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Motivation

• Server applications are multithreaded, and 
aggregate throughput is more important than 
individual thread latency

• No-overhead multithreading prevents 
processor stalling due to low ILP or high cache 
miss rates

• Explore the CMT design space for equivalent 
area configurations
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Even single-threaded ones run many client threads on a common server



CMT Design Space

• Vary the number of IDPs 
and number of threads 
for each core

• Within each core 
configuration, vary cache 
size and organization

• Simulated a perfect 
secondary cache that 
provided insight into L1 
cache utilization, to then 
guide the second 
simulation phase

superscalar processors employing fine-grain 
multithreading.  We use a variety of industry guidelines 
to reduce the number of simulations in the design space.  
Even with these guidelines, approximately 13,000 
configurations exist for in-order scalar CMTs for each 
benchmark and process technology.  Results from a 
perfect L2 cache simulator configuration enabled 
further pruning of the scalar CMT design space.  
Superscalar processor configurations were explored to 
enable comparisons to previous studies that investigate 
CMPs [5][9].  Unlike these previous studies, our 
superscalar processors include multithreading, which 
we show is crucial to achieve high throughput. 

The design trade-offs and complexity for CMTs 
composed of a large number of simple processors are 
very different from that of a CMP consisting of a small 
number of superscalar processor cores.  In this paper, 
we use SPEC JBB [30], TPC-C, TPC-W [31] and XML 
Test [32], a Java middleware, OLTP, transactional web, 
and XML parsing web benchmarks, respectively.  For 
these applications, total throughput, rather than single-
thread performance, is the main metric of interest.  We 
measure total throughput using aggregate instructions 
per cycle (AIPC), which we find to be directly related 
to transactions per second for our highly tuned versions 
of the benchmarks.  For all benchmarks, AIPC is 
maximized for a range of scalar CMT configurations 
employing small primary caches with roughly 25-40% 
of the CMT area devoted to shared secondary cache 
area.  We observed consistent trends across 
technologies that enable us to extrapolate our results 
from small-scale and medium-scale CMTs to large-
scale CMTs. 

We discuss the CMT design space and describe our 
area model based on various processor core components 
and cache designs used to determine the allowable 
CMT configurations in Section 2.  Section 3 elaborates 
on our high performance multi-configuration simulation 
environment.  Section 4 presents the detailed results of 
our simulations.  Section 5 discusses related work and 
we conclude in Section 6.

2. The CMT design space 

We evaluated CMTs built from processor cores 
implementing the SPARC ISA.  By exploring several of 
Sun Microsystem’s UltraSPARC chip design databases, 
we determined the area impact of the architectural 
components that are modified to enable fine-grain 
multithreading.  From this, we derived a thread-scalable 
fine-grained multithreaded processor core area model, 
which correlates well with actual and projected 
UltraSPARC processor areas from 130 nm to 45 nm 
silicon process generations.  We present simulated 

results for small-scale, medium-scale, and (limited) 
large-scale CMTs, where small, medium, large classify 
CMT configurations that correspond to reticle-limited 
dies (400 mm2) for 130 nm, 90 nm, and 65 nm silicon 
process technologies, respectively   

Figure 1: A high-level functional diagram of the 
CMT design space.  The gray components are 
varied and described in Table 1. 

Table 1: CMT design space parameters.
Feature Description

CPU In-order scalar or superscalar

Issue Width scalar, 2-way and 4-way superscalar

Pipeline Depth 8 stages

Integer Datapath Pipelines  1-4  IDPs or Integer ALUs

L1 D & I Cache 8KB-128KB, 16 (D) & 32 (I) Byte lines

L1 D & I Cache Set Assoc. Direct-mapped, 2-, 4-, or 8-way

L1 D & I Cache Policies write through, LRU-based replacement 

Clock Frequency 1/3 -1/2 Maximum ITRS clock frequency [23]

Multithreading 1-32 threads/core

L2 Cache 1MB - 8MB, 128 Byte lines, banked (8 or 16), 

coherent, inclusive, shared, unified, critical 

word first, 25 cycle hit time (unloaded)

Main Memory Fully Buffered DIMMs with 4/8/16 dual 

channels, 135 cycle latency (unloaded)

Figure 1 illustrates and Table 1 describes the variety 
of high-level CMT configurations; all the gray 
components are varied in this study.  The processor 
cores can utilize either in-order scalar or superscalar 
integer datapaths (IDPs).  We vary the number of IDPs 
within each core and the number of threads per IDP.  In 
our scalar processor design, threads are statically 
assigned to an IDP, as this avoids the superlinear area 
impact of being able to issue instructions from any of 
the threads on a core to any of the IDPs.  All cache 
sizes and set associativities (SA) can vary.  Instruction 
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Threads are statically scheduled to an IDP, supressing the superlinear effect of being able to issue 
any thread to any of the IDPs -- LRU policy in the case of SS



Core Area Model

• Developed from UltraSPARC processors (130-45 nm)

• Die area fixed at 400 mm2

• 5-6% core area increase per thread

caches and data caches are always identical in size or 
differ by a factor of 2X, but no more.  The primary 
caches range from 8 KB to 128 KB with SA ranging 
from direct mapped to 8-way.  Small instruction buffers 
for each thread decouple the front-end of each IDP 
from the shared primary instruction cache.  The 
memory and cache subsystems are fully modeled with 
queuing delaying and occupancy.  The actual RAS/CAS 
cycles for the DRAM accesses are modeled along with 
all the various buffers and queues.  The number of 
processor cores and sizes of the caches are determined 
by the area model for a given silicon process 
technology, keeping die size constant across all possible 
configurations.   

2.1. The CMT area model 

Historically, server microprocessors have pushed the 
manufacturing envelope close to the reticle limit, 
around 400 mm2.  Hence, we fixed the die size to be 
400 mm2 across the technology generations and allocate 
75% of the total die area to the CMT area, processor 
cores and secondary cache, with the remaining 25% 
devoted to the other system-on-a-chip (SOC) 
components: memory controllers, I/O, clocking, etc.  
We devote 15% of the CMT area to the processor core 
interconnect and related components and the remaining 
85% of the CMT area (60% of the total area) is devoted 
to the processor cores and secondary cache.  The 
number of processor cores and the size of the secondary 
cache are determined by allocating between 25% to 
75% to one and the remainder of the area to the other to 
cover a broad range of CMT configurations, from 
processor intensive to on-chip memory intensive 
designs.  We also account for spacing and routing 
between the (sub)components; an additional 10-20%, 
depending on the component, of die area is allocated for 
this purpose at various levels of the area model.  Thus, 
our area model produces realistic CMT configurations 
that have been validated against Sun Microsystem’s 
processor designs. 

2.2. Processor core & cache area 

From our estimates, fine-grain multithreading 
directly impacts the area of processor core components 
in a linear manner for a small number of threads, but the 
degree to which these components are affected varies 
greatly.  We estimate a 5-6% area increase when 
integrating two active threads into a simple, in-order 
scalar or superscalar processor.  This area increase is 
similar to the area increase due to simultaneous 
multithreading reported by Intel and IBM [19][6].  
Figure 2 illustrates the linear increase in processor core 

area predicted by our model, for a maximum of 16 
hardware threads per processor core.  The number of 
threads per core is shown on the x-axis and the y-axis 
quantifies the relative area increase of the core 
configuration when adding multithreading and 
additional IDPs.  The increased complexity and 
resulting non-linear area increase for large number of 
threads per IDP is not modeled. This non-linearity is 
realized much sooner with superscalar cores, preventing 
our area model from accurately predicting superscalar 
cores with more than 8 threads.   
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Figure 2: Core area model relative to a scalar 
single-thread single IDP core for scalar (X IDP) 
and superscalar (Y SS), where X is the number 
of IDP sharing private primary caches and Y is 
the instruction issue width. 

We initially used CACTI 3.2 [25] to estimate cache 
area and power, but found some inaccuracies and 
limitations for the sub-micron silicon process 
generations that we were interested in modeling [33].  
We use conservative area estimates based on Sun 
Microsystem’s designs for cache memory cells with an 
area efficiency of 50% for all processor configurations.  
Based on access time limitations, we constrained the 
primary cache size with respect to the other processor 
components to be no more than 50% of the total 
processor core area.  This constraint favors larger cores, 
as our simulations do not assume multiple-cycle access 
for the larger primary caches, and so are optimistic in 
their performance benefits.  While this might seem to 
give an advantage to large thread or large IDP 
configurations, we show in Section 4.3, all but two of 
the best performing configurations use small primary 
caches that were available to all possible thread/IDP 
combinations, with the two outliers using caches 
available to all combinations except the lower-thread 
count, single IDP configurations.   

3. Simulation environment 

While our simulation study encounters the standard 
problems of simulating nonexistent systems and of 
simulating realistically configured large-scale 

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05) 

1089-795X/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore.  Restrictions apply. 

Secondary 
Cache

+
Cores

memory 
controller,

I/O,
clocking, etc.

C
or

e
In

te
rc

on
ne

ct

4Thursday, January 28, 2010



Methodology

• RASE (Rapid, Accurate Simulation Environment)

• Built on SimCMT - cycle-based performance 
simulator modeling Niagara

• execution-driven and trace-driven simulation

• Faster simulation

• No variability across test sequences

• < 1% difference in IPC

• < 5% difference in miss rates
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2 modes:
1) Execution-driven mode: Simics issues insts and data references, and SimCMT replies with timing 
information.
+ Accuracy
- Long simulation time
2) Trace-driven mode: Run SimCMT with an instruction trace
+ Simulations speedup is ~20x



RASE
extremely long simulation time. Another mode is to run 
with an instruction trace that is collected offline from a 
system simulator. The traces include complete system 
activities ranging from instruction traces (including data 
accesses), traps, TLB records, processor state changes, 
Direct Memory Accesses (DMAs), and register values.  
One advantage of the trace-driven mode is that the trace 
needs to be collected only once and can be reused.  We 
simulate the full processor pipeline and memory system 
with the instruction traces.  The speed-up of trace-
driven simulation compared to execution-driven 
simulation is about 20X.  Another advantage is that the 
same trace provides a constant input to the simulator 
when several architectures are being simulated and 
evaluated. This reduces the variability in the 
comparisons and the analysis can be more isolated and 
focused on the architecture differences. 

SimCMT has been extensively used throughout the 
duration of the design and implementation phase of 
Niagara.  A wide range of (micro-)architecture 
variables such as number of cores, number of pipelines 
per core, number of threads per pipeline, cache sizes, 
line sizes, associativity, replacement strategies, and 
various buffer/queue sizes have been evaluated and 
finalized through extensive simulations.  SimCMT’s 
combination of the highly detailed simulation 
infrastructure and the highly detailed raw statistics 
provide the performance evaluation platform for quick 
and accurate architecture evaluation and understanding. 

 

2.3. Instruction Stream Generation 
 
Figure 2 illustrates the instruction stream generation 

and simulation flow.  We start by setting up these 
workloads on a system simulator, such as Simics [19], 
with a configuration that has the proper resource 
requirements based on the targeted performance 
including the following resources: the number of CPUs, 
the number of hard drives, RAM, and selection of 
operating system and third-party applications.  (1) 
Simics, running in fast mode, is used to execute the 
benchmark until it reaches steady state, where a 
checkpoint is taken (2). After the checkpoint, we can 
plug in Niagara specific models for an execution-driven 
simulation or generate a trace that can be later used for 
trace-driven simulation.  Given a valid trace file, a 
standalone SimCMT can be used in trace-driven mode 
(3) to evaluate the system performance. Regardless of 
the simulation mode, a common raw output can be 
analyzed (4) and the results can be used to modify the 
system model and repeat the simulation methodology 
(5), either execution or trace driven.   

Steps 1 and 2 generate instruction streams that are 
representative of the original workload across various 
hardware configurations, making them suitable for a 
variety of targeted architectures.  We created a Simics 
module to generate trace files by writing every PC and 
corresponding instruction to a file for each processor or 
thread.  Branch prediction, physical address to virtual 
address mappings, kernel vs. user code and other 
related information about thread state is written to this 
file and compressed to save disk space.  We also use 
pmap to get address space information about the 
processes. This defines the shared and 
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Figure 2.  The steps required for trace generation 
and execution or trace driven simulation. (1) Tune 
the benchmark for the target hardware, (2) use 
execution-driven mode to reach the benchmark 
steady state, take a checkpoint, continue execution-
driven simulation and/or generate trace file, (3) 
trace-driven simulation using input trace file and 
system model, (4) common result analysis 
framework, and (5) model modifications. 

 
non-shared memory regions to be used for thread 
replication for larger subsequent simulations.  These 
trace files therefore capture the memory access 
behavior and the instruction mix of the commercial 
server benchmarks used for the architecture studies.  

 

2.4. Scaling Large Simulations 
 

Niagara has 32 threads, which exceeds the number 
of threads in our instruction stream file, because the 
largest applications we decided to simulate in a 
reasonable amount of wall clock time contained only 16 
threads.  Generating larger trace files would be 
prohibitive due to time to set up, reach the benchmark’s 
steady state operating region, and collect the trace.  In 
order to replicate threads to enable scaling the industry-
grade benchmark to simulate high aggregate thread 
configurations, we use the address mapping of the 
processes.  We assume text is shared, as well as the 
kernel data structures.  The application address space is 
divided into shared and non-shared region based on the 
pmap info and some application specific information, 
i.e., the system global area (SGA) for Oracle or the 
JVM heap for SPEC JBB2000.  We use this benchmark 
specific information to “remap” old threads to new 
threads with the same benchmark behavior at different 
points in the processor trace file.  The long trace files 
enable non-overlapping instruction execution of the 
original threads and replicated threads, as shown in 
Figure 3.  These steady-state benchmarks [5][22] do the 
same classes of transactions repetitively and the 
replicated threads capture that same general benchmark 
behavior. 

Source: Davis, J. D., Fu, C., and Laudon, J. 2005. The RASE (Rapid, Accurate Simulation Environment) for chip multiprocessors. SIGARCH Comput. Archit. News 33, 4 (Nov. 
2005), 14-23. DOI= http://doi.acm.org/10.1145/1105734.1105738

In general, an X-way trace file can be expanded to 
simulate Y threads, when Y>X, by replicating and 
shifting the address space of the trace threads.  The 
addresses of the non-shared address space, like the 
stack, were simply shifted to remove replication-
induced artificial sharing, while the shared regions, e.g., 
text and shared global memory, were not shifted.  We 
shift the upper address bits by Xoring them with the 
replication id and maintaining the correct physical to 
virtual address mappings.  The replication id ranges 
from 0 to the ceiling of Y/X.  The cpu or thread ids are 
distinguished by the offset pointers into the original 
instruction stream file.  We insure non-overlapping 
execution of the replicated threads by selecting an 
appropriate offset. 

X Original Threads

0 to X-1 Threads

X to 2X-1 Threads
Y Threads

Figure 3. Thread replication from a trace with X 
threads for non-overlapping trace-driven execution 
of Y threads. 

 
Thread replication has the potential to lead to 

benchmark behavior that is not characteristic of the 
benchmark.  This could be a result of benchmark 
variability, lock contention, or other software and 
benchmark setup problems.  However, we did not 
observe time variability, as described in [3], as these 
benchmarks exhibit a steady behavior during their large 
measurement window [5][22].  Furthermore, space 
variability exists between runs on the same systems, but 
we are able to reproduce benchmark performance 
within a few percent of the average for multiple runs of 
these highly tuned benchmarks.  As our data 
demonstrates, CMT performance on the real 
applications can be better characterized by our RASE 
methodology combined with detailed 
hardware/software correlation and long traces than by 
an alternative methodology of application scaling and 
multiple short execution-driven runs [2][3].   

When using thread replication to simulate larger 
systems, we are trying to balance constructive and 
destructive interference in the simulation, in this case 
cause by false sharing and increased conflict misses.  
These effects should be present in these types of 
simulations, but we want to mitigate the artificial 
exaggeration of these effects caused by thread 
replication.  We preserve shared address spaces to 
remove any false conflict misses.  However, conflict 
misses are introduced by shifting the non-shared 
memory region while still preserving all the low order 
bits.  This causes more conflict misses and in some 
cases, the simple replication mechanism increases 
conflict misses in the L2 cache resulting from the lower 
order bits of the replicated threads mapping to the same 
set index.  A simple index hashing scheme is used that 
hashes the replication id with the set index to reduce the 
conflict miss rate, thereby balancing the performance 
degradation introduced by the increased conflict misses 

due to address shifting.  This basically replicates the 
page coloring that the operating system would normally 
do. 
 

3. Benchmark Details 
 

To estimate real application performance, we have 
selected SPEC JBB2000, TPC-C, and XML Test server 
benchmarks to assess the CMT’s performance.  SPEC 
JBB2000 emulates a 3-tier system emphasizing the Java 
server-side performance.  This benchmark focuses on 
middleware business logic [24].  TPC-C is an online 
transaction processing benchmark based on an order-
entry system [26].  We concentrate on the server 
component of TPC-C for this study.  This complicated 
benchmark can have extreme resource requirements 
[16][14][4][1][23].  XML Test is a multithreaded XML 
processing benchmark developed at Sun Microsystems 
[25]. XML Test performs both streaming and tree 
building parsing, which replicate application servers 
that provide web services and simultaneously process 
XML documents.  Unlike SPEC JBB2000, XML Test is 
a single tier system benchmark; the test driver is part of 
the worker thread.   

All of these benchmarks lack multiple phase 
execution, thus recording the contiguous instruction 
streams on a per thread basis captures the complete 
system performance and the overall benchmark 
characteristics.  In contrast, benchmarks like SPEC 
CPU2000 require sampling techniques to capture the 
various phases of execution [21].  SPEC JBB2000 uses 
the J2SE 1.5 JVM with a 3.5 GB heap running on 
Solaris 9 with 2 to 16 warehouses to collect a 2 to 16-
processor instruction trace file, respectively.  Likewise, 
XML Test uses the J2SE 1.5 JVM, but with a smaller 
2.5 GB heap.  For TPC-C, we use 3,000 warehouses 
with a 28 GB SGA and 176 9 GB disks coupled with 
commercial database management and volume manager 
software running on Solaris 9.  Both clients and servers 
are simulated, but only the server instruction traces are 
used in this study.   

Each trace contains several billion instructions per 
process thread, or over 30 billion instructions in 
aggregate in steady state.  All traces are collected 
during the valid measurement time after the benchmarks 
have ramped up and completed the benchmark specified 
warm-up cycle, on real hardware.  This is 2 minutes of 
wall clock time for SPEC JBB2000, several million 
transactions for TPC-C, and 10 minutes for XML Test.  
We have observed significant variation in benchmark 
performance during the ramp-up period, but little 
variation once in steady state as mentioned in [3].  All 
benchmarks are highly tuned with less than 1% system 
idle time, and show negligible variability during the 
measurement period with respect to performance and 
instruction mix as described in Section 4.1. 
 

4. RASE Validation 
 
RASE validation can be broken up into three parts, 

the instruction stream files, thread replication, and the 
simulator, SimCMT.  First, we validate the trace files 
by comparing steady-state execution of the full-sized 
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Design Space Parameters

• 21 Scalar and Superscalar  
CMT core configurations

• Secondary caches of 25%, 
40%, 60%, and 75% of 
CMT area

superscalar processors employing fine-grain 
multithreading.  We use a variety of industry guidelines 
to reduce the number of simulations in the design space.  
Even with these guidelines, approximately 13,000 
configurations exist for in-order scalar CMTs for each 
benchmark and process technology.  Results from a 
perfect L2 cache simulator configuration enabled 
further pruning of the scalar CMT design space.  
Superscalar processor configurations were explored to 
enable comparisons to previous studies that investigate 
CMPs [5][9].  Unlike these previous studies, our 
superscalar processors include multithreading, which 
we show is crucial to achieve high throughput. 

The design trade-offs and complexity for CMTs 
composed of a large number of simple processors are 
very different from that of a CMP consisting of a small 
number of superscalar processor cores.  In this paper, 
we use SPEC JBB [30], TPC-C, TPC-W [31] and XML 
Test [32], a Java middleware, OLTP, transactional web, 
and XML parsing web benchmarks, respectively.  For 
these applications, total throughput, rather than single-
thread performance, is the main metric of interest.  We 
measure total throughput using aggregate instructions 
per cycle (AIPC), which we find to be directly related 
to transactions per second for our highly tuned versions 
of the benchmarks.  For all benchmarks, AIPC is 
maximized for a range of scalar CMT configurations 
employing small primary caches with roughly 25-40% 
of the CMT area devoted to shared secondary cache 
area.  We observed consistent trends across 
technologies that enable us to extrapolate our results 
from small-scale and medium-scale CMTs to large-
scale CMTs. 

We discuss the CMT design space and describe our 
area model based on various processor core components 
and cache designs used to determine the allowable 
CMT configurations in Section 2.  Section 3 elaborates 
on our high performance multi-configuration simulation 
environment.  Section 4 presents the detailed results of 
our simulations.  Section 5 discusses related work and 
we conclude in Section 6.

2. The CMT design space 

We evaluated CMTs built from processor cores 
implementing the SPARC ISA.  By exploring several of 
Sun Microsystem’s UltraSPARC chip design databases, 
we determined the area impact of the architectural 
components that are modified to enable fine-grain 
multithreading.  From this, we derived a thread-scalable 
fine-grained multithreaded processor core area model, 
which correlates well with actual and projected 
UltraSPARC processor areas from 130 nm to 45 nm 
silicon process generations.  We present simulated 

results for small-scale, medium-scale, and (limited) 
large-scale CMTs, where small, medium, large classify 
CMT configurations that correspond to reticle-limited 
dies (400 mm2) for 130 nm, 90 nm, and 65 nm silicon 
process technologies, respectively   

Figure 1: A high-level functional diagram of the 
CMT design space.  The gray components are 
varied and described in Table 1. 

Table 1: CMT design space parameters.
Feature Description

CPU In-order scalar or superscalar

Issue Width scalar, 2-way and 4-way superscalar

Pipeline Depth 8 stages

Integer Datapath Pipelines  1-4  IDPs or Integer ALUs

L1 D & I Cache 8KB-128KB, 16 (D) & 32 (I) Byte lines

L1 D & I Cache Set Assoc. Direct-mapped, 2-, 4-, or 8-way

L1 D & I Cache Policies write through, LRU-based replacement 

Clock Frequency 1/3 -1/2 Maximum ITRS clock frequency [23]

Multithreading 1-32 threads/core

L2 Cache 1MB - 8MB, 128 Byte lines, banked (8 or 16), 

coherent, inclusive, shared, unified, critical 

word first, 25 cycle hit time (unloaded)

Main Memory Fully Buffered DIMMs with 4/8/16 dual 

channels, 135 cycle latency (unloaded)

Figure 1 illustrates and Table 1 describes the variety 
of high-level CMT configurations; all the gray 
components are varied in this study.  The processor 
cores can utilize either in-order scalar or superscalar 
integer datapaths (IDPs).  We vary the number of IDPs 
within each core and the number of threads per IDP.  In 
our scalar processor design, threads are statically 
assigned to an IDP, as this avoids the superlinear area 
impact of being able to issue instructions from any of 
the threads on a core to any of the IDPs.  All cache 
sizes and set associativities (SA) can vary.  Instruction 
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Benchmarks

• SPEC JBB -- Java server-side performance

• TPC-C -- online transaction processing; HD, memory, 
and network resources are stressed

• TPC-W -- transactional web processing

• XML Test -- multithreaded XML parsing of trees
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SPEC JBB Results
for medium-scale CMTs

  Scalar CMT cores outperform Superscalar CMT cores due 
to the additional scalar cores that fit the area budget
•  “Overthreading” -- max IPC close to absolute peak

Ex. 1p8t, 2p16t, 2s8t
•  Insufficient secondary cache degrades performance

Ex. 2p16t, 3p12t, 3p24t, 4p16t

secondary cache defined in Table 2.  This same core 
configuration coupled with the smallest secondary 
cache results in 15% performance degradation in core 
IPC.  Note that the 1p8t configurations with the larger 
secondary cache configurations in Figure 4 are 
examples of “overthreading with a pipeline utilization 
over 94% and a very small average core IPC range.  
This configuration exhibits similar performance 
behavior for all the benchmarks; it is insensitive to 
primary cache size and set associativity as a result of 
“overthreading”.  

1.5 2.0
2.5 3.51.5

1.0
4.5
2.5

4.53.0 6.0 8.0Large
Medium
Small

CMT Scale L2 Sizes (MB)

Max

Min

Core IPC

NpMt
Figure 3: Average core IPC range for the NpMt
configuration for 4 different L2 cache sizes.  
Each black bar shows the IPC range when L1 
cache sizes are varied for each L2 cache size.

This pipeline saturation or “overthreading” can 
easily be observed in the 1p8t, 2p16t, and 2s8t core 
configurations, where the maximum IPC is very close 
to the absolute peak.  Figure 4 also illustrates the 
performance degradation as a result of insufficient 
secondary cache capacity.  This is most noticeable in 
the large IPC degradation or step down for the 2p16t, 
3p12t, 3p24t, or 4p16t configuration when moving right 
to left from a 2.5 MB L2 to a 1.5MB L2, where the 
small primary cache configurations magnify the effects 
of insufficient secondary cache capacity.  This problem 
is exacerbated in the medium-scale CMTs due to the 

increased number of aggregate threads for core-
intensive designs, but is also present in the small-scale 
CMT configurations with large numbers of IDPs and 
threads.  Given the memory subsystem scaling, we have 
observed that the (limited) large-scale CMT results 
exhibit performance characteristics similar to the small-
scale and medium-scale CMT results.  In addition to 
insufficient secondary cache capacity, SPEC JBB can 
suffer from insufficient secondary cache associativity as 
well.  In Figure 4, insufficient secondary cache 
associativity degrades the performance of both large 
and small cores for the core-intensive configurations 
with 8 or more threads per core. In these cases, conflict 
misses in the secondary cache cause serial thread 
execution by forcing threads to wait on main memory 
accesses. This can be further aggravated if the same 
secondary cache bank and/or DRAM bank become 
memory hot spots [26]. 

One of the benefits of multithreading is its ability to 
tolerate latency, but there are conditions caused by 
thread interference that saturate the memory bandwidth, 
negating this ability to hide latency and causing the 
performance of the processor core to drop dramatically.  
This is best illustrated by the large CMT configurations 
(3p13t, 2p16t, 3p24t, and 4p16t) with small L2 and 
large average IPC ranges.  The medium-scale CMT 
results in Figure 4 are similar for small-scale and large-
scale CMTs on all the benchmarks.  In general, the 
reader can scale the average IPC in Figure 4 up or down 
depending on the benchmark, up for XML Test and 
down for TPC-W and TPC-C.  The “overthreaded” 
configurations saturate the pipelines for the same CMT 
configurations across all the benchmarks.  TPC-C’s 
performance is more sensitive to secondary cache size 
and results in a more pronounced performance “step” 
traversing the increasing secondary cache sizes.  TPC- 
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underthreading - single thread per pipeline results in no latency tolerance and low processor 
utilization
overthreading - too many active threads fully utilize the IDP and perf is insensitive to primary cache 
capacity or set associativity
similar results for other benchmarks -- up XML Test, down TPC-W, TPC-C



TPC-C results for
small scale 2p4t CMT

• AIPC underperforms 
due to the area limit

• C1 = best IPC core + 
64KB D+I-$

• C2 = mediocre IPC + 
32MB D+I-$

• Too many cores can 
degrade overall 
performance

W has slightly higher average core IPC and exhibits 
similar performance to TPC-C.  XML Test has the 
highest average core IPC. 

4.2. CMT performance 

Historically, the goal of optimizing the processor 
core was to squeeze out every last percent of 
performance that can be achieved with reasonable 
area costs.  However, in the CMT design space, this is 
a local optimization that does not yield high aggregate 
performance.  This is exemplified by the aggregate 
IPC results for the 2p4t core configuration shown in 
Figure 5.  The top two lines are the aggregate IPC’s 
(AIPCs) for a particular cache configuration and the 
bottom two lines are the corresponding average core 
IPC’s.  C1 represents the 2p4t configuration with the 
best core IPC, 64KB data and instruction cache, but 
its corresponding AIPC underperforms due to the 
small number of cores that can be fit on the die.  On 
the other hand, C2 is a “mediocre” 2p4t configuration 
with only a 32 KB data and instruction cache, but it 
has the best AIPC by maximizing the number of cores 
for a given secondary cache size, as indicated in 
Figure 5.  C2 also illustrates that too many cores on 
the chip can degrade overall performance.  As both 
the total number of cores that can be fit on the chip 
and the performance of each of those cores are 
strongly dependent on the amount of on-chip 
secondary cache, it is important to balance processing 
and cache needs.  We present the best results for each 
core configuration and all of the benchmarks used in 
this study in Figure 6 for the medium-scale CMTs.  
This figure provides the maximum AIPC (y-axis) 
across all cache configurations for all pipeline/thread 
configurations (x-axis).  The number of cores and 

cache configurations that yield the AIPC in Figure 6 is 
provided in Table 3 for each pipeline/thread 
configuration.  The CMTs are clustered by pipeline and 
pipeline architecture, scalar vs. superscalar. 
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Figure 5: Small-scale CMT TPC-C core and 
aggregate IPC for the 2p4t CMT configuration.  
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best aggregate IPC by using more cores on the 
die.  The number of cores for each CMT is 
labeled next the upper pair of lines.

Table 3 shows the maximum AIPC for SPEC JBB, 
TPC-C, TPC-W, and XML Test for medium-scale 
CMTs.  This table lists the best configuration for each 
core configuration and highlights the overall best CMT 
configuration in black boxes.  The AIPC scales 
proportionally with the number of cores.  Thus, the 
reader can derive the omitted (due to space constraints) 
small-scale and large-scale CMT results from the 
medium-scale results in Table 3. 
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In the CMT design space, this local optimization does not yield high aggregate IPC



AIPC Results for 
medium scale CMT

W has slightly higher average core IPC and exhibits 
similar performance to TPC-C.  XML Test has the 
highest average core IPC. 

4.2. CMT performance 

Historically, the goal of optimizing the processor 
core was to squeeze out every last percent of 
performance that can be achieved with reasonable 
area costs.  However, in the CMT design space, this is 
a local optimization that does not yield high aggregate 
performance.  This is exemplified by the aggregate 
IPC results for the 2p4t core configuration shown in 
Figure 5.  The top two lines are the aggregate IPC’s 
(AIPCs) for a particular cache configuration and the 
bottom two lines are the corresponding average core 
IPC’s.  C1 represents the 2p4t configuration with the 
best core IPC, 64KB data and instruction cache, but 
its corresponding AIPC underperforms due to the 
small number of cores that can be fit on the die.  On 
the other hand, C2 is a “mediocre” 2p4t configuration 
with only a 32 KB data and instruction cache, but it 
has the best AIPC by maximizing the number of cores 
for a given secondary cache size, as indicated in 
Figure 5.  C2 also illustrates that too many cores on 
the chip can degrade overall performance.  As both 
the total number of cores that can be fit on the chip 
and the performance of each of those cores are 
strongly dependent on the amount of on-chip 
secondary cache, it is important to balance processing 
and cache needs.  We present the best results for each 
core configuration and all of the benchmarks used in 
this study in Figure 6 for the medium-scale CMTs.  
This figure provides the maximum AIPC (y-axis) 
across all cache configurations for all pipeline/thread 
configurations (x-axis).  The number of cores and 

cache configurations that yield the AIPC in Figure 6 is 
provided in Table 3 for each pipeline/thread 
configuration.  The CMTs are clustered by pipeline and 
pipeline architecture, scalar vs. superscalar. 
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Table 3 shows the maximum AIPC for SPEC JBB, 
TPC-C, TPC-W, and XML Test for medium-scale 
CMTs.  This table lists the best configuration for each 
core configuration and highlights the overall best CMT 
configuration in black boxes.  The AIPC scales 
proportionally with the number of cores.  Thus, the 
reader can derive the omitted (due to space constraints) 
small-scale and large-scale CMT results from the 
medium-scale results in Table 3. 

Scalar CMTs Superscalar CMTs

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0
1

p
2

t

1
p

4
t

1
p

8
t

2
p

2
t

2
p

4
t

2
p

8
t

2
p

1
6

t

3
p

3
t

3
p

6
t

3
p

1
2

t

3
p

2
4

t

4
p

8
t

4
p

1
6

t

2
s

1
t

2
s

2
t

2
s

4
t

2
s

8
t

4
s

1
t

4
s

2
t

4
s

4
t

4
s

8
t

M
a

x
im

u
m

 A
g

g
re

g
a

te
 I

P
C

JBB

TPCC

TPCW

XML

Figure 6: Medium-scale CMT aggregate IPC for each CMT configuration and all benchmarks.
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monolithic superscalar processors.   The Piranha 
processors outperformed the monolithic cores, but 
lacked the key feature of fine-grained multithreading to 
mask memory latency inside the processor core, which 
this study has demonstrated to be critical to achieve 
high aggregate CMT performance.  Piranha was also a 
research prototype targeting the 180 nm generation, and 
as such selected a particular CMT design point (eight 
1p1t 64 KB instruction and data caches with a 1MB 
secondary cache) [5] to compare against a monolithic 
superscalar processor of similar die size.  Our study 
greatly expands on the Piranha work by not only 
exploring the addition of fine-grain multithreading to 
simple cores and comparing scalar and superscalar 
CMTs, but also by exploring multiple technology 
generations, cache configurations, and a significant 
portion of this CMT design space, all while running 
large scale full system simulations of SPEC JBB, TPC-
C, TPC-W and XML Test. 

[9] presents an exploration of CMPs built from 
either in-order or out-of-order superscalar processors, 
but differs form our work in many ways.  [9] uses a 
different class of benchmarks (SPEC CPU2000), uses 
partial CMP simulation to extrapolate CMP 
performance, does not examine either multithreaded or 
scalar cores, and provides a private L2 cache per core, 
which greatly increases data sharing overhead.  They 
also use performance-scaling techniques that overlook 
the memory saturation issues that we encountered.  This 
is even more relevant because their area model predicts 
higher core counts for CMPs in the same process 
generation, which greatly increases memory bandwidth 
requirements.  Furthermore, there is no mention of 
memory coherence, which is required for this 
application domain.  In contrast to [9], we use large 
scale applications from the target domain, perform full 
system simulations of all CMT configurations, both 
scalar and superscalar, examine a CMT architecture 
with a large shared secondary cache to exploit data 
sharing, and maintain full memory coherence.  Our 
study points toward CMTs built from small scalar cores 
as performing best for commercial workloads, while 
their study pointed towards CMPs built from large out-
of-order superscalar cores as performing best, unless 
the application was bandwidth bound. 

6. Conclusions 

In this paper, we explored the performance of 
multithreaded scalar and superscalar core CMTs on 
commercial workloads for small, medium and (to a 
limited extent) large-scale systems.  When comparing 
area-equivalent scalar and superscalar CMT 
configurations, we found that scalar CMTs with small 

primary caches significantly outperform their 
superscalar counterparts by 37-46%.  Even though the 
superscalar processors achieve a higher core IPC than 
the scalar processors, the increased number of small 
scalar cores that can be fit on a die more than makes up 
for this difference.  This ability of “mediocre” cores to 
provide the best aggregate performance on commercial 
workloads is a key contribution of this throughput 
study.  Our study showed multithreading was also 
crucial to achieve good application performance; 
however, too many threads led to execution pipeline 
saturation or, in the extreme case, to memory bandwidth 
saturation.  This is counter to the multithreading 
efficiency limits of 2 threads stated by [10] and [19].  
However, our design is targeting a CMT with a high-
bandwidth memory subsytem, which is crucial to being 
able to keep the large number of threads fed.   

We also found that the best performing 
configuration was highly dependent on a step function 
of the number of cores that could be squeezed on the 
die.  As a result, processor cores with smaller primary 
caches were favored, even without penalizing the larger 
caches with additional latency, as the smaller-cache 
cores maximized the number of on-chip cores.  Table 4 
shows the optimal small, medium, and large-scale CMT 
configurations.  While one single configuration did not 
perform optimally for all of the benchmarks, our results 
show a range, usually using 4-8 threads per pipeline, of 
high performing CMT configurations.  

Table 4: Maximum AIPC for all benchmarks.
Benchmark Core Small Scale Medium Scale Large Scale

Cores, AIPC Cores, AIPC Cores, AIPC

SPEC JBB2000 3p12t 5, 9.6 9, 17.3 15, 30.8

TPC-C 2p16t 5, 6.4 7, 11.8 12, 20.8

TPC-W 2p16t 5,  8.3 9, 15.2 15, 27.7

XML Test 3p12t 5, 11 9, 20.1 15, 35.4

Our results show that it is necessary to perform full 
system simulation to achieve accurate performance 
estimates.  Basing performance predictions on scaled or 
partial systems simulations would not have revealed the 
dramatic performance drop-off for “overthreaded’ 
configurations, which saturate the memory subsystem.  
We purposely assumed each CMT had an aggressive 
memory subsystem, but this interface still became 
saturated for large numbers of threads and/or cores.  We 
were surprised that multiple scalar pipelines sharing a 
single instruction and single data cache port was not a 
source of significant performance degradation, even 
with instruction buffers for each thread.  Likewise, both 
the primary and secondary caches were relatively 
insensitive to variations in set associativity, regardless 
of capacity or the number of supported threads.  In this 
study, we have temporarily circumvented the memory 
wall by reducing processor frequency for CMT 
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Best results for each core configuration, across all benchmarks.



Max AIPC Results for 
medium scale CMTs

Table 3: Maximum AIPC for medium-scale CMTs for SPEC JBB, TPC-C, TPC-W, and XML Test. 
Core

Config L1 L2 Cores AIPC L1 L2 Cores AIPC L1 L2 Cores AIPC L1 L2 Cores AIPC

1p2t 16/32 1.5/12 20 9.8 16/32 2.5/10 16 5.8 16/32 1.5/12 20 8.6 16/32 1.5/12 20 11.8

1p4t 16/32 1.5/12 17 13.2 16/32 2.5/10 14 8.2 16/32 1.5/12 17 10.6 16/32 1.5/12 17 14.8

1p8t 16/32 2.5/10 12 11.7 32/32 1.5/12 14 8.9 32/32 1.5/12 14 13.0 16/32 1.5/12 14 13.8

2p2t 16/32 1.5/12 16 8.6 16/32 1.5/12 16 5.1 16/32 1.5/12 16 7.5 16/32 1.5/12 16 10.5

2p4t 32/32 1.5/12 14 12.9 32/32 2.5/10 12 7.8 32/32 1.5/12 14 10.6 16/32 1.5/12 14 15.2

2p8t 16/32 1.5/12 12 16.5 32/32 2.5/10 9 9.5 32/32 1.5/12 12 13.6 32/32 1.5/12 12 18.9

2p16t 32/64 2.5/10 7 13.3 64/64 2.5/10 7 11.8 64/64 1.5/12 9 15.2 32/64 1.5/12 9 16.9

3p3t 32/32 1.5/12 13 10.3 32/32 2.5/10 10 5.9 32/32 1.5/12 13 8.5 16/32 1.5/12 13 12.7

3p6t 32/32 1.5/12 11 14.4 32/32 2.5/10 9 8.5 32/32 1.5/12 11 11.3 32/32 1.5/12 11 16.5

3p12t 32/64 1.5/12 9 17.3 32/64 2.5/10 7 10.7 64/64 1.5/12 9 14.6 32/64 1.5/12 9 20.1

3p24t 32/64 2.5/10 5 13.6 32/64 2.5/10 5 10.9 32/64 1.5/12 6 14.0 32/64 1.5/12 6 15.5

4p8t 32/32 1.5/12 9 14.9 32/32 2.5/10 7 8.5 64/64 1.5/12 9 11.5 16/32 1.5/12 9 16.6
4p16t 32/64 1.5/12 7 16.8 32/64 2.5/10 5 9.8 64/64 1.5/12 7 14.4 32/64 1.5/12 7 18.5

2s1t 64/64 1.5/12 11 4.4 64/64 1.5/12 11 2.8 64/64 1.5/12 11 3.7 64/64 1.5/12 11 5.5

2s2t 64/64 1.5/12 10 7.0 64/64 1.5/12 10 4.3 64/64 1.5/12 10 5.8 64/64 1.5/12 10 8.6

2s4t 64/64 1.5/12 9 10.5 64/64 1.5/12 9 6.4 64/64 1.5/12 9 8.7 64/64 1.5/12 9 12.4

2s8t 64/64 1.5/12 7 12.1 64/64 1.5/12 7 8.1 64/64 1.5/12 7 10.6 64/64 1.5/12 7 12.7

4s1t 64/64 1.5/12 7 2.9 64/64 1.5/12 7 1.9 64/64 1.5/12 7 2.6 64/64 1.5/12 7 3.7

4s2t 64/64 1.5/12 6 4.5 64/64 1.5/12 6 2.9 64/64 1.5/12 6 3.9 64/64 1.5/12 6 5.8

4s4t 64/64 1.5/12 5 6.6 64/64 1.5/12 5 4.1 64/64 1.5/12 5 5.6 64/64 1.5/12 5 7.8
4s8t 64/64 1.5/12 4 8.5 64/64 1.5/12 4 5.5 64/64 1.5/12 4 7.2 64/64 1.5/12 4 9.1

SPEC JBB 2000 TPC-C TPC-W XML Test

Note:  The L1 refers to the primary data/instruction cache size.  The L2 cache configuration size (MB)/set associativity (SA) are provided along 
with the total number of cores for that CMT configuration. 

4.3. Discussion 

We have shown that augmenting CMPs with fine-grain 
multithreading, creating CMTs, is crucial to increasing 
the performance of commercial server applications.  
Furthermore, scalar CMT variants with 4 or more 
threads outperformed nearly all of the superscalar CMT 
configurations given the constant die size constraint.  
While multiple processor cores can exploit TLP, fine-
grain multithreading is also necessary to alleviate the 
otherwise poor core utilization for these applications.  
However, we found that fine-grain multithreading runs 
into two limits.  First, the addition of too many threads 
results in a saturated integer pipeline that was 
insensitive to L1 cache parameters.  In our studies, we 
found that this saturation occurred with about 8 threads 
per integer pipeline for scalar cores.  Second, a CMT 
built with too many total threads for the secondary 
cache size can end up saturating the memory bandwidth 
with secondary cache misses, as the aggregate working 
set overflows the secondary cache.  We encountered 
memory saturation primarily for the configurations that 
had the smallest secondary cache size (occupying 24-
28% of the CMT area) and 8 or more threads per core.  
We found aggregate IPC to be optimized by a processor 
centric design, requiring only 25-40% of the area 
devoted to the shared secondary cache.  When focusing 

on the processor core itself, a larger primary instruction 
cache than the primary data cache is always the best 
policy.  Surprisingly, high primary cache set 
associativity was not required for these applications, 
even with more threads than set associative ways. 

For a given primary data and instruction cache 
configuration, the performance difference based on set 
associativity varied less than 3% for the best aggregate 
IPC configurations, as long as the caches were at least 
two-way set associative.  We also found that the best 
performing configurations required enough threads and 
primary cache to bring the pipeline utilization up to the 
60-85% range, as the area costs for adding additional 
pipelines and threads per pipeline is much smaller than 
adding an additional core.  For small, medium, and 
large-scale CMTs, the best configuration was with 3 
pipelines and 12 threads per core for Spec JBB amd 
XML Test, while 2 pipelines and 16 threads per core 
performed best for TPC-C and TPC-W.  We also found 
that the best performing CMT configuration was highly 
dependent on a step function of the number of cores 
that can be squeezed on the die, allowing a CMT 
composed of slightly lower performance cores to yield 
superior aggregate performance by employing more of 
those cores.  As a corollary to this step function 
regarding core size, processor cores with smaller 
primary caches were favored, even without penalizing 
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Contributions

• Given equivalent area, scalar CMTs with 4+ threads 
outperform nearly all superscalar CMTs

• Fine-grain multithreading is necessary in addition to 
multicore for server applications

Exceptions:

• Saturating the pipeline

• Saturating the memory bandwidth

• Best configurations require enough threads and primary 
cache to achieve 60-85% utilization of the pipeline

13Thursday, January 28, 2010

Too many threads saturates the pipeline - 8 threads per pipeline
Too many threads saturates mem b/w - working set overflows into sec cache



Contributions (II)

• CMT using lower performance cores yields better 
performance

• Cores with smaller primary caches are better

• Larger I-cache than D-cache is always better

• Optimal AIPC requires only 25-40% of the area 
devoted to the secondary cache

• 2-way superscalar outperformed 4-way superscalar 
cores with the same number of threads
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Scaling Concerns

• Memory bandwidth must be sufficient to keep cores 
busy

• 4 dual Fully Buffered DIMM sufficient for 130 - 65 
nm generations

• 4-channel DDR2 simulations show configurations 
with more on-chip cache are better

• 40-60% of the area instead of 25-40%

• Penalty for overthreading was more pronounced
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