CS 3330 COMPUTER ARCHITECTURE, SPRING 2020
LAB 1: INTRODUCTION TO MIPS SIMULATOR: “QTSPIM”

Instructor: Prof. Samira Khan
TAs: Amel Fatima, Sihang Liu, Korakit Seemakhupt, Yasas Senerivatne,Yizhou Wei,
Min Jae Lee, Nikita Semichev, Yuying Zhang.

Assigned: Wed., 1/29, 2020
Due: Wed., 2/5, 2020

Installation of QtSPIM [10 points]

SPIM, which is just MIPS spelled backwards, is a software that simulates the working of a MIPS processor.
It is capable of running MIPS32 assembly language programs and it allows users to inspect the various
internal states of a MIPS processor.

The most up-to-date version of the SPIM simulator, called “QtSPIM”, is maintained by James Larus, a
former Professor at the University of Wisconsin (now at EPFL). It is free and maintained on SourceForge.
Please follow the steps below to complete the installation of this MIPS simulator:

1. Navigate to the SourceForge website “https://sourceforge.net/projects/spimsimulator/files/;’

2. You will see the choice of a number of SPIM downloads. Select the relevant file according to your
Operating System and wait for it to complete the download (if v9.1.21 does not work on your system,
try an older version).

3. The download software will ask if you want to open or save. Click “save.” Most browsers have a space
for “download files,” so save it there.

4. Once the program is saved in the download folder, double click on that program. Note that it is an
.exe file, so it will start to install as soon as you click on it.

5. The program will ask to create a folder named “C:/ProgramFiles/QtSpim”to store SPIM in that.

6. Once QtSpim is created, you may open it to see if you get the register and text windows. Note that
you have to click on a tab at the top to get the “Data” window. If you can see these windows, then
QtSPIM should be correctly installed.

7. If you want to run the same program multiple times, then you should clear the registers each time
before running the program again. There is an icon named “Clear Registers” shown in the figure below.
Remember to use that before running the same program again.

8. If you want to run a different assembly program, then you should first clear the registers and reinitialize
your simulator before loading a different program. The icon to reinitialize your simulator is shown in
the figure below.

9. If your “simulator’s console” shuts down while running a program, then you can always reopen it by
pressing the “windows” tab and clicking on the console option.

1/4

 https://sourceforge.net/projects/spimsimulator/files/

iR oo b [
[Lona i) {(Sev o) | (oomts) | (ormiesr] [omseion)

QeSoim

.
2

" 4 B - » u a w
FPRegs | IntRegs 10 ! Data Text
B Qumm femn Spgem , gEmmeEtEE
b . L—. ooodiies sl n.gh?:i .) Tens okl bes 17—~ Simulator
. RO Oy gonoraled code
Y = { 1ot oo 10 (ignore)
A PNy apeea) # il i jewie)
- - E iml 1oAse e Bed, # 7 load lovp cessie Lme et
a : iak H [% ¢ e La Bud, X F load the sddress of X isve hD
. Eﬂ‘ “:it? i :-':..‘m'm eloer sl ata iemp o
! : louna .y 'ﬁl'“ N N S ot -
- adan 3 | Mo mana gab, Wb, 8 @ 1o bhe sert
- ana 836, B8, =1 ; Fis wans bee, bed. =i @ the Jeap coanter
H :='!?i"“' i = fal, sun # stave the fisal tetal
i E ote :i uf‘al ! ‘l:: i, ;lll-.ga " m‘t-ll_q[Fram main aniy
g — User code (a) your comments appear, (b) register name, number appear
e el .

The graphical interface of your SPIM simulator should look like the screenshot shown above. We will play
around with it to get a better understanding of all available cool features that this simulator provides us.
Please take a look at the labeled icons and see if you can find them in your installed version of the SPIM

simulator

Taskl [20 points]

The “Data tab” shows the content of the Data memory space. This content includes the variables and array
will test your understanding of the “Data Segment”
in the SPIM simulator. Create a “.asm” file with the MIPS code given below and then click on the “load

data you create, along with the stack content. This task

file” icon to load the created assembly file in your Simul

ator.

FReRsERERERER
CS3330@: Labl.

Taskl: Demonstration
of ASCII data stored
in Memory (Data Segment)

Filename: Labl.asm

R R RN

#The Data Segment
.data
.ascii
.ascii
.ascii

"You To"
"CS3330"

#The Text Segment
.text
main: #Normal termination of Program.
11 $ve, 10
syscall

"We Welcome"

2/4

Take a close look at the content of the memory address “0x10010000” in the data segment. Can you figure out
where and how are the strings stored in the memory? (Hint: Write out the ASCII values in hexadecimal form
of the characters to find their mapping in the memory). Keep in mind that “space” also has a hexadecimal
value in the ASCII chart. Please write down the characters that the following memory locations hold in the
data segment (Each memory location holds one byte, so memory locations from “10010000-10010003” will
hold 4 bytes of data. Remember that each character occupies one byte of space in memory).

“10010000-10010003”:
“10010008-1001000b”:
“10010010-10010013”:
“1001000c-1001000£":

- W o=

Task2 [30 points]

Please follow the link “http://www.cs.virginia.edu/~smk9u/CS3330S20/task2.s]” to download the MIPS
file named “task2.s”. Download that code and run it in your simulator. You should run the code line by line
so that you can see the changes in the values of the registers. The “single-step execution” mode will help
you solve this task and identify the changes in the values of the registers. (Remember to clear your registers
and reinitialize your simulator before loading a new assembly program in your simulator)

i. The value of the register ¢ ‘t2’’ changes eighteen times during the execution. List all the values that
the register t2 acquires during the execution in a chronological order. Use the single-step execution
mode to answer this question.

ii. Set a “breakpoint” at the instruction ‘‘addi $29, $29, 4" and record the value of the Program
Counter (PC), register ¢ “t0’’, ““t4’’ and t5’’ at that point. Please do not exceed your execution
beyond the breaking point.

iii. In what memory location is the instruction ¢ ‘lw $12, -4($10)" stored?

Task3 [40 points]

This task involves your interaction with the MIPS code. You will use the “SPIM console” to enter two
binary numbers and check the corresponding output. Please download the file “task3.asm” by following the
link “http://www.cs.virginia.edu/~smk9u/CS3330S20/task3.asm’ and run it in your simulator. You
will enter two similar length binary numbers through the console and it will display the output for you.

i. Enter two binary inputs (same length) of your choice in the console and observe the output. List a
combination of inputs that you use and the outputs that you observe in the table below.

Inputl Input2 Output

ii. What is the MIPS program doing with the two binary numbers? How is the output calculated?

iii. How much user memory is reserved and is made unavailable for use? You can run both the tasks to
check which portion of the memory is never allocated to the program and is reserved. You only need
to check the “User data segment” in the data segment tab to find out the answer.(Remember to give
your answer in Kilo bytes).

3/4

http://www.cs.virginia.edu/~smk9u/CS3330S20/task2.s
http://www.cs.virginia.edu/~smk9u/CS3330S20/task3.asm

iv. Refer to the data segment and calculate the total user memory that is available for use. (First calculate
the total user memory and then subtract the reserved memory to get the answer.)

Bonus Question [20 points]

1. Run your assembly code for “Fibonacci Numbers” from HW1 and record the output from the console.
Take a screenshot and paste it in your lab1’s solution to score the bonus points.

Handin

You should electronically hand in your assignment (in pdf format) to Collab.

For your Reference:

Please find the attached ASCII table on the next page for your reference. All you need is the “Hex” value
of the corresponding ASCII symbol from the table.

Dec Hex Oct Binary Char Dec Hex Oct Binary Char Dec Hex ©Oct Binary Char Dec Hex Oct Binary Char
0 00 000 00000OD NUL (null character) 32 20 040 0100000 space 64 40 100 1000000 @ 96 60 140 1100000

1 01 001 0000001 SOH (start of header) 33 21 041 0100001 ! 65 4 101 1000001 A 97 &1 141 1100001 a
2 02 002 0000010 STX (startof text) 34 22 042 0100010 " 66 42 102 1000010 B S8 62 142 1100010 b
3 03 003 0000011 ETX (end of text) 35 23 043 0100011 # 67 43 103 1000011 C 99 63 143 1100011 ¢
4 04 004 0000100 EOT (end of transmission) 36 24 044 0100100 $ 68 44 104 1000100) 100 64 144 1100100 d
5 05 005 0000101 ENQ (enquiry) 3725 045 010011 % 69 45 105 1000101 E 101 65 145 1100101 e
] 06 006 0000110 ACK (acknowledge) 38 26 046 0100110 & 70 46 106 1000110 F 02 66 146 1100110 f
7 07 007 0000111 BEL (bell (ring)) 9 27 o047 000111 71 47 107 1000111 G 103 67 147 1100111 g
8 08 010 0001000 BS (backspace) 40 28 050 0101000 (72 48 110 1001000 H 104 68 150 1101000 h
9 09 011 0001001 HT (horizontal tab) 41 29 051 01mom 1 73 43 111 1001001 | 105 69 151 10100 i
10 0A 012 0001010 LF (line feed) 42 A 052 0101010 ¢ 74 4A 112 1001010) 106 6A 152 1101010 |
11 0B 013 0001011 VT (vertical tab) 43 2B 053 000N + 75 4B 113 1000011 K 107 6B 153 110101 K
12 0C 014 0001100 FF (form feed) 44 2C 04 0101100 76 4C 114 1001100 L 108 6C 154 1101100 |
13 0D 015 0001101 CR (carriage return) 45 0 055 0101 - 7 40 115 100110 M 09 6D 155 101 m
14 0E 016 0001110 SO (shift out) 46 2E 056 0101110 5 78 4E 116 1001110 N 110 6E 156 1101110 n
15 OF 017 0001111 S (shiftin) 47 2F 057 O01omn 79 4F 117 1001111 © 11 6F 157 1011 o
16 10 020 0010000 DLE (datalink escape) 48 30 060 0110000 o BO 50 120 1010000 P 1Mz 70 160 1110000 p
17 11 021 0010001 DC1 (device control 1) 49 31 061 0110001 1 81 51 121 1010001 Q 13 N 161 1110001 g
18 12 022 0010010 DC2 (device control 2) 50 32 062 0110010 2 82 52 122 1010010 R 114 72 162 1110010 r
19 13 023 0010011 DC3 (device control 3) 51 33 063 011001 3 B3 53 123 101001 -] 115 73 163 111001 H
20 14 024 0010100 DC4 (device control 4) 52 34 064 010100 4 B4 54 124 1010100 T 116 74 164 1110100t
21 15 025 0010101 NAK (negative acknowledge) 53 35 065 011010 5 B5 55 125 10010 u 17 75 185 110 u
22 16 026 0010110 SYN (synchronize) 54 36 066 010110 & 86 56 126 1010110 V¥ 18 76 166 1110110 v
2317 027 0010111 ETE (end ransmission block) 55 37 067 om0 7 87 57 127 1010 W ne 17 167 1110 w
24 18 030 0011000 CAN (cancel) 56 38 070 0111000 8 B8 58 130 1011000 X 120 78 170 1111000 X
25 19 031 0011001 EM (end of medium) 57 39 o7 ononm 9 B9 58 131 0mom Y 121 79 171 nnom ¥
26 1A 032 0011010 SUB (substitute) 58 3w 072 Ommoo 90 5A 132 101010 2 122 A 172 Moz
27 1B 033 0011011 ESC (escape) 59 3B 073 onmon H 9N 58 133 0momm [123 78 173 1 {
28 1C 034 0011100 FS (file separator) 60 3C 074 0111100 =< 92 5C 134 1011100 124 7C 174 1111100 |
29 1D 035 0011101 G5 (group separator) 61 3D 075 0nm 93 50 135 10 1 125 7D 175 Mmnam }
30 1E 036 0011110 RS (record separator) 62 3E 076 01110 > 94 SE 136 1011110 A 126 7E 176 111110 -
31 1F 037 0011111 US (unit separator) 63 3F 077 o 7 95 &F 137 1011111 _ 127 TF 177 1111111 DEL

4/4

