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Abstract— Accurate power maps are useful for power model
validation, process variation characterization, leakage esti-
mation, and power optimization, but are hard to measure
directly. Deriving %ower maps from measured thermal maps
is the inverse problem of the power-to-temperature mapping
extensively studied through thermal simulation. Until recently
this inverse heat conduction problem has received little d@én-
tion in the microarchitecture research community. This pager
first identifies the source of difficulties for the problem. The
inverse mapping is then performed by applying constraints
from microarchitecture-level observations. The inherentlarge
sensitivity of the resultant power map is minimized through
thermal map-filtering and constrained least-squares optinea-
tion. Choices of filter parameters and optimization constrants
are investigated and their effects are evaluated. Furtherrore,
the paper highlights the differences between the grid and laick
modeling in the inverse mapping which were often ignored by

characterize process variation, validate power modeld, an
support new techniques to manage runtime power dissipation
on a per-chip basis.

Though IHCP is “simply” the inverse of the well-studied
DHCP, it is also known as a challenging problem [9],
mainly due to the large sensitivity of power maps to ther-
mal measurement noise (or uncertainty). Previous work on
microarchitectural IHCP (named ‘MIHCP’ henceforth) [5],
[6], [7] proposed algorithms without evaluating the impact
of input temperature noise, which can come both from
thermal measurement or from averaging and congregating.
Fortunately, there are a number of characteristics of the
MIHCP that make it more tractable than the general IHCP.

In this paper, we present a novel methodology for solving

previous schemes. The proposed methods reduce the mappingthe steady-state temperature-to-power mapping problem in

error by more than 10x compared to unoptimized solutions.
To our best knowledge this is the first work to quantitatively
evaluate and minimize the noise effect in the temperature to
power mapping problem at the microarchitecture level for bah
grid and block mode, and for the steady and transient case.

I. MOTIVATION FOR POST-SILICON POWER MAPS

integrated circuits in the presence of thermal map noise. Ou
approach applies constraints and filters to the IHCP problem
based on simple observations from real silicon systems.
For example, all power dissipators must be in the silicon
layers of a packaged chip, and spatial temperature must be
continuous. This transforms the direct inverse problera int
an over-constrained optimization problem, and, as a result

The “power wall” has become a critical performance lim-we are able to derive accurate power maps in the presence of
iter for integrated circuit design. Excessive power congum thermal map noise, reducing error by up toxi@ompared
tion leads to short battery life, higher utility costs, largur- to unoptimized solutions. Moreover, unlike prior work, our
rents in interconnect, and elevated temperatures. Morgovmethodology is applicable to both common types of compact
the very power models which are intended to enable powethermal models prevalent in the literature, the block model
aware analysis and optimization are often inaccurate—iand the grid model.
part because of changes in leakage power due to parametefhe IHCP is formulated in Section Il and its challenges
variation—and need to be validated against silicon measurdiscussed in Section Ill. Section IV present unoptimized an
ment. If they could be reliably derived, accurptmver maps optimized solution for the steady state. The transient case
(the temporal and spatial power distribution) would previd is analyzed in Section V. Section VI comments on related
an avenue not only to perform post-silicon power modelork and Section VII concludes the paper.
validation, but also to characterize process variationr ove
large regions, complementary to timing based methods Iike”' THERMAL_CONDUCT'O_N N M'CROARCH'TECTURE_ _
maximum frequency or critical path delay monitoring [1]. In microarchitecture studies, compact thermal modeling is
Per unit power consumption could also be used to inforr@xtensively adopted [3], [4], [5] for easy modeling and fast
power/energy-aware task scheduling or reconfiguratiod, asomputation compared to distributed models that have to be
to capture long term wearout mechanisms and proactivepplved by finite difference or finite element methods. The
eliminate potential reliability and thermal hazards. steady-state heat conduction is modeled as

Unfortunately, direct fine grain power measurement is ex-

) A : a1 a2 ain (1 t
pensive and difficult, and event-counter based power psoxie a1 Ay aon P2 t
cannot capture workload induced power variation [2]. How- Ar-P=T.or [ = = =0
ever, accurate and high resolutitimermal maps (temporal an  amp am Pn t

and spatial temperature distribution) can be measuredjusin
infra-red (IR) cameras or thermal sensors. While divect P andT denote power and thermal maps respectivg@/.
heat conduction problem (DHCP) of solving thermal maps is the thermal resistance matrix. The name comes from the
from power maps is essential for thermal simulation [3], [4]well known electrical-thermal analogy in compact modeling
theinverse heat conduction problem (IHCP) of solving power where heat conduction is modeled with lumped RC (resistors
maps from thermal maps is a possible approach to obtainimgd capacitors) circuits, and temperature and power are
power maps without the need for actual power measuranalogous to voltage and current, respectively. Capacéiiar
ments. The importance of the microarchitecture level IHChissing in Eq.1 since they have no effect in steady state (the
has only been recently recognized [5], [6], [7], [8]. Whilet transient case will be discussed latehi can be obtained
power-to-temperature mapping is a pre-silicon design, stepither through measurement [5], [8] or modeling [3].

the temperature-to-power mapping is a “closing the loop” In Eq.1,p; andtj (1 <i < n) are the power and temperature
post-silicon task, deriving the very power maps needed tor a geometric node in the floorplan. A node represents
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a functional block or a geometric grid cell. Eq.1 states that Unit1 | Unit3 =
temperature at noddt;) is influenced by power dissipated by
nodes 01, p2,..., Pn) With weighting factorsay, ..., ajn. The

direct problem, DHCP, tries to fin@ from P. The inverse Unit2
problem, IHCP, tries to solve from T. The IHCP:
P=AT =AT 2)
is mathematically straigﬁwtforward but turns out to be
challenging in the presence of thermal noise. (@) A simple example (b) Alpha 21364 (EV6)
[1l. PROPERTIES ANDCHALLENGES OFMIHCP Fig. 1: Two floorplans in HotSpot download package.

The temperature-to-power mapping is known as an ‘il 4y ;
posed’ problem in that the solution is very sensitive tspatlally and temporally, but temperature cannot. Trying t

! ) o oo . Qeconstruct high frequency components in power maps from
:npult rr110|se [93' gh's h'é].h sensccjlv[ty at the mlcroarﬁhttsﬂe olow frequency thermal maps renders the problem extremely
evel has not been discussed in previous work [S], [Blsensitive to input thermal noise even without large matrix

[7]. Appropriate optimization can only be applied once the;j;eq o condition numbers. The steady-state analysiseabov
source of the sensitivity is understood. This section BSE8 1" jemonstrates sensitivity due to spatial high freqyenc

two plausible reasons and identifies the source of the large' no\wer maps. The transient analysis in Section V further
sensitivity in the steady state MIHCP described by Eq.2. 34qresses temporal high-frequency induced sensitivity.

The first common difficulty in solving a linear system

like Eq.2 is the large matrix size. lterative methods are IV. SOLVING MIHCP IN STEADY-STATE
often used to avoid intractable computation time, but could Our goal is to solve the power map with minimum error
have convergence problems that result in solution instabivhen thermal map uncertainty or noise are present. While
ity. However, extremely large thermal conduction/impezken IHCP is very sensitive to thermal-map noise, there are a
matrices are most likely not needed in MIHCP. Recemtumber of opportunities to use additional information—
work [10] shows that when power source sizes are 1.&onstraints—specific to the inverse problem in a packaged
times larger than the silicon die thickness, the die can behip to manage the effect of that noise on the derived
modeled as a homogeneous 2-D plane with all the metpbwer map. These constraints all proceed naturally from
layers and detailed circuitry ignored. Furthermore, fatest observations about packaged chips, and include, for exampl
of-the-art microprocessors with realistic packaging, pow the fact that all power is dissipated only in the silicon lsye
map granularity of around 400 microns is sufficient f6C1 We have performed a variety of simulations to quantify the
resolution in thermal maps. For many applications mentioneeffect of these constraints in isolation and collectivaly,in
in Section | even coarser power maps are sufficient. comparison with a direct solution of the MIHCP.

Even with small sizes, taking the inverse or decompositiof, gmulation Setup
of an ‘ill-conditioned’ or singular matrix can lead to large | imulati first HotSpot 131 to deri
sensitivity or non-uniqueness in solution due to numericg| n our simulations, we first use HotSpot [3] to derive

instability or singularity. The numerical stability of a tnia e thermal conduction matri®c, given a floorplan and
can be t}:/h:';1ractézgrizedyby tlendition number (t%e ratio of Packaging details. We then use Matlab (2009b) to (1) derive
the temperature map using the power map, (2) permuter

the largest to the smallest singular value). Large conditio’ . . b ) -
numbers mean small input errors can cause large outp\fﬂth Gaussian distributed noise, and (3) derive the observe

" . Ve HIS
errors. However, a matrix has the same the condition numbg V‘i%@ﬁt@%'i r?lllvlgilgtl)” constraints and optimizations are
as its inverse. Thus the thermal conduction and resistan p e elected to USe a‘ compact thermal model to generate
?nzgr:ﬁécpag?n%%vtvﬁg Ilgéaeu:gntgﬁvsigrqg :RSLatbrlllgi}étlend%gg :,:; for several important reasons. Previous work on inverse

iy : : . apping obtained thermal maps from either IR cameras or
exist in DHCP, it cannot be solely explained by numer'catlhefnplalqsensors 5], [6], [8] [11]p In either case. ermaaEot
instability in the inverse problem. 1 Lo 10 ’ !

The following example demonstrates the large sensitivit§€ duantified without also knowing the input power map,
in the MIHCP egven Wit?\out large matrix sizes ar%]d numerica hich is c??genglr}g fordall‘or_emenuotr;]edﬂreazgi_rgs.tEmpt(l;)y||:[1
i 0 : ; : ; -2 compact thermal model gives us the flexibility to evaluate
g:::?i?)lgt)(VP,Ar\Ot\)/l\?emf?fst-r ggpls;gn:u(léa\émg% sle5tg§) ('\fvﬁgl?(')n?ﬁe'@e influence of variable thermal map noise on the derived
three units respectively in the floorplan in Fig.1(a), and@OWer maps _relatlve tobthe orllglrgjal power map. Of course,
solve the steady state temperature toTbg41.7 46.7 65.7) 94’ ?pgm[zat(ljo_ns canf %_app led 1o temperature measure-
with Eq.1 (without loss of generality we set the ambien’fnit1 (S:on?”;gt tlkr:e?r%ll ar?]c)'ggl' also gives us the flexibilit
temperature to 0 (Kelvin) for all simulations in this paps, P gives us XIDIILY
only the temperature raise due to on-chip power dissipasion 10, €XPlore the effect on power map derivation of different
shown). Slightly perturbing power numbersRe(25.8 94.3 approaches to thermal measurement, such as the choice of

; . ; block mode or grid mode thermal model.Block mode
150.3) and solving again for yields a change of less than a . : A -
2%. Next we start fronT and solve forP, with the intent SUPPOItS non-uniform node sizes in silicon, wided mode

of arriving at, or close to, the original power map. Without™POses a uniform, fixed node size. The former is a better

thermal noise the obtained power map matches the origina‘ioxy for the nonuniformly measured thermal maps from

values perfectly with Eq.2. However, when the thermal mapc. oors placed over critical components or hotspots, while
is inghtFI)y pertl}/rbed tqu:(41.4, 45.4'65.8), the power map e latter approximates the uniformly measured thermalamap

become®=(4.8 60.7 103.2), with a mean error of more thar{_r|°m IR cameras or uniformly distributed thermal sensors.
50% and maximum error of more than 80%! otSpot can generate the appropriAtein either case.

What is the reason for the large sensitivity? A closd- Unoptimized MIHCP
examination of the above and other examples points to theWe begin our simulations using the@@x 22cmfloorplan
relatively large elements with opposite signs of elements iof a testchip developed at UCSC [12], containingx100
Ac. The intuition is that power can change abruptly botlidentical square blocks. We randomly assign power values
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Fig. 2: Steady state inverse mapping. Thermal naise0,0 =5%  Fig. 3: Gaussian filter parameter study with different thermal @ois

. Optimum exists foro. Odd h better than even numbers.
varying from 01W to 1.5W to all 100 blocks and the steady

state thermal map is obtained with Eq.1. Thermal noise is Lower and upper bounds of the power values for each
modeled with a normal distribution with meap)(set to 0, block can also be added to the collection of constraints.
since constant offsets can be removed through calibratioffowever, it is not clear how conveniently or accurately éhes
Fig.2(a) illustrates the large error that results from Eq.¥alues could be obtained, and they are not included here. In
(Unopt vs. Actual Power). The x and y axes denote the bloclg€neral, the more constraints are applied in the optinunati

and power values for each block respectively. the more likely that the results are close to actual values,
. o . although usually at a larger computational cost, which is
C. Initial Optimization Using Least Squares discussed in Section IV-I.

Applying Eq.2 without any optimization yields large errorsE. Thermal Map Preprocessing

as shown in Section Ill and Fig.2(a). Our first observation Power can change abruptly from block to block, but

is that none of the nodes from the TIM (thermal interfacéemperature has to be continuous and changes gradually

material), the heat spreader and the heat sink dissipaterpowover space. Therefore a low-pass filter can be applied to

In reality temperature at these nodes may be obtained withttze thermal map to get rid of high frequency thermal noise

thermal testbed. We can then rewrite Eq.2 in a block fashiorbefore the inverse mapping. This has to be performed with
Ars  Ariz Py Ty knowledge of the floorplan since the 2-D spatial information
ARt ARpk } p } = | T J (3) islostinthe 1-D representation in Eq.1. In image proc&gsin

where subscrips denotes fiodés on the silicon die apd Gaussian filters are often used to ‘blur’ images to get rid
denotes nodes associated with cooling and packaging t témage. deﬁ'ls a_mdhnmse [33]6 TGhe |m.pulsfe responls:e of
have zero power dissipatioRy contains only zeros and can 2. _ta:.l(sssmn f te;]tlsl‘} e I\jt&}cln bartw aussmnt unct|o(rj1.t tc))r a
be removed. least-squares (LS) optimization can be appligég' af. é;lu_saar;] 'ﬁ |n_Z|ea an, two pzargrfr_lle ersneedto de
to the following over-constrained equation: ecified, i.e., the filter size(a square 2-D filter is assumed)
A T and the standard deviatiasy of the Gaussian function.
R Py ] s (4) Fig.3 shows the filter effect on thermal map noise with

. . Ar21 | T . varying filter parameters for the UCSC test chip. First
Fig.2(a) illustrates the improvement from applying thestea. ig s%en tha? the low pass filter is more effectiF\)/e with

squares (LS) optimization by Eq.4. Detailed data are reﬂortIarge thermal noise. For carefully chosen parametersgenois

lat\?\;'tir? Stect:rt:on 'VI'F' se. th its from Eq.2 match thigduction is over 70% foo = 25%, and 20% foro = 5%.
ithout thermal noIS€, the Tesulls from Eq.c malc ®n the other hand, bad parameters can actually increase the

original power map perfectly. With thermal noise, the ung . "aspecially when only small noise exists. For example
certainty gets amplified by the large entriesAg leading fiyering a noise-free thermal map would only introduce

to large power map errors. On the other hand, the result g’ Second, the optimal value fo¥ increases with the

LS is constrained in a subspace that contains the noise-frige, 4 noiseq, indicating that with large thermal noise
solution and the thermal noise simply perturbs that scrlutmmore weight should be given to neighboring nodes for

in the subspace. . o filtering. Third, odd values oh are better than even ones
D. Finding More Constraints for Optimization due to the symmetry in the filtering. Finally, optimal values
Turning Eq.1 into arover-constrained problem by utiliz- of h increase with thermal noise for the same reasoosas

ing microarchitectural information significantly impravene  the error almost flattens out for large odd-numbenedn
MIHCP solution. Additional properties can be exploited tofaCt the error increases slowly dsgets larger than 11 in
g both figures in Fig.3, since the chip is divided into ax100

of as guiding the optimization away from undesired resultgrd and any weight on non-existent nodes is likely to only

We observe in Fig.2(a) that unconstrained LS results ifycréase error. Therefore the optimumshould be set to the
some small but physically impossible negative power nunf2dd number closest to the grid size, in this case 11.
bers. Furthermore, altholgh power monitoring at the block teady State MIHCP Optimization Results
level incurs design costs, the total chip power consumption We first consider two extreme cases. Thermal map noise
is usually available at the power pins, and can serve agth o =1.67% (or 3 = 5%, meaning with 99% confidence
another constraint. We incorporate these constraintstir@o level the noise is within 5% of the true value) represents a
LS solver in Matlab, examine their effects. Fig.2(b) plotsighly accurate thermal map, which can be the case for some
the mapping results for EV6 floorplan with 30 functionallR cameras [5], [6] or well designed thermal sensors [5],
units shown in Fig.1(b). Noticeable mapping improvemenfll]. The other extreme witlo = 25% is also considered
is achieved on node 28 from the constrained LS. Detailefdr demonstration and extrapolation purposes. Practasgs
results are reported later in Section IV-F. The constraintsan fall anywhere in-between.
not only help eliminate negative or non-physical values Five metrics are included in Table | where mapping
individually, but also improve the solution as a whole. results are reported for the UCSC test chip [12] with the



experimental setup described in Section IV-C. For unbia ;()s 40%%30
evaluation, noise numbers are generated 1000 times ™77 B e
averaged data are reported. The 1st and 2nd columns £ p.eame £ [ps0sp=p
i i Z 8oy sum X z sum
the maximal and averagabsolute error (in Watts). The 3rcg™| eoap=p, giter |, + &
column shows the averagelative error. The relative error* gz‘“’
for large and small power nodes are evaluated in the &+ o e &
two columns. ‘Large power nodes’ are nodes that dissif > @@ @@
pOW@r more than half the maX|ma| per bIOCk pOWGV. c O 67%5%(15%) 10%(30%) 15%(45%) 20%(60%) 25%(75%) 1.679%5%(15%) 10%(30%) 15%(45%) 20%(60%) 25%(75%)
lSma” power nodes’ are the rest. Note that the actual va Thermal Map Noise Standard Deviation ¢ (and 30) Thermal Map Noise Standard Deviation ¢ (and 30)
of ‘avg rlI' usually decrease with a higher threshold in the (a) UCSC Test Chip (b) Compagq Alpha 21364 (EV6)

‘large power’ definition, simply due to the ‘relative’ naar _. ) o
In practice, the power estimation for large power nodes is/d- 4: Power map noise vs. thermal map noise in block mode
usually the most important. If the MIHCP is solved for powernverse mapping. Unoptimized results omitted due to lamere.
model validation or process variation characterizatiofeve mapping is not included since its error is more than<10
power sources can be formed through scannable focuskgiger. It can be seen that the power map noise increases
laser beams [5] or artificial benchmarks, which essentiallglmost linearly with thermal map noise. Constrained LS and
create some ‘large power nodes’. Therefore, we focus mogpatial filtering reduce mapping error effectively acrofis a
on reducing errors for these nodes. thermal noise levels.
algrm [ maxabs | avgabs [ avgrel | avgrl | avgrs | The same simulations are performed for the irregular
un- 2.66/39.9 | 0.76/115 | 1.30719.6 | 0727108 [ 2.08312 | Alpha 21364 (EV6) floorplan using the 'gcc’ power trace

|
|
‘ ‘E’;‘ I 8-‘2“9’5’122 I %‘;587/’10-2826 I gijﬁ;-gg : ggzzﬁ‘l’g : 8-22;‘3‘52 : mentioned in Section IV-D. The results are plotted Fig.4(b)
£ sl ke el ek shows much smaller power map error than Fig.4(a), due to
‘ 0 [(0/022/065| 00641010 | 0.014/0.27| 000780012 [ 00320047 . ~crone "o o o?total nod%s and ‘large F?ow(er) nodes’
[S | 0.28/3.40 | 0.081/0.81 | 0.14/1.19 | 0.076/0.85 | 0.22/1.65 | , . '
‘ 1| [0.0a2/0566] 0.065/0.05 | 0.0T310.13] 0.0078/0.068] 0029030 Notice that for this example we lowered the threshold of
TS [ 0295339 | 0.082/L22 | 0.142.00 | 0076/L15 | 022333 large power from ¥2 to 1/3 of the maximal per-node
2 [ 0.043/0.66] 0.00650.10] 0.014/0.22] 0.0078/0.12 | 0.0320047] power to include more nodes in the error characterization.
‘ [S | 0.293.39 | 0081081 | 0.14/1.19 | 0.076/0.85 | 0.22/1.65 | 1he four units considered ‘large power nodes’ are L2 (level-
3 [ 0.044/0.66 | 0.0064/0.05] 0.013/0.13] 0.0078/0.068] 0.029/0.30| 2 Cache), |-Cache (|n5t|’uct|0n cache), D-Cache (data @ache
‘ S I 0.28/2.35 | 0.081/0.67 | 0.14/L10 | 00760065 | 0227170 | and IntExec (integer execution unit), which together giate

0.043/0.41] 0.006/0.045] 0.014/0.12] 0.0077/0.058] 0.0291027]  §4,3% of the total steady state power. For thermal noise with

TABLE I: Inverse mapping error by different algorithms for ucsc? = 1.67 the re(z)latlve errorofor large power nodes and all
test chip. Thermal noisg=0, 0=1.67%/25% (reported on left/right nodes are 2'77. % and 4'80& respeqtlvely.
in each entry). ‘Un-opt’ = un-optimized inverse mappingr E§, 0 We observe in both Fig.4(b) and Fig.2(b) that the: Py
= no constraint1 = constraint ‘B-0’. 2 = constraint ‘P=R,;. 3=  constraint now becomes more effective tifar 0, which is
both constraints3F = both constraints and filter. Mean/deviation arer€versed from Fig.4(a). Intuitively, when power is dissqua
reported in upper/lower rows for each algorithmax/avg denote from only a few nodes, as the case in Fig.2(b) or when
maximal/averagerl/rs denote relative error for large/small power laser beams [5] and artificial benchmarks are uged,Pum
nodes. All values are obtained from 1000 random samples. ~ Pushes the optimization towards the true values. However,
_ _ . when the power dissipation is distributed more uniformly as
Compared to directly solving Eq.1, unconstrained L$n Fig.2(a), errors in the power map caused by the zero-
alone (Eq.4) reduces errors by almost<i@onstrained LS mean thermal noise are more likely to cancel each other
with non-negative powerR > 0) further leads to another \yhen summed together, renderiRg= Psm less effective.
26% reduction for large power nodes in for very noisyNonetheles® > 0 is very effective when large thermal map
thermal maps ¢=25%). This is because the large solutiomgjse leads to negative values with unconstrained LS. Fhere
sensitivity often leads to negative values in the solutiew fore it is always safe to apply both constraints if possible.
significant noise exists in input thermal maps, which can bejnally, notice that spatial filtering cannot be appliecedity
seen in both examples in Fig.2. TRe> 0 constraint notonly to the irregular floorplans like EV6.
removes the negative values but also improves the solution . .
on the whole. For this example the total power dissipatiof. MIHCP in Grid Mode
constraint P = Pym) has little effect both by itself and when Having one power number for each functional block is
combined withP > 0, regardless of the thermal noise levelspatially ‘biased’, since block areas vary significantlpr F
Finally, when filtering is applied before the constrained LSexample, in Fig.1(b), L2 is extremely large compared to
the error is reduced by another 24% for large power nodegher blocks but is underrepresented by a single node in
with 0=25% thermal noise. As discussed in Section IV-Ethe block-mode thermal and power map in Eqg.1. To obtain
filtering is much more effective when significant thermalmore spatially uniform information across the whole chip,
noise is present. Notice that filtering may reduce error foand get insight into power dissipation within large blocks a
large power nodes at the expense of increased error for smedipture local hotspots with large power density, the irevers
power nodes, since the large error added on the peakstefmperature-to-power mapping can be carried out in grid
thermal maps is likely to be smoothed out, but the smoothinmode. This section studies the MIHCP in grid mode with
effect can potentially alter small temperature valuesalyn the irregular EV6 floorplan for different grid granulariie
the deviation values in Table | are also important since they The steady state temperature is first computed in block
indicate the confidence inteval of mapping results. mode, and then in grid mode with<® and 16<16 grid sizes.
Fig.4(a) shows how power map error changes with th€he ‘large power’ threshold is still set tg/3, yielding 9 and
noise magnitude in the thermal map for the UCSC test chifd7 grid cells for the &8 and 16<16 cases respectively. None
Again we focus more on the large power nodes for reasois these cells fall into the big L2 block now, since the power
mentioned earlier, so the power map noise shown here ¢ a block is divided equally among the grid cells covering
essentially the 'avg rl' in Table I. The unoptimized inverseit, and the power density of L2 is low. Fig.5 plots grid mode
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mapping (block mode results plotted for reference). Time (e9

(a) Directly solved power trace qb) Noise on 9T is the main source for

mapping results. It can be seen that using grid mode its&ff 1 W/o thermal noise. inverse mapping error.
does not improve mapping accuracy. However, the low pass
filter can now be applied to the regular floorplan and its

effectiveness is demonstrated again. V. MIHCP IN THE TRANSIENT CASE

H. Power Map Conversion Between Block and Grid Modes Dynamic power model validation or management might
desire transient power maps, which could be obtained by

Power maps in both block and grid modes are useful. Fefree different methods: (1) solving the steady state MI-
example, power models or measured data from power proxcp contiguously as in [5], [6]; (2) solving the steady
ies and performance counters can be validated against #8te MIHCP for each architecture event individually and
former. Knowledge of process variation or the within-block:ompining them with event counters; (3) directly solving th
power profile is better represented by the latter. For pdeer- yansient MIHCP from transient thermal maps. Methods 1-2
temperature mapping, thermal simulators like HotSpotroftegnly require solving the steady state MIHCP which has been
perform computation in grid mode for accuracy, and theggdressed in Section IV. While we propose method (2) as a
convert results to block mode if it is desired. The conversiopetter approach to (1), this section identifies the chatieng
simply extracts the maximal or average grid temperature igng future research directions for the transient MIHCPgcWwhi

the block as the block temperature. _ has not been discussed extensively in prior studies.
However, special caution should be taken for the inverse Transient heat condé;_(r;tion can be modeled as

mapping. For instance, with the gcc power trace and grid c® LAT=P )
sizes of &8, 16x16 and 3%32, simply assuming equal . . . o _
hereC is a diagonal matrix containing thermal capacitors.

power density and taking the average of overlapping gn% is the same as in Eq.1. Eq.5 can be used directly for MI-

to convert the grid mode power map to block mode incu ; . :
26.51%, 17.20% and 9.76% error for D-Cache, the largeStCP, with S approximated with the forward, backward or

power dissipator, even though it covers more than 30 grigéntral difference methods. We choose the central differen
cells in the 3% 32 case. This is again due to the discontinuity"ethod because of its smaller truncation error.

of power maps. For example, in the 332 case, even though _ We start with the floorplan in Fig.1(a). Both units 2 and
the D-Cache fully covers 30 grid cells internally, it still 3 dissipate 50 Watts power constantly, while unit 1 is has
has 19 boundary cells, 7 of them shared with the large LROWer spikes shown in Fig.6(a). An important observation
with power density 40 times smaller than the D-Cache. Th that even without thermal noise, the derived power trace

Fig. 6: Transient inverse mapping without and with noise.

) ) ) more than 10% at the first peak and there is some overshoot
| Analysis on Computational Complexity at the end of the second spike. The inherent error is from

Spatial filtering of a thermal map with units takes a the approximation of% and does not exist in steady state.
constant timeO(n?) in the worst case . The computational _In Fig.6(b), thermal noise of1=0, 0=1.67% is added.
complexity of our scheme is dominated by the LS optimizaSimilar to the steady state case, the noise amplificatiaceff
tion. In our current implementation, both the unconstrdinein the inverse mapping is obvious. Different from the steady
and constrained least-squares problems are solved inatigtate case, the noise actually has dual effects in Eq.5tIt no
The exact computational complexity is difficult to quantifyonly perturbs the temperatufe but also its derivativél . To
since Matlab uses different algorithms for problems ofatiff ~ evaluate their individual impact, we examine how the power
ent scales and sparsity. Applying constraints incurs eadh map would change if we were able to remove the noise in
since iterative algorithms like quadratic programming arﬁ. In fact, simply applying the central difference method on
preconditioned conjugate gradient (for medium and largeée original T significantly improves the result in Fig.6(b),
scale problems respectively) are used. However in the wonglvealing that reducing the error @ is the key to solving
case the computational complexity is boundeddfy®), the the transient MIHCP.
cost of the direct inverse of a dense matrix. However, the large sensitivity t% poses practical diffi-
Our simulations are performed on a laptop with Intel Coreulty. Even a high frame rate IR camera can only achieve
Duo CPU 2.0GHz, 2GB RAM. For the 3}6L6 grid mode for 125fps [6] (8ms/frame), while modern microprocessors run
the EV6 floorplan which results idc of 1036x1036, the at multi-GHz (clock cycle less than 1ns). The simulation in
unconstrained LS spends around 0.1s CPU time on solvikg.6(b) is performed with thermal data of 0.33MHz, much
Eq.4 once. Applying both constraints Bf> 0 andP = Pym  faster than IR imaging. On the other hand, thermal sensors
increases the cpu time to 11s if algorithms of medium scalgsually have an inherent tradeoff between accuracy and
are used. Enabling large scale algorithms reduces the cgpeed. A newly reported thermal sensor achieves temporal
time drastically to 0.3s but increases the error on largeesolution of Ins with 5°C maximum error with process
power nodes by about 8%. All data in Table | are obtainednd power supply variation [11]. While this combination of
through medium scale solvers to show what can be achievegheed and accuracy is fast enough for thermal throttlirgy, th
However, mapping accuracy can be traded for computatiaibove result shows that it may not be enough for transient
speed, which also depends on the implementation platfornremperature-to-power mapping. Therefore, transient powe



maps could only be obtained from steady state power mafesel for both grid and block mode, and for the steady and
as discussed in the beginning of this section. transient case.

If reasonably accuratgr values are available, in principle VII. CONCLUSIONS ANDFUTURE WORK
all techniques in the steady state MIHCP could be applied. _. . . .
Fine-grain power maps at the microarchitecture level are

Moreover, filtering can be applied temporally since temper-se]cuI for many purposes including validating power mogdels

ature at any node must change smoothly. By splitting th§ . T N
. . N aracterizing parameter variation, estimating leakag® a
silicon and package nodes in £q.5 and getting rid of packa aximizing power efficiency. The general temperature-to-

nodes, a LS problem can be formulated as: power mapping is an ‘ill-posed’ problem due to the large
{ Ars } (R |- { ArsCs 0 } { dT } { Ts J) sensitivity of solved power values to input thermal noise.
Ar21 ST 0 AR pkCpic dTpk Tok This sensitivity arises from the large range of power values

( in the power map. By leveraging properties at the microar-

VI. RELATED WORK chitecture level we have shown that careful thermal map

For DHCP at the microarchitecture level, extensive refiltering and constrained least-squares optimizationiign
search has been performed and tools developed, yet MIHGRNtly reduce power map error when thermal map noise is
has not caught much attention until very recently. present: compared to unoptimized mapping, our approach

Parameter fitting based on the genetic algorithm (GA) i§an reduce mapping errors by more thanx1@ur approach
proposed for MIHCP in [6]. In this framework, mappingis applicable to both block and grid models. However,
accuracy and granularity increase with parameter numbétlike for temperature maps which are spatially continyous
but meanwhile the search space and thus the complexignversion between blocks and grids for power maps could
of GA increases exponentially. The GA based method tatatroduce large errors. We further point out that the key in
gets MIHCP only in the block mode and would becoméolving the transient MIHCP with input thermal noise is to
intractable for the grid mode. Moreover, significant workaddress the error iv%% rather than simplyT.
on benchmarking and data collection are needed for GA to VIII. A CKNOWLEDGMENTS
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