
An Overview of Micron’s Automata Processor
1Ke Wang, 1Kevin Angstadt, 1Chunkun Bo, 1Nathan Brunelle, 1Elaheh Sadredini,

2Tommy Tracy II,1Jack Wadden, 2Mircea Stan, 1Kevin Skadron
1Dept. of Comp. Sci., 2Dept. of Elec. & Comp. Eng.

University of Virginia
Charlottesville, VA, 22904 USA

{kewang, angstadt, chunkun, njb2b, elaheh, tjt7a, jpw8bd, mircea, skadron }@virginia.edu

ABSTRACT
Micron’s new Automata Processor (AP) architecture exploits the
very high and natural level of parallelism found in DRAM
technologies to achieve native-hardware implementation of non-
deterministic finite automata (NFAs). The use of DRAM
technology to implement the NFA states provides high capacity
and therefore provide extraordinary parallelism for pattern
recognition. In this paper, we give an overview of AP’s
architecture, programming and applications.

Keywords
Finite automata, Processor in Memory, DRAM, Data Mining

1. MOTIVIATION
As we collect more and more data about the world around us, and
digitize more and more artifacts from our past, “big data”
problems abound in every field of inquiry. In a recent survey of
senior decision-makers from nine industries and ten countries,
70% of respondents consider their business’s ability to exploit big
data critical to their future success. Real-time processing is also
increasingly important, as richer sensing and data collection allow
meaningful interventions, in contexts ranging from healthcare to
cybersecurity. However, many of the questions we want to
explore with these data remain unanswerable, because we lack
sufficient computational resources to analyze huge data sets in a
timely and cost-effective fashion.

This is especially important because data sets are growing much
faster than computing capacity. The Computer Sciences
Corporation reports that the amount of data being generated by
individuals and companies will be 44 times greater in 2020 than it
was in 2009 [1]. Yet Moore’s Law is slowing down, due to power
constraints, limits on scalability of CMOS, and limits of von
Neumann architectures to support high degrees of parallelism—
especially irregular parallelism. Hardware accelerators help
address this problem, as specialization allows greater
efficiency. But for general-purpose systems, as in data centers,
only accelerators with broad applicability are likely to gain
widespread adoption.

Pattern-based algorithms (pattern matching, pattern recognition,
etc.) are exceedingly common in data mining, cybersecurity,
bioinformatics, and many other application domains. A common
feature in many of these applications is the importance of inexact
matching to identify groups or patterns with non-trivial edit

distances from their reference patterns (e.g., DNA alignment in
the presence of mutations). Each step in edit distance complicates
the data structures and computations required to find an inexact
match. This makes inexact pattern recognition extremely difficult
across huge datasets, and often leads to using less accurate
heuristics or restricting the allowed edit distance, at the expense of
accuracy. Pattern-based algorithms are sometimes used with
subsequent supervised-learning techniques, e.g., for classification,
but in many cases, mining patterns of interest is the most
expensive task.

 Micron Technology has recently introduced a new processing
architecture, the Automata Processor (AP) [2], that is a native-
hardware implementation of a classic computational model, non-
deterministic finite automaton (NFA). NFAs are primarily
symbolic pattern-matching machines, which on one hand limits
their generality. However, true NFAs are extraordinarily powerful
at this task, because allowing an arbitrary number of states to be
active at the same time allows massive parallelism.

2. ACHITECTURE OF THE AP
PROCESSOR
2.1 Overview
In von Neumann architectures, the most efficient method to
support finite automata (NFA or DFA) is a transition table in
memory, with each table entry representing a state, and pointing
to its successor state(s). Since an arbitrary number of states can
be active and matching against the input every clock cycle, NFAs
are a poor fit for von Neumann architectures, which cannot
efficiently support the potentially large number of random
accesses to the memory system every cycle. We have found that
even GPUs’ massive parallelism and bandwidth are unable to
accommodate the high bandwidth demands of NFAs, with tens to
hundreds of active states, and thus random-access memory
lookups for each input symbol. Regular expression processing and
NFA processing are thus generally converted into deterministic
finite automata (DFAs), in which only one state can be
active. This, however, leads to an exponential increase in the
number of states, because every possible path through the NFA
potentially needs a unique set of states in the DFA. The DFA
transition tables are often very large, with very high miss rates in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CODES/ISSS '16, October 01-07, 2016, Pittsburgh, PA, USA
© 2016 ACM. ISBN 978-1-4503-4483-8/16/10…$15.00
DOI: http://dx.doi.org/10.1145/2968456.2976763

Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

Figure 1 - Micron’s Automata Processor design (courtesy
Micron).

This is the authors' final manuscript. The authoritative version is to be
found on the digital library.

the L1 (often 100%, in our studies), and high miss rates even in
last-level caches.
A native-hardware implementation of NFAs is therefore
extraordinarily powerful, because allowing an arbitrary number of
states to be active at the same time allows massive parallelism—
limited only by the available number of state elements—and
allows NFAs to explore many permutations concurrently.
Micron’s AP (Fig. 1) uses memory in a different way. Each
column in the memory array represents one NFA state. The AP
chips have a native input symbol of 8 bits, so each of the 256
possible input bytes activates the corresponding row of the array,
reading out the response of the entire NFA to that symbol. These
are combined with a bit vector indicating which states are active,
and the AP’s routing matrix forwards state transitions. This
architecture leverages the inherent bit-level parallelism of a
memory array and allows any or all of the states to respond to
each input symbol concurrently, every clock cycle.

2.2 AP Board
The current-generation AP boards, with 32 AP chips operating at
133 MHz, are standard PCI-Express boards, although our group
also explores other system architectures. The current boards
allow the AP chips to be partitioned among multiple concurrent
data streams, allowing full utilization of the available interface
bandwidth for problems in which the automata of interest do not
fill the entire board.

Figure 2 – Testing Board of Micron’s Automata processor
The AP boards also contain an FPGA. At the moment, this only
implements the PCIe-bus host as well as the DRAM memory
controllers for interfacing with the AP ranks. (The AP chips
currently require a non-standard DDR interface.) However, this
FPGA will allow programmers to develop acceleration pipelines
or loops that use the AP to accelerate pattern-matching tasks, and
use the FPGA hardware acceleration of other tasks, minimizing
interactions with the host CPU. Micron has disclosed an effort to
develop support for user programming of the FPGA and efficient
FPGA-AP communication.
Launching a program on the AP follows a classic offload
model. The host CPU performs an initial configuration step to
instantiate the desired automata, sends data to be the AP, and then
retrieves the results. The first-generation boards have 4GB of on-
board buffering, allowing data transmission and processing in
parallel. The AP also supports fast reconfiguration; a full
reconfiguration of the board takes only 50 milliseconds. If the
connectivity does not need to be changed, and only the matching
symbols need changing, this is slightly faster. In our work so far
with diverse applications, such as association rule mining and
DNA algorithms, we find such symbol replacement to be a
common building block, because we find that a common
paradigm is to create a macro to represent some pattern-matching
template, e.g. to count instances of sequences within an edit
distance of k, and then populate the board with as many of these
macros as possible and load them with patterns of interest. If the

set of candidates of interest exceeds the board’s capacity, multiple
passes are required, but only the patterns—not the macro
structures—need updating. This paradigm is especially valuable
because it moves compilation overhead out of the critical path.

2.3 Programming
AP software, integrated as an AP SDK package, allows
development, testing, and performance modeling. It is available
through Micron’s new automata developers’ portal
(www.micronautomata.com). The Micron’s AP SDK provides
Automata Network Markup Language (ANML), an XML-like
language for describing automata networks, as well as C, Java and
Python binding interfaces to describe automata networks, create
input streams, parse output and manage computational tasks on
the AP board. A “macro” is a container of automata for
encapsulating a given functionality, similar to a function or
subroutine in common programming languages. Deploying
automata onto the AP fabric involves two stages: placement-and-
routing compilation (PRC) and loading (configuration) [1]. In the
PRC stage, the AP compiler deduces the best element layout and
generates a binary version of the automata network. In the cases
of large number of topologically identical automata, macros or
templates can be precompiled in PRC stage and composed later
[13]. This shortens PRC time, because only a small automata
network within a macro needs to be processed, and then the board
can be tiled with as many of these macros as fit. A pre-compiled
automaton only needs the loading stage. The loading stage, which
needs about 50 milliseconds for a whole AP board [13], includes
two steps: routing configuration/reconfiguration that programs the
connections, and the symbol set configuration/reconfiguration that
writes the matching rules for the STEs. The changing of STE rules
only involves the second step of loading, which takes 45
milliseconds for a whole AP board. The feature of fast partial
reconfiguration plays a key role in a successful AP
implementation several applications.

3. APPLICATIONS
 NFAs naturally support efficient execution of complex regular-
expression processing tasks. In this paper, we elaborate on
additional applications enabled by fast NFA processing, other
than regular-expression processing.

3.1 Bioinformatics
 The DNA (l,d) motif search problem is known to be NP-hard,
and the largest solved instance reported to date is (26,11). Roy
and Aluru [3] proposed a novel algorithm using streaming
execution over a large set of NFAs and achieved over 200X
speedups on an AP board over a 48-core CPU cluster. They also
demonstrated PROTOMATA [4], an AP-accelerated protein motif
algorithm, and achieved up to a half million times speed-up over
single-threaded CPU with one AP board.

 Edit distance matching is an important computational kernel of
many bioinformatics applications. The Levenshtein NFA
recognizes input strings within a set edit distance of a configured
pattern in linear time. Tracy et al. [5] introduced a novel technique
for executing a pipelined Levenshtein NFA using the AP,
avoiding the run time and space overheads associated with CPU
and GPU implementations. The experiments show that run time
remains linear with the input while the space requirement of the
automaton becomes linear in the product of the configured pattern
length and edit distance. These properties allow the AP to execute
large instances of the Levenshtein NFA or many small instances
in parallel, thus making the automaton a viable building block for
future approximate string applications on the AP.

3.2 Data Mining
Association rule mining (ARM) is a widely used data mining

technique for discovering sets of frequently associated items in
large datasets. Frequent Set Mining (FSM) and Sequential Pattern
Mining (SPM) are examples of ARM techniques that learn
associations among variables in structured datasets. They have
become important data mining techniques with broad application
domains in business, health, software engineering, cybersecurity,
etc. [6]. A frequent set is simply a set of items that often show up
together in many transactions. A sequential pattern refers to a
hierarchical pattern consisting of a sequence of frequent
transactions (itemsets) with a particular ordering among these
itemsets. Wang et. al [7, 8] recently demonstrated the AP
solutions for accelerating both SPM and FSM. Up to 129X and
49X speedups are achieved by the AP-accelerated FSM on seven
synthetic and real-world datasets, when compared with the
Apriori single core CPU implementation and Eclat, a more
efficient FSM algorithm, compared to a 6-core multicore CPU.
The proposed AP solution also outperforms the state-of-the-art
PrefixSpan and SPADE algorithms on multicore CPU by up to
452X and 49X. The AP advantage grows with larger datasets.

3.3 Machine Learning
 Part-of-speech tagging is an important step in many natural
language processing pipelines and is used to improve the quality
of tasks such as speech recognition, and speech synthesis. Brill
tagging is a rule-based POS tagger that identifies where a set of
pre-learned, contextual rules can be applied to a pre-tagged
database, improving the correctness of the tags. Brill tagging can
be inefficient because thousands of contextual rule patters may
need to be searched for every token of the database. By converting
the Brill rules to parallel automata, and loading them onto the AP,
all rule patterns can be searched in parallel, improving
performance even over multi-core computation. The AP has been
shown to accelerate the Brill tagging task by ~31X-63X, over a
server-class, multi-core CPU [9].
 String kernel (SK) is a widely used technique in the Machine
Learning field, particularly for biological sequences analysis.
Instead of comparing whole sequences, string kernel methods
count the occurrences of representative short subsequences, called
K-mers. In the string kernel model, a mapping function projects
the input strings to a higher-dimensional (number of K-mers)
feature space. Bo et al. [10] proposed to recognize a number of
predefined sting kernels, including exact match, mismatch and
gappy match by using an AP board. This solution achieved 8x,
25x, 139x, 418x 1438x and 3978x speedups over PatMaN (a rapid
CPU alignment tool) for mismatch=0, 1, 2, 3, 4, 5 respectively.
 A variety of applications employ ensemble learning models,
using a collection of decision trees, to quickly and accurately
classify an input based on its vector of features. Tracy et al.
recently showed an AP implementation of ensemble learning
based on Random Forest algorithm [11]. The net result is a
solution which when evaluated using two applications, namely
handwritten digit recognition and sentiment analysis, produce up
to 63X and 93X speedups over single-core, CPU solutions.

3.4 Other Applications
 Throughput is a critical factor for successful security check of
network intrusions. Roy et al. [4] proposed a parallel intrusion
scanning technique by using the AP. As an example, Fast-SNAP
network data is scanned for 4312 signatures of intrusion using a
single board of the AP at 10.3 Gbps.

 Entity Resolution (ER), the process of finding identical entities
across databases, is critical to many information integration
applications. As sizes of databases explode, it becomes
computationally expensive to recognize identical entities for all
records with variations allowed. Bo et.al [12] proposed an AP-
accelerated ER solution, which accelerates the performance
bottleneck of fuzzy matching for similar but potentially inexactly-
matched names, and use a real-world application to illustrate its
effectiveness. Results show 9.5x to 400x speedups, with 9.2%
more correct pairs and 43% better generalized merge distance
(GMD) cost over Apache Lucene. 2.8x to 23.2x speedups are
achieved compared with a sorting-based method with 18.1% more
correct pairs and 51% less GMD cost.
 To improve the software development productivity, Angstadt et
al. [13] presented RAPID, a high-level programming language
and combined imperative and declarative model for programming
pattern-recognition processors.

4. SUMMARY
 The AP leverages bit-level parallelism to provide native
support for efficient NFA execution, enabling dramatic speedups
for a variety of algorithms.The University of Virginia established
Center for Automata Processing (http://cap.virginia.edu) to build a
vibrant ecosystem of researchers, developers, and adopters for the
exciting new Automata Processor.

5. ACKNOWLEDGMENTS
This work was supported in part by the NSF (CCF-0954024,

CCF-1116289, CDI-1124931, EF-1124931); Air Force (FA8750-
15-2-0075); Virginia Commonwealth Fellowship; Jefferson
Scholars Foundation; the Virginia CIT CRCF program under
grant no. MF14S-021-IT; by C-FAR, one of the six SRC
STARnet Centers, sponsored by MARCO and DARPA; a grant
from Micron Technology.

6. REFERENCES
[1] http://www.csc.com/big_data/flxwd/83638-

big_data_just_beginning_to_explode_interactive_infographic
[2] P. Dlugosch et al. , An efficient and scalable semiconductor

architecture for parallel automata processing. IEEE TPDS ,
vol. 25, no. 12, 2014.

[3] I. Roy and S. Aluru, Finding motifs in biological sequences
using the micron automata processor. In Proc. of IPDPS’14

[4] I. Roy et al., High Performance Pattern Matching using the
Automata Processor. In Proc. of IPDPS’16, 2016.

[5] T. Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang, K.
Skadron, G. Robins. In Proc. of ASBD, 2015

[6] C. C. Aggarwal and J. Han, editors. Frequent Pattern Mining.
Springer International Publishing, Cham, 2014.

[7] K. Wang et al. Association rule mining with the micron
automata processor. In Proc. IPDPS ’15, 2015.

[8] K. Wang, Elaheh Sadredini and Kevin Skadron. Sequential
Pattern Mining with the Micron Automata Processor. In
Proc. Computing Frontiers 2016

[9] K. Zhou et al. Regular expression acceleration on the micron
automata processor: Brill tagging as a case study. Big Data
CA, 2015

[10] C. Bo, K. Wang, Y. Qi, and K. Skadron. String kernel testing
acceleration using the Micron Automata Processor.Workshop
on Computer Architecture for Machine Learning, 2015

[11] T. Tracy II, Y. Fu, I. Roy, E. Jonas, P. Glendenning. Toward
machine learning on the Automata Processor.ISC-HPC 2016.

[12] C. Bo, K. Wang, J. Fox, and K. Skadron. Entity Resolution
Acceleration using Automata Processor. In Proc. ASBD,2015

[13] K. Angstadt, W. Weimer, and K. Skadron. Proceedings of
the ACM International Symposium on Architectural Support
for Programming Languages and Operating Systems
ASPLOS 2016

