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Abstract 
 
 As frequencies and feature size scale faster than 
operating voltages, power density is increasing in every 
processor generation. Along with that, leakage (highly 
dependent on temperature) has become an important 
source of power.  Due to the non uniformity of on-chip 
power density, localized hot spots may create transient 
high temperature in a restricted area of the chip. These 
temperatures are source of errors and reduce chip 
reliability. This paper evaluates clustered architectures 
as an effective way to distribute power across the chip in 
order to reduce chip temperature. The proposed quad-
cluster architecture reduces 33% peak temperature and 
12% average. Along with this, “cluster-hopping” 
decreases temperature in the chip because of disabling 
some of the clustered backends during a period of time: 
peak temperatures are reduced 37% and average 
temperature of the processor 14% with an extra penalty 
of 3%. 
 

1. Introduction 

 Power dissipation is one of the major hurdles in the 
design of next-generation microarchitectures. Power 
density is increasing in each generation due to the fact 
that feature size and frequency are scaling faster than 
operating voltage. Power density directly translates into 
heat, and this heat must be removed from the processor 
die in order to keep the silicon temperature below a 
certain limit. In fact, the cost of removing heat is 
increasing at the same rate as power density. This 
increase is affecting the processor design in many 
different ways. For instance, the cooling system of a 
processor is targeted to support a peak temperature, even 
though the processor spends most of the time running at 
much lower temperatures. The cost of the cooling system 
has been quantified in the order of 1-3$ or more per Watt 
when the average power exceeds 40 Watts [4][10], which 
represents an important cost. 

 In order to reduce dynamic power dissipation, chip 
designers have relied on scaling down the supply voltage. 
To counteract the negative effect of a lower supply 
voltage on gate delay, the threshold voltage is also scaled 
down along with the supply voltage. However, lowering 
threshold voltage has a significant impact on leakage 
current due to the highly strong relationship between 
them. In fact, it is expected that within a few process 
generations the contribution of leakage power to the total 
power will be comparable to the contribution of dynamic 
power [4][8]. 
 On the other hand, wire delays scale much slower than 
gate delays [1][3][16] and will become a serious obstacle 
to the scalability of superscalar processors. Clustered 
microarchitectures are an effective paradigm to deal with 
the problem of wire delays and complexity by means of 
partitioning some of the processor resources [7][9], as for 
instance the processor backend, and attempting to 
maximize local (and fast) communications and reduce 
global (and slow) communications. 
 This paper studies the benefit of clustered 
microarchitecture from the thermal point of view when 
they are compared with monolithic architectures. Besides, 
we introduce an architectural modification, cluster 
hopping, with the aim of reducing processor’s 
temperature.  Cluster hopping refers to the architectural 
feature that disables (i.e., Vdd is gated-off) some of the 
clusters during a time interval, in order not to dissipate 
power and to reduce temperature. The clusters that are 
Vdd-gated rotate every interval to achieve a better activity 
and, though, heat distribution.  
 The rest of the paper is as follows: Section 2 describes 
the processor architecture and the power and thermal 
models. Section 3 provides baseline temperature results 
for a monolithic architecture. Section 4 introduces our 
proposals for study of the thermal effectiveness of 
clustered microarchitectures and cluster hopping. Section 
5 presents the performance (execution time and 
temperature) results. Section 6 highlights the related work 
and Section 7 concludes the paper. 



 

2. Processor Architecture 

2.1. Clustered Architecture 

 This Section briefly describes the baseline clustered 
microarchitecture.  
 

 
(a) 

 

 
(b) 

Figure 1. (a) Block diagram of the clustered 
microarchitecture (b) Backend detail 

 
 Figure 1 depicts the block diagram of the clustered 
microarchitecture. A high-level picture can be seen in 
Figure 1a, in which the two main parts of the processor 
are distinguished: the frontend and the clustered backends. 
The frontend reads IA32 instructions from the UL2, 
translates them into uops and stores them in the Trace 
Cache, from where they are read, decoded, renamed and 
steered to any of the backends, according to a steering 
policy. Figure 1b shows the details of one of the backends 
(a.k.a. clusters). Each of them has its own register file, 
integer and floating point issue queues and a memory 
order buffer along with a data TLB and a first-level data 
cache.  

 uOps are first handled by the dispatch logic, where the 
steering unit decides the destination cluster based on 
some policy. Once the destination cluster is decided, the 
logical output register is mapped into a free register 
belonging to that cluster and the instruction is steered. 
 After steering, instructions remain in an issue queue 
until their inputs become available, and then, they are 
executed and results are written back to the register file. 
 Special copy instructions are generated by the dispatch 
logic when an instruction requires a register value 
generated in a cluster other than the one in which it will 
be executed ([7], [17]). This copy uop is dispatched to the 
cluster generating the value and it is in charge of sending 
the data through a point-to-point link to the cluster where 
the consumer resides.  
 Data caches are distributed and a load can be steered 
to any cluster. If there is a cache miss, the UL2 is 
accessed using the memory bus and the line is written in 
the cache of the cluster where the requesting load resides. 
Store instructions are steered to a cluster according to the 
steering policy to compute the effective address, but they 
allocate a slot in all memory order buffers in order to 
disambiguate stores from subsequent loads [2]. When the 
store address is computed, it is sent through the 
disambiguation bus and copied to all clusters, so 
disambiguation can be performed locally.  
 Integer and floating point instructions leave the issue 
queue after being issued. Store instructions remain in the 
memory order buffer until commit and loads are stored in 
the memory order buffer until they are disambiguated. 
After executed, instructions send a completed signal to 
the reorder buffer and they can be committed once they 
reach the head of the buffer. 
 The monolithic implementation considered in this 
paper is the equivalent to the clustered one but without 
the need of communication and coherency among clusters 
(basically the copy instructions and the copy scheduler 
are avoided). The aggressiveness of the backends depends, 
basically, on the number of them that are implemented in 
each particular configuration. 

2.2. Power Model 

 This Section introduces both the dynamic and the 
leakage power model that we have utilized to carry out 
the experiments.  
 The dynamic power model is very similar to those 
existing in the literature [5]. Basically, an activity counter 
is associated to each functional block (e.g. register files, 
data cache, etc) and it is incremented in each block 
operation. In order to compute the energy, the activity 
counter is multiplied by its corresponding energy-per-
operation value (obtained from the physical design or an 
analytical model). An aggressive clock gating technique 
is assumed:  unused structures just dissipate 10% of their 



 

peak dynamic power, since a perfect gating is not usually 
possible [5] (except in the case of UL2 where it is 
considered a perfect clock gating). 
 For each functional block of the processor leakage 
power has been modeled as the average dynamic power 
multiplied by a factor dependent on the temperature. 
More precisely, it is assumed that leakage power is going 
to be roughly 30% of dynamic power at ambient –inside 
box- temperature (45º [15], [20]). Then, in order to 
establish a strong dependence between temperature and 
leakage, this percentage is varied according to the current 
temperature of the functional block. Figure 2 shows a 
curve similar to that reported by Zhang et al in [21] 
(generated using BSIM3). Our analysis is adjusted to fit 
the expected trend for 65nm and reports a leakage equal 
to 100% of the average dynamic power (i.e., leakage is 
50% of total power) at 100ºC. In this analysis, the curve is 
divided into linear segments of 5 degrees ranging from 45 
to 100 degrees (interpolating each interval by a straight 
line). When the temperature of a block changes, leakage 
is recomputed getting the proper factor from the 
corresponding segment.  
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Figure 2. Relation between temperature and 

leakage power 
 
 This approximation of leakage over dynamic power 
(and not over area) is reasonably good for memory-like 
structures, which constitute most of the processor’s 
leakage, although it may be a bit inaccurate for functional 
units. Note that the objective of the leakage estimation 
presented in this paper is to model the relationship 
between leakage power and temperature. This model may 
not be as accurate as other ways of measuring leakage 
(e.g. HSPICE simulations) but it accomplishes our main 
requirements. 

2.3. Temperature Model 

 The temperature model is similar to the one by 
Skadron et al. [19][20]. It is based on the duality of the 
thermal and the electrical phenomena (Table 1). The 
temperature is estimated using a RC model that represents 
the system, also known as dynamic compact model 
(dynamic because it includes thermal capacitors modeling 

the transient response of the system). At the 
microarchitectural level, it models heat conduction and 
the removal of heat in the heat sink.  
 

Table 1. Duality between the electrical and the 
thermal phenomena 

Electrical Thermal 
Voltage (V) Temperature (K) 
Current (A) Power (W) 

Resistance (V / A = Ω) Resistance (K / W) 
Capacity (J / V = F) Capacity (J / K) 

Time constant τ = R · C (s) 
 

 
(a)    (b) 

 
(c) 

Figure 3. (a) Thermal model (b) Model of heat 
generation and spreading (c) Layer division of 

the whole system  
 
 In order to build an equivalent RC circuit the system 
is divided into layers. In our case these layers are: the die, 
the heat spreader and the heat sink, as shown in Figure 3a. 
Each one of these layers is divided then into blocks: the 
functional block division (register file, data caches, 
instruction queues, etc.) is used for splitting the die, and 
the rest of the layers are divided accordingly, that is, 
mapping the division of the die on them (note that this 
approach is different from the one followed in [19]). 
Some other mapping schemes were studied and this one 
was found to be the most accurate among them. Each of 
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these blocks is represented by a node in the RC circuit. 
The upper layers division models the thermal 
heterogeneity of the heat spreader and heat sink. 
 If two blocks are in contact then an RC connection 
(shown in Figure 3b) is placed between the nodes 
representing them. A RC connection consists of a resistor 
in parallel with a capacitor. The resistor models the 
opposition to the heat flow and the capacitor models the 
time component, i.e. how long it takes to reach the 
steady-state situation. Some connections link the nodes 
representing the heat sink with a special node for the 
ambient (the only node whose temperature does not 
change because of heat flow). Heat generation is modeled 
using the same duality: a current source for each 
functional block is placed in the circuit, as shown in 
Figure 3b). 
 The thermal properties of the materials and the 
relative positions and area of contact among blocks are 
used to estimate the R and C values that model the heat 
flow. The physical definition of a resistor value is used 
applying the thermal resistivity of the material (ρ), the 
distance between the central point of a block and the 
center of the contact area with the neighbor block and the 
area of contact itself (different studies on how to estimate 
resistors and capacitors were carried out in order to find 
the most accurate approach). For convection, which 
models the removal of heat through air, the same 
approach is used but applying the heat transfer coefficient 
of the ambient (ν). The counterpart equation for 
capacitors is derived by using the same area and distance 
values and the heat capacitance (γ). At the simulated time 
scale, capacitors to ambient are useless because the time 
constant is huge compared to the simulation step, 
therefore these capacitors are neglected.  
 

Table 2. Equations for the equivalent resistor 
and capacitor connecting two nodes 

 Partial resistor Partial capacitor 
Conduction Ri = ρi · l i / A i-j Ci = γi · l i · A i-j 
Convection Ri = 1 / (νi · A i-j) Ci = 0 

Total value Ri-j = Ri + Rj 1 / C i-j = 1 / Ci +  
+ 1 / Cj 

 
 The RC circuit behavior is controlled by the equations 
of each one of its components. For each thermal node, 
Kirchoff’s law is applied to derive for every RC pair 
connection a differential equation that involves heat flow, 
the thermal resistor and the thermal capacitor. At 
simulation time the discrete version of the equation is 
used: 
 

∆Ti(t) - ∆Tj(t) =  

= Pi j (t) · ∆t / Ci-j – (Ti(t) – Tj(t)) · ∆t / (Ri-j · Ci-j) 

 

 Each one of the unknowns (increment of temperature 
in each node -∆Ti(t)- and power flow through each 
connection -Pi j (t)-) is linked to an equation so the 
number of unknowns is equal to the number of equations. 
Given the state of the circuit and the power dissipated in 
the time interval, the resulting linear system of equations 
is solved, which generates the increment of temperature 
for each one of the nodes. 

3. Evaluation of the Microarchitecture 

3.1. Experimental Framework 

 Experiments have been conducted using an execution-
driven simulator that runs IA32 binaries. The processor 
can fetch, dispatch and commit up to 8 uops per cycle. 
Table 3 summarizes the main parameters of the baseline 
monolithic architecture. 
 We have selected sixteen SPEC2000 applications for 
the evaluation process.  Each execution trace (from the 
test input set) is divided in 10 equal-size slices (i.e., slices 
of different applications have different size) and the 
fourth of them is selected to be run in the simulator (the 
whole slice or up to 200 millions of instructions). This 
limit was reached by ammp, art, bzip2, crafty, eon, gzip, 
mesa, mgrid, parser, swim, vortex and wupwise but applu, 
gcc, twolf and vpr were run for 115, 187, 64 and 150 
millions of instructions respectively. 
 

Table 3. Processor configuration 
Frontend 

Trace 
cache/Fetch 

32Kuops, 4-way, 4 cycle fetch-to-
dispatch latency 

Decode, 
rename and 

steer 

8 cycles (regardless of the destination 
cluster) 

UL2 2 MB/8-way, 12 cycle hit, 500+ miss 

Communi-
cations 

2 memory buses, 2 disambiguation 
buses, 4-cycle latency + 1-cycle arbiter, 
2 bidirectional p2p link (1 cycle per hop; 

2 from side to side of the chip) 
Each backend 

Queues 

80-entry IQueue 4 inst/cycle, 80-entry 
FPQueue 3 inst/cycle, 384-entry 
MemQueue 4inst/cycle, 10 cycle 
dispatch latency; 20 entries per 

prescheduler queue (integer, FP, 
memory and copies) 

Register file 
544 int. registers  (10 read and 8 write 

ports) and 544 FP registers (10 read and 
8 write ports) 

Data cache 64 KB/2-way, 3 cycle hit, 2 read and 2 
write ports, write through 

 



 

 As far as the thermal model is concerned, at the 
beginning of the simulation we assume that the processor 
has already been running for a long time dissipating its 
nominal average dynamic power and the leakage power at 
80ºC. In this way, simulations are started with the 
processor already warmed. Then, during normal 
execution, every 10 million of cycles temperature is 
updated using the per-block dissipated power. 
 Figure 4b shows the layout of the processor and 
Figure 4a and Figure 4c detail, respectively, the frontend 
and the backend area for the monolithic superscalar 
processor; the 2MB UL2 completes the processor. We 
assume a processor designed at 65nm, running at 10GHz 
with a Vdd of 1.1V with a total area of 56.34mm2, which, 
again, make it feasible to be included in a bigger CMP 
configuration (i.e. multiple processors cores on the same 
chip). For the sake of simplicity a configuration with a 
single core is analyzed. Areas were computed using and 
enhanced version of Cacti ([23]) for cache-like structures, 
and scaling down rest of structures from current designs. 
The thermal solution attached to the die of the processor 
consists of a copper heat spreader, in contact with the die, 
whose size is 3.1x3.1x0.23cm (similar to the one used in 
Pentium® 4 processors [13]). On top of it there is a 
copper heat sink of 7x8.3x4.11cm ([13]). 
 

 
Figure 4. (a) Frontend layout detail, (b) 

monolithic processor layout and (c) backend 
detail 

3.2. Results for the Monolithic Processor 

 This Section shows the initial results for the baseline 
architecture. The temperatures obtained for the simulated 

benchmarks are depicted, averaged, in Figure 5 (the 
Figure shows temperatures with respect to 45 ºC). Four 
different metrics are shown for four different scopes 
(“sets”) of the processor (UL2, frontend area, backend 
area and global processor): 

• LocalMax: The average temperature of a set of 
blocks (i. e. backend area) is computed as the 
weighted average (by area) temperature of each one of 
the functional units that are included in that set. This 
means that, for instance, having a very high 
temperature in a block in the backend does not mean 
that the average temperature of the backend itself is 
high if the rest of the blocks are cold. Its a general 
metric for reducing average temperature. 
• AbsMax: This metric represents the maximum peak 
temperature in any of the blocks included in a set.  
• Average: The average temperature of the set (over 
time). This metric is important because of the impact 
of temperature in leakage. Reducing the average 
temperature of the chip helps reducing leakage. 
• AverageMax: The average over time of the 
maximum temperatures of any block inside a set 
accounts for the evolution of the highest temperature 
in time. With this metric we can detect, in opposition 
to a reduction in the absolute peak, a reduction along 
time of the peak temperature. These last three are the 
main metrics. 

Looking at the Figure, we observe that the backend (i.e. 
instruction queues, schedulers, register files, etc) is the 
area that determines peak temperatures. Therefore, 
clustering that area, which reduces power density, seems 
an interesting approach to control temperature. 
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Figure 5. Baseline temperature values (over 

ambient in-box temperature, 45 ºC) 
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4. Thermal-Effective Clustered 
Organizations 

 This section presents two different proposals to deal 
with the high temperatures that arise during runtime 
processor execution in monolithic configurations.  

• Clustered processors: By means of partitioning 
processor’s resources a better distribution of power 
and activity may be accomplished reducing 
temperature.  
• Cluster hopping: When clustering resources, by 
alternatively gating some of the clusters of the 
processor during certain periods of time power and 
power density can be reduced helping cooling the 
chip. 

4.1. Clustered Processors 

Table 4. Configuration of each backend 

 
 In addition to the well-known benefits of clustered 
architectures [7][9], the inherent distribution of resources 
and activity achieved by such organizations may help to 
better distribute heat. 
 Figure 6 shows configuration and layout details for 
the two different clustered architectures studied in this 
paper. The areas are 60.19 mm2 for the bi-clustered and 
58.42 mm2 for the quad-cluster architecture (again small 
enough to be part of a CMP configuration). In the same 
figure, the details for the backend are given. The frontend 
layout and configuration as well as the thermal solution 
remain unchanged from the monolithic processor. 

 

(a)    (b) 

(c)     (d) 
 

Figure 6. Layout of the bi-cluster processor (a) 
and its backend (c) and quad-cluster processor 

(b) with its backend (d) 

4.2. Cluster Hopping 

 Asanović et al. [11] study the impact on power 
density of activity migration among replicated units. In 
opposition, this paper focuses on the reduction of 
temperature. We analyzed hopping among clusters. In a 
clustered configuration, when hopping, a subset of the 
clustered backends is Vdd -gated during certain periods of 
time to help reducing the power dissipation of the chip. In 
addition, the power density is also reduced because of the 
rotation of the unit gated. We evaluated the impact on 
temperature (and not on power) of cluster hopping in 
clustered architectures. 
 Figure 7 shows the different alternatives. The block 
distribution is the same as in the normal quad-cluster 
architecture. Gray painted clusters represent those clusters 
that are disabled. At the end of the interval (10 millions of 
cycles), the configuration switches to the next step in the 
cycle. Changing active clusters requires a stream of copy 
instructions to be dispatched in order to copy all registers 
just mapped in the clusters being disabled (i.e. that are not 
present in any other cluster). Once the cluster is empty, it 
can be Vdd –gated safely. When a cluster is woke up local 
data cache and data TLB are empty (data caches are 
write-through, so next memory level has always an up-to-
date copy). Since the periods of time between hops are 
large enough, the performance impact of copy streams is 
negligible. 
 Two different configurations are tested: in HOP3 
(Figure 7a) only one out of the four clusters is gated. In 
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HOP2 (Figure 7b) two clusters are gated. Moreover, in 
the HOP2 configuration the frontend is located in the 
middle of the layout. In this layout copy instructions that 
go from clusters placed in both sides of the frontend 
require an extra cycle. Note that this will just happen for 
those copies generated at reconfiguration time, since with 
HOP2 just clusters placed in the same side are always 
active.  
 This layout could have been also probed along with 
the HOP3 scheme, but we believe that it makes no sense 
since having three active clusters will cause a lot of traffic 
from one side of the frontend to the other side, increasing 
the latency of communications and thus its impact on the 
final performance. 
 

 
(a.1)  (a.2) 

 
(a.3)  (a.4) 

 
(b.1)  (b.2) 

Figure 7. Cluster-hopping alternatives analyzed: 
(a) HOP3 (b) HOP2 

5. Evaluation 

 This section presents the results obtained when 
comparing the baseline with the different proposals. 
 We evaluate the benefits associated to both clustered 
architectures and cluster hopping. Any mechanism such 
fetch toggling, throttling or voltage/frequency scaling are 
orthogonal to our schemes and can be applied on top of 
them so none of them have been evaluated. Also, the 
usage of different physical parameters (threshold 
voltages, frequency) has not been compared because can 
be applied on both monolithic and clustered architectures 
(the less complexness of clustered architectures may 
permit, even, higher frequency). 

5.1. Clustered Organizations 
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Figure 8. Performance (slowdown and 
temperature reductions) of the clustered 

architectures 
 
 Figure 8 shows the runtime results (averaged for all 
sixteen benchmarks) obtained for the evaluated clustered 
architectures. It can be seen that architectures with 2 
backend clusters are not as effective as a quad-cluster 
architecture. This is due to the fact that, when the 
resources are partitioned in just two clusters they are still 
complex and large enough not to show benefits in 
temperature. In addition, the explored layout keeps 
critical structures (such the schedulers) together so for 
heat spreading looked like a monolithic scheduler. 
Actually, temperature is increased due to a worse power 
density: activity is not reduced at the same rate as area 
(halving the capacity of some units does not necessarily 
mean halving their area).  
 Only the L2 cache has visibly reduced its temperature. 
On the other hand the performance penalty (measured in 
instructions per cycle) paid by a bi-cluster processor is 
small (2%) compared to the quad-cluster (14%). The 
quad-cluster is clearly reducing processor temperature 
except for the case of the average backend highest (2%). 
In fact, the highest temperature reported inside the 
backends is reduced by 31% and the average through the 
whole simulation is also reduced by 37%. On the other 
hand both UL2 and frontend areas have also their 
temperature decreased.  In general there is a reduction of 
33% in processor’s peak temperature and 12% average 
temperature. 

5.2. Cluster Hopping 

 Figure 9 gives details of the results for both cluster-
hopping alternatives proposed in this paper. Analyzing 
HOP3, we can see a big impact on the temperature of the 
backends: peak temperature is reduced 31% and the 
average over time is reduced (37%). UL2 and frontend 



 

temperature is reduced between 1-2% with respect to the 
quad-cluster configuration. Summarizing, HOP3 reduces 
processor peak temperature by 37% (as the average of all 
applications studied in this work) and the average 
temperature by 14%, with a slowdown of 17% over the 
baseline (only 3% more than the standard quad-cluster 
architecture). When 2 clusters are gated together (HOP2 
configuration) the average performance penalty increases 
quite a lot (29%). Temperature is also decreased, which 
suggests that this approach can be applied to effectively 
reduce temperature right before the processor reaches a 
thermal crisis, since the penalty paid is lower than that of 
throttling. Nevertheless, this is an opened issue and it is 
part of our future work. 
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Figure 9. Performance stats for the cluster-
hopping alternatives 

6. Related Work 

 Controlling temperature through microarchitectural 
techniques is a fairly new area. Huang et al [12] propose a 
framework to maximize energy savings and to guarantee 
that temperature remains under a certain threshold.  The 
framework combines a number of energy-management 
techniques, such as voltage-frequency scaling, sub-
banked data cache, among others. Brooks and Martonosi 
[6] propose a set of control techniques evaluated on top of 
different triggering mechanisms with the aim of reducing 
thermal emergencies. They use the average power in an 
interval as a proxy of temperature. Skadron et al. [19][20] 
propose a thermal simulator based on the duality between 
heat transfer and the electrical phenomena. Several 
techniques are evaluated to control peak temperature and 
reduce thermal emergencies: PI controllers, frequency 
scaling, fetch toggling and replication of the register file. 
Cai et al [14] propose a secondary ultra-low power 
pipeline that is used when a given temperature threshold 
is exceeded. Asanović et al. [11] study the impact of 
activity migration among replicated units on power 
density. 

 The main contribution of this paper with respect to 
previous proposals is that, to the best of our knowledge, 
this is the first work that analyzes the thermal behavior 
clustered architectures, presenting this microarchitecture 
paradigm as an effective way of reducing both average 
and peak temperature.  

7. Conclusions 

 The distribution of processor’s resources through 
clustered architectures helps to spread the activity and 
energy dissipation through chip’s area. In order to achieve 
temperature reductions, partitioning processor’s backend 
into 2 clusters is not enough for reducing temperature, but 
it is even increased. Four clusters are enough to see better 
results: ignoring some other benefits of clustered 
architectures, the distribution analyzed in this paper is 
able to reduce processor peak temperature 33 % (average 
of all applications analyzed), and 12% average 
temperature with a performance penalty of 14%. 
Improving the quad-cluster architecture with a hopping 
scheme, peak temperature is reduced 37% and average 
temperature of the processor 14% with an extra penalty of 
3%. 
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