
CS 3330 Computer Architecture Spring 2020

CS 3330 Computer Architecture, Spring 2020

HW 1: Instruction Set Architecture

Instructor: Prof. Samira Khan
TAs: Amel Fatima, Sihang Liu, Korakit Seemakhupt, Yasas Senevirathne, Yizhou Wei

Assigned: Jan 21, 2020
Due: Jan 30, 2020

1 Dataflow [40 points]

Here is a dataflow graph representing a dataflow program:

copy

AND

F T

>0?

copy
T F

output
NOT

false

The following is a description of the nodes used in the dataflow graph:

- subtracts right input from left input
AND bit-wise AND of two inputs
NOT the boolean negation of the input (input and output are both boolean)

BR passes the input to the appropriate output corresponding to the boolean condition
copy passes the value from the input to the two outputs
>0? true if input greater than 0

X
Y →↓ Initially Z = X

Z then Z = Y

Note that the input X is a non-negative integer.

What does the dataflow program do? Specify clearly in less than 15 words.

1/4

CS 3330 Computer Architecture Spring 2020

2 ISA vs. Microarchitecture [16 points]

Classify the following attributes of a machine as either a property of its microarchitecture or ISA:

1. The machine has 10 ALU unites.

2. There are 32 general purpose registers.

3. The machine dynamically powers down a core when not used.

4. The ADD instruction can only take memory addresses as inputs.

5. There is an instruction called POW which returns the power of 2.

6. The die has heterogeneous core.

7. The last level cache is 4MB.

8. Program counter is always found at register IP.

3 The MIPS ISA [40 points]

3.1 Warmup: Computing a Fibonacci Number [15 points]

The Fibonacci number F (n) is recursively defined as F (n) = F (n − 1) + F (n − 2), where F (1) = 1 and
F (2) = 1. So, F (3) = F (2) +F (1) = 1 + 1 = 2, and so on. Write the MIPS assembly for the fib(n) function,
which computes the Fibonacci number F (n):

int fib(int n)

{

int a = 0;

int b = 1;

int c = a + b;

while (n > 1) {

c = a + b;

a = b;

b = c;

n--;

}

return c; }

Remember to follow MIPS calling convention and its register usage (just for your reference, you may not
need to use all of these registers):

• The argument n is passed in register $4.

• The result (i.e., c) should be returned in $2.

• $8 to $15 are caller-saved temporary registers.

• $16 to $23 are callee-saved temporary registers.

• $29 is the stack pointer register.

• $31 stores the return address.

A summary of the MIPS ISA is provided at the end of this handout, and a MIPS reference sheet is available
at https://www.cs.virginia.edu/~smk9u/CS3330S20/mips_reference_data.pdf. The MIPS architec-
ture reference manual is also available at https://www.cs.virginia.edu/~smk9u/CS3330S20/mips_r4000_
users_manual.pdf.

2/4

https://www.cs.virginia.edu/~smk9u/CS3330S20/mips_reference_data.pdf
https://www.cs.virginia.edu/~smk9u/CS3330S20/mips_r4000_users_manual.pdf
https://www.cs.virginia.edu/~smk9u/CS3330S20/mips_r4000_users_manual.pdf

CS 3330 Computer Architecture Spring 2020

3.2 MIPS Assembly for REP MOVSB[25 points]

Recall from lecture that MIPS is a Reduced Instruction Set Computing (RISC) ISA. Complex Instruction
Set Computing (CISC) ISAs—such as Intel’s x86—often use one instruction to perform the function of many
instructions in a RISC ISA. Here you will implement the MIPS equivalent for a single Intel x86 instruction,
REP MOVSB, which we will specify here1.

The REP MOVSB instruction uses three fixed x86 registers: ECX (count), ESI (source), and EDI (des-
tination). The “repeat” (REP) prefix on the instruction indicates that it will repeat ECX times. Each
iteration, it moves one byte from memory at address ESI to memory at address EDI, and then increments
both pointers by one. Thus, the instruction copies ECX bytes from address ESI to address EDI.

1. Write the corresponding assembly code in MIPS ISA that accomplishes the same function as this
instruction. You can use any general purpose register. Indicate which MIPS registers you have chosen
to correspond to the x86 registers used by REP MOVSB. Try to minimize code size as much as possible.

2. What is the size of the MIPS assembly code you wrote in (1), in bytes? How does it compare to REP
MOVSB in x86 (note: REP MOVSB occupies 2 bytes)?

3. Assume the contents of the x86 register file are as follows before the execution of the REP MOVSB:
EAX: 0xccccaaaa

EBP: 0x00002222

ECX: 0xFEE1DEAD

EDX: 0xfeed4444

ESI: 0xdecaffff

EDI: 0xdeaddeed

EBP: 0xe0000000

ESP: 0xe0000000

Now, consider the MIPS assembly code you wrote in (1). How many total instructions will be executed
by your code to accomplish the same function as the single REP MOVSB in x86 accomplishes for the
given register state?

4. Assume the contents of the x86 register file are as follows before the execution of the REP MOVSB:
EAX: 0xccccaaaa

EBP: 0x00002222

ECX: 0x00000000

EDX: 0xfeed4444

ESI: 0xdecaffff

EDI: 0xdeaddeed

EBP: 0xe0000000

ESP: 0xe0000000

Now, answer the same question in (3) for the above register values.

4 Research Paper Summary [20 points]

Please read the following handout on how to write critical reviews. We will give out extra credit that is
worth 0.5

Write a half-page summary for the following paper: Onur Mutlu, ”Enabling the Adoption of Processing-
in-Memory: Challenges, Mechanisms, Future Research Directions”, Invited Article, 2018. https://arxiv.

org/pdf/1802.00320.pdf

1The REP MOVSB instruction is actually more complex than what we describe. For those who are interested, please take
a look at the Intel architecture manual.

3/4

https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

CS 3330 Computer Architecture Spring 2020

5 Handin

You should electronically hand in your homework (in pdf format) to Collab.

6 MIPS Instruction Summary

Opcode Example Assembly Semantic

add add $1, $2, $3 $1 = $2 + $3

sub sub $1, $2, $3 $1 = $2 - $3

add immediate addi $1, $2, 100 $1 = $2 + 100

add unsigned addu $1, $2, $3 $1 = $2 + $3

subtract unsigned subu $1, $2, $3 $1 = $2 - $3

add immediate unsigned addiu $1, $2, 100 $1 = $2 + 100

multiply mult $2, $3 hi,lo = $2 * $3

multiply unsigned multu $2, $3 hi,lo = $2 * $3

divide div $2, $3 lo = $2 / $3, hi = $2 mod $3

divide unsigned divu $2, $3 lo = $2 / $3, hi = $2 mod $3

move from hi mfhi $1 $1 = hi

move from low mflo $1 $1 = lo

and and $1, $2, $3 $1 = $2 & $3

or or $1, $2, $3 $1 = $2 | $3

and immediate andi $1, $2, 100 $1 = $2 & 100

or immediate ori $1, $2, 100 $1 = $2 | 100

shift left logical sll $1, $2, 10 $1 = $2 << 10

shift right logical srl $1, $2, 10 $1 = $2 >> 10

load word lw $1, 100($2) $1 = memory[$2 + 100]

store word sw $1, 100($2) memory[$2 + 100] = $1

load upper immediate lui $1, 100 $1 = 100 << 16

branch on equal beq $1, $2, label if ($1 == $2) goto label

branch on not equal bne $1, $2, label if ($1 != $2) goto label

set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0

set on less than immediate slti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0

set on less than unsigned sltu $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0

set on less than immediate sltui $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0

jump j label goto label

jump register jr $31 goto $31

jump and link jal label $31 = PC + 4; goto label

4/4

	Dataflow [40 points]
	ISA vs. Microarchitecture [16 points]
	The MIPS ISA [40 points]
	Warmup: Computing a Fibonacci Number [15 points]
	MIPS Assembly for REP MOVSB[25 points]

	Research Paper Summary [20 points]
	Handin
	MIPS Instruction Summary

