
Design of the Burroughs B1700

by W. T. WILNER

Burroughs Corporation
Goleta, California

INTRODUCTION

Procrustes was the ancient Attican malefactor who
forced wayfarers to lie on an iron bed. He either
stretched or cut short each person's legs to fit the bed's
length. Finally, Procrustes was forced onto his own
bed by Theseus.

Today the story is being reenacted. Von Neumann-
derived machines are automatous malefactors who
force programmers to lie on many procrustean beds.
Memory cells and processor registers are rigid con­
tainers which contort data and instructions into un­
natural fields. As we have painfully learned, con­
temporary representations of numbers introduce
serious difficulties for numerical processing. Manipula­
tion of variable-length information is excruciating.
Another procrustean bed is machine instructions,
which provide only a small number of elementary
operations, compared to the gamut of algorithmic
procedures. Although each set is universal,, in that it
can compute any function, the scope of applications
for which each is efficient is far smaller than the scope
of applications for which each is used. Configuration
limits, too, restrict information processing tasks to
sizes which are often inadequate. Worst of all, even
when a program and its data agreeably fit a particular
machine, they are confined to that machine; few, if
any, other computers can process them.

In von Neumann's design for primordial EDVAC,1

ridigity of structure was more beneficial than detri­
mental. I t simplified expensive hardware and bought
precious speed. Since then, declining hardware costs
and advanced software techniques have shifted the
optimum blend of rigid versus variable structures
toward variability. As long ago as 1961, hardware of
Burroughs B50002 implemented limitless main memory
using variable-length segments. Operands have pro­
ceeded from single words, to bytes, to strings of four-
bit digits, as on the B3500. The demand for instruction

variability has increased as well. The semantics of the
growing number of programming languages are not
converging to a small set of primitive operations. Each
new language adds to our supply of fundamental data
structures and basic operations.

This shifting milieu has altered the premises from
which new system designs are derived. To increase
throughput on an expanding range of applications,
general-purpose computers need to be adaptable more
specifically to the tasks they try to perform. For ex­
ample, if COBOL programs make up the daily work­
load, one's computer had better acquire a "Move"
instruction whose function is similar to the semantics
of the COBOL verb MOVE. To accommodate future
applications, the variability of computer structures
must increase, in yet unknown directions. Such flexi­
bility reminds one of Proteus, the mythological god
who could change his shape to that of any creature.

DESIGN OBJECTIVE

Burroughs B1700 is a protean attempt to completely
vanquish procrustean structures, to give 100 percent
variability, or the appearance of no inherent structure.
Without inherent structure, any definable language
can be efficiently used for computing. There are no
word sizes or data formats—operands may be any
shape or size, without loss of efficiency; there are no
a priori instructions—machine operations may be any
function, in any form, without loss of efficiency; con­
figuration limits, while not totally removable, can be
made to exist only as points of "graceful degradation"
of performance; modularity may be increased, to allow
miniconfigurations and supercomputers using the same
components.

Design rationale

The B1700's premise is that the effort needed to ac­
commodate definability from instruction to instruction

489

490 Fall Joint Computer Conference, 1972

is less than the effort wasted from instruction to instruction
when one system design is used for all applications. With
definable structure, information is able to be represented
according to its own inherent structure. Manipulations
are able to be defined according to algorithms' own
inherent processes. Given such freedom, it is easy to
construct novel machine designs which are 10 to 50
times more powerful than contemporary designs, and
which can be interpreted by the B1700's variable-
micrologic processor using less than 10 to 50 times the
effort, resulting in faster running times, smaller re­
source demands, and lower computation costs.

GENERAL DESIGN

1^1

FORTRAN

J L RPG

•

ALGOL

•
NUMERICAL
PROCESSING

•

COMPILING

OPERATING
SYSTEM

Or'*

SIMULATION

Q * DATA BASE •

EMULATION ^ V ?

Figure 2—Typical B1700 S-machines (O) positioned by
goodness-of-fit to application areas (•)

Throughput measurements, reported below, show
that the tandem system of:

To accomplish definable structure, one may observe
that during the next decade, something less than in­
finite variability is required. As long as control informa­
tion and data are communicated to machines through
programming languages, the variability with which
machines must cope is limited to that which the
languages exhibit. Therefore, it is sufficient to antici­
pate a unique environment for each programming
language. In this context, absolute binary decks,
console switches, assembly languages, etc., are included
as programming language forms of communication.
Let us call all such languages "S-languages" ("S" for
"soft," or also for "system" or "source" or "specialized"
or "simulated"). Machines which execute S-language
directly are called "S-machines." The B1700's objec­
tive, consequently, is to emulate existing and future
S-machines, whether these are 360's, FORTRAN
machines, or whatever. Rather than pretend to be good
at all applications, the B1700 strives only to interpret
arbitrary S-language superbly. The burden of per­
forming well in particular applications is shifted to
specific S-machines.

COBOL R P G

^ •
\ \ \

\
\ ALGOL
* •

FORTRAN \ ^-"""
^ J r —

•
NUMERICAL
PROCESSING

OPERATING
SYSTEM

COMPILING ^ - "

,..«... DATA BASE
• SIMULATION «

EMULATION

Figure 1—Typical machine design (O) positioned by
goodness-of-fit to application areas (•)

APPLICATION PROGRAM,
interpreted by an

S-MACHINE (which is optimized for the
application area),

interpreted by the
B1700 HARDWARE (which is optimized for

interpretation)

is more efficient than a single system when more than
one application area is considered. I t is even more
efficient than conventional design for many individual
application areas, such as sorting.

To visualize the architectural advantage of imple­
menting the S-machine concept, imagine a two-di­
mensional continuum of machine designs, as in Figures
1 and 2. Designs which are optimally suited to specific
applications are represented by bullets (•) beside the
application's name. The goodness-of-fit of a particular
machine design, which is represented as a point (O)
in the continuum, to various applications is given by
its distance from the optimum for each application;
the shorter the distance, the better the fit, and the
more efficient the machine is. Figure 1 dramatizes the
disadvantage of using one design for COBOL, FOR­
TRAN, Emulation, and Operating System applications.
Figure 2 pictures the advantage of emulating/inter­
preting many S-machines, each designed for a specific
application. Note that emulation inefficiencies must be
counted once for each S-machine, since they are all
interpreted.

HARDWARE CAPABILITIES

To allow the user's problem statement to dictate
the structure of the machine and the semantics of
machine operations, new degrees of flexibility and

Design of the Burroughs B1700 491

speed are required from hardware, firmware, and
software.

Defined-field capability

All information in a B1700 system is represented by
fields, which are recursively defined to be either bit
strings or strings of fields. Specifically, bytes and words
do not exist.

• All memory is addressable to the bit.
• All field lengths are expressable to the bit.
• Memory access hardware must fetch and store

one or more bits from any location with equal
facility. That is, there must be no penalty and no
premium attached to location or length.

• All structured logic elements in the processor can
be used iteratively and fractionally under micro­
program control, thus effectively concealing their
structure from the user. Iterative use is required
for operands which contain more bits than a
functional unit can hold; fractional use is required
for smaller operands.

Defined-field design gives flexibility because informa­
tion is represented by recursively defined structures of
bits. It also gives speed because all bits in a field (and
only those bits in a field) are processed in parallel.
Additional speed is obtained from the advanced
technology of the B1700 components. Main memory
is constructed out of LSI MOS circuits with 1024-bit
chips having 180-nsec access time. The B1700 is the
first small-scale, general-purpose, commercial computer
to use MOS/LSI circuitry in its main memory.

Generalized language interpretation

No machine language is built into the hardware. There
is no processor structure or set of machine instructions
for which compilers may generate code. Each language
to be executed must first configure the B1700 processor
into whatever structure is efficient for algorithms in
that language. Defined operations on the defined
structure are then executed by changeable micro­
program. B1700 processors are specifically designed to
avoid causing significant differences in efficiency due
to differences in such "soft" machine structures and
operations.

• Microinstructions are executed at 2, 4, and 6MHz
rates using MSI CTL II logic with typical delay
of 3 nsec per gate.

• Microcode executes out of main memory. It may
be buffered through 60-nsec access bipolar circuits.
Such buffering is invisible to the microprogrammer.

• Microprocedures are reentrant and recursively
usable; each processor includes a 32-deep stack
for fast entry and exit; stack operations are auto­
matic, not microprogrammed.

• Microprograms are not limited in size, nor would
large microprograms be inefficient because of size.

• Microcode on the B1700 is compact, economizing
storage. COBOL, FORTRAN, BASIC, and RPG
language processors as well as second-generation
and third-generation emulators have been micro­
programmed each in less than 4000 16-bit micro­
instructions.

• Hardware assists wTith the concurrent execution of
many microprogrammed interpreters. I t takes
from 14 fisec to 53 usee (at 6MHz) from the com­
pletion of an S-instruction for one interpreter
until the beginning of an S-instruction for another
interpreter, depending on how much of the pro­
cessor must be reconfigured.

Memory protection, fast interrupt response, and
uniform status of microprograms allow each micro-
programmer to be unconcerned that other interpreters
may be running simultaneously.

Control over binding

While the hardware for defined-field and generalized
language interpretation allows a varying processor
image for microinstruction to microinstruction, it
does not preclude taking advantage of a static pro­
cessor image. For example, the number of bits to be
read, written, or swapped between processor and
memory can be different in consecutive microinstruc­
tions, but if an interpreted S-machine's memory ac­
cesses are of uniform length, this length can be factored
out of the interpreter, simplifying its code. In other
words, S-memory may be addressed by any convenient
scheme; bit addresses are available, but not obligatory
for the S-machine.

With these hardware advances, language-dependent
features such as operand length are unbound inside the
processor and memory buss, except during portions of
selected microinstructions. Some of these features have,
until now, been bound before manufacture, by ma­
chine designers. Language designers and users have
been able to influence their binding only indirectly, and
only on the next system to be built. On the B1700, the
delayed binding of these features, delayed down to the

492 Fall Joint Computer Conference, 1972

PROCESSORS
M-MEMORY

S-MEMORY

1-0 CHANNELS

Figure 3—B1700 Organization—Peripherals include standard
large-scale devices, data communications networks, and mass
storage units as well as minicomputer devices such as paper tape
and 96-column card equipment. Special purpose devices include

graphics, document sorters, teller machines, etc.

clock pulse level of the machine, gives language de­
signers and users a new degree of flexibility to exploit.
Hopefully, this flexibility will lead to the design of
languages which are levels closer to user problems.
Because of the B1700's interpretation speed, there
should be little execution penalty incurred by such
advanced forms of man-machine communication.

SYSTEM ORGANIZATION

address, field length, and direction] into whatever form
actually drives the memory and to converting bit strings
into whatever form is actually read and written by the
memory.) Each processor also connects to one to eight
I /O channels or to one to four microprogram memory
(M-memory) modules. (See Figure 3.) Later systems
may have several field-isolation units. With only one
processor, the port interchange may be eliminated, as
in Figure 4.

EMULATION VEHICLE

Any computer which can handle the B1700's port-
to-port message discipline may employ a B1700 for
on-line emulation. (See Figure 5.) Programs and data

M-MEMORY
PROCESSOR PORT

INTER­
CHANGE FIU S-MEMORY

I92K BITS

32K
BITS

COMMUNICATION
LINE TO HOST

COMPUTER

Figure 5—B1700 as an emulation vehicle

are sent to the B1700 for execution; I/O requests are
sent back to the host which uses its own peripherals
for them. Interpreters are loaded via the B1700's
console cassette drive. Each Burroughs emulator can
run standing-alone, or in an emulation vehicle, or in a
multiprogrammed mix.

Extreme modularity improves the B1700's ability
to adapt to an installation's requirements. There may
be one to eight processors connected to one another
and to two to 256 65,536-bit systems memory (S-mem-
ory) modules, interfaced by a field-isolation unit.
("Field-isolation" refers to converting defined-field
memory requests [i.e., least- or most-significant bit

300 CPM 96-COL . MFCU-
300 LPM I32-C0L. PRINTER-

DUAL SPINDLE'
20 MS. DISK

PROCESSOR FIU S-MEMORY

Figure 4—One of the smallest B1700's

STATE OF THE ART DESIGN

The B1700's innovative features have been realized
without diminishing the system's ability to provide
many proven throughput enhancements. All Bur­
roughs interpreters rely on the B1700's Master Control
Program (MCP) for:

• Virtual memory—user programs are not limited
in size by the amount of physical storage nor does
the programmer ever need to know how much
storage is available; compilers automatically seg­
ment programs, and the MCP automatically
manages these segments without introducing any
code into the user program.

• Multiprogramming—because common system

Design of the Burroughs B1700 493

functions such as input/output, storage manage­
ment, and peripheral assignment are removed
from user programs and handled by the MCP,
every pause in a running program becomes an
evident opportunity to run other programs.

• Multiprocessing—with S-machine state kept in
main memory and with every interpreter in main
memory, any processor in the system can resume
execution of an interrupted program.

The B1700 is the first small-scale computer to offer
so comprehensive an operating system.

In addition to the MCP capabilities, there are
notable system flexibilities, viz:

• Dynamic system configuration—processors, mem­
ory addresses, I /O channels, and peripherals are
not uniquely coded into programs, so such entities
can be brought on-line and used immediately
without any reprogramming.

• Descriptor-organized I/O—in effect, I/O has its
own S-language, interpretation of which causes
data transfer; it is possible to build this interpreta­
tion in hardware, for maximum speed, or it may
be soft for maximum flexibility, for example, to
allow easy interfacing with new devices.

• System performance monitoring—interpreters
automatically gather dynamic execution frequen­
cies of program components to establish which
parts of a program take the most time;3,4 also,
specific microinstructions can interface directly
with external monitors, allowing soft event flagging.

Interpreter switching

Note that without a native machine language, the
MCP itself must be written in higher-level language
and interpreted just like any other program. It, and all
other active jobs, are represented in memory according
to Figure 6. There are read-only code segments which
may be anywhere in memory and a write-protected
area which contains the program's S-machine state,
data segments, file buffers, and other work areas.

One of the MCP's data segments contains an inter­
preter dictionary that points to each interpreter which
is active (i.e., interpreting one of the jobs in the mix).
To reinstate a user's interpreter, the MCP extracts
from the user's S-machine state the name of the inter­
preter being used, brings it into S-memory, and calls
the interpreter interface routine which switches run
structures. Associating S-machines and interpreters
symbolically allows such things as several COBOL

OVERLAYABLE DATA
SEGMENTS

S-MACHINE STATE
(RUN STRUCTURE)

DATA DEFINITIONS

FILE DEFINITIONS

FILE BUFFERS

OVERLAYABLE PROGRAM
SEGMENTS

Figure 6—B1700 program S-memory components

interpreters active in one mix—one designed for speed,
another for code compaction, etc.—all employing the
same S-language expressly designed for COBOL, that
is, a COBOL-machine definition. The interpreter name
is looked up in the interpreter dictionary to yield a
pointer to the interpreter code in S-memory.

To switch back to the MCP interpreter, a user inter­
preter performs the identical procedure. It calls the
interpreter interface routine, which maintains a pointer
to the MCP's interpreter, and switches run structures.

Interpreter switching is independent of any execu­
tion considerations. It may be performed between any
two S-instructions, even without switching S-instruc-
tion streams. That is, an S-program may direct its
interpreter to summon another interpreter for itself.
This facility is useful for changing between tracing and
non-tracing interpreters during debugging.

Interpreter switching is also independent of M-mem-
ory. Microcode always actually addresses S-memory.
In case M is present, special hardware diverts fetches
to it. Without M, no fetches are diverted.

Interpreter management

Entries in the interpreter dictionary are added
whenever a job is initiated which requests a new
interpreter. Interpreters usually reside on disk, but may
be read in from tape, cards, cassettes, data comm, or
other media. They have the same status in the system
that object code files, source language files, data files,
compiler files, and MCP files all share: symbolically-
named, media-independent bit strings. While active, a
copy is brought from disk, to be available in main
memory for direct execution. The location may change
during interpretation due to virtual S-memory manage­
ment, so microinstructions are location-independent.

At each job initiation and termination, the MCP
rearranges the interpreters in M-memory to try to
avoid swapping. Interpreter profile statistics show that
over 99 percent of all microinstructions are executed

494 Fall Joint Computer Conference, 1972

out of M-memory, even when the demand for M-mem-
ory space is double the supply. At higher demand rates,
swapping occurs.

Ease of microprogramming

Writing microprograms for the B1700 is as simple,
and in some ways simpler, than writing FORTRAN
subroutines:

• Microprograms consist of short, imperative
English-like sentences and narrative comments.
For example, one microinstruction in the
FORTRAN interpreter is coded as follows:

Read 8 bits to T counting FA up and FL down.
• Knowledge of microinstruction forms is not bene­

ficial. Although microprogrammers on other ma­
chines need to know which bits do what, on the
B1700, there is no way to use that information.
Once the function is given in English, its represen­
tation is immaterial. The B1700 microprogrammer
has only one set of formats to worry about: those
belonging to the S-language which he is inter­
preting.

• Multiprogramming of microprograms is purely
an MCP function, carried out without the micro-
programmer's knowledge or assistance. Actually,
there is nothing one would do differently, de­
pending on whether or not other interpreters are

- running simultaneously.
• Use of M-memory is purely an MCP function;

users cannot move information in and out of M.
Other than rearranging one's interpreter ac­
cording to usage, there is nothing one should
microprogram differently depending on whether
microinstructions are executing out of M-memory
or S-memory. Maximizing use of system resources
is beyond the scope of any individual program;
responsibility lies solely with the MCP and the
machine designers.

• Since all references are coded symbolically, pro­
tection is easy to assure. Microprograms can
reference only what they can name, and they can

(a) ? COMPILE XCOBOL/INTERP WITH
MIL; DATA CARD

(b) ? COMPILE XCOBOL/INTERP WITH
MIL; MIL FILE CARD = XCOBOL/
SOURCE

Figure 7—Typical MCP control information for creating
interpreters

(a) ? EXECUTE FILE/UPDATE
(b) ? EXECUTE FILE/UPDATE; INTERP

= XCOBOL/INTERPRETER

Figure 8—Typical MCP control information for
executing programs

only name quantities belonging to themselves and
their S-machines. Moreover, artificially generated
names (e.g., negatively subscripted FORTRAN
arrays) are checked for validity by concurrent
hardware.

• Calling out interpreters is simplified by the con­
tinuation of Burroughs' "one-card-of-free-form-
English" philosophy of job control language.
Figure 7 shows the control information which
creates a new interpreter (a) from cards, and (b)
from a disk file named XCOBOL/SOURCE.

• Association of interpreters and S-language files
occurs at run-time. Figure 8 shows the control
information which executes a COBOL program
named FILE/UPDATE with (a) the usual
COBOL interpreter, and (b) another interpreter
named XCOBOL/INTERPRETER.

• There is no limit to the number of interpreters
that may be in the system (except that no more
than 244 bits are capable of being managed by
the B1700's present virtual memory property,
so a 28,000-bit average interpreter length means
there is a practical limit of 628,292,362 inter­
preters . . . many more than the number of S-lan-
guages in the world).

Additional information about B1700 microprogram­
ming may be found in Reference 5.

EVALUATION

Evaluation of novel architecture is not merely an
unsolved problem; most rational attempts produce
worse results than subjective guesses. Consider bench­
marks, which measure more system parameters than
any other technique. Any benchmark program which
runs on the B1700 develops not only an observed run­
ning time, but also a program profile which indicates
how to reduce that time (possibly by 50 percent or
more). What, then, is the true performance of the
system? The observed time, even though known in­
efficiencies are pin-pointed? Half the observed time?
Not until the benchmark has been changed.

The point of benchmarks is to have a standard
reference which allows the customer to characterize

Design of the Burroughs B1700 495

his work and obtain a cost/performance measure.
What customer would be satisfied with an inefficient
characterization? If the B1700 can show that a program
is not using the system well, what good is it as a bench­
mark? If we change the program to remove the in­
efficiencies, it is no longer standard. This is a pernicious
dilemma.

Even the simplest measure, add time, still published
as if it hasn't been a misleading and unreliable indicator
for the past 15 years, is void. What is the relative per­
formance of two machines, one of which can do an
almost infinite variety of additions and the other of
which can do only one or two? The B1700 can add two
0-24 bit binary or decimal numbers in 187 nsec; how
fast must a 16-bit binary machine be in order to have an
equivalent add time?

Assuming reasonable benchmark figures are ob­
tainable, they would say nothing about the intrinsic
value of a machine which can execute another ma­
chine's operators, for both existing and imaginary
computers; which can interpret any current and pres­
ently conceivable programming language; which can
always accept one more job into the mix; which can
add on one more peripheral and one more memory
module, to grow with the user; which can interpret
one more application-tailored S-machine; which can
tell a programmer where his program is least efficient;
which can continue operation in spite of failures in
processing, memory, and I/O modules. These charac­
teristics of the B1700, shared by few other machines—
no machine shares them all—save time and money, but
are not yet part of any performance measurement.

Despite the nullification of measures with which we
are familiar and the gargantuan challenge of measuring
the B1700's advancements of the state-of-the-art,
there are, nevertheless, some quantifiable signs that
the system gives better performance than comparably-
priced and higher-priced equipment.

Utilization of memory

Defined-field design's major benefit is that informa­
tion can be represented in natural containers and
formats. Applied to language interpretation, defined-
field architecture allows S-language definitions which
are more efficient in terms of memory utilization than
machine architectures which have word- or byte-
oriented architecture. For example, short addresses
may be encoded in short fields, and long addresses in
long fields (assuming the interpreter for the language
is programmed to decode the different sizes). Alter­
natively, address field size may be a run-time param-

Language
of Sample
FORTRAN
FORTRAN
COBOL
COBOL
RPGII

Aggregate
Size on
B1700
280KB
280KB
450KB
450KB
150KB

Aggregate
Size on
Other
560KB
450KB

1200KB
1490KB
310KB

Other
System

System/360
B3500
B3500
System/360
System/3

Percent
Improved

B1700
Utilization

50
40
60
70
50

Figure 9—Amount of program compaction on B1700

eter determined during compilation. That is, programs
with fewer than 256 variables may be encoded into an
S-language that uses eight-bit data address fields. Even
the fastest microcode that can be written to interpret
address fields is able to use a dynamic variable to
determine the size of the field to be interpreted.

Just how efficient this makes S-languages is difficult
to say because no standard exists. What criterion will
tell us how well a given computer represents programs?
What "standard" size does any particular program
have? We would like a measure that takes a program's
semantics into account, not just a statistical measure
such as entropy.

If we simply ask how much memory is devoted to
representing the object code for a set of programs, we
find the statistics of Figure 9.

In short, the B1700 appears to require less than half
the memory needed by byte-oriented systems to
represent programs. Comparisons with word-oriented
systems are even more favorable.

As to memory utilization, the advantage of the B1700
is even more apparent. Consider two systems with
32KB (bytes) of main memory, one a System/3, the
other a B1700. Suppose a 4KB RPG II program is
running on each. If we ask how much main memory
is in use, we find the comparison of Figure 10.

The utilization at any given moment may be 30
times better on the B1700 than on the System/3. At
least, with all program segments in core, it is seven
times better (4.5KB vs. 32KB). Even if we assume the
RPG interpreter is in main memory and is not shared
by other RPG jobs in the mix, the comparison varies

System Bytes in Use Percent Comment
System/3 32K 100 28K is idle without multi­

programming and virtual
memory.

B1700 IK 3 Assumes 500B run structure
and 500B of program and
data segments.

Figure 10—Hypothetical RPG memory requirements

496 Fall Joint Computer Conference, 1972

from 6:1 to 4:1, 5KB to 8KB (vs. 32KB), 84 to 75
percent better utilization. As more and more RPG
jobs become active in the mix, the effect of the inter­
preter diminishes, but then comparison becomes
meaningless, because other low-cost systems cannot
handle so large a mix. (Note that these figures change
when a different main memory size is considered, so
the comparison is more an illustration of the advantage
of the B1700's variable-length segments and virtual
memory than of its memory utilization.) More detailed
information on memory utilization may be found in
Reference 6.

Running time

Although program running time is said to involve
less annual cost at installations than the unquantifiable
parameter which we may call "ease of use", let us
mention some current observations. When the B1700
interprets an RPG II program, the average S-instruc-
tion time is about 35 microseconds, compared to
System/3's 6-microsecond average instruction time.
On a processor-limited application (specifically, calcu­
lating prime numbers), the identical RPG program
runs in 25 seconds on a B1700 and 208 seconds on a
System/3 model 10. Both systems had enough main
memory to contain the complete program; only the
memory and processor were used.

The B1700 lease rate was 75 percent greater than
the System/3's. In terms of cost, the B1700 run con­
sumed 30fi while the System/3 run took SI.60. In
terms of instruction executions, the B1700 was 50
times faster. That is, each individual interpreted RPG
instruction, on the average, contributed as much to the
final solution as 50 System/3 machine instructions. The
fact that the B1700's S-machine for RPG is 50 times
more efficient than System/3 seems to support the
B1700 philosophy, that interpretation of S-machines
which are optimized for each application yields better
performance than using a general-purpose architecture.

Using another set of benchmark programs (for
banking applications), and another B1700 which leases
for the same as the System/3 with which it was com­
pared, throughput comparisons are again noteworthy.
Despite defined-field design, soft-interpretation, soft
I/O, multiprogramming, multiprocessing, and virtual
memory, all of which supposedly trade speed for
flexibility, the B1700 executes RPG programs in 50
to 75 percent of the System/3 time, and compiles them
in 110 percent of the System/3 time, for the same
monthly rental. In applications of this type, compila­
tion is expected annually (monthly at worst) while

execution is expected daily. (Systems used for this
comparison included a multi-function card unit to
read, print, and punch 96-column cards, a 132-position
300 1pm printer, a dual spindle 4400 bpi disk cartridge
drive, and operator keyboard. The System/3 could
read cards at 500 cpm, while the B1700 could read at
300 cpm.)

CONCLUSION

Microprogramming, firmware, user-defined operators,
and special-purpose minicomputers are being touted
as effective ways to increase throughput on specific
applications while decreasing hardware costs. One
standard system tailors itself to an installation's needs.
Effective as these approaches are, they are all held
back by procrustean machine architecture. Burroughs
B1700 appears to eliminate inherent structure by its
defined-field and soft interpretation implementation,
advancements of the state-of-the-art. Without a native
machine language, the B1700 can execute every ma­
chine language well, eliminating nearly all conversion
costs. Designed for language interpretation rather than
general-purpose execution, the B1700 can run every
programming language well, reducing problem-solving
time and expense. It does not waste time or memory
overcoming its own physical characteristics; it works
directly on the problems. Furthermore, these innova­
tions are available in low-cost systems that yield better
price/performance ratios than conventional machinery.

ACKNOWLEDGMENT

Many of the design objectives were first articulated by
R. S. Barton.7 The author wishes to thank Brian
Randell, R. R. Johnson, Rod Bunker, Dean Earnest
and Harvey Bingham for their conscientious criticism
of various drafts of this article.

BIBLIOGRAPHY

1 A W BURKS H H GOLDSTINE
J VON NEUMANN
Preliminary discussion of the logical design of an electronic
computing instrument
A H TAUB (ed) Collected Works of John von Neumann Vol 5
The Macmillan Co New York 1963 pp 34-79
Also in
C G BELL A NEWELL
Computer structures: Readings and examples
McGraw-Hill Book Co 1971 pp 92-119

Design of the Burroughs B1700 497

2 W LONERGAN P KING
Design of the B5000 system
Datamation 7 5 May 1961 pp 28-32

3 S C DARDEN S B HELLER
Streamline your software development
Computer Decisions 2 10 October 1970 pp 29-33

4 D E KNUTH
An empirical study of FORTRAN programs
Software—Practice and Experience 1 2 April 1971
pp 105-134

5 W T WILNER

Microprogramming environment on the Burroughs B1700
IEEE CompCon '72
For reprints write to the author at Burroughs Corporation
6300 Hollister Avenue Goleta California 93017

6 W T WILNER
Burroughs B1700 memory utilization
Proc FJCC '72 this volume

7 R S BARTON
Ideas for computer systems organization: A personal survey
Software Engineering 1 Academic Press New York 1970
pp 7-16

