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INTRODUCTION 

Procrustes was the ancient Attican malefactor who 
forced wayfarers to lie on an iron bed. He either 
stretched or cut short each person's legs to fit the bed's 
length. Finally, Procrustes was forced onto his own 
bed by Theseus. 

Today the story is being reenacted. Von Neumann-
derived machines are automatous malefactors who 
force programmers to lie on many procrustean beds. 
Memory cells and processor registers are rigid con­
tainers which contort data and instructions into un­
natural fields. As we have painfully learned, con­
temporary representations of numbers introduce 
serious difficulties for numerical processing. Manipula­
tion of variable-length information is excruciating. 
Another procrustean bed is machine instructions, 
which provide only a small number of elementary 
operations, compared to the gamut of algorithmic 
procedures. Although each set is universal,, in that it 
can compute any function, the scope of applications 
for which each is efficient is far smaller than the scope 
of applications for which each is used. Configuration 
limits, too, restrict information processing tasks to 
sizes which are often inadequate. Worst of all, even 
when a program and its data agreeably fit a particular 
machine, they are confined to that machine; few, if 
any, other computers can process them. 

In von Neumann's design for primordial EDVAC,1 

ridigity of structure was more beneficial than detri­
mental. I t simplified expensive hardware and bought 
precious speed. Since then, declining hardware costs 
and advanced software techniques have shifted the 
optimum blend of rigid versus variable structures 
toward variability. As long ago as 1961, hardware of 
Burroughs B50002 implemented limitless main memory 
using variable-length segments. Operands have pro­
ceeded from single words, to bytes, to strings of four-
bit digits, as on the B3500. The demand for instruction 

variability has increased as well. The semantics of the 
growing number of programming languages are not 
converging to a small set of primitive operations. Each 
new language adds to our supply of fundamental data 
structures and basic operations. 

This shifting milieu has altered the premises from 
which new system designs are derived. To increase 
throughput on an expanding range of applications, 
general-purpose computers need to be adaptable more 
specifically to the tasks they try to perform. For ex­
ample, if COBOL programs make up the daily work­
load, one's computer had better acquire a "Move" 
instruction whose function is similar to the semantics 
of the COBOL verb MOVE. To accommodate future 
applications, the variability of computer structures 
must increase, in yet unknown directions. Such flexi­
bility reminds one of Proteus, the mythological god 
who could change his shape to that of any creature. 

DESIGN OBJECTIVE 

Burroughs B1700 is a protean attempt to completely 
vanquish procrustean structures, to give 100 percent 
variability, or the appearance of no inherent structure. 
Without inherent structure, any definable language 
can be efficiently used for computing. There are no 
word sizes or data formats—operands may be any 
shape or size, without loss of efficiency; there are no 
a priori instructions—machine operations may be any 
function, in any form, without loss of efficiency; con­
figuration limits, while not totally removable, can be 
made to exist only as points of "graceful degradation" 
of performance; modularity may be increased, to allow 
miniconfigurations and supercomputers using the same 
components. 

Design rationale 

The B1700's premise is that the effort needed to ac­
commodate definability from instruction to instruction 
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is less than the effort wasted from instruction to instruction 
when one system design is used for all applications. With 
definable structure, information is able to be represented 
according to its own inherent structure. Manipulations 
are able to be defined according to algorithms' own 
inherent processes. Given such freedom, it is easy to 
construct novel machine designs which are 10 to 50 
times more powerful than contemporary designs, and 
which can be interpreted by the B1700's variable-
micrologic processor using less than 10 to 50 times the 
effort, resulting in faster running times, smaller re­
source demands, and lower computation costs. 

GENERAL DESIGN 
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Figure 2—Typical B1700 S-machines (O) positioned by 
goodness-of-fit to application areas ( • ) 

Throughput measurements, reported below, show 
that the tandem system of: 

To accomplish definable structure, one may observe 
that during the next decade, something less than in­
finite variability is required. As long as control informa­
tion and data are communicated to machines through 
programming languages, the variability with which 
machines must cope is limited to that which the 
languages exhibit. Therefore, it is sufficient to antici­
pate a unique environment for each programming 
language. In this context, absolute binary decks, 
console switches, assembly languages, etc., are included 
as programming language forms of communication. 
Let us call all such languages "S-languages" ("S" for 
"soft," or also for "system" or "source" or "specialized" 
or "simulated"). Machines which execute S-language 
directly are called "S-machines." The B1700's objec­
tive, consequently, is to emulate existing and future 
S-machines, whether these are 360's, FORTRAN 
machines, or whatever. Rather than pretend to be good 
at all applications, the B1700 strives only to interpret 
arbitrary S-language superbly. The burden of per­
forming well in particular applications is shifted to 
specific S-machines. 
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Figure 1—Typical machine design (O) positioned by 
goodness-of-fit to application areas ( • ) 

APPLICATION PROGRAM, 
interpreted by an 

S-MACHINE (which is optimized for the 
application area), 

interpreted by the 
B1700 HARDWARE (which is optimized for 

interpretation) 

is more efficient than a single system when more than 
one application area is considered. I t is even more 
efficient than conventional design for many individual 
application areas, such as sorting. 

To visualize the architectural advantage of imple­
menting the S-machine concept, imagine a two-di­
mensional continuum of machine designs, as in Figures 
1 and 2. Designs which are optimally suited to specific 
applications are represented by bullets ( • ) beside the 
application's name. The goodness-of-fit of a particular 
machine design, which is represented as a point (O) 
in the continuum, to various applications is given by 
its distance from the optimum for each application; 
the shorter the distance, the better the fit, and the 
more efficient the machine is. Figure 1 dramatizes the 
disadvantage of using one design for COBOL, FOR­
TRAN, Emulation, and Operating System applications. 
Figure 2 pictures the advantage of emulating/inter­
preting many S-machines, each designed for a specific 
application. Note that emulation inefficiencies must be 
counted once for each S-machine, since they are all 
interpreted. 

HARDWARE CAPABILITIES 

To allow the user's problem statement to dictate 
the structure of the machine and the semantics of 
machine operations, new degrees of flexibility and 
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speed are required from hardware, firmware, and 
software. 

Defined-field capability 

All information in a B1700 system is represented by 
fields, which are recursively defined to be either bit 
strings or strings of fields. Specifically, bytes and words 
do not exist. 

• All memory is addressable to the bit. 
• All field lengths are expressable to the bit. 
• Memory access hardware must fetch and store 

one or more bits from any location with equal 
facility. That is, there must be no penalty and no 
premium attached to location or length. 

• All structured logic elements in the processor can 
be used iteratively and fractionally under micro­
program control, thus effectively concealing their 
structure from the user. Iterative use is required 
for operands which contain more bits than a 
functional unit can hold; fractional use is required 
for smaller operands. 

Defined-field design gives flexibility because informa­
tion is represented by recursively defined structures of 
bits. It also gives speed because all bits in a field (and 
only those bits in a field) are processed in parallel. 
Additional speed is obtained from the advanced 
technology of the B1700 components. Main memory 
is constructed out of LSI MOS circuits with 1024-bit 
chips having 180-nsec access time. The B1700 is the 
first small-scale, general-purpose, commercial computer 
to use MOS/LSI circuitry in its main memory. 

Generalized language interpretation 

No machine language is built into the hardware. There 
is no processor structure or set of machine instructions 
for which compilers may generate code. Each language 
to be executed must first configure the B1700 processor 
into whatever structure is efficient for algorithms in 
that language. Defined operations on the defined 
structure are then executed by changeable micro­
program. B1700 processors are specifically designed to 
avoid causing significant differences in efficiency due 
to differences in such "soft" machine structures and 
operations. 

• Microinstructions are executed at 2, 4, and 6MHz 
rates using MSI CTL II logic with typical delay 
of 3 nsec per gate. 

• Microcode executes out of main memory. It may 
be buffered through 60-nsec access bipolar circuits. 
Such buffering is invisible to the microprogrammer. 

• Microprocedures are reentrant and recursively 
usable; each processor includes a 32-deep stack 
for fast entry and exit; stack operations are auto­
matic, not microprogrammed. 

• Microprograms are not limited in size, nor would 
large microprograms be inefficient because of size. 

• Microcode on the B1700 is compact, economizing 
storage. COBOL, FORTRAN, BASIC, and RPG 
language processors as well as second-generation 
and third-generation emulators have been micro­
programmed each in less than 4000 16-bit micro­
instructions. 

• Hardware assists wTith the concurrent execution of 
many microprogrammed interpreters. I t takes 
from 14 fisec to 53 usee (at 6MHz) from the com­
pletion of an S-instruction for one interpreter 
until the beginning of an S-instruction for another 
interpreter, depending on how much of the pro­
cessor must be reconfigured. 

Memory protection, fast interrupt response, and 
uniform status of microprograms allow each micro-
programmer to be unconcerned that other interpreters 
may be running simultaneously. 

Control over binding 

While the hardware for defined-field and generalized 
language interpretation allows a varying processor 
image for microinstruction to microinstruction, it 
does not preclude taking advantage of a static pro­
cessor image. For example, the number of bits to be 
read, written, or swapped between processor and 
memory can be different in consecutive microinstruc­
tions, but if an interpreted S-machine's memory ac­
cesses are of uniform length, this length can be factored 
out of the interpreter, simplifying its code. In other 
words, S-memory may be addressed by any convenient 
scheme; bit addresses are available, but not obligatory 
for the S-machine. 

With these hardware advances, language-dependent 
features such as operand length are unbound inside the 
processor and memory buss, except during portions of 
selected microinstructions. Some of these features have, 
until now, been bound before manufacture, by ma­
chine designers. Language designers and users have 
been able to influence their binding only indirectly, and 
only on the next system to be built. On the B1700, the 
delayed binding of these features, delayed down to the 
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Figure 3—B1700 Organization—Peripherals include standard 
large-scale devices, data communications networks, and mass 
storage units as well as minicomputer devices such as paper tape 
and 96-column card equipment. Special purpose devices include 

graphics, document sorters, teller machines, etc. 

clock pulse level of the machine, gives language de­
signers and users a new degree of flexibility to exploit. 
Hopefully, this flexibility will lead to the design of 
languages which are levels closer to user problems. 
Because of the B1700's interpretation speed, there 
should be little execution penalty incurred by such 
advanced forms of man-machine communication. 

SYSTEM ORGANIZATION 

address, field length, and direction] into whatever form 
actually drives the memory and to converting bit strings 
into whatever form is actually read and written by the 
memory.) Each processor also connects to one to eight 
I /O channels or to one to four microprogram memory 
(M-memory) modules. (See Figure 3.) Later systems 
may have several field-isolation units. With only one 
processor, the port interchange may be eliminated, as 
in Figure 4. 

EMULATION VEHICLE 

Any computer which can handle the B1700's port-
to-port message discipline may employ a B1700 for 
on-line emulation. (See Figure 5.) Programs and data 
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Figure 5—B1700 as an emulation vehicle 

are sent to the B1700 for execution; I/O requests are 
sent back to the host which uses its own peripherals 
for them. Interpreters are loaded via the B1700's 
console cassette drive. Each Burroughs emulator can 
run standing-alone, or in an emulation vehicle, or in a 
multiprogrammed mix. 

Extreme modularity improves the B1700's ability 
to adapt to an installation's requirements. There may 
be one to eight processors connected to one another 
and to two to 256 65,536-bit systems memory (S-mem-
ory) modules, interfaced by a field-isolation unit. 
("Field-isolation" refers to converting defined-field 
memory requests [i.e., least- or most-significant bit 

300 CPM 96-COL . MFCU-
300 LPM I32-C0L. PRINTER-

DUAL SPINDLE' 
20 MS. DISK 

PROCESSOR FIU S-MEMORY 

Figure 4—One of the smallest B1700's 

STATE OF THE ART DESIGN 

The B1700's innovative features have been realized 
without diminishing the system's ability to provide 
many proven throughput enhancements. All Bur­
roughs interpreters rely on the B1700's Master Control 
Program (MCP) for: 

• Virtual memory—user programs are not limited 
in size by the amount of physical storage nor does 
the programmer ever need to know how much 
storage is available; compilers automatically seg­
ment programs, and the MCP automatically 
manages these segments without introducing any 
code into the user program. 

• Multiprogramming—because common system 
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functions such as input/output, storage manage­
ment, and peripheral assignment are removed 
from user programs and handled by the MCP, 
every pause in a running program becomes an 
evident opportunity to run other programs. 

• Multiprocessing—with S-machine state kept in 
main memory and with every interpreter in main 
memory, any processor in the system can resume 
execution of an interrupted program. 

The B1700 is the first small-scale computer to offer 
so comprehensive an operating system. 

In addition to the MCP capabilities, there are 
notable system flexibilities, viz: 

• Dynamic system configuration—processors, mem­
ory addresses, I /O channels, and peripherals are 
not uniquely coded into programs, so such entities 
can be brought on-line and used immediately 
without any reprogramming. 

• Descriptor-organized I/O—in effect, I/O has its 
own S-language, interpretation of which causes 
data transfer; it is possible to build this interpreta­
tion in hardware, for maximum speed, or it may 
be soft for maximum flexibility, for example, to 
allow easy interfacing with new devices. 

• System performance monitoring—interpreters 
automatically gather dynamic execution frequen­
cies of program components to establish which 
parts of a program take the most time;3,4 also, 
specific microinstructions can interface directly 
with external monitors, allowing soft event flagging. 

Interpreter switching 

Note that without a native machine language, the 
MCP itself must be written in higher-level language 
and interpreted just like any other program. It, and all 
other active jobs, are represented in memory according 
to Figure 6. There are read-only code segments which 
may be anywhere in memory and a write-protected 
area which contains the program's S-machine state, 
data segments, file buffers, and other work areas. 

One of the MCP's data segments contains an inter­
preter dictionary that points to each interpreter which 
is active (i.e., interpreting one of the jobs in the mix). 
To reinstate a user's interpreter, the MCP extracts 
from the user's S-machine state the name of the inter­
preter being used, brings it into S-memory, and calls 
the interpreter interface routine which switches run 
structures. Associating S-machines and interpreters 
symbolically allows such things as several COBOL 

OVERLAYABLE DATA 
SEGMENTS 

S-MACHINE STATE 
( RUN STRUCTURE ) 

DATA DEFINITIONS 

FILE DEFINITIONS 

FILE BUFFERS 

OVERLAYABLE PROGRAM 
SEGMENTS 

Figure 6—B1700 program S-memory components 

interpreters active in one mix—one designed for speed, 
another for code compaction, etc.—all employing the 
same S-language expressly designed for COBOL, that 
is, a COBOL-machine definition. The interpreter name 
is looked up in the interpreter dictionary to yield a 
pointer to the interpreter code in S-memory. 

To switch back to the MCP interpreter, a user inter­
preter performs the identical procedure. It calls the 
interpreter interface routine, which maintains a pointer 
to the MCP's interpreter, and switches run structures. 

Interpreter switching is independent of any execu­
tion considerations. It may be performed between any 
two S-instructions, even without switching S-instruc-
tion streams. That is, an S-program may direct its 
interpreter to summon another interpreter for itself. 
This facility is useful for changing between tracing and 
non-tracing interpreters during debugging. 

Interpreter switching is also independent of M-mem-
ory. Microcode always actually addresses S-memory. 
In case M is present, special hardware diverts fetches 
to it. Without M, no fetches are diverted. 

Interpreter management 

Entries in the interpreter dictionary are added 
whenever a job is initiated which requests a new 
interpreter. Interpreters usually reside on disk, but may 
be read in from tape, cards, cassettes, data comm, or 
other media. They have the same status in the system 
that object code files, source language files, data files, 
compiler files, and MCP files all share: symbolically-
named, media-independent bit strings. While active, a 
copy is brought from disk, to be available in main 
memory for direct execution. The location may change 
during interpretation due to virtual S-memory manage­
ment, so microinstructions are location-independent. 

At each job initiation and termination, the MCP 
rearranges the interpreters in M-memory to try to 
avoid swapping. Interpreter profile statistics show that 
over 99 percent of all microinstructions are executed 
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out of M-memory, even when the demand for M-mem-
ory space is double the supply. At higher demand rates, 
swapping occurs. 

Ease of microprogramming 

Writing microprograms for the B1700 is as simple, 
and in some ways simpler, than writing FORTRAN 
subroutines: 

• Microprograms consist of short, imperative 
English-like sentences and narrative comments. 
For example, one microinstruction in the 
FORTRAN interpreter is coded as follows: 

Read 8 bits to T counting FA up and FL down. 
• Knowledge of microinstruction forms is not bene­

ficial. Although microprogrammers on other ma­
chines need to know which bits do what, on the 
B1700, there is no way to use that information. 
Once the function is given in English, its represen­
tation is immaterial. The B1700 microprogrammer 
has only one set of formats to worry about: those 
belonging to the S-language which he is inter­
preting. 

• Multiprogramming of microprograms is purely 
an MCP function, carried out without the micro-
programmer's knowledge or assistance. Actually, 
there is nothing one would do differently, de­
pending on whether or not other interpreters are 

- running simultaneously. 
• Use of M-memory is purely an MCP function; 

users cannot move information in and out of M. 
Other than rearranging one's interpreter ac­
cording to usage, there is nothing one should 
microprogram differently depending on whether 
microinstructions are executing out of M-memory 
or S-memory. Maximizing use of system resources 
is beyond the scope of any individual program; 
responsibility lies solely with the MCP and the 
machine designers. 

• Since all references are coded symbolically, pro­
tection is easy to assure. Microprograms can 
reference only what they can name, and they can 

(a) ? COMPILE XCOBOL/INTERP WITH 
MIL; DATA CARD 

(b) ? COMPILE XCOBOL/INTERP WITH 
MIL; MIL FILE CARD = XCOBOL/ 
SOURCE 

Figure 7—Typical MCP control information for creating 
interpreters 

(a) ? EXECUTE FILE/UPDATE 
(b) ? EXECUTE FILE/UPDATE; INTERP 

= XCOBOL/INTERPRETER 

Figure 8—Typical MCP control information for 
executing programs 

only name quantities belonging to themselves and 
their S-machines. Moreover, artificially generated 
names (e.g., negatively subscripted FORTRAN 
arrays) are checked for validity by concurrent 
hardware. 

• Calling out interpreters is simplified by the con­
tinuation of Burroughs' "one-card-of-free-form-
English" philosophy of job control language. 
Figure 7 shows the control information which 
creates a new interpreter (a) from cards, and (b) 
from a disk file named XCOBOL/SOURCE. 

• Association of interpreters and S-language files 
occurs at run-time. Figure 8 shows the control 
information which executes a COBOL program 
named FILE/UPDATE with (a) the usual 
COBOL interpreter, and (b) another interpreter 
named XCOBOL/INTERPRETER. 

• There is no limit to the number of interpreters 
that may be in the system (except that no more 
than 244 bits are capable of being managed by 
the B1700's present virtual memory property, 
so a 28,000-bit average interpreter length means 
there is a practical limit of 628,292,362 inter­
preters . . . many more than the number of S-lan-
guages in the world). 

Additional information about B1700 microprogram­
ming may be found in Reference 5. 

EVALUATION 

Evaluation of novel architecture is not merely an 
unsolved problem; most rational attempts produce 
worse results than subjective guesses. Consider bench­
marks, which measure more system parameters than 
any other technique. Any benchmark program which 
runs on the B1700 develops not only an observed run­
ning time, but also a program profile which indicates 
how to reduce that time (possibly by 50 percent or 
more). What, then, is the true performance of the 
system? The observed time, even though known in­
efficiencies are pin-pointed? Half the observed time? 
Not until the benchmark has been changed. 

The point of benchmarks is to have a standard 
reference which allows the customer to characterize 
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his work and obtain a cost/performance measure. 
What customer would be satisfied with an inefficient 
characterization? If the B1700 can show that a program 
is not using the system well, what good is it as a bench­
mark? If we change the program to remove the in­
efficiencies, it is no longer standard. This is a pernicious 
dilemma. 

Even the simplest measure, add time, still published 
as if it hasn't been a misleading and unreliable indicator 
for the past 15 years, is void. What is the relative per­
formance of two machines, one of which can do an 
almost infinite variety of additions and the other of 
which can do only one or two? The B1700 can add two 
0-24 bit binary or decimal numbers in 187 nsec; how 
fast must a 16-bit binary machine be in order to have an 
equivalent add time? 

Assuming reasonable benchmark figures are ob­
tainable, they would say nothing about the intrinsic 
value of a machine which can execute another ma­
chine's operators, for both existing and imaginary 
computers; which can interpret any current and pres­
ently conceivable programming language; which can 
always accept one more job into the mix; which can 
add on one more peripheral and one more memory 
module, to grow with the user; which can interpret 
one more application-tailored S-machine; which can 
tell a programmer where his program is least efficient; 
which can continue operation in spite of failures in 
processing, memory, and I/O modules. These charac­
teristics of the B1700, shared by few other machines— 
no machine shares them all—save time and money, but 
are not yet part of any performance measurement. 

Despite the nullification of measures with which we 
are familiar and the gargantuan challenge of measuring 
the B1700's advancements of the state-of-the-art, 
there are, nevertheless, some quantifiable signs that 
the system gives better performance than comparably-
priced and higher-priced equipment. 

Utilization of memory 

Defined-field design's major benefit is that informa­
tion can be represented in natural containers and 
formats. Applied to language interpretation, defined-
field architecture allows S-language definitions which 
are more efficient in terms of memory utilization than 
machine architectures which have word- or byte-
oriented architecture. For example, short addresses 
may be encoded in short fields, and long addresses in 
long fields (assuming the interpreter for the language 
is programmed to decode the different sizes). Alter­
natively, address field size may be a run-time param-

Language 
of Sample 
FORTRAN 
FORTRAN 
COBOL 
COBOL 
RPGII 

Aggregate 
Size on 
B1700 
280KB 
280KB 
450KB 
450KB 
150KB 

Aggregate 
Size on 
Other 
560KB 
450KB 

1200KB 
1490KB 
310KB 

Other 
System 

System/360 
B3500 
B3500 
System/360 
System/3 

Percent 
Improved 

B1700 
Utilization 

50 
40 
60 
70 
50 

Figure 9—Amount of program compaction on B1700 

eter determined during compilation. That is, programs 
with fewer than 256 variables may be encoded into an 
S-language that uses eight-bit data address fields. Even 
the fastest microcode that can be written to interpret 
address fields is able to use a dynamic variable to 
determine the size of the field to be interpreted. 

Just how efficient this makes S-languages is difficult 
to say because no standard exists. What criterion will 
tell us how well a given computer represents programs? 
What "standard" size does any particular program 
have? We would like a measure that takes a program's 
semantics into account, not just a statistical measure 
such as entropy. 

If we simply ask how much memory is devoted to 
representing the object code for a set of programs, we 
find the statistics of Figure 9. 

In short, the B1700 appears to require less than half 
the memory needed by byte-oriented systems to 
represent programs. Comparisons with word-oriented 
systems are even more favorable. 

As to memory utilization, the advantage of the B1700 
is even more apparent. Consider two systems with 
32KB (bytes) of main memory, one a System/3, the 
other a B1700. Suppose a 4KB RPG II program is 
running on each. If we ask how much main memory 
is in use, we find the comparison of Figure 10. 

The utilization at any given moment may be 30 
times better on the B1700 than on the System/3. At 
least, with all program segments in core, it is seven 
times better (4.5KB vs. 32KB). Even if we assume the 
RPG interpreter is in main memory and is not shared 
by other RPG jobs in the mix, the comparison varies 

System Bytes in Use Percent Comment 
System/3 32K 100 28K is idle without multi­

programming and virtual 
memory. 

B1700 IK 3 Assumes 500B run structure 
and 500B of program and 
data segments. 

Figure 10—Hypothetical RPG memory requirements 
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from 6:1 to 4:1, 5KB to 8KB (vs. 32KB), 84 to 75 
percent better utilization. As more and more RPG 
jobs become active in the mix, the effect of the inter­
preter diminishes, but then comparison becomes 
meaningless, because other low-cost systems cannot 
handle so large a mix. (Note that these figures change 
when a different main memory size is considered, so 
the comparison is more an illustration of the advantage 
of the B1700's variable-length segments and virtual 
memory than of its memory utilization.) More detailed 
information on memory utilization may be found in 
Reference 6. 

Running time 

Although program running time is said to involve 
less annual cost at installations than the unquantifiable 
parameter which we may call "ease of use", let us 
mention some current observations. When the B1700 
interprets an RPG II program, the average S-instruc-
tion time is about 35 microseconds, compared to 
System/3's 6-microsecond average instruction time. 
On a processor-limited application (specifically, calcu­
lating prime numbers), the identical RPG program 
runs in 25 seconds on a B1700 and 208 seconds on a 
System/3 model 10. Both systems had enough main 
memory to contain the complete program; only the 
memory and processor were used. 

The B1700 lease rate was 75 percent greater than 
the System/3's. In terms of cost, the B1700 run con­
sumed 30fi while the System/3 run took SI.60. In 
terms of instruction executions, the B1700 was 50 
times faster. That is, each individual interpreted RPG 
instruction, on the average, contributed as much to the 
final solution as 50 System/3 machine instructions. The 
fact that the B1700's S-machine for RPG is 50 times 
more efficient than System/3 seems to support the 
B1700 philosophy, that interpretation of S-machines 
which are optimized for each application yields better 
performance than using a general-purpose architecture. 

Using another set of benchmark programs (for 
banking applications), and another B1700 which leases 
for the same as the System/3 with which it was com­
pared, throughput comparisons are again noteworthy. 
Despite defined-field design, soft-interpretation, soft 
I/O, multiprogramming, multiprocessing, and virtual 
memory, all of which supposedly trade speed for 
flexibility, the B1700 executes RPG programs in 50 
to 75 percent of the System/3 time, and compiles them 
in 110 percent of the System/3 time, for the same 
monthly rental. In applications of this type, compila­
tion is expected annually (monthly at worst) while 

execution is expected daily. (Systems used for this 
comparison included a multi-function card unit to 
read, print, and punch 96-column cards, a 132-position 
300 1pm printer, a dual spindle 4400 bpi disk cartridge 
drive, and operator keyboard. The System/3 could 
read cards at 500 cpm, while the B1700 could read at 
300 cpm.) 

CONCLUSION 

Microprogramming, firmware, user-defined operators, 
and special-purpose minicomputers are being touted 
as effective ways to increase throughput on specific 
applications while decreasing hardware costs. One 
standard system tailors itself to an installation's needs. 
Effective as these approaches are, they are all held 
back by procrustean machine architecture. Burroughs 
B1700 appears to eliminate inherent structure by its 
defined-field and soft interpretation implementation, 
advancements of the state-of-the-art. Without a native 
machine language, the B1700 can execute every ma­
chine language well, eliminating nearly all conversion 
costs. Designed for language interpretation rather than 
general-purpose execution, the B1700 can run every 
programming language well, reducing problem-solving 
time and expense. It does not waste time or memory 
overcoming its own physical characteristics; it works 
directly on the problems. Furthermore, these innova­
tions are available in low-cost systems that yield better 
price/performance ratios than conventional machinery. 

ACKNOWLEDGMENT 

Many of the design objectives were first articulated by 
R. S. Barton.7 The author wishes to thank Brian 
Randell, R. R. Johnson, Rod Bunker, Dean Earnest 
and Harvey Bingham for their conscientious criticism 
of various drafts of this article. 

BIBLIOGRAPHY 

1 A W BURKS H H GOLDSTINE 
J VON NEUMANN 
Preliminary discussion of the logical design of an electronic 
computing instrument 
A H TAUB (ed) Collected Works of John von Neumann Vol 5 
The Macmillan Co New York 1963 pp 34-79 
Also in 
C G BELL A NEWELL 
Computer structures: Readings and examples 
McGraw-Hill Book Co 1971 pp 92-119 



Design of the Burroughs B1700 497 

2 W LONERGAN P KING 
Design of the B5000 system 
Datamation 7 5 May 1961 pp 28-32 

3 S C DARDEN S B HELLER 
Streamline your software development 
Computer Decisions 2 10 October 1970 pp 29-33 

4 D E KNUTH 
An empirical study of FORTRAN programs 
Software—Practice and Experience 1 2 April 1971 
pp 105-134 

5 W T WILNER 

Microprogramming environment on the Burroughs B1700 
IEEE CompCon '72 
For reprints write to the author at Burroughs Corporation 
6300 Hollister Avenue Goleta California 93017 

6 W T WILNER 
Burroughs B1700 memory utilization 
Proc FJCC '72 this volume 

7 R S BARTON 
Ideas for computer systems organization: A personal survey 
Software Engineering 1 Academic Press New York 1970 
pp 7-16 






