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Abstract

SIMD organizations have shown to allow high throughput
for data-parallel applications. They can operate on multiple
datapaths under the same instruction sequencer, with its set
of operations happening in lockstep sometimes referred to as
warps and a single lane referred to as a thread. However,
ability of SIMD to gather from disparate addresses instead
of aligned vectors means that a single long latency mem-
ory access will suspend the entire warp until it completes.
This under-utilizes the computation resources and sacrifices
memory level parallelism because threads that hit are not
able to proceed and issue more memory requests. Eventually,
the pipeline may stall and performance is penalized. There-
fore, we propose warp subdividing techniques that dynami-
cally construct run-ahead “warp-splits” from threads that hit
the cache so that they can run ahead and prefetch cache lines
that may be used by others that fall behind. Several opti-
mization strategies are investigated and we evaluate the tech-
niques over two types of memory systems: a bulk-synchronous
cache organization and a coherent cache hierarchy. The for-
mer has private caches communicating with the main memory
with coherence taken care of by global barriers; the latter
has private caches coherently sharing an inclusive, on-chip
last level cache (LLC). Experiments with eight data-parallel
benchmarks show our technique improves performance on av-
erage by 15% on the bulk-synchronous cache organization
with a maximum speedup of 1.6X, and 17% on a coherent
cache hierarchy with a maximum speedup of 1.9X. This can
be achieved with an area overhead of less than 2%.

1 Introduction

SIMD organizations use a single instruction sequencer to
control multiple datapaths (hence the term SIMD), and they
go back to the Solomon/ILLIAC project [16]. SIMD is gen-
erally more efficient than MIMD organizations in exploiting
data parallelism, because it allows greater throughput within a
given area and power budget by amortizing the cost of the in-
struction sequencing over the multiple datapaths. This obser-
vation is becoming important, both because data parallelism
is common across a wide range of applications in the fields of
scientific computing, media processing, machine learning and
data mining; and because data-parallel throughput is increas-
ingly important for high performance as single-thread perfor-
mance slows.

SIMD operations can operate on multiple datapaths in the
form of a vector, or on a set of scalar datapaths with inde-
pendent, scalar register files, sometimes referred to as Single
Instruction, Multiple Threads (SIMT). For purposes of gener-
ality in this paper, we will refer to the set of operations hap-
pening in lockstep as a warp and the application of an instruc-
tion sequence to a single lane as a thread. We refer to a set of
hardware units under SIMD control as a warp processing unit

or WPU1. SIMD organizations can also be multithreaded to
hide pipeline or memory latencies. This requires the WPU to
time-multiplex among multiple concurrent warps, each with
their own PCs and registers.

SIMD organizations are now prevalant in microprocessors,
including the SSE and other multimedia, short-vector instruc-
tion sets in commodity CPUs; Cell BE [13], and various sig-
nal processors; and longer vector instructions in future Intel
instruction sets, including Intel’s Larrabee [19]. SIMT orga-
nizations are more common in architectures for high perfor-
mance computing, exemplified today in Clearspeed [15] and
various other accelerators. Graphics processors (GPUs) are
also SIMT organizations today [8, 2] and are increasingly used
for general-purpose computing.

The chief drawback with SIMD organizations is that the
single instruction sequencer limits throughput when SIMD
lanes exhibit divergent behavior. This divergence may arise
due to different branching or memory latencies. In the case
of conditional branches, a WPU can only execute one path of
the branch at a time, with threads from a given warp masked
off if they took the branch in the alternate direction. In the
case where threads from a single warp experience different
memory-reference latencies, a similar problem arises. In this
case, the entire warp must currently wait until the last thread
has its reference satisfied. This can occur in vector as well as
SIMT organizations, if the vector instruction set allows gather
operations (loading a vector from disparate addresses).

Divergent memory latencies are possible when threads ac-
cess different DRAM banks or in the presence of caching. Al-
though caching is uncommon in contemporary SIMT organi-
zations, it is common in vector organizations, and is likely
to grow in importance to reduce off-chip bandwidth and to
avoid redundant memory references in irregular data struc-
tures [11]. Otherwise, compiler-controlled local stores end up
being used to implement software caches, at much higher cost
than a proper hardware cache. Even graphics processors use
caching, albeit only for read-only data, and this is important
in general-purpose as well as graphics workloads [4, 5].

This paper focuses on reducing the penalties of divergent
cache latencies. Characterizations show that with 16 KB D-
caches, WPUs with four warps and a SIMD width of eight
diverge on up to 60% of SIMD memory instructions that in-
cur at least one miss, and WPUs may spend 53% of the time
waiting for memory accesses. Although the WPU can switch
to another warp and continue execution, its latency-hiding ca-
pability is constrained by the limited number of warps and the
fact that each warp may be incurring the same divergent be-
havior. Furthermore, adding more warps to hide latency will
multiply the number of thread contexts, register-file overhead,
and cache contention.

Specifically, this paper proposes to subdivide warps in re-
sponse to divergent cache accesses. This allows threads that
hit to run ahead and prefetch cache lines that may be needed

1We invent a new term here to distinguish it from ”cores” or ”PEs” which
may refer to individual scalar pipelines that constitutes the WPU. In commod-
ity GPUs, this is also referred to as shader processors, which is more specific
to the graphics pipeline.
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by the remaining threads that fall behind. The run-ahead
threads are likely to stall on future cache accesses, allow-
ing the split warps to eventually rejoin. The challenge is to
manage this process in a way that exploits greater memory
level parallelism (MLP) without reducing overall throughput
due to reduced warp utilization — aggressive subdivision may
result in performance degradation because it may lead to a
large number of narrow warp-splits that only exploit a frac-
tion of the computation resources. A dynamic mechanism is
needed because the divergence pattern varies across applica-
tions, phases of execution, and even inputs.

We evaluate several strategies for dynamic warp subdivi-
sion based upon eight distinct data-parallel benchmarks and
study them on two types of cache organizations: a bulk-
synchronous cache organization that has private caches com-
municating through main memory with global barrier syn-
chronizations (a possible direction for future SIMT organi-
zations), and a coherent, two-level cache hierarchy that has
private L1 caches sharing an inclusive, on-chip L2 (repre-
sentative of many of today’s vector organizations, including
the upcoming Larrabee processor). Experiments show that
our technique improves the performance on average by 15%
on the bulk-synchronous cache organization with a maximum
speedup of 1.6X, and 17% on the coherent cache hierarchy
with a maximum speedup of 1.9X. Our technique has less than
2% area overhead, it is also robust and shows no performance
degradation in any case.

2 Related Work

Fung et al. studied dynamic warp formation for efficient
control flow management in SIMD processors [12]. Follow-
ing the occurrence of diverging branch outcomes, their hard-
ware implementation is able to dynamically regroup threads
that take the same program path into new warps, thereby im-
proving the utilization of SIMD pipelines. Our techniques
leverages MLP and it addresses another significant source of
low pipeline utilization — long latency memory accesses. We
demonstrate that when SIMD hardware uses caches, dynam-
ically subdividing warps upon divergent cache accesses can
further improve performance. Our technique is especially use-
ful for memory intensive, data parallel applications, no matter
whether they subject to intensive divergent control flows or
not.

Existing techniques that address long latency memory ac-
cesses in the context of simultaneous multithreading (SMT)
do not help in the case of SIMD because of the intrinsically
different datapaths. In both cases, the concern is reduced
throughput. But with SMT, the problem is reduced instruc-
tion level parallelism (ILP) as a stalled thread fails to use idle
issue slots and also occupies expensive issue queues, rename-
register, and reorder-buffer entries, which limits ILP discov-
ery for the other thread. Techniques for SMT resource dis-
tribution [6, 23] do not apply to SIMD. SIMD datapaths are
usually in-order organizations, because simpler datapaths pro-
vide greater area efficiency in the presence of sufficient par-
allelism [10]. Stalled warps, however, require other warps to
keep the hardware occupied and maintain throughput. Each
additional warp that a WPU hosts incurs extra costs in terms
of wide, SIMD register state. Instead, the main problem raised
by long latency memory accesses is the risk of pipeline stall
due to divergent cache accesses, and the lack of warps to
hide the latency and exploit more MLP. The less time that
warps spend stalled, the fewer warps needed to maintain high
throughput.

Another extensively investigated technique that leverages
MLP in the context of SMT or multicore architecture is pre-

computation using speculative threads [7]. These approaches
target at improving single-threaded performance and they ex-
tract future instruction streams and execute them on additional
computing resources to prefetch data. More recently, runa-
head threads are proposed that allow a thread to continue spec-
ulatively despite long latency memory accesses, prefetching
data for the corresponding thread while releasing resources for
other SMT threads [18]. These speculative approaches, how-
ever, require run-time dependency analysis among instruc-
tions as well as the ability for out-of-order execution and com-
mit. These requirements are usually not met with simple,
in-order SIMD hardware. Besides, SIMD cores can switch
among many different warps to hide long latency memory ac-
cesses which the above SMT techniques typically do not con-
sider. We provide a solution designed specifically for SIMD
hardware that allows it to exploit more MLP without specula-
tive execution.

Finally, the dynamic warp subdivision technique described
in this paper is independent of the specific organization of
the memory hierarchy — the decision of subdividing warps
is solely based on pipeline utilization. It is therefore comple-
mentary to MLP-aware cache replacement policies [17].

3 SIMD Architecture

Figure 1: The baseline SIMT architecture groups scalar threads into
warps and executes them using the same instruction sequencer. A
thread operates over a scalar pipeline or lane that consists of register
files, ALUs, and memory units.

We demonstrate warp subdivision using SIMT architec-
tures while the same technique can be extended to vector ma-
chines, as we discuss in Section ??. We focus on SIMT archi-
tectures due to its generality; SIMT supports single program,
multiple data (SPMD), and can achieve the same computation
bandwidth as vectors without the complexity and overhead of
supporting instructions such as permutation [21].

A baseline architecture is demonstrated in Figure 1. In this
case, we illustrate a two level coherent cache hierarchy that
has private I- and D-caches which interact with an on-chip
shared cache before looking up the off-chip memory. The use
of shared caches is exploited by Larrabee [19] as an example
of general-purpose chip multiprocessors (CMP) with SIMD
support.

We also investigate another type of memory system for
bulk-synchronous models (not shown in Figure 1), where
there is only one level of per-WPU caches and they commu-
nicate directly with the main memory. Data is moved from
one WPU to another by using global barriers that synchronize
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threads after the updated data is written to the main mem-
ory and before they are loaded remotely. It resembles the
memory system in Cell BE [13] and Tesla [8] where private
read-only caches or software-controlled local stores interact
directly with the device memory.

3.1 Warp Processor

A WPU groups scalar threads into warps and these paral-
lel threads in the same warp simultaneously execute the same
instruction. The register files are highly banked so that mul-
tiple threads can access their operands at the same time. The
D-cache is also highly banked to cater to the high bandwidth
demand of memory accesses. Memory requests are forwarded
from the lanes to the D-cache banks through a crossbar. Upon
bank conflicts, requests are queued and processed sequen-
tially. The banked register files, together with the execute
units, are formed into lanes. A thread has its own registers
reside in one of the lanes and it is executed by the correspond-
ing scalar pipeline.

Upon conditional branches, threads within the same warp
may end up with divergent control flow. The WPU chooses
one of the control paths and execute threads that fall through
the corresponding path, suspending others until later. This
can be handled by post-dominator based reconvergence [12]
described in more details in Section 5.4.

3.2 Latency Hiding and Its Limitation

If a thread misses in the D-cache, other threads belonging
to the same warp must also wait for the memory request to
complete before they can proceed in a SIMD manner. Unlike
out-of-order processors, WPUs’ pipelines are mostly in-order
and they can rarely identify and continue with future inde-
pendent instructions. Therefore, it may result in significant
performance penalty if the pipeline stalls for every D-cache
misses.

WPUs hide this latency by having multiple warps inter-
leave their instruction sequences. When a warp is stalled by
D-cache accesses, the WPU removes the warp from the pool
of ready warps and switches to another warp in a round-robin
fashion. The suspended warp reenters the ready queue when
memory requests from all its threads complete. In this way,
WPU mitigates the under-utilization of pipelines. In addition,
MLP is improved since warps that take over the WPU can is-
sue more memory requests in parallel with the previous long
latency misses.

With limited number of warps, however, the pipeline may
stall eventually if all the warps are suspended due to D-cache
misses. Adding more warps multiplies the number of hard-
ware thread contexts or register files. A large number of warps
is therefore impractical due to its area cost, and the optimal
number of warps may vary for different applications. In ad-
dition, more active thread contexts lead to more cache con-
tention, and it may penalize performance, as we will show in
Section 7.3.

4 Characterization

The throughput-oriented WPUs are targeted mostly at data-
parallel applications with large input data sets. We simulate a
set of parallel benchmarks shown in Table 1. They are se-
lected from several benchmark suites and cover the applica-
tion domains of scientific computing, media processing, ma-
chine learning and data mining. They represent data-parallel

applications with varied data access and communication pat-
terns. We adjust the input sizes such that our benchmarks ex-
hibit sufficient parallelism for evaluation while maintaining
manageable simulation times.

Benchmark Description
FFT Fast Fourier Transform (Splash2 [20])

Spectral methods. Butterfly computation
Input: a 1-D array of 32,768 (215) numbers

Filter Edge Detection of an Input Image
Convolution. Gathering a 3-by-3 neighborhood
Input: a gray scale image of size 500× 500

HotSpot Thermal Simulation (Rodinia [5])
Iterative partial differential equation solver
Input: a 300× 300 2-D grid, 100 iterations

LU LU Decomposition (Splash2 [20]). Dense linear algebra
Alternating row-major and column-major computation
Input: a 300× 300 matrix

Merge Merge Sort. Element aggregation and reordering
Input: a 1-D array of 300,000 integers

Short Winning Path Search for Chess. Dynamic programming.
Neighborhood calculation based on the the previous row
Input: 6 steps each with 150,000 choices

KMeans Unsupervised Classification (MineBench [14]). Map-Reduce.
Distance aggregation. Input: 10,000 points in a 20-D space

SVM Supervised Learning (MineBench [14])
Support vector machine’s kernel computation.
Input: 1,024 vectors with a 20-D space

Table 1: Simulated benchmarks with descriptions and input sizes.

These benchmarks are programmed in an OpenMP-style
API implemented on our simulation platform based on M5,
a cycle-accurate, event-driven simulator originally designed
for a network of processors [3]. They are cross-compiled to
the Alpha ISA using gcc 4.1.0. We do not use the original
Pthread [1] or OpenMP [9] programs because M5 does not
simulate the run-time support for these applications in system
emulation mode. By instrumenting the code and using our
own primitives to signal parallel, nested for loops, the simu-
lated run-time library is able to tile the data-parallel tasks and
execute them on available hardware thread contexts.

Non-loop Divergent Cache misses Divergent cache-
cond. branches cond. branches in SIMD access

FFT 1399 45 41851 15716
Filter 0 0 53428 45142

HotSpot 26948 169 54669 36145
LU 0 0 40310 24257

Merge 19785 6829 17033 8655
Short 24240 5555 63573 45906

Kmeans 4764 1495 23924 7101
SVM 0 0 29332 6290

Table 2: Average numbers of non-loop conditional branches (i.e.
conditional branches that does not delimits loop iterations), diver-
gent conditional branches, SIMD cache misses (i.e. SIMD memory
accesses that result in at least one cache miss), and divergent cache
accesses within an interval of 1 M cycles.

We characterize these benchmarks with four WPUs that
each have 8 thread contexts formed into eight warps. The
characterization involves per-WPU private caches and a
shared last level cache (LLC) with configuration details same
as that shown in Table 3. Except for Merge and Short, all other
benchmarks have few divergent conditional branches. On the
other hand, divergent cache-accesses occur much more often
— all benchmarks show that a significant portion of the in-
structions that incur cache misses actually result in divergent
cache-accesses. Due to the commonness of divergent cache-
accesses, performance can be improved by allowing threads
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that hit to run ahead in order to exploit more MLP. We further
characterize the divergence degree of cache-accesses defined
as the number of threads that miss the cache upon a diver-
gent cache-access. Figure 2 shows that the divergence degree
varies across benchmarks or even phases. We therefore pro-
pose to adaptively subdivide warps at run-time.

Figure 2: Characterizing the sampled time distribution of the diver-
gence degree of cache accesses. The brightness of each cell reflects
the intensity of divergent cache-accesses that end up with a particular
divergence degree within a time interval of 1 M cycles.

5 Dynamic Warp Subdivision

To mitigate the penalty of long latency memory accesses
with limited number of warps, we propose dynamic warp sub-
division that allows threads that hit during divergent cache ac-
cesses to continue and exploit more MLP. We name this tech-
nique as MLP-aware warp subdivision (MAWS). The split
warps after the subdivision are referred to as warp-splits.
Threads that continue after they hit the cache are named as
run-ahead threads and they form a run-ahead warp-split.
Threads that stall due to cache misses are called fall-behind
threads and they form a fall-behind warp-split. The original
warp is regarded as the root warp-split and it can be subdi-
vided recursively.

5.1 Exploiting MLP

Figure 3 compares conventional SIMT execution with
MAWS upon divergent cache-accesses. Consider a warp
that has two memory access instructions which would both
incur diverged cache misses in the conventional execution
model. Assuming all other warps have been suspended al-
ready, MAWS can avoid stalling (Figure 3(b)(i)) or reduce the
stalling cycles (Figure 3(b)(ii)) in two scenarios:

• With conventional SIMT execution, the fall-behind
threads would hit the cache upon the latter instruction
anyway, and it is the run-ahead threads that now miss the
cache. In this case, MAWS allows run-ahead threads to
issue their memory requests earlier.

(a) Conventional SIMT Execution

(b) Warp Split Upon Diverged Memory Access

Figure 3: Comparing (a) conventional SIMT execution with (b)
MAWS using a simplified WPU model with all its warps stalled due
to cache misses except for one. For illustration purpose, the SIMD
width is shown as two but similar scenario exists for wider SIMTs
as well. MAWS allows threads that hit to proceed and issue more
memory requests in parallel. As a result, threads that missed the
cache previously may not have to stall (i) or only have to stall for a
much shorter period (ii) upon the next memory request which would
otherwise incur long latency in the conventional implementation.

• With conventional SIMT execution, the fall-behind
threads would miss the cache upon the latter instruc-
tion, and they request the same cache block as some of
the run-ahead threads. In this case, the run-ahead warp-
split plays the role of prefetch threads for the fall-behind
warp-slit. Different from speculative precomputation [7]
or run-ahead simultaneous threads [18] in the context
of SMT, the run-ahead warp-split always perform useful
computation and threads’ states are saved right away, re-
quiring no ROB or dependency analysis that would other-
wise complicate the design of the simple, in-order WPU.

In both cases, the long latency memory request which would
otherwise stall the pipeline is issued earlier than they would
in the conventional execution model. In consequence, the
pipeline stalls for fewer cycles and performance can be im-
proved.

5.2 Pipeline Utilization Hazard

Despite the potential improvement in MLP, both run-ahead
warp-splits and fall-behind warp-splits are narrower than the
original warp (i.e. they have fewer threads that utilize only a
fraction of the available lanes). If not merged in time, not only
do they risk low pipeline utilization, they may also sacrifice
MLP because the maximum number of outgoing memory re-
quests issued per instruction decreases along with the reduced
SIMD width. As a result, aggressively splitting warp-splits
for every diverged cache-accesses is likely to result in a large
number of narrow warp-splits each with only a few threads,
which can otherwise run altogether in a wider SIMT group.
Therefore, MAWS risks performance degradation if it subdi-
vides warp without constrains. We investigate several ways to
improve MLP while lowering the risk of performance degra-
dation.
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5.3 Handling Conditional Branches

In our implementation, warp-splits belonging to the same
warp always execute the same instruction stream — upon con-
ditional branches, the warp-splits have to wait for and eventu-
ally merge with others belonging to the same warp. Other-
wise, the SIMT implementation may be complicated signifi-
cantly since the structure of the reconvergence stack will not
be preserved — a run-ahead warp-split with diverged control
flows will push the reconvergence stack, and the new stack top
will not mark threads in the fall-behind warp-splits as active.
It may lead to long running, narrow warp-splits that under-
utilize the SIMT pipeline — the WPU has to suspend the fall-
behind warp-split until the run-ahead warp-split finishes its
divergent control paths and returns to the same layer in the
reconvergence stack as the fall-behind warp-split. It may also
defer the merging process of the warp-splits significantly.

5.4 Implementing Warp-splits

Figure 4: Warp splitting upon diverged cache accesses and its merg-
ing process.

Our hardware implementation uses a warp-split table
(WST) for each warp to keep track of all its existing warp-
splits. A WST entry records a warp-split’s current PC, its
instruction count, executing status, the priority, and the ac-
tive mask with set bits denoting the belonging threads. Both
the PC and the instruction count are used for the purpose of
merging the warp-splits. The executing status and the prior-
ity are used for scheduling, and the active mask is used for
selecting the threads in the corresponding warp-split to run in
SIMT.

We adopt the post-dominator based reconvergence scheme
to handle conditional branches [12]. Upon a divergent control

branch, the WPU pushes the reconvergence stack with each
level marking out threads that fall into the corresponding con-
trol path, as shown in Figure 4(b). Threads marked by the top
of the stack are executed until they reach the post-dominator
and pops the stack.

After a conditional branch, the active threads marked on
the top of the warp’s reconvergence stack is regarded as the
initial warp-split (Figure 4(c)). Upon D-cache lookups that
end up with divergent cache-accesses, a WPU constructs a bit
mask with a set bit marking that the corresponding thread hits
in the cache. This bit mask, referred to as the hit mask, be-
comes the active mask of the newly formed run-ahead warp-
split. The active mask of the fall-behind warp-split is gener-
ated by an XOR between the hit mask and the active mask of
its parent warp-split prior to the subdivision (Figure 4(d)).

To merge the warp-splits belonging to the same warp, the
WPU first finds the warp-split that falls behind the most and
increases its priority in the scheduling policy so that it can
catch up with the run-ahead warp-splits. This is performed
by finding the WST entry with the minimum instruction count
recorded as the number of instructions that the warp-split has
executed since the the root warp-split. Later on, when the
WPU executes a load or a store and attempts to switch to an-
other warp-split, it checks whether the PC of the warp-split
matches that of another warp-split. If so, they will be merged
into one (Figure 4(e)). Note that warp-splits from different
warps may follow their merging processes independently.

The instruction counts always reflect the relative pro-
gresses among warp-splits in the same warp. It holds true
even if the fall-behind warp-split goes beyond the run-ahead
warp-split if the latter is subjected to future long latency cache
misses and the former does not — in which case the fall-
behind warp-split becomes the run-ahead warp-split. PCs of
the warp-splits, however, cannot indicate their relative pro-
gresses because the run-ahead warp-split may uncondition-
ally jump to some instruction addresses which can be lower
or higher than that of the fall-behind warp-split.

5.4.1 Hardware Overhead

The maximum number of required per-warp WST entries
equals the number of thread contexts within each warp, since
the smallest warp-split is comprised of an individual thread.
Note that after a subdivision, the entry of the obsolete warp-
split is overwritten by the fall-behind warp-split so that a
WST only records existing warp-splits. Overall, a WPU has
the same number of WST entries as the number of hardware
thread contexts.

We use Cacti [22] to estimate the area of WST entries as
SRAMs and use an Opteron die photo to estimate the area of
a WPU according to its ALUs and register files. Assuming a
WPU operates over a 16 KB D-cache and 16 KB I-cache in
a technology node of 65nm. If the WPU has four warps with
a SIMD width of eight, it may have a maximum of 32 WST
entries each requires 18 B. Overall, the WST entries consume
less than 2% of the entire WPU.

5.4.2 Lazy Split

As we discussed in Section 5.2, aggressively subdividing
warps risks pipeline under-utilization and may even sacrifice
MLP. In fact, upon divergent cache-accesses, a WPU can sim-
ply switch to an existing warp-split, and there is no need for
subdividing warp-splits. Therefore, we investigate the option
of subdividing warp-splits only when all others are suspended.
This is referred to in the following discussion as Lazy Split.
When an individual warp-split is suspended due to cache ac-
cesses, Lazy Split records the hit mask which is later used for
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subdividing warp-splits. On the other hand, the merging pro-
cess begins as soon as a fall-behind warp-split completes its
memory request, so that WPU reduces the risk of many long
running, narrow warp-splits.

However, performance may still degrade if Lazy Split gen-
erates a run-ahead warp-split which is not able to issue sub-
sequent long latency memory requests in time (i.e. before an
out-going requests completes and wakes up an existing warp-
split), as illustrated in Figure 5. In this case, the run-ahead
warp-split may occupy the pipeline, keeping other warp-splits
from making progress while exploiting no more MLP. After-
wards, the same instruction stream will be executed again by
the fall-behind warp-split, increasing the number of executed
cycles.

Figure 5: Performance may degrade if the run-ahead warp-split does
not generate long latency memory requests before any request com-
pletes. Such case may take place with Lazy Split. We demonstrate
the case with two warps with arrows pointing to the warp-split that
the WPU executes.

5.4.3 Latency-speculating Split

To make sure that subdividing a warp will result in benefi-
cial run-ahead warp-splits that issue long-latency memory re-
quests before any other warp-splits can resume their execu-
tion, we exploit heuristics that help identify warp-splits that
would improve performance if subdivided. We name this as
Latency-speculating Split.

We define the miss-free cycles (MFC) of a warp-split to
be the number of cycles that it occupies the pipeline without
incurring long-latency cache misses. Consider the scenario
where an executing warp-split encounters a divergent cache-
access (i.e. its remaining MFC is zero). Let

∑
(rMFC) be

the sum of remaining miss-free cycles of all existing warp-
splits, MemLat be the memory latency in cycles which
other warp-slits have to hide, and rMFC ′ be the remain-
ing miss-free cycles for the running warp-split’s subset of
threads that hit the cache (i.e. the run-ahead warp-split if sub-
divided). With the above information, the hypothetical fall-
behind warp-split will resume its execution after MemLat
cycles, and the hypothetical run-ahead warp-split can success-
fully issue its next long-latency memory requests before that
time only if

∑
(rMFC) + rMFC ′ < MemLat. Therefore,

we subdivide the warp only when this condition is met. Note
that this is a necessary but not sufficient condition: the run-
ahead warp-splits may still not be able to issue the next mem-
ory request in time if other suspended warp-splits resume their
execution before the MemLat cycles expire.

Nevertheless, applying this heuristic still requires pre-
knowledge about

∑
(rMFC), MemLat, and rMFC ′. We

use hardware counters to dynamically profile the WPU’s his-
torical data to approximate their values. For each WPU, we
add a hardware counter which estimates

∑
(rMFC), named

as the sum-rMFC counter. It cooperates with warp-splits’
MFC counters appended to each WST entry. An MFC counter
records its corresponding warp-split’s miss-free cycles so far.
It is incremented every cycle in which the warp-slit occu-
pies the SIMT pipeline and is stopped when it incurs a cache
miss. It is used as an approximation for the remaining miss-
free cycles (rMFC ′) of the hypothetical run-ahead warp-split
upon divergent cache-accesses. When the warp-split com-
pletes its missed memory requests, its MFC count is also used
as a predictor of the miss-free cycles before its next cache
miss, and it is added to the WPU’s sum-rMFC counter. The
MFC counter then clears itself and restarts counting. The
sum-rMFC counter is decremented every cycle in which the
pipeline executes until its value reaches zero. In addition, an-
other field, the memory latency count, is appended to each
WST entry and it stores the latency in cycles involved in the
corresponding warp-split’s last cache miss. It is used as a pre-
dictor of the memory latency for the warp-split’s incoming
cache miss (MemLat). Using these speculative values, the
heuristic is tested upon every divergent cache-access to decide
whether the running warp-split should be further subdivided.

5.5 Loop Bypassing

As we discussed in Section 5.3, MAWS preserves the
conventional implementation of the reconvergence stack for
simplicity. However, this keeps run-ahead warp-splits from
proceeding beyond conditional branches and exploiting more
MLP. A common source of conditional branches that holds
the run-ahead warp-splits from proceeding comes from short
loops. Fortunately, conditional branches that delimit loop iter-
ations can be easily identified by the reconvergence stack, and
we are able to allow a run-ahead warp-split to continue across
iteration boundaries.

To detect loops upon conditional branches, a warp-split
checks whether its reconverging PC matches that on top of
the reconvergence stack. If so, the warp-split must be exe-
cuting the same conditional branch as it previously did, and
that the warp-split must be involved in a loop iteration. In this
case, the warp-split may have divergent control flows. Those
threads fall into the same path as they did before, marked ac-
tive by the top of the reconvergence stack, will continue their
execution as the run-ahead warp-split. Threads that take the
other path will be suspended and they are marked active only
in the the reconvergence stack’s next-to-top position which
corresponds to the other path. By doing so, the run-ahead
warp-split continues and it is still guaranteed that it will exe-
cute the same control flow path as the fall-behind warp-splits.

5.6 Scheduling Warp-splits

With MAWS, the scheduling entity becomes warp-splits
instead of warps. Because a conventional round-robin (RR)
scheduler prioritizes all ready entities equally, it is not able to
identify warp-splits that are likely to miss in the near future.
As a result, these warp-splits may not issue their long latency
memory requests as soon as possible. As Figure 6 shows, this
may end up with longer pipeline stalls due to fewer instruc-
tions are used to hide the memory latency.

We therefore propose a speculative scheduler that imple-
ments the shallowest-warp-first (SWF) policy, where the shal-
lowest warp-split denotes the warp-split that has the fewest
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Figure 6: A Shallower-Warp-First scheduler can exploit more MLP
than a round-robin scheduler.

remaining miss-free cycles (MFCs). The shallowest warp
is identified speculatively using warp-splits’ MFC counters
which are described in Section 5.4.3. By storing the MFC
value in another register and decrementing it every cycle in
which the warp-split occupies the pipeline, the WPU is able
to estimate the warp-split’s remaining MFCs and identify the
warp-split that is likely to miss the soonest. This shallowest
warp is then given the highest priority in the scheduling pol-
icy.

5.7 Applicability to Vector Machines

While MAWS is demonstrated using SIMT architectures,
it can be easily extended to vector machines with SIMD sup-
port that operate over cache structures. If a vector machine
supports gather loads (i.e. load a vector from a vector of
arbitrary addresses), the same problem of divergent cache-
accesses would occur. To leverage MLP, vector components
that hit the cache can continue their execution and issue more
memory requests using the same principle.

Upon each divergent cache-access, a bit mask is introduced
to mark out vector components that miss the cache. The in-
formation can be stored in a table with the PC upon which
the divergent cache-access occurs. In this way, vector com-
ponents that hit the cache can continue to be processed while
those that miss can resume at the recorded PC afterwards.

6 Simulation Methodology

To simulate WPU, We extend the simple, in-order CPU
model in M5 to have SIMT warps and a fetched instruction
is executed for threads within the same warp simultaneously.
Branch divergence is enabled by a stack based reconvergence
mechanism [24] — using a bit mask, threads that do not
fall into the current control path are not executed. Due to
the lack of compiler support, we instrument the code with
post-dominators that signals control flow reconvergence af-
ter branched control flow. Instructions-per-cycle (IPC) is as-
sumed to be one except for memory references, which are
modeled faithfully through the memory hierarchy (although
we do not model memory controller reordering effects). A
WPU switches warps in zero cycles upon every cache access.
WPUs are simulated with up to 64 thread contexts and 64
lanes. Using the simulator, we study CMT systems with four
such WPUs operating over cache hierarchies.

For the memory system, each WPU has a private I-cache. I-
caches are not banked because only one instruction is fetched
every cycle for all lanes. D-caches are always banked ac-
cording to the number of lanes. We assume there is a perfect

Tech. Node 65 nm
WPU 1 GHz, 0.9 V Vdd, Alpha ISA, 64 hardware thread contexts

8 warps with a SIMD width of 8, in-order
I-Cache 16 KB, 4-way associative, 32 B line size

1 cycle hit latency, 4 MSHRs, LRU, write-back
D-Cache 32 KB, 4-way associative, 32 B line size

MESI directory-based coherence
3 cycle hit latency, 16 MSHRs, LRU, write-back

LLC 2048 KB, 16-way associative, 128 B line size
30 cycle hit latency, 64 MSHRs, LRU, write-back

Crossbar 300 MHz, 57 Gbytes/s
Memory 300 cycles access latency

Table 3: Parameters for the two-level coherent cache hierarchy

Tech. Node 65 nm
WPU 1 GHz, 0.9 V Vdd, Alpha ISA, 32 hardware thread contexts

4 warps with a SIMD width of 8, in-order
I-Cache 16 KB, 4-way associative, 32 B line size

1 cycle hit latency, 4 MSHRs, LRU, write-back
D-Cache 32 KB, 4-way associative, 32 B line size

3 cycle hit latency, 16 MSHRs, LRU, write-back
Crossbar 300 MHz, 57 Gbytes/s
Memory 300 cycles access latency

Table 4: Parameters for bulk-synchronous one level cache organiza-
tion.

crossbar connecting the lanes with the D-cache banks. If bank
conflicts occur, memory requests are serialized and a small
queuing overhead (one cycle) is charged. The queuing over-
head can be smaller than the hit latency because we assume
requests can be pipelined. All caches are physically indexed
and physically tagged with LRU replacement policy.

We investigate two types of cache organizations. In a two
level coherent cache hierarchy, D-caches are private and to-
gether with the I-caches, they share an on-chip LLC through a
crossbar. Table 3 summarizes its main parameters. Note that
in Table 3, the aggregate LLC access latency is broken down
into L1 lookup latency, crossbar latency, and the LLC lookup
latency. The LLC then connects to the main memory through
a 266 MHz memory bus with a bandwidth of 16 GB/s. The
latency in accessing the main memory is assumed to be 300
cycles, and the memory controller is able to pipeline the re-
quests.

In the bulk-synchronous cache organization with one level
of caches, the per-WPU D-caches interact directly with the
main memory. A write to some data does not invalidate or up-
date other copies immediately. Instead, WPUs can only com-
municate by flushing data to the main memory before a global
barrier synchronization. Afterwards, WPUs reload data with
values updated. Table 4 summarizes the main parameters for
this type of cache organization.

7 Evaluation

We compare various strategies of dynamic warp subdi-
vision by simulating benchmarks described in Section 4.
Conv denotes conventional implementation of WPUs without
MAWS. Aggress denotes naive MAWS implementations that
subdivides warp-splits upon every divergent cache-accesses
aggressively. LazySplit denotes MAWS implemented with the
Lazy Split strategy, and LatSpec denotes MAWS implemented
with the Latency-speculating Split strategy.
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Figure 7: Speedup of various MLP optimizations on (a) a bulk-
synchronous, one-level cache organization; and (b) a two-level co-
herent cache hierarchy.

7.1 Performance Improvement

As we will show in our sensitivity studies, LatSpec with
LoopBypassing and SWF scheduling works consistently well
across all applications without degradation. We compare
speedups resulted from all combinations of the optimization
techniques involved in MAWS. The combination includes
subdivision strategies (Aggress, LazySplit, and LatSpec), loop
bypassing, and scheduling policies (RR, SWF). The typical
combinations are listed in Figure 7. For the bulk-synchronous
cache organization, LatSpec(LoopBypass+SWF) outperforms
LazySplit(LoopBypass+RR) significantly with LU and it
leads to an average performance improvement of 15%, com-
pared to LazySplit’s performance gains of 12%. On the
two-level cache hierarchy, LatSpec(LoopBypass+SWF) and
LazySplit(LoopBypass+RR) achieve a performance improve-
ment of 17% and 7%, respectively; no performance degra-
dation is observed for both systems. On the other hand, al-
though Aggress is able to achieve speedups for several appli-
cations, it leads to performance degradation up to 13% in the
bulk-synchronous cache organization and 8% in the two-level
cache hierarchy, which is caused by pipeline under-utilization
due to narrow warp-splits that are not merged in time.

We observe that Filter benefits significantly from MAWS
in the coherent cache hierarchy while FFT, LU, Merge, and
KMeans benefit more in the bulk-synchronous cache organi-
zation. This phenomenon has to do with the cache miss la-
tency, to which MAWS is sensitive and its impact is discussed
in more detail in Section 7.5.

Applications that are subjected to intensive divergent

cache-accesses and whose divergence degree remains rela-
tively constant are likely to benefit more from MAWS. While
SVM is subjected to intensive divergent cache-accesses as
well, its divergence degree varies rapidly from one to five, as
shown in Figure 2. The frequent variation in the divergence
degree indicates that the optimal subdivision varies frequently
and therefore a fall-behind warp-split is less likely to benefit
from data prefetched by a run-ahead warp-split. Short and
HotSpot, however, are subjected to frequent non-loop con-
ditional branches (Table 2) which run-ahead warp-splits can-
not bypass. It forces run-ahead warp-splits to wait and rejoin
fall-behind warp-splits, penalizing their capability to prefetch
more data.

Due to the commonness of short loops, all subdivision
strategies, if implemented without loop bypassing, achieve lit-
tle speedup except for KMeans. This is demonstrated in Fig-
ure 7 with measurement labeled as LatSpec(RR). In fact, per-
formance may even degrade with LatSpec because its heuris-
tic assumes warp-splits can continue to execute fluently as
long as it has remaining miss-free cycles. It does not con-
sider the effect of conditional branches that hold the run-ahead
warp-splits. As a result, warps are more likely to be subdi-
vided based on wrong decisions.

SWF scheduling is especially effective for Filter when Lat-
Spec and LoopBypass are applied; it improves performance
significantly in the coherent cache hierarchy and avoids per-
formance degradation in the bulk-synchronous cache organi-
zation. However, the performance difference between RR and
SWF scheduling is not apparent for most benchmarks. This
is partly because that in our implementation, WPUs switch
to another warp-split upon every cache accesses, rather than
upon cache misses only. As a result, a shallower warp-split
may still proceed to some extend — it needs not wait for
other warp-splits to miss the cache before it can take over the
pipeline.

In the following sensitivity studies, we will focus on
the performance comparison of LatSpec and LazySplit. As
a default, LatSpec incorporates loop bypassing and SWF
scheduling, and LazySplit incorporates loop bypassing and
RR scheduling.

7.2 Pipeline Utilization

Figure 8: Normalized execution time vs. SIMD width on a bulk-
synchronous, one-level cache organization. Each WPU has four
warps. Performance is normalized to each benchmark’s execution
time under Conv at a SIMD width of two. The arithmetic mean
for the normalized execution time of all benchmarks is shown as
Average.

MAWS improves performance over conventional SIMT
implementations especially for systems with more SIMD
width, or lanes. This is because a wider SIMT pipeline ex-
ecutes more threads concurrently but it also increases the risk
of divergent cache-accesses that would stall the pipeline in the
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conventional implementation. This risk can be reduced signif-
icantly using MAWS.

As Figure 8 shows, both LazySplit and LatSpec reach peak
performance with a SIMD width of eight, while the perfor-
mance of Conv saturates at a SIMD width of four. Similar
trend is observed in the two level cache hierarchy as well.
With a larger SIMD width, performance is improved first but
eventually degrades as a result of cache contention due to
more concurrent threads.

7.3 Latency Hiding with Fewer Warps

MAWS can improve the effectiveness of latency hiding in
addition to having more warps. It may also achieve the same
performance with fewer warps. To demonstrate this, we fix
at a SIMD width of eight and vary the number of warps from
one to eight. Figure 9 shows the performance scaling on the
bulk-synchronous cache organization.

Figure 9: Normalized execution time vs. number of warps at a SIMD
width of eight on a bulk-synchronous, one-level cache organization.
Performance is normalized to each benchmark’s execution time un-
der Conv with WPUs that have one warp each. The arithmetic mean
for the normalized execution time of all benchmarks is shown as
Average.

In general, additional warps can hide latency and improve
performance for all three configurations (Conv, LatSpec and
LazySplit). MAWS can further hide latency in addition to
having more warps. In fact, it achieves the same or better
performance with two warps, compared to conventional im-
plementations with four warps or more. Although the benefit
of MAWS may decrease as the WPU incorporates more warps
to hide latency, as can be observed from Merge, the benefit
does not diminish. In fact, it may increase again in the form
of graceful degradation. This is due to that cache contention
increases the risk of divergent cache-accesses and MAWS can
therefore mitigate its penalty. Finally, KMeans shows LatSpec
demonstrates more robust benefit over LazySplit.

Given a certain budget of the number of hardware thread
contexts, MAWS also helps dynamically balance the design
tradeoffs between having more warps to hide memory latency
and having more SIMD width for parallelism. In Figure 10,
each WPU has 64 hardware thread contexts and we vary the
SIMD width from two to 64 and the number of warps from 32
to one. Results show that the best tradeoff varies across bench-
marks: while KMeans performs best with a single warp of
width 64, Merge achieves its best performance with 16 warps
and a SIMD width of four. In this case, MAWS is able to
dynamically subdivide warps and adaptively translate more
SIMD width to more warps. Using MAWS, performances
of LU (not shown in Figure 10) and Merge degrade no more
with larger SIMD width. Instead, performance may improve
slightly.

Figure 10: Normalized execution time vs. (SIMD width x number of
warps) on a two-level coherent cache hierarchy. Each WPU has 64
hardware thread contexts. Performance is normalized to each bench-
mark’s execution time under Conv with WPUs that have 8 warps and
a SIMD width of 8. The arithmetic mean for the normalized execu-
tion time of all benchmarks is shown as Average.

7.4 Sensitivity of D-cache capacity

Figure 11: Normalize execution time vs. D-cache size on a bulk-
synchronous, one-level cache organization. Performance is normal-
ized to each benchmark’s execution time under Conv with a D-cache
size of 4 KB. The arithmetic mean for the normalized execution time
of all benchmarks is shown as Average.

While MAWS leads to performance gains across a wide
range of D-cache configurations, its benefit is most obvious
with medium sized D-caches. For either very small or very
large D-caches, the number of divergent cache-accesses de-
creases along with the increase in SIMT memory instructions
that result in all cache misses or all cache hits, and therefore
the benefit of MAWS may decreases as well.

We vary the D-cache size from 4 KB to 64 KB and
Figure 11 illustrates their impact on MAWS for the bulk-
synchronous cache organization. All benchmarks show that
the speedup from MAWS decreases with larger D-cache sizes
since divergent cache-accesses becomes rare. When perfor-
mance is limited by small D-caches, MAWS is able to exploit
the available memory bandwidth and improve cache through-
put to some extent. However, as LU and KMeans show, the
performance gains resulted from MAWS may be penalized by
extremely small D-caches, in which case memory requests are
mostly misses with fewer divergent cache-accesses.
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7.5 Sensitivity of LLC Latency

Figure 12: Normalize execution time vs. LLC lookup latency (in
cycles) on the two-level coherent cache hierarchy. Performance is
normalized to each benchmark’s execution time under Conv with an
L2 lookup latency of 10 cycles. The arithmetic mean for the normal-
ized execution time of all benchmarks is shown as Average.

While MAWS persistently performs better than conven-
tional SIMT implementations, it is usually more effective
when the system is subjected to long latency memory accesses
since it increases the need to have more warps to hide latency.
This effect can be observed from Merge and KMeans in Fig-
ure 12 where we vary the lookup latency of the LLC from 10
cycles to 300 cycles in the two level cache hierarchy.

However, in the case of Filter, LatSpec exhibits an oppo-
site response to longer LLC latency. This may be caused by
the imperfect heuristic that we use in LatSpec; MemLat es-
timates how much latency a WPU has to hide and it is ap-
proximated by the full memory access latency recorded pre-
viously, it does not account for warp-splits whose out-going
memory requests are halfway in progress. In such scenario,
the latency to hide can be much smaller than estimated, and
subdividing the running warp-split may only under-utilize the
pipeline. Such cases are more likely to occur with long la-
tency LLCs. This is reflected by Filter’s number of warp-splits
which rapidly increases to 61 when the LLC latency is 300 cy-
cles in the case of LatSpec. It also explains that Filter benefits
less in the bulk-synchronous cache organization.

8 Conclusion

In this paper, we characterize the cache access behav-
ior for several data-parallel applications running over SIMD
pipelines and show they are subjected to a large number of
divergent cache-accesses. As a result, warps are likely to sus-
pend and those threads that hit the cache are not able to con-
tinue execution, leading to pipeline stalls in the case of lim-
ited number of warps available. To mitigate the penalty of
divergent cache-accesses, we propose MAWS that leverages
MLP by subdividing warps upon divergent cache-accesses
and allow threads that hit the cache to run ahead and issue
more memory requests. Several optimizations are proposed to
lower the risk of pipeline utilization caused by narrow warp-
splits. Lazy Split subdivides warps only when no more warps
can proceed and exploit more MLP, and Latency-speculating
Split reduces the number of unnecessary subdivisions when
run-ahead warp-splits are not likely to be beneficial. Fur-
thermore, loop bypassing improves the ability of run-ahead
warp-splits to proceed across loop boundaries. On average,
our technique improves the performance by 17% on the coher-
ent cache hierarchy and 15% on the bulk-synchronous cache
organization.

Future work include integrating MAWS with dynamic
warp formation that handles divergent control flows. It may

further improve performance by allowing the run-ahead warp-
splits to proceed beyond not only loop boundaries, but also
other conditional branches. Finally, we have noticed that the
optimal number of hardware thread contexts vary in differ-
ent applications. It will be helpful to adaptively restrict the
number of active thread contexts in the case of severe cache
contention.
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