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ABSTRACT
Micron’s new Automata Processor (AP) architecture exploits the 
very high and natural level of parallelism found in DRAM 
technologies to achieve native-hardware implementation of non-
deterministic finite automata (NFAs). The use of DRAM 
technology to implement the NFA states provides high capacity 
and therefore provide extraordinary parallelism for pattern 
recognition. In this paper, we give an overview of AP’s 
architecture, programming and applications. 
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1. MOTIVIATION
As we collect more and more data about the world around us, and
digitize more and more artifacts from our past, “big data”
problems abound in every field of inquiry. In a recent survey of
senior decision-makers from nine industries and ten countries,
70% of respondents consider their business’s ability to exploit big
data critical to their future success. Real-time processing is also
increasingly important, as richer sensing and data collection allow
meaningful interventions, in contexts ranging from healthcare to
cybersecurity. However, many of the questions we want to
explore with these data remain unanswerable, because we lack
sufficient computational resources to analyze huge data sets in a
timely and cost-effective fashion.

This is especially important because data sets are growing much 
faster than computing capacity. The Computer Sciences 
Corporation reports that the amount of data being generated by 
individuals and companies will be 44 times greater in 2020 than it 
was in 2009 [1]. Yet Moore’s Law is slowing down, due to power 
constraints, limits on scalability of CMOS, and limits of von 
Neumann architectures to support high degrees of parallelism—
especially irregular parallelism. Hardware accelerators help 
address this problem, as specialization allows greater 
efficiency.  But for general-purpose systems, as in data centers, 
only accelerators with broad applicability are likely to gain 
widespread adoption. 

Pattern-based algorithms (pattern matching, pattern recognition, 
etc.) are exceedingly common in data mining, cybersecurity, 
bioinformatics, and many other application domains.  A common 
feature in many of these applications is the importance of inexact 
matching to identify groups or patterns with non-trivial edit 

distances from their reference patterns (e.g., DNA alignment in 
the presence of mutations).  Each step in edit distance complicates 
the data structures and computations required to find an inexact 
match.  This makes inexact pattern recognition extremely difficult 
across huge datasets, and often leads to using less accurate 
heuristics or restricting the allowed edit distance, at the expense of 
accuracy. Pattern-based algorithms are sometimes used with 
subsequent supervised-learning techniques, e.g., for classification, 
but in many cases, mining patterns of interest is the most 
expensive task. 

    Micron Technology has recently introduced a new processing 
architecture, the Automata Processor (AP) [2], that is a native-
hardware implementation of a classic computational model, non-
deterministic finite automaton (NFA). NFAs are primarily 
symbolic pattern-matching machines, which on one hand limits 
their generality. However, true NFAs are extraordinarily powerful 
at this task, because allowing an arbitrary number of states to be 
active at the same time allows massive parallelism. 

2. ACHITECTURE OF THE AP
PROCESSOR 
2.1 Overview 
In von Neumann architectures, the most efficient method to 
support finite automata (NFA or DFA) is a transition table in 
memory, with each table entry representing a state, and pointing 
to its successor state(s).  Since an arbitrary number of states can 
be active and matching against the input every clock cycle, NFAs 
are a poor fit for von Neumann architectures, which cannot 
efficiently support the potentially large number of random 
accesses to the memory system every cycle.  We have found that 
even GPUs’ massive parallelism and bandwidth are unable to 
accommodate the high bandwidth demands of NFAs, with tens to 
hundreds of active states, and thus random-access memory 
lookups for each input symbol. Regular expression processing and 
NFA processing are thus generally converted into deterministic 
finite automata (DFAs), in which only one state can be 
active.  This, however, leads to an exponential increase in the 
number of states, because every possible path through the NFA 
potentially needs a unique set of states in the DFA.  The DFA 
transition tables are often very large, with very high miss rates in 
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Figure 1 - Micron’s Automata Processor design (courtesy 
Micron). 
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the L1 (often 100%, in our studies), and high miss rates even in 
last-level caches. 
A native-hardware implementation of NFAs is therefore 
extraordinarily powerful, because allowing an arbitrary number of 
states to be active at the same time allows massive parallelism—
limited only by the available number of state elements—and 
allows NFAs to explore many permutations concurrently. 
Micron’s AP (Fig. 1) uses memory in a different way. Each 
column in the memory array represents one NFA state.  The AP 
chips have a native input symbol of 8 bits, so each of the 256 
possible input bytes activates the corresponding row of the array, 
reading out the response of the entire NFA to that symbol.  These 
are combined with a bit vector indicating which states are active, 
and the AP’s routing matrix forwards state transitions.  This 
architecture leverages the inherent bit-level parallelism of a 
memory array and allows any or all of the states to respond to 
each input symbol concurrently, every clock cycle.  

2.2 AP Board    
The current-generation AP boards, with 32 AP chips operating at 
133 MHz, are standard PCI-Express boards, although our group 
also explores other system architectures.  The current boards 
allow the AP chips to be partitioned among multiple concurrent 
data streams, allowing full utilization of the available interface 
bandwidth for problems in which the automata of interest do not 
fill the entire board.   

 
Figure 2 – Testing Board of Micron’s Automata processor 
The AP boards also contain an FPGA.  At the moment, this only 
implements the PCIe-bus host as well as the DRAM memory 
controllers for interfacing with the AP ranks.  (The AP chips 
currently require a non-standard DDR interface.)  However, this 
FPGA will allow programmers to develop acceleration pipelines 
or loops that use the AP to accelerate pattern-matching tasks, and 
use the FPGA hardware acceleration of other tasks, minimizing 
interactions with the host CPU.  Micron has disclosed an effort to 
develop support for user programming of the FPGA and efficient 
FPGA-AP communication. 
Launching a program on the AP follows a classic offload 
model.  The host CPU performs an initial configuration step to 
instantiate the desired automata, sends data to be the AP, and then 
retrieves the results.  The first-generation boards have 4GB of on-
board buffering, allowing data transmission and processing in 
parallel.  The AP also supports fast reconfiguration; a full 
reconfiguration of the board takes only 50 milliseconds.  If the 
connectivity does not need to be changed, and only the matching 
symbols need changing, this is slightly faster.  In our work so far 
with diverse applications, such as association rule mining and 
DNA algorithms, we find such symbol replacement to be a 
common building block, because we find that a common 
paradigm is to create a macro to represent some pattern-matching 
template, e.g. to count instances of sequences within an edit 
distance of k, and then populate the board with as many of these 
macros as possible and load them with patterns of interest.  If the 

set of candidates of interest exceeds the board’s capacity, multiple 
passes are required, but only the patterns—not the macro 
structures—need updating.  This paradigm is especially valuable 
because it moves compilation overhead out of the critical path. 

2.3 Programming 
AP software, integrated as an AP SDK package, allows 
development, testing, and performance modeling. It is available 
through Micron’s new automata developers’ portal 
(www.micronautomata.com). The Micron’s AP SDK provides 
Automata Network Markup Language (ANML), an XML-like 
language for describing automata networks, as well as C, Java and 
Python binding interfaces to describe automata networks, create 
input streams, parse output and manage computational tasks on 
the AP board. A “macro” is a container of automata for 
encapsulating a given functionality, similar to a function or 
subroutine in common programming languages. Deploying 
automata onto the AP fabric involves two stages: placement-and-
routing compilation (PRC) and loading (configuration) [1]. In the 
PRC stage, the AP compiler deduces the best element layout and 
generates a binary version of the automata network. In the cases 
of large number of topologically identical automata, macros or 
templates can be precompiled in PRC stage and composed later 
[13]. This shortens PRC time, because only a small automata 
network within a macro needs to be processed, and then the board 
can be tiled with as many of these macros as fit. A pre-compiled 
automaton only needs the loading stage. The loading stage, which 
needs about 50 milliseconds for a whole AP board [13], includes 
two steps: routing configuration/reconfiguration that programs the 
connections, and the symbol set configuration/reconfiguration that 
writes the matching rules for the STEs. The changing of STE rules 
only involves the second step of loading, which takes 45 
milliseconds for a whole AP board. The feature of fast partial 
reconfiguration plays a key role in a successful AP 
implementation several applications. 

3. APPLICATIONS 
     NFAs naturally support efficient execution of complex regular-
expression processing tasks.  In this paper, we elaborate on 
additional applications enabled by fast NFA processing, other 
than regular-expression processing. 

3.1 Bioinformatics 
     The DNA (l,d) motif search problem is known to be NP-hard, 
and the largest solved instance reported to date is (26,11). Roy 
and Aluru [3] proposed a novel algorithm using streaming 
execution over a large set of NFAs and achieved over 200X 
speedups on an AP board over a 48-core CPU cluster. They also 
demonstrated PROTOMATA [4], an AP-accelerated protein motif 
algorithm, and achieved up to a half million times speed-up over 
single-threaded CPU with one AP board. 

     Edit distance matching is an important computational kernel of 
many bioinformatics applications. The Levenshtein NFA 
recognizes input strings within a set edit distance of a configured 
pattern in linear time. Tracy et al. [5] introduced a novel technique 
for executing a pipelined Levenshtein NFA using the AP, 
avoiding the run time and space overheads associated with CPU 
and GPU implementations. The experiments show that run time 
remains linear with the input while the space requirement of the 
automaton becomes linear in the product of the configured pattern 
length and edit distance. These properties allow the AP to execute 
large instances of the Levenshtein NFA or many small instances 
in parallel, thus making the automaton a viable building block for 
future approximate string applications on the AP. 



3.2 Data Mining 
Association rule mining (ARM) is a widely used data mining 

technique for discovering sets of frequently associated items in 
large datasets. Frequent Set Mining (FSM) and Sequential Pattern 
Mining (SPM) are examples of ARM techniques that learn 
associations among variables in structured datasets. They have 
become important data mining techniques with broad application 
domains in business, health, software engineering, cybersecurity, 
etc. [6]. A frequent set is simply a set of items that often show up 
together in many transactions. A sequential pattern refers to a 
hierarchical pattern consisting of a sequence of frequent 
transactions (itemsets) with a particular ordering among these 
itemsets.  Wang et. al [7, 8] recently demonstrated the AP 
solutions for accelerating both SPM and FSM. Up to 129X and 
49X speedups are achieved by the AP-accelerated FSM on seven 
synthetic and real-world datasets, when compared with the 
Apriori single core CPU implementation and Eclat, a more 
efficient FSM algorithm, compared to a 6-core multicore CPU. 
The proposed AP solution also outperforms the state-of-the-art 
PrefixSpan and SPADE algorithms on multicore CPU by up to 
452X and 49X. The AP advantage grows with larger datasets. 

3.3 Machine Learning 
    Part-of-speech tagging is an important step in many natural 
language processing pipelines and is used to improve the quality 
of tasks such as speech recognition, and speech synthesis. Brill 
tagging is a rule-based POS tagger that identifies where a set of 
pre-learned, contextual rules can be applied to a pre-tagged 
database, improving the correctness of the tags. Brill tagging can 
be inefficient because thousands of contextual rule patters may 
need to be searched for every token of the database. By converting 
the Brill rules to parallel automata, and loading them onto the AP, 
all rule patterns can be searched in parallel, improving 
performance even over multi-core computation. The AP has been 
shown to accelerate the Brill tagging task by ~31X-63X, over a 
server-class, multi-core CPU [9]. 
    String kernel (SK) is a widely used technique in the Machine 
Learning field, particularly for biological sequences analysis. 
Instead of comparing whole sequences, string kernel methods 
count the occurrences of representative short subsequences, called 
K-mers. In the string kernel model, a mapping function projects 
the input strings to a higher-dimensional (number of K-mers) 
feature space. Bo et al. [10] proposed to recognize a number of 
predefined sting kernels, including exact match, mismatch and 
gappy match by using an AP board. This solution achieved 8x, 
25x, 139x, 418x 1438x and 3978x speedups over PatMaN (a rapid 
CPU alignment tool) for mismatch=0, 1, 2, 3, 4, 5 respectively.  
    A variety of applications employ ensemble learning models, 
using a collection of decision trees, to quickly and accurately 
classify an input based on its vector of features. Tracy et al. 
recently showed an AP implementation of ensemble learning 
based on Random Forest algorithm [11]. The net result is a 
solution which when evaluated using two applications, namely 
handwritten digit recognition and sentiment analysis, produce up 
to 63X and 93X speedups over single-core, CPU solutions. 

3.4 Other Applications 
   Throughput is a critical factor for successful security check of 
network intrusions. Roy et al. [4] proposed a parallel intrusion 
scanning technique by using the AP.  As an example, Fast-SNAP 
network data is scanned for 4312 signatures of intrusion using a 
single board of the AP at 10.3 Gbps. 

    Entity Resolution (ER), the process of finding identical entities 
across databases, is critical to many information integration 
applications. As sizes of databases explode, it becomes 
computationally expensive to recognize identical entities for all 
records with variations allowed. Bo et.al [12] proposed an AP-
accelerated ER solution, which accelerates the performance 
bottleneck of fuzzy matching for similar but potentially inexactly-
matched names, and use a real-world application to illustrate its 
effectiveness. Results show 9.5x to 400x speedups, with 9.2% 
more correct pairs and 43% better generalized merge distance 
(GMD) cost over Apache Lucene. 2.8x to 23.2x speedups are 
achieved compared with a sorting-based method with 18.1% more 
correct pairs and 51% less GMD cost. 
    To improve the software development productivity, Angstadt et 
al. [13] presented RAPID, a high-level programming language 
and combined imperative and declarative model for programming 
pattern-recognition processors. 

4. SUMMARY 
     The AP leverages bit-level parallelism to provide native 
support for efficient NFA execution, enabling dramatic speedups 
for a variety of algorithms.The University of Virginia established 
Center for Automata Processing (http://cap.virginia.edu) to build a 
vibrant ecosystem of researchers, developers, and adopters for the 
exciting new Automata Processor. 
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