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1. Introduction

In this lab, you will implement a timing simulator (written in C) to model a branch predictor. A timing
simulator is not a direct or synthesizable implementation of the processor but a higher-level abstracted model
that is designed to allow quick exploration of the system. Operating at a higher level allows the designer to
quickly see how design choices (e.g., branch predictors) would impact performance.

We will give you the base simulator (it has been developed to match the processor that we have implemented
in previous labs). We will also fully specify the behavior of the branch predictor. Your job is to extend the
simulator so that it implements the branch predictor as specified.

2. Timing Simulator

Our goal in this lab is to compute the number of cycles a program execution would take on the simulated
processor. Because of this, many simplifications are possible. We do not actually need to model control
logic and datapath details in each block of the processor; we only need to write code for each stage that
performs the relatively high-level function of that pipeline stage (read the register file, access memory, etc.).
In general, the simulator’s algorithms and structures do not need to exactly match the processor’s algorithms
and structures, as long as the result is the same.

3. Microarchitectural Specifications

3.1. Branch Predictor

Your goal is to implement the timing simulator so that it models a MIPS machine with a branch predictor.
Below, we have fully specified the microarchitecture of the MIPS machine that you will simulate.

Organization. The branch predictor consists of (i) a gshare predictor and (ii) a branch target buffer.

Gshare. The gshare predictor uses an 8 bit global branch history register (GHR). The most recent branch
is stored in the least-significant-bit of the GHR and a value of ‘1’ denotes a taken branch. The predictor
XORs the GHR with bits [9:2] of the PC and uses this 8 bit value to index into a 256-entry pattern
history table (PHT). Each entry of the PHT is a 2 bit saturating counter that operates as discussed in class:
a taken branch increments whereas a not-taken branch decrements; the four values of the counter correspond
to strongly not-taken (00), weakly not-taken (01), weakly taken (10), strongly taken (11).

Branch Target Buffer. The branch target buffer (BTB) contains 1024 entries indexed by bits [11:2]

of the PC. Each entry of the BTB contains (i) an address tag, indicating the full PC; (ii) a valid bit; (iii) a
bit indicating whether this branch is unconditional ; and (iv) the target of the branch.

Prediction. At every fetch cycle, the predictor indexes into both the BTB and the PHT. If the predictor
misses in the BTB (i.e., address tag != PC or valid bit = 0), then the next PC is predicted as PC+4. If
the predictor hits in the BTB, then the next PC is predicted as the target supplied by the BTB entry when
either of the following two conditions are met: (i) the BTB entry indicates that the branch is unconditional,
or (ii) the gshare predictor indicates that the branch should be taken. Otherwise, the next PC is predicted
as PC+4.
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Update. The branch predictor structures are always updated in the execute stage, where all branches are
resolved. The update consists of: (i) updating the PHT, which is indexed using the current value of the
GHR (ii) updating the GHR, and (iii) updating the BTB. Unconditional branches do not update the PHT
or the GHR, but only the BTB (setting the unconditional bit in the corresponding entry.

Initial State. All branch predictor structures are initialized to 0.

3.2. Flushing the Pipeline

When resolving a branch, the pipeline is flushed under any of the following conditions:

• The instruction is a branch, but the predicted direction does not match the actual direction.

• The instruction is a branch, and it is taken, but the predicted destination (target) does not match the
actual destination.

• The instruction is a branch, but it was not recognized as a branch (i.e., BTB miss).

4. Lab Resources

4.1. Source Code

The source code is available at: “http://www.cs.virginia.edu/~smk9u/CS3330S20/Lab3.zip”. Do NOT
modify any files or folders unless explicitly specified in the list below.

• Makefile

• refsim: Reference simulator in machine-executable format

• verify: Script that compares your simulator against the reference simulator

• src/: Source code (Modifiable; feel free to add more files)

– pipe.c: Your simulator (Modifiable)

– pipe.h: Your simulator (Modifiable)

– bp.c: The actual implementation (definition) of your branch predictor functions (Modifiable)

– bp.h: The declaration of your branch predictor functions (Modifiable)

– mips.h: MIPS related pound defines

– shell.c: Interactive shell for your simulator (similar to Lab 1)

– shell.h: Interactive shell for your simulator (similar to Lab 1)

• exampleinputs/: Example test inputs for your simulator

• inputs/: Your custom test inputs (Modifiable; feel free to add more files)

4.2. Makefile

We provide a Makefile that automates the compilation and verification of your simulator.

To compile your simulator:

$ make

To compile your simulator and verify it against the reference simulator using one or more test inputs:

$ make verify INPUT=exampleinputs/inst/addiu.x

$ make verify INPUT=exampleinputs/inst/*.x

$ make verify
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5. Getting Started

5.1. The Goal

We provide you with a skeleton of the timing simulator that models a five-stage MIPS pipeline: pipe.c

and pipe.h. As it is, the simulator is already architecturally correct: it can correctly execute any arbitrary
MIPS program.1 When the simulator detects data dependences, it correctly handles them by stalling and/or
bypassing. When the simulator detects control dependences, it correctly handles them by flushing the
pipeline as necessary.

By executing the following command, you can see that your simulator (sim) does indeed have identical
architectural outputs (e.g., register values) as the reference simulator (refsim) for all the test inputs that
we provide in exampleinputs/.

$ make verify

However, your simulator has different microarchitectural outputs (e.g., cycle count) than the reference sim-
ulator. Your job is to model the timing effects of the branch predictor and main memory so that your
simulator becomes microarchitecturally equivalent to the reference simulator.

5.2. Studying the Timing Simulator

Please study pipe.c and pipe.h in detail. The simulator models each pipeline stage as a separate
function – e.g., pipe stage fetch(). The simulator models the state of the pipeline as a collection of
pointers to Pipe Op structures (defined in pipe.h). Each Pipe Op represents one instruction in the pipeline
by storing all of the necessary information about the instruction that is needed by the simulator. A Pipe Op

structure is allocated when an instruction is fetched. It then flows through the pipeline and eventually
arrives at the last stage (writeback), where it is deallocated once the instruction completes. To elaborate,
each stage receives a Pipe Op from the previous stage, processes the Pipe Op, and passes it down to the next
stage. The simulator models pipeline stalls by stopping the flow of Pipe Op structures and pipeline flushes
by deallocating the Pipe Op structures at different stages.

5.3. Helping you understand

• In order to help you in getting started, we have already implemented the bp.h file which has the
initialized data structures and the prototype declaration of the functions for your branch predictor.
You can directly jump to coding your branch predictor in your bp.c file.

• You need to add more code in the pipe.c file to incorporate your branch predictor in the system. We
have marked those regions with some “TODO” comments, indicating the regions where more code is
needed and also specifying what that code should be doing.

• You may toggle the DEBUG flag at the beginning of pipe.c to enable/disable information printing on
every cycle. By default it prints out the pipeline states and the predictor information to stdout. You
can compare the output of your predictor against our reference predictor for debugging.

• To make things easier for you to understand, we have already added the functions in bp.c file to
initialize and destroy your branch predictor. You may follow up, to write your own functions to further
add the logic for your branch predictor.

• You may use

$ make verify

or

$ ./verify

to validate the correctness of your predictor using the entire set of test cases in exampleinputs/. Use

$ make verify INPUT=exampleinputs/inst/addiu.x

1This is not entirely true since we pose the usual restrictions on system calls, exceptions, etc.
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or

$ ./verify exampleinputs/inst/addiu.x

to validate the correctness of a single test case.

Here is a list of statistics the verify script uses for comparison. You can also print out the statistics
by using rdump command in your shell:

– Final program counter (PC) and register file (R0 - R31, HI, LO) states

– Number of simulated cycles (Cycles)

– Number of fetched instructions (FetchedInstr)

– Number of retired instructions (RetiredInstr)

– Instructions per cycle (IPC)

– Number of pipeline flushes (Flushes)

– Branch prediction accuracy (BPAccuracy)

6. Extra Credit.

One important goal of the branch predictor is to perform predictions as accurate as possible. For extra credit
on this lab, your goal is to improve the accuracy of your branch predictor by either optimizing your current
Gshare predictor, or implement an entire new predictor algorithm. For example, your GShare predictor
can be part of a tournament predictor (http://classweb.ece.umd.edu/enee646.F2007/combining.pdf).
By adding another local predictor alongside your Gshare predictor, you can select the better one from the
two predictions. Another idea could be implementing a new predictor like the perceptron-based predictor
(https://www.cs.utexas.edu/~lin/papers/hpca01.pdf).

The extra credit is worth up to 20% additional credit for this lab, based on the amount of additional work
you have done. Additionally, there will be prizes for students who have achieved best prediction accuracy
on an undisclosed set of test inputs.

If you are submitting your extra credit implementation, please copy-paste the entire Lab3/ folder to another
folder named Lab3 extra credit/ and implement the extra credit part in that folder (example directory
structure shown in Section 7). In other words, the implementation in Lab3/ folder should be the original
GShare predictor we required and the outputs should match those from the reference GShare predictor.

7. Handin.

Please make sure your source code compiles without any error before submission. You should
submit your code to Collab by packing the folder of Lab3/ and extra credit into a Zip file, and renaming it
with your UVa computing ID, e.g., yw2bc.zip. More specifically, your directory should follow this structure
(Ignore Lab3 extra credit/ folder if you don’t have that):

yw2bc.zip

Lab3

exampleinputs

inputs

Makefile

refsim

src

verify

Lab3 extra credit

exampleinputs

inputs

Makefile

README
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refsim

src

verify

In addition, please turn in at least 5 additional test cases and add them to the inputs/ subdirectory when
submitting Lab 3. We recommend adding comments to make your code more readable and describe any
additional aspects of your design details in a separate README. We will test your simulator extensively
with a suite of test cases. In case your simulator fails to pass some of the cases, the documentation and
comments will help us give you partial credit.
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