
CS 3330 Computer Architecture, Spring 2020

Lab 2: Instruction-Level MIPS Simulator

Instructor: Prof. Samira Khan
TAs: Amel Fatima, Sihang Liu, Korakit Seemakhupt, Yasas Senerivatne, Yizhou Wei,

Min Jae Lee, Nikita Semichev, Yuying Zhang.

Assigned: Thu., 2/12, 2020
Due: PartI: Tue., 2/25, 2020, PartII: Thu., 03/03, 2020

Introduction

For this assignment, you will write a C program which is an instruction-level simulator for a limited subset
of the MIPS instruction set. This instruction-level simulator will model the behavior of each instruction, and
will allow the user to run MIPS programs and see their outputs. In later labs, you will use this simulator as
a reference to verify that your later labs execute code correctly.

The simulator will process an input file that contains a MIPS program. Each line of the input file corresponds
to a single MIPS instruction written as a hexadecimal string. For example, 2402000a is the hexadecimal
representation of addiu $v0, $zero, 10. We will provide several input files. But you should also create
additional input files in order to test your simulator more comprehensively.

The simulator will execute the input program one instruction at a time. After each instruction, the simulator
will modify the MIPS architectural state: values stored in registers and memory. The simulator is partitioned
into two main sections: the (1) shell and the (2) simulation routine. Your job is to implement the simulation
routine.

The source code for the lab is provided in “http://www.cs.virginia.edu/~smk9u/CS3330S20/Lab2.zip”.
In the src/ directory, we provide two files (shell.c and shell.h) that already implement the shell. There
is a third file (sim.c) where you will implement the simulator routine – this is the only file that you are
allowed to change.

The Shell

The purpose of the shell is to provide the user with commands to control the execution of the simulator.
The shell accepts one or more program files as command line arguments and loads them into the memory
image. In order to extract information from the simulator, a file named dumpsim will be created to hold
information requested from the simulator. The shell supports the following commands:

1. go: simulate the program until it indicates that the simulator should halt. (As we define below, this is
when a SYSCALL instruction is executed when the value in $v0 (register 2) is equal to 0x0A.)

2. run <n>: simulate the execution of the machine for n instructions.

3. mdump <low> <high>: dump the contents of memory, from location low to location high to the
screen and the dump file (dumpsim).

4. rdump: dump the current instruction count, the contents of R0 – R31, and the PC to the screen and
the dump file (dumpsim).

5. input reg num reg val: set general purpose register reg num to value reg val.

6. high value: set the HI register to value.

7. low value: set the LO register to value.

8. ?: print out a list of all shell commands.

9. quit: quit the shell.

1/4

http://www.cs.virginia.edu/~smk9u/CS3330S20/Lab2.zip

The Simulation Routine

The simulation routine carries out the instruction-level simulation of the input MIPS program. During
the execution of an instruction, the simulator should take the current architectural state and modify it
according to the ISA description of the instruction in the MIPS R4000 User Manual (32-bit mode only) that
is provided on the course website. The architectural state includes the PC, the general purpose registers,
and the memory image. The state is contained in the following global variables:

#define MIPS_REGS 32

typedef struct CPU_State {

uint32_t PC; /* program counter */

uint32_t REGS[MIPS_REGS]; /* register file. */

uint32_t HI, LO; /* multiplier HI and LO regs. */

} CPU_State;

CPU_State STATE_CURRENT, STATE_NEXT;

int RUN_BIT;

Furthermore, the simulator models the simulated system’s memory. You need to use the following two
functions, which we provide, to access the simulated memory:

uint32_t mem_read_32(uint32_t address);

void mem_write_32(uint32_t address, uint32_t value);

Note that in MIPS, memory is byte-addressable. Furthermore, we will implement a little-endian architecture.
This means that machine words (32 bits) are stored with the least-significant byte at the lowest address, and
the most-significant byte at the highest address. To implement loads and stores of 16-bit and 8-bit values,
you will need to use these 32-bit memory access primitives (hint: be sure to modify only the appropriate
part of a 32-bit word!).

In particular, you should call mem read 32 and mem write 32 with only 32-bit-aligned addresses (i.e., the
bottom two bits of the address should be zero).

The simulator skeleton that we provide includes an empty function named process instruction() in the
file sim.c. This function is called by the shell to simulate one machine instruction. You have to write the
code for process instruction() to simulate the execution of instructions. You can also write additional
functions to make the simulation modular. (Keep in mind that you will be using the code that you write in
later labs in order to validate your work.) We suggest spending time to make your code easy to read and
understand, for your own benefit.

What You Should Do

Part I: [100 pts]

Your job is to implement the process instruction() function in sim.c. The process instruction()

function should be able to simulate the instruction-level execution of the following MIPS instructions:

ADDI ADDIU SLTI SLTIU ANDI ORI
XORI ADD ADDU SLL SRL SRA
SUB SUBU AND OR XOR NOR
SLT SLTU MULT MFHI MFLO MTHI
MTLO MULTU DIV DIVU SYSCALL SLLV
SRLV SRAV

2/4

Note that for the SYSCALL instruction, you only need to implement the following behavior: if the register
$v0 (register 2) has value 0x0A (decimal 10) when SYSCALL is executed, then the go command should stop
its simulation loop and return to the simulator shell’s prompt. If $v0 has any other value, the instruction
should have no effect. No registers are modified in either case, except that PC is incremented to the next
instruction as usual. The process instruction() function that you write should cause the main simulation
loop to terminate by setting the global variable RUN BIT to 0.

The accuracy of your simulator is your main priority. Specifically, make sure the architectural state is
correctly updated after the execution of each instruction. We will test your simulator with many input
programs (some provided with the handout, some not) in order to ensure that each instruction is simulated
correctly.

In order to test that your simulator is working correctly, you should run the input programs we provide you
with and also write one or more programs using all of the required MIPS instructions that are listed in the
table above, and execute them one instruction at a time (run 1). You can use the rdump command to verify
that the state of the machine is updated correctly after the execution of each instruction.

While the table appears to have many instructions, there are actually only a few unique instruction behaviors
with a number of minor variations.The MIPS R4000 User Manual (provided on the course website) contains
the official definition for each instruction in this table (except for SYSCALL, for which we provide a restricted
definition above). Please implement only the 32-bit behavior of the instructions (the R4000 also has a 64-bit
mode, which we can ignore for the purpose of this and subsequent labs.)

Finally, note that your simulator does not have to handle instructions that we do not include in the table
above, or any other invalid instructions. We will only test your simulator with valid code that uses the
instructions listed above.

Part II: [100 pts]

Your job is to further implement the process instruction() function in sim.c to simulate the instruction-
level execution of the following MIPS instructions:

J JAL BEQ BNE BLEZ BGTZ
LUI LB LH LW LBU JALR
LHU SB SH SW BLTZ BGEZ
BLTZAL BGEZAL JR

However, unlike the manual, we will implement our architecture without “branch delay slots.” This means
that the branch instructions can update NEXT STATE.PC directly to the branch target when the branch is
taken. Furthermore, “jump-and-link” instructions (JAL, JALR, BLTZAL, BGEZAL) store PC + 4 in R31,
rather than PC + 8 as specified in the manual in these instructions’ descriptions.

Bonus Question (Update for extended part 1 deadline) [20 pts]

You may implement a minimum of 10 additional instructions to get the bonus point, and submit together
with Part II. In order for us to validate your implementation, you also need to provide extra test cases that
cover your additional instructions. You may test multiple additional instructions with one test case, but all
additional instructions need to be covered in order get all bonus credits. Please document the additional
instructions in an extra README and submit together with your code.

Note: if you have submitted 5 additional instructions in Part I, you only need to implement 5 extra instruc-
tions to get the remaining 10 bonus points in Part II.

Getting Started:

1. Remember that an instruction execution comprise of three main stages:

3/4

(a) Fetch.

(b) Decode.

(c) Execute.

You may design your simulator to execute each stage as a function, which may be called by the main
process instruction() function later on. This will help you in building up a clean and modular code
which will be easier to debug and understand.

2. The “decode stage” will require you to extract the relevant fields from the instruction and store them
in separate variables for use in the execution stage later on. An example can be extracting the bits
specified for the opcode in an “ADD” instruction and storing them in a separate variable.

3. You may look at the “shell.c” file to get an idea of how to change the state of the Registers and update
the memory locations.

4. Refer to the “README” file for a detailed, step by step explanation on loading an assembled MIPS
program into the simulator.

Lab Files

In “http://www.cs.virginia.edu/~smk9u/CS3330S20/Lab2.zip”, you will find a source code distribution
with two subdirectories src/ and inputs/. In src/, we are providing you with the simulator skeleton as
described above. You can compile the simulator with the provided Makefile. In inputs/, we have written
some input files for you. You should write more input files in order to be confident that your simulator is
correct. Also in inputs/, you can find a script that will assemble MIPS code into the hexadecimal format
that the simulator requires. The README file describes how to assemble a MIPS program with this script and
load it into the simulator.

Resources

The MIPS R4000 instruction set architecture is defined in the manual that we have provided on the course
website. We may post additional resources (clarifications, etc.) as required on the course website. Finally,
please don’t hesitate to ask the TAs for help if you become stuck or if something is unclear! Take advantage
of the office hours, and lab sections.

Handin (Updated)

You should submit your code to Collab by renaming the folder of Lab 2 as your UVa computing ID, and
pack it as a Zip file, e.g., yw2bc.zip. In addition, please turn in at least 10 additional test cases (at least 5
instructions per case) and add them to the inputs/ subdirectory when submitting Part II. We recommend
adding comments to make your code more readable and describe any additional aspects of your design
details in a separate README. We will test your simulator extensively with a suite of test cases. In case
your simulator fails to pass some of the cases, the documentation and comments will help us give you partial
credit.

4/4

http://www.cs.virginia.edu/~smk9u/CS3330S20/Lab2.zip

