in Table I. The unoptimized inverse
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Fig. 4: Power map noise vs. thermal map noise in block mode
inverse mapping. Unoptimized results omitted due to large errors.

mapping is not included since its error is more than 10×

larger. It can be seen that the power map noise increases
almost linearly with thermal map noise. Constrained LS and
spatial filtering reduce mapping error effectively across all
thermal noise levels.

The same simulations are performed for the irregular
Alpha 21364 (EV6) floorplan using the ’gcc’ power trace
mentioned in Section IV-D. The results are plotted Fig.4(b)
shows much smaller power map error than Fig.4(a), due to
the smaller number of total nodes and ‘large power nodes’.
Notice that for this example we lowered the threshold of
‘large power’ from 1/2 to 1/3 of the maximal per-node
power to include more nodes in the error characterization.
The four units considered ‘large power nodes’ are L2 (level-
2 cache), I-Cache (instruction cache), D-Cache (data cache)
and IntExec (integer execution unit), which together dissipate
64.3% of the total steady state power. For thermal noise with
σ = 1.67 the relative error for large power nodes and all
nodes are 2.77% and 4.80% respectively.

We observe in both Fig.4(b) and Fig.2(b) that theP = Psum
constraint now becomes more effective thanP ≥ 0, which is
reversed from Fig.4(a). Intuitively, when power is dissipated
from only a few nodes, as the case in Fig.2(b) or when
laser beams [5] and artificial benchmarks are used,P = Psum
pushes the optimization towards the true values. However,
when the power dissipation is distributed more uniformly as
in Fig.2(a), errors in the power map caused by the zero-
mean thermal noise are more likely to cancel each other
when summed together, renderingP = Psum less effective.
NonethelessP ≥ 0 is very effective when large thermal map
noise leads to negative values with unconstrained LS. There-
fore it is always safe to apply both constraints if possible.
Finally, notice that spatial filtering cannot be applied directly
to the irregular floorplans like EV6.

G. MIHCP in Grid Mode
Having one power number for each functional block is

spatially ‘biased’, since block areas vary significantly. For
example, in Fig.1(b), L2 is extremely large compared to
other blocks but is underrepresented by a single node in
the block-mode thermal and power map in Eq.1. To obtain
more spatially uniform information across the whole chip,
and get insight into power dissipation within large blocks and
capture local hotspots with large power density, the inverse
temperature-to-power mapping can be carried out in grid
mode. This section studies the MIHCP in grid mode with
the irregular EV6 floorplan for different grid granularities.

The steady state temperature is first computed in block
mode, and then in grid mode with 8×8 and 16×16 grid sizes.
The ‘large power’ threshold is still set to 1/3, yielding 9 and
17 grid cells for the 8×8 and 16×16 cases respectively. None
of these cells fall into the big L2 block now, since the power
of a block is divided equally among the grid cells covering
it, and the power density of L2 is low. Fig.5 plots grid mode
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Fig. 5:Power map noise vs. thermal map noise in grid mode inverse
mapping (block mode results plotted for reference).

mapping results. It can be seen that using grid mode itself
does not improve mapping accuracy. However, the low pass
filter can now be applied to the regular floorplan and its
effectiveness is demonstrated again.

H. Power Map Conversion Between Block and Grid Modes

Power maps in both block and grid modes are useful. For
example, power models or measured data from power prox-
ies and performance counters can be validated against the
former. Knowledge of process variation or the within-block
power profile is better represented by the latter. For power-to-
temperature mapping, thermal simulators like HotSpot often
perform computation in grid mode for accuracy, and then
convert results to block mode if it is desired. The conversion
simply extracts the maximal or average grid temperature in
the block as the block temperature.

However, special caution should be taken for the inverse
mapping. For instance, with the gcc power trace and grid
sizes of 8×8, 16×16 and 32×32, simply assuming equal
power density and taking the average of overlapping grids
to convert the grid mode power map to block mode incurs
26.51%, 17.20% and 9.76% error for D-Cache, the largest
power dissipator, even though it covers more than 30 grid
cells in the 32×32 case. This is again due to the discontinuity
of power maps. For example, in the 32×32 case, even though
the D-Cache fully covers 30 grid cells internally, it still
has 19 boundary cells, 7 of them shared with the large L2
with power density 40 times smaller than the D-Cache. The
conversion is less of a problem for thermal maps.

I. Analysis on Computational Complexity

Spatial filtering of a thermal map withn units takes a
constant timeO(n2) in the worst case . The computational
complexity of our scheme is dominated by the LS optimiza-
tion. In our current implementation, both the unconstrained
and constrained least-squares problems are solved in Matlab.
The exact computational complexity is difficult to quantify
since Matlab uses different algorithms for problems of differ-
ent scales and sparsity. Applying constraints incurs overhead
since iterative algorithms like quadratic programming and
preconditioned conjugate gradient (for medium and large
scale problems respectively) are used. However in the worst
case the computational complexity is bounded byO(n3), the
cost of the direct inverse of a dense matrix.

Our simulations are performed on a laptop with Intel Core
Duo CPU 2.0GHz, 2GB RAM. For the 16×16 grid mode for
the EV6 floorplan which results inAC of 1036×1036, the
unconstrained LS spends around 0.1s CPU time on solving
Eq.4 once. Applying both constraints ofP ≥ 0 andP = Psum
increases the cpu time to 11s if algorithms of medium scale
are used. Enabling large scale algorithms reduces the cpu
time drastically to 0.3s but increases the error on large
power nodes by about 8%. All data in Table I are obtained
through medium scale solvers to show what can be achieved.
However, mapping accuracy can be traded for computation
speed, which also depends on the implementation platform.
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Fig. 6: Transient inverse mapping without and with noise.

V. MIHCP IN THE TRANSIENT CASE

Dynamic power model validation or management might
desire transient power maps, which could be obtained by
three different methods: (1) solving the steady state MI-
HCP contiguously as in [5], [6]; (2) solving the steady
state MIHCP for each architecture event individually and
combining them with event counters; (3) directly solving the
transient MIHCP from transient thermal maps. Methods 1-2
only require solving the steady state MIHCP which has been
addressed in Section IV. While we propose method (2) as a
better approach to (1), this section identifies the challenges
and future research directions for the transient MIHCP, which
has not been discussed extensively in prior studies.

Transient heat conduction can be modeled as
C

dT
dt

+ACT = P, (5)
whereC is a diagonal matrix containing thermal capacitors.

AC is the same as in Eq.1. Eq.5 can be used directly for MI-
HCP, with dT

dt approximated with the forward, backward or
central difference methods. We choose the central difference
method because of its smaller truncation error.

We start with the floorplan in Fig.1(a). Both units 2 and
3 dissipate 50 Watts power constantly, while unit 1 is has
power spikes shown in Fig.6(a). An important observation
is that even without thermal noise, the derived power trace
does not perfectly match the original. The largest mismatchis
more than 10% at the first peak and there is some overshoot
at the end of the second spike. The inherent error is from
the approximation ofdT

dt and does not exist in steady state.
In Fig.6(b), thermal noise ofµ=0, σ=1.67% is added.

Similar to the steady state case, the noise amplification effect
in the inverse mapping is obvious. Different from the steady
state case, the noise actually has dual effects in Eq.5. It not
only perturbs the temperatureT , but also its derivativedT

dt . To
evaluate their individual impact, we examine how the power
map would change if we were able to remove the noise in
dT
dt . In fact, simply applying the central difference method on
the originalT significantly improves the result in Fig.6(b),
revealing that reducing the error indT

dt is the key to solving
the transient MIHCP.

However, the large sensitivity todT
dt poses practical diffi-

culty. Even a high frame rate IR camera can only achieve
125fps [6] (8ms/frame), while modern microprocessors run
at multi-GHz (clock cycle less than 1ns). The simulation in
Fig.6(b) is performed with thermal data of 0.33MHz, much
faster than IR imaging. On the other hand, thermal sensors
usually have an inherent tradeoff between accuracy and
speed. A newly reported thermal sensor achieves temporal
resolution of 1ms with 5◦C maximum error with process
and power supply variation [11]. While this combination of
speed and accuracy is fast enough for thermal throttling, the
above result shows that it may not be enough for transient
temperature-to-power mapping. Therefore, transient power



maps could only be obtained from steady state power maps
as discussed in the beginning of this section.

If reasonably accuratedT
dt values are available, in principle

all techniques in the steady state MIHCP could be applied.
Moreover, filtering can be applied temporally since temper-
ature at any node must change smoothly. By splitting the
silicon and package nodes in Eq.5 and getting rid of package
nodes, a LS problem can be formulated as:
[

AR,si
AR,21

]

[

Psi
]

=

[

AR,siCsi 0
0 AR,pkCpk

][

dTsi
dTpk

]

+

[

Tsi
Tpk

]

(6)
VI. RELATED WORK

For DHCP at the microarchitecture level, extensive re-
search has been performed and tools developed, yet MIHCP
has not caught much attention until very recently.

Parameter fitting based on the genetic algorithm (GA) is
proposed for MIHCP in [6]. In this framework, mapping
accuracy and granularity increase with parameter number,
but meanwhile the search space and thus the complexity
of GA increases exponentially. The GA based method tar-
gets MIHCP only in the block mode and would become
intractable for the grid mode. Moreover, significant work
on benchmarking and data collection are needed for GA to
explore the search space. A maximum discrepancy of 75%
is observed for total power consumption in a single frame.

The work in [7] proposes to derive power maps from
thermal maps with image processing algorithms. Finite el-
ement simulations are still required and iterative solversare
needed. Treating power and thermal maps as images loses
microarchitectural information on functional blocks and is
valid only for grid mode. As pointed out in Section IV-H,
conversion between the two modes can introduce large errors,
but a very fine grid would significantly increase runtime. A
maximum of more than 60% relative error for peak values
in the derived power map is reported.

An adaptive resolution multigrid algorithm is proposed
in [14] for solving IHCP for 3D devices. A number of power
maps are obtained by varying device parameters and the
one closest to the measured power is chosen. The algorithm
is computationally intractable for MIHCP due to the large
number of physical parameters and heat sources.

The SIMP methodology [5] from IBM captures thermal
maps from IR cameras and solves power maps through
LS with solutions constrained in certain ranges. It is not
explained how the LS problem is formulated and what
constraints are applied, both of which are described at length
in this paper. More importantly we qualitatively evaluate
the individual and combined effects of these constraints on
power map noise minimization.

The concurrent work [8] published at the same time when
this paper is being finalized also proposes thermal map
filtering and optimization techniques for reducing error inthe
derived power maps. Besides the differences in the thermal
map filtering and optimization schemes, the experimental
setting in [8] makes it difficult to evaluate how output power
map noise tracks input thermal map noise. On the contrary,
using a thermal simulator as in this work provides more
flexibility and better knowledge in evaluating the mapping
optimization effectiveness with different noise types andlev-
els. Moreover only a regular grid floorplan is evaluated in [8],
while we further point out the importance of distinguishing
grid and block mode mapping. In addition we also discuss
the transient case IHCP and demonstrate its major challenge.

To our best knowledge this is the first work to quanti-
tatively evaluate and minimize the noise effect in the tem-
perature to power mapping problem at the microarchitecture

level for both grid and block mode, and for the steady and
transient case.

VII. C ONCLUSIONS ANDFUTURE WORK

Fine-grain power maps at the microarchitecture level are
useful for many purposes including validating power models,
characterizing parameter variation, estimating leakage and
maximizing power efficiency. The general temperature-to-
power mapping is an ‘ill-posed’ problem due to the large
sensitivity of solved power values to input thermal noise.
This sensitivity arises from the large range of power values
in the power map. By leveraging properties at the microar-
chitecture level we have shown that careful thermal map
filtering and constrained least-squares optimization signifi-
cantly reduce power map error when thermal map noise is
present: compared to unoptimized mapping, our approach
can reduce mapping errors by more than 10×. Our approach
is applicable to both block and grid models. However,
unlike for temperature maps which are spatially continuous,
conversion between blocks and grids for power maps could
introduce large errors. We further point out that the key in
solving the transient MIHCP with input thermal noise is to
address the error indT

dt rather than simplyT .
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