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ABSTRACT
Non-volatile memory (NVM) technologies can manipulate persis-
tent data directly in memory. Ensuring crash consistency of per-
sistent data enforces that data updates reach all the way to NVM,
which puts these write requests on the critical path. Recent liter-
ature sought to reduce this performance impact. However, prior
works have not fully accounted for all the backend memory opera-
tions (BMOs) performed at the memory controller that are necessary
to maintain persistent data in NVM. These BMOs include support
for encryption, integrity protection, compression, deduplication,
etc., necessary to provide security, endurance, and lifetime guaran-
tees. These BMOs significantly increase the NVM write latency and
exacerbate the performance degradation caused by the critical write
requests. The goal of this work is to minimize the BMO overhead
of write requests in an NVM system.

The central challenge is to figure out how to optimize these
seemingly dependent and monolithic BMOs. Our key insight is
to decompose each BMO into a series of sub-operations and then
reduce their overall latency through two mechanisms: (i) parallelize
sub-operations across BMOs and (ii) pre-execute sub-operations
off the critical path as soon as their inputs are ready. We expose a
generic software interface that can be used to issue pre-execution
requests compatible with common crash-consistency programming
models and various BMOs. Based on these ideas, we propose Janus1
– a hardware-software co-design that parallelizes and pre-executes
BMOs in an NVM system. We evaluate Janus in an NVM system
that integrates encryption, integrity verification, and deduplication
and issues pre-execution requests through the proposed software
interface, either manually or using an automated compiler pass.
Compared to a system that performs these operations serially, Janus
achieves 2.35× and 2.00× speedup using manual and automated
instrumentation, respectively.

CCS CONCEPTS
• Computer systems organization → Processors and mem-
ory architectures; •Hardware→Memory and dense storage.

1Janus ( /’dZeIn@s/) is a god in Roman mythology. He has two opposite faces: one
looks to the future and the other to the past.
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1 INTRODUCTION
Non-volatile memory (NVM) technologies, such as Intel and Mi-
cron’s 3D XPoint [36], offer data persistence similar to storage
devices (e.g., SSD) while also delivering performance close to that
of DRAM, having the potential to revolutionize persistent data
management. NVMs store persistent/recoverable data in mem-
ory and allow direct manipulation of persistent data with load
and store instructions rather than relying on software interme-
diaries (e.g., file system). An assortment of research efforts have
sought to optimize recoverable or crash-consistent software (e.g.,
databases [4, 5, 22, 32, 58, 98], file systems [19, 24, 44, 93, 101, 109],
key-value stores [5, 59, 102]) for NVMs.

Crash-consistent software for NVMs exhibit a unique property –
they place writes to memory on the critical path of program ex-
ecution. For conventional software, only reads to memory are
on the critical path, while writes may be buffered, coalesced and
reordered on the way to memory for better performance. How-
ever, for crash-consistent software, the order of writes to memory
is severely constrained to ensure data recoverability across fail-
ures [5, 42, 54, 62, 68]. Furthermore, crash-consistent software often
has to guarantee the durability of data. For example, programmers
executing a database transaction expect that data modified within
a transaction becomes persistent when the transaction completes.
Therefore, all the writes issued to persistent data within a trans-
action have to reach all the way to NVM (or more specifically, the
persistent domain) before the transaction completes. The x86 and
ARM ISA introduced new instructions [7, 33] that programmers
can use to ensure that writes reach the persistent domain to provide
durability guarantees required in crash-consistent software. How-
ever, these durability guarantees imply that writes to persistent
data fall on the critical path of program execution.

Placing recoverable data on NVMs not only moves writes onto
the critical path, it further degrades performance by increasing
the latency of write operations. The latency increases due to ad-
ditional constraints on maintaining persistent data in NVMs. For
example, confidentiality and integrity of data in NVMmust be main-
tained to provide security guarantees [13, 53, 70, 71, 90, 106, 107,
112]. Furthermore, most NVM technologies suffer from a limited
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bandwidth and wear out after a certain number of writes, necessi-
tating deduplication, compression, and/or wear-leveling of NVM
writes [20, 21, 50, 57, 95, 113]. All these encryption, integrity pro-
tection, deduplication, and compression operations, collectively
referred to as backend memory operations (BMOs) henceforth, are
performed at the memory controller and significantly increase the
NVM write latency. Moreover, since writes fall on the critical path
of the crash-consistent software, the increase in write latency sig-
nificantly degrades application performance. In this work, our goal
is to minimize the latency overhead in write operations caused by
these BMOs in NVM systems.

The key challenge here is in figuring out how to optimize these
seemingly dependent, monolithic operations. When viewed as depen-
dent, indivisible operations, common latency optimizations (e.g.,
parallelization) are precluded. For example, in a systemwith encryp-
tion and compression, performing compression before encryption
is a reasonable approach, while performing them in parallel is not,
as compression can change the address mapping of the compressed
data which will then invalidate the encryption output that used the
old address. Our key insight to optimize these BMOs is that when
they are viewed as monolithic, indivisible operations, they have to
be performed in series, however, if each BMO is viewed as a series of
sub-operations, there exist many opportunities to optimize individual
sub-operations across BMOs.

By viewing each BMO as a series of sub-operations, we can opti-
mize them for latency using two mechanisms: (i) parallelization of
sub-operations across BMOs and (ii) pre-execution of sub-operations
without waiting until the NVMwrite reaches thememory controller.
First, when BMOs are viewed as a series of sub-operations, there
are many opportunities for parallelization as some sub-operations
across BMOs do not have any dependencies among them and can
be executed in parallel. For example, even though deduplication
should happen before encrypting data, the first sub-operation of
deduplication calculates and looks up the hash of the data value
in the write request and can be executed in parallel with the first
sub-operation of NVM encryption that uses the address of the write
to generate a one-time pad (details in Section 3.1).

Second, while parallelization of the sub-operations helps speed-
ing up the BMOs, we observed that significant performance gains
are still left on the table. Our key observation is that the paral-
lelized approach does not start any of the sub-operations until the
write access reaches the memory controller, however, the inputs
necessary for the sub-operations are available much earlier in prac-
tice. For example, undo-logging [16, 24, 35, 41] is frequently used
in crash consistent NVM programs. An undo-logging transaction
creates a backup copy of the data before modifying it. Before the
modification takes place, the address and data for modification are
already known during the backup step. Therefore, the BMOs for the
update can be pre-executed as soon as the data and address become
known at the backup step. We categorize sub-operations as address-
dependent, data-dependent, or both. They can be pre-executed as
soon as the address and/or data is available. Pre-execution of these
sub-operations decouples them from the original write and moves
them off the critical path, delivering a significant performance gain.

Based on these two key ideas, we introduce Janus, a generic and
extensible framework that parallelizes and pre-executes BMOs in
NVM systems by decomposing them into smaller sub-operations.

It provides a hardware implementation for parallelization and pre-
execution, and exposes an interface to the software to communi-
cate the address and data values of write requests before the write
reaches the memory controller. However, several challenges need
to be addressed both in the design of the hardware and the software
interface of Janus. The challenges in the hardware design are as
follows: First, the pre-executed results of the various sub-operations
for the individual writes should not change the processor or mem-
ory state until the corresponding write operation happens. Second,
the pre-execution should not be dependent on any stale processor
or memory state to maintain correctness of the results. To address
these challenges, we maintain an intermediate result buffer (IRB) in
the memory controller to store the pre-executed results and isolate
them from any other processor or memory state. We also track
the address and data of the write operations in IRB to detect and
invalidate any stale pre-execution results.

The challenges in the software interface design are the follow-
ing: First, with NVMs still being in a nascent stage of adoption, the
software interface must be generic and extensible to systems with
different BMOs. We only expose the address and the input data in
the interface, decoupling the interface from the BMOs implemented
in the system. Second, the software interface needs to be easy-to-
use and applicable to different NVM-based programs. We address
this issue by providing a variety of functions that are suitable for
different NVM programming models. We show that the frequently
used crash-consistent software mechanisms, such as undo-logging,
are particularly amenable to leveraging Janus’s pre-execution in-
terface and programmers can manually insert these pre-execution
requests to gain significant performance improvement. However,
we also provide a compiler pass to automatically instrument the
source code to alleviate programmer’s burden. We describe our
design and our proposed solutions to these challenges in Section 4.

The contributions of this work are as follows:
• We show that it is possible to optimize the BMOs in NVM sys-
tems by decomposing these seemingly monolithic, dependent
operations into a series of sub-operations.

• We propose a generic and extensible solution to optimize the
sub-operations by categorizing their dependencies. First, we
show that independent sub-operations across BMOs can be
executed in parallel. Second, we show that the sub-operations
can be pre-executed as soon as their inputs are available, which
moves the latency of BMOs off the critical path of the writes.

• We propose Janus, the first system that parallelizes and pre-
executes BMOs before the actual write takes place. Janus pro-
vides a generic interface that decouples different BMOs at the
hardware from the software.

• We exhibit the effectiveness of Janus by evaluating an NVM sys-
tem that integrates encryption, integrity verification, and dedu-
plication as the BMOs in the hardware. Our experimental results
show that Janus achieves on average a 2.35× speedup while
executing a set of applications where pre-execution requests
are inserted manually over a baseline system that performs the
BMOs serially. In comparison, instrumenting programs by our
automated compiler pass achieves on average a 2.00× speedup
over the serialized baseline.
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Type Backend Operation Description Extra Latency on Writes

Security

Encryption [13, 53, 70, 71,
77, 85, 90, 105–107, 112] Ensures data confidentiality. Counter-mode encryption is typically used in NVM. 40 ns [53, 85]

Integrity
Verification [27, 71, 76, 84–
86, 90, 91, 100, 106]

Ensures the integrity of data preventing unauthorized modification. Typically, a
Merkle Tree (a hash tree) is used to verify memory integrity.

360 ns (assume 9-layer Merkle
Tree) [85]

ORAM [26, 73–
75, 81, 83, 96, 97] Hides the memory access pattern by changing the location of data after every access. ∼ 1000 ns [75]

Bandwidth

Deduplication [21, 50, 57,
95, 113] Reduce write accesses that have duplicated data to reduce the write bandwidth. 91-321 ns [113]

Compression [1–
3, 11, 12, 20, 56, 66, 67, 82] Reduce the size of memory accesses to save the bandwidth. 5-30 ns [66, 67]

Endurance
Error Correction
[8, 80, 99] Corrects memory error. Typical solutions include error-correcting code and pointers. 0.4-3 ns [63]

Wear-leveling [49, 55, 70] Spreads out writes requests to even out memory cell wear-out. ∼ 1 ns [70]
Table 1: A description of the existing backend memory operations in NVM systems.

2 BACKGROUND AND MOTIVATION
The new non-volatile memories (NVMs) [36, 43, 47, 103] offer persis-
tency similar to storage devices, and performance close to DRAMs.
The persistent data in NVM device can be accessed through a byte-
addressable load/store interface instead of a traditional file interface.

2.1 NVM Crash Consistency
Programs can directly manage persistent data in NVM without us-
ing the conventional file system indirection for better performance.
The persistent data maintained by the program is expected to be
recoverable in the event of a failure. We refer to this requirement as
the crash consistency guarantee. However, it is not trivial to ensure
crash consistency. Due to performance optimization techniques,
such as caching, buffering and reordering in modern processors, the
order a write reaches NVM can be different from the program order.
The program cannot recover to a consistent state if it fails to en-
force a correct order. The x86 ISA has provided low-level primitives
(e.g., clwb, sfence [33]) to writeback data to NVM and enforce the
ordering between writes.

There have been many other works that provide crash consis-
tency guarantees for NVM systems, including software-based solu-
tions such as redo/undo logging [9, 10, 15, 30, 35, 37, 41, 94, 104],
checkpointing [25, 39] and shadow paging [19, 65], and hardware
mechanisms [38, 42, 51, 62, 72, 110]. The aforementioned methods
diverge, while the key concept is similar, that is to enforce data
writeback to NVM (e.g., using a sequence of clwb; sfence) before
carrying out the next step. Let’s take the commonly used undo
logging method as an example. An undo log transaction typically
has three steps: (1) creating a backup of the old data, (2) updating
in-place and (3) committing the transaction [30, 35, 41, 62]. The
backup (step 1) needs to be written back to NVM before the actual
in-place update (step 2) happens; the in-place update needs to be
written back before committing the transaction (step 3). Enforcing
data writeback and ordering provides crash consistency guarantee,
but it leaves the write latency on the critical path.

2.2 Memory and Storage Support
Using NVM as both main-memory and a storage device at the
same time requires us to enforce the properties necessary for both
transient and persistent (recoverable) data at the same time. First,

due to its non-volatility, data remains on NVM even after being
powered off. Therefore, attackers with physical access to the NVM
device can potentially access data on NVM. To ensure the confi-
dentiality of data, recent works encrypt data on NVM [13, 53, 70,
71, 90, 106, 107, 112]. Attackers can also tamper with the data on
NVM. To ensure the integrity of data, recent works also use in-
tegrity verification techniques [71, 90, 106]. Second, NVM has a
limited lifetime [36, 47]. A practical NVM system needs to over-
come the limitation in lifetime. Prior works have proposed wear-
leveling [49, 55, 70] and error correction [8, 80, 99] techniques to
mitigate the lifetime issue. Third, NVM has a limited write band-
width compared to that of read [69, 89, 108]. A common way of
overcoming the write bandwidth is to reduce the write traffic using
compression [1–3, 11, 12, 14, 20, 29, 56, 66, 67, 82] or deduplica-
tion [21, 50, 57, 95, 113] techniques. We summarize the existing
flavors of memory and storage support for NVM in Table 1. These
memory and storage supports happen in the background, at the
memory controller and are transparent to the processor, therefore,
we collectively refer to them as backend memory operations (BMOs).
In conventional programs, reads are on the critical path of execu-
tion, therefore, these BMOs optimize for read latency. For example,
counter-mode encryption [23] allows the decryption to happen
when the data is being read from memory; the integrity verifica-
tion [27, 71, 76, 84–86, 90, 100, 106] uses caching to reduce the
number of verification steps. There have been works that integrate
one or multiple of these backend operations, but the integration is
BMO-specific [90, 106, 113]. However, systematically integrating
the BMOs in NVM systems and optimizing them for latency has
been largely unstudied.

2.3 Challenge: Performance Overhead
While the BMOs make NVMs more secure and robust, they add
extra latency to writes, as they all require certain computation
or cache lookup before actually performing the write access. To
maintain the correctness, BMOs should follow certain dependencies
among themselves. For example, a system with encryption, dedu-
plication and integrity verification, these BMOs should happen in
the order of deduplication, encryption, and integrity information
update during a write access. Deduplication first tells whether the
write is necessary or not. Then, the encryption engine encrypts the
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data if the write is not a duplicate. Finally, the integrity mechanism
(e.g., Bonsai Merkle Tree [76]) updates the message authentication
code (MAC) and hash tree to protect the encrypted data and coun-
ters. The ordering constraints serialize the latency from different
BMOs, which is in the order of hundred nanoseconds.

Figure 1 demonstrates the latency breakdown of a write access.
We assume a system with the Intel Asynchronous DRAM Refresh
(ADR) technique [60] that ensures the write queues are in the per-
sistence domain. Therefore, writes to NVM become persistent (or
non-volatile) as soon as they are placed in the write queue in the
memory controller, as the ADR technique can flush the write queue
to NVM in case of a crash. Without any BMOs (Figure 1a), only the
writeback from the cache hierarchy to the memory controller is
exposed on the critical path, which typically takes around 15 ns in
modern processors (e.g., Intel i7 processor [48]). The subsequent op-
erations in the memory controller and the actual NVM device write
operations do not contribute to the critical write latency. However,
with BMOs (Figure 1b), both the writeback and the BMO latency are
exposed on the critical path, as until BMOs are completed, the write
cannot be placed in the write queue and hence cannot be considered
persistent. As these BMOs add extra hundreds of nanoseconds of
latency, the critical latency increases by more than 10 times.

Volatile Non-volatileAccess NVM

Access NVMWith BMOs

Without BMOs

Extra Latency

(a)

(b)

Cache 
Writeback

Cache 
Writeback

Memory 
Controller

Backend Memory Operations
Memory 

Controller

Critical Path

Figure 1: Write latency (a) without and (b) with BMOs.

3 OVERVIEW
In this section, we describe our key ideas in optimizing the BMOs
and providing the crash consistency guarantee.

3.1 Key Ideas
The BMOs need to execute in series if we regard them as mono-
lithic, indivisible operations. However, we observe that BMOs can
be further decomposed into smaller sub-operations. We first demon-
strate decomposing two commonly used BMOs in NVM systems:
counter-mode encryption [53, 71, 77, 85, 105–107, 112] and dedupli-
cation [21, 50, 57, 95, 113]. Next, we take a two-pronged approach to
minimizing their latency: (1) parallelize BMOs as much as possible,
and (2) pre-execute BMOs to move their latency off the critical path.

Decomposing BMOs. The counter-mode encryption [23] is an
efficient encryption scheme that indirectly encrypts data blocks
using unique counters. Its hardware implementation typically en-
crypts a unique counter together with the address of the data block
into a bitstream called one-time padding (OTP), and then it XORs
this bitstream with the data block to complete the encryption. To
accelerate the read access, the hardware mechanism buffers these
counters in an on-chip counter cache so that decryption can begin
without waiting for data to be fetched from NVM, reducing the read
latency. During a write access, it performs three sub-operations :
(E1) generate a new counter, (E2) generate the one-time padding:
OTP = En(counter|address), and (E3) encrypt data with an XOR
operation: EncData = OTP ⊕ Data. As encryption begins only when

Figure 2: Optimize encryption and deduplication by: (a)
parallelizing sub-operations, and (b) categorizing

sub-operations by external dependency for pre-execution.

both the data and address of the write access reaches the encryption
engine, the whole latency is added to the write access.

On the other hand, the deduplicationmechanism detects whether
writes contain a value that already exists in memory and cancels
the write if a duplicated value is found. The hardware mechanism
maintains a deduplication table that stores the hashes (fingerprints)
of existing data blocks to detect duplicates, and an address mapping
table to redirect the writes to the existing copy of data in memory.
During a write access, a deduplication operation consists of four
sub-operations: (D1) hash data, (D2) lookup the hash value in the
deduplication table, (D3) update the address mapping table, and
(D4) encrypt the new address mapping table entries and writeback
to NVM. To integrate encryption and deduplication, We assume a
scheme similar to DeWrite, where the counter and deduplication
address mapping co-locate in the same metadata entry [113]. Next,
we describe the parallelization and pre-execution of the decomposed
BMOs.

Parallelization. We observe that there are two types of de-
pendencies between the previously decomposed sub-operations:
intra-operation dependency and inter-operation dependency. Intra-
operation dependency describes the dependency between sub-
operations within one BMO, while, inter-operation dependency
describes the dependency between sub-operations between dif-
ferent BMOs. We demonstrate the dependencies as a dependency
graph in Figure 2a. Two sets of sub-operations can happen in par-
allel as long as there is no incoming inter- or intra-operation de-
pendency path from one set to another. Formally, let a node of
sub-operation be Op, a set of Op be S , and a path from Op1 to Op2
be Op1 { Op2, S1 and S2 can execute in parallel, i.e., S1 ∥ S2, if and
only if ∀Op1 ∈ S1 and ∀Op2 ∈ S2,�Op1 { Op2 ∧ �Op2 { Op1.

Next, we apply our theory to the example in Figure 2. We mark
the intra- and inter-operation dependencies with black and green
edges, respectively. The intra-operation dependencies in each BMOs
follows the order of steps. And, there are two inter-operation de-
pendencies: D4 depends on E1 as the address mapping co-locates
with counter, and E3 depends on D2 as the memory controller can-
cels duplicated writes. According to these dependencies, we can
circle out the sub-operations that are independent in each back-
end operations (blue boxes): SE1−2 and SD1−3 are independent, and
SE3 and SD4 are independent. Therefore, they can be executed in
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parallel. By parallelizing groups of sub-operations, we reduce the
serialization overhead. Figure 3a shows the execution timeline of
an undo-logging transaction that consists of three steps (each with
NVM writes): backup, update, and commit. In the serialized ap-
proach, deduplication and encryption operations are serialized for
each step of the transaction. However, by parallelizing indepen-
dent sub-operations, the execution latency of the three steps in an
undo-logging transaction can be reduced, as shown in Figure 3b.

Figure 3: Timeline of an undo log with (a) serialized, (b)
parallelized and (c) pre-executed BMOs.

Pre-execution. So far, we have exploited the parallelism be-
tween BMOs by decomposing them into sub-operations. We further
observe that the BMOs process two types of external inputs: the
data and address of a write. These external inputs are different
from any intermediate inputs generated and used between different
sub-operations of the same BMO. Accordingly, apart from the inter-
and intra-operation dependencies introduced earlier, external in-
puts introduce a new dependency, external dependency (marked as
yellow arrow), that takes into account the external input of each
sub-operation. A sub-operation is dependent on an external input if
there exists an external dependency edge from the input. We merge
nodes without any external dependency (marked in white) with
their preceding nodes with external dependency (marked in gray).
Figure 2b shows the simplified graph after the merge operation.
A set of merged sub-operations is externally dependent on an ex-
ternal input if there exists an external dependency edge from the
input or a path that indirectly connects the input to one/some of
its sub-operation node (via inter- and intra-operation dependency
edges). Formally, let the set of merged sub-operation nodes be S ,
an input (address or data of a write) be In, then S has an external
dependency to In if and only if ∃Op ∈ S, In { Op.

Based on the type of external input, we categorize sub-operations
into three types: address-dependent, data-dependent, and address-
and data-dependent. In the example of Figure 2b, E1-E2 are address-
dependent, D1-D2 are data-dependent, and E3 and D3-D4 are both
address- and data-dependent. The external dependency implies that
as soon as the external inputs are available, the BMOs can start
execution even before the actual write access reaches the memory
controller. Next, we use a code example to explain how we can
exploit the opportunity of pre-executing BMOs.

Example. Figure 4 shows an example of updating an array using
an undo-logging transaction that follows three steps: backup the old
data, perform the in-place update, and commit the update. In this
example, the address and data for the in-place update are known
before the backup step (at line 1). Similarly, the address and data
for the commit (validate the in-place update) are known before the
commit step (at line 5). Therefore, the pre-execution of the BMOs
for the in-place update and the commit steps can be overlapped
with the previous steps of the undo-logging transactions, moving

them off the critical path. Figure 3c shows the timeline of this
pre-execution. By pre-executing the BMOs that have already been
parallelized, we can gain a significant speedup.

void arrayUpdate(int index, item_t new_val) {
  // backup old value
  backup(index)
  // in-place update
  update(index, new_val);
  // commit undo-logging transaction
  commit(index);
}

1
2
3
4
5
6
7
8

Figure 4: An example of pre-executing BMOs in an
undo-logging transaction.

3.2 Requirements
Pre-executing the BMOs before the actual write happens provides
a significant benefit. However, the pre-execution should not af-
fect the correctness of the normal execution. We summarize the
requirements on the hardware support for pre-execution as follows:
1. Does not affect processor state. The pre-execution should not
affect the processor or memory state, i.e., it should not change the
data or metadata in memory, cache or register files.
2. Invalidates stale pre-execution results. The pre-execution
should not be dependent on a stale processor or memory state. i.e.,
if the processor or memory state used in the pre-execution has been
modified before the actual write access, the pre-execution result
becomes invalid.

On the other hand, we need to provide an interface to let the
software leverage the hardware support. We summarize the require-
ments on the software interface as follows:
3. Extensible interface. The software interface needs to be
generic and extensible to systems with different BMOs, i.e., pro-
grams developed with the same interface should be compatible
even though the BMOs change in the hardware.
4. Programmable. The software interface needs to be easy-to-use
for different programming models that ensure crash consistency
(e.g., undo /redo/shadow logging), and should abstract away the
memory layout.

Section 4.3 presents our solution to meet the two requirements
for the hardware support, and Section 4.4 presents our software
support that meets the two requirements on the software interface.

4 JANUS
In this section, we first describe the high-level design of our pro-
posed system and then provide the details of the hardware mecha-
nism (Section 4.3) and software support ((Section 4.4)).

SW      HW

❸
❷

❶ ❹
❻

❺

Figure 5: High-level of Janus (HW changes are shaded).

4.1 High-level of Janus
The goal of this work is to reduce the overhead of BMOs in write
accesses using a software-hardware co-design. Figure 5 shows an
overview of Janus. On the software side, programmers annotate the
NVM programs using our software interface (step ➊). To further
reduce the programming effort, we provide a compiler pass that
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automatically instruments the program.We present the use of Janus
interface in Section 4.4 and the design of our compiler pass in Sec-
tion 4.5. On the hardware side, the processor issues pre-execution
requests to the memory controller during the execution of the anno-
tated programs (step ➋). The processing of pre-execution requests
consists of two parts. First, the optimized BMOs logic of Janus exe-
cutes the sub-operations of the requests in parallel (step ➌). Then, it
stores the temporal results in the intermediate result buffer (step ➍).
When the actual writes arrive at the memory controller, they do not
need to go through the BMOs, instead, they use the pre-executed
results from the intermediate result buffer (step ➎) and complete
the access to NVM (step ➏).

In the rest of this section, we first introduce the integration of
three common BMOs in NVM systems. Then, we present Janus
hardware details in Section 4.3, and the software interface in Sec-
tion 4.4. Finally, we discuss the solutions to potential exceptions
when integrating Janus in real systems in Section 4.6.

4.2 Backend Memory Operations
BMOs are integrated into memory and storage systems for different
purposes, such as ensuring confidentiality and integrity, improving
the lifespan, mitigating the write bandwidth limitation, etc. If we
treat each of them as an entity, it seems difficult to execute them in
parallel as the output of one operation flows into another. However,
by breaking them down into smaller steps, we can leverage the
underlying parallelism. There has been a myriad of BMOs, as shown
in Table 1. To better demonstrate our idea, we take the two BMOs
introduced in Section 3: encryption and deduplication, together
with another popular BMO, integrity verification. Figure 6 presents
the break down of the three BMOs.

Figure 6: The dependency graph of backend operations.

As we already described the operations in encryption and dedu-
plication in Section 3, here we introduce the steps in an integrity
verification technique. The Bonsai Merkle Tree [76] is an integrity
verification scheme designed for memory encrypted under counter-
mode. The leaf nodes of the tree are counters and the intermediate
nodes are hashes of their child nodes. Therefore, the root hash is
essentially the hash of all leaf nodes. Keeping the root hash in a
secured non-volatile register ensures the integrity of the entire

memory [76, 106]. Each data block is protected by a message au-
thentication code (MAC) that consists of the encrypted data and its
counter, i.e., MAC = Hash(EncData, Counter). During a read ac-
cesses, the integrity verification mechanism compares the root hash
computed from the counter read from memory with the existing
root to verify the integrity. During a write access, this mechanism
updates the integrity information in the following steps (Figure 6b):
First, the integrity verificationmechanism computes the hash of leaf
nodes (step I1), and then it keeps computing higher-level interme-
diate nodes all the way to the root (step I2-I3). The intra-operation
dependencies between these steps are indicated by black arrows.
In this mechanism, the write access includes this long latency of
hashing. For example, if we assume each intermediate node is the
hash of eight lower-level nodes, then the height of the Merkle Tree
is 9 in a system with only 4GB NVM, resulting in a 360 ns latency
for each write.

The integration of integrity verificationwith the other two BMOs
introduces an extra step: the encryption operation needs to compute
the MAC for Integrity verification before writing data back to NVM
(step E4). Similar to the prior work, DeWrite [113], the Merkle Tree
in our mechanism is built on the co-located address mapping and
counter so that the metadata storage can be minimized. Therefore,
the integration also introduces new inter-operation dependencies
(green edges). The integrity verification support needs to take the
latest counters or the remapping address (if duplicate) to update the
Merkle Tree. Thus, step I1 depends on E1 and D2 (edge E1→I1 and
D2→I1). To mitigate the extra latency on writes, we first apply the
rule for parallelization (Section 3.1). Based on the intra-operation
dependency edges, three sets of sub-operations E3-E4, I1-I3 and
D3-D4 can execute in parallel as there is no edge between any
pair of these sub-operation sets. Then, we apply the rule for pre-
execution. We mark the nodes with external-dependency in gray.
After merging the nodes without external-dependency (marked
in white) to the ones with external-dependency, we find out that
E1-E2 are address-dependent, D1-D2 are data-dependent, and the
rest are both address- and data-dependent. These regions can be
pre-executed once the dependencies are resolved. Next, we describe
the hardware support that enables pre-execution.

4.3 Hardware Support
In this section, we describe the hardware support that meets the
two requirements that we outlined in Section 3.2.

4.3.1 Hardware Support for Pre-execution.

Does not affect processor state. The pre-execution of BMOs
should not change the processor or memory state. Therefore, Janus
stores the temporary results in an Intermediate Result Buffer (IRB).
Figure 7c shows the fields in each IRB entry (and their sizes). IRB
needs to support two basic functionalities: identify different pre-
execution requests, and store and provide the pre-executed results.
First, Janus uses a PRE_ID for each request in order to make sure
the pre-execution requests are unique. Considering that different
threads can be executing the same program and can have the
same PRE_ID, each entry contains another field, ThreadID that
distinguishes the requests from different threads. As recent works
have proposed deferred commit [28, 41], a transaction may not
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Figure 7: Detailed hardware mechanism of Janus.

have all the updates written back to NVM before the transac-
tion completes, causing more than one transactions with the same
PRE_ID to co-exist. Each IRB entry further contains another field,
TransactionID, that distinguishes pre-execution requests across
different transactions. These three fields (PRE_ID, Thread_ID and
Transaction_ID) are assigned by the software interface which
we will introduce in Section 4.4. Using these fields, together with
the physical address of the write (ProcAddr), Janus can uniquely
identify pre-execution requests. Second, Janus needs to buffer pre-
execution results for the actual write access when it arrives at the
memory controller. The IntermediateResults field stores the in-
termediate results at cache line granularity. Considering the actual
write access can arrive before the BMOs completes, a complete bit
indicates whether all BMOs have completed or not.

Invalidates stale pre-execution results. The pre-execution
becomes invalid if the memory or processor state it depends on has
changed. Therefore, Janus invalidates the intermediate results from
pre-execution by detecting any changes to the input memory or
processor state. We summarize the potential cause of invalidation
as the following two: (1) The input dependent data can be modified
after the program issues the pre-execution request (e.g., due to
cache line sharing, eviction or buggy program that modifies the
input data for pre-execution). In order to detect any stale value
used in pre-execution, Janus keeps a copy of the data value that has
been used for pre-execution in the Data field of IRB entry. When
the write access arrives, IRB compares the data from the write
access with this copy. If they are the same, the write access can
safely use the intermediate results and complete the write to NVM.
Otherwise, data-dependent sub-operations have to be reprocessed
using its new data. (2) Apart from the actual writes, pre-execution
results buffered in the IRB may also depend on metadata structures
employed by the BMOs. If these metadata structures are modified
in such a way that they invalidate any prior pre-executed sub-
operations, the pre-executed results must also be invalidated in
the IRB. For example, pre-executing a deduplication sub-operation
might identify that the current write (say to location B) is a duplicate
of some prior write (say to location A). Therefore, the IRB stores
the pre-execution result that the write to B is a duplicate of the
value at A. However, before the pre-execution result is consumed,
if an intervening write to location A changes the value of location
A, then the pre-execution result in the IRB will be invalidated. In
Janus, we extend BMOs to ensure that metadata changes trigger an
IRB lookup and invalidates any stale pre-execution results.

4.3.2 Hardware Integration. Figure 7a shows the detailed hardware
mechanism. First, the processor sends the requests to a Pre-execution
Request Queue that buffers the requests (step ➊). It supports two
types of requests: (1) requests that start immediately, and (2) re-
quests that are buffered in the queue and wait until the hardware
receives an explicit start command. In the latter case, the requests
with coalescing addresses will be merged within the queue for bet-
ter efficiency (details in Section 4.4). Second, a decoder decodes
the request from the Pre-execution Request Queue into cache-line-
sized operations and sends them to a Pre-execution Operation Queue
(step ➋). Therefore, the pre-execution operations after the decoder
stage all have one-cache-line granularity. Note that systems that
perform BMOs at larger granularities (e.g., 256B block for dedupli-
cation) can also be supported by modifying the decoder. Figure 7b
shows the fields in both queue entries. Third, the Pre-execution
Operation Queue sends the decoded operations to the Optimized
BMO Processing Logic (step ➌), and at the same time, it creates a
new IRB entry. Figure 7d shows the execution flow of the Opti-
mized BMO Logic (correspond to the design in Figure 6), where
independent sub-operations can be executed in parallel and can be
pre-executed if their external dependency is resolved. Finally, the
Optimized Backend Operation Logic writes the pre-execution results
to the previously created Intermediate Result Buffer entry (step ➍),
which keeps track of the pre-execution at a cache line granularity,
i.e., each entry in the buffer keeps the pre-execution result of one
cache line. When the actual write access arrives, it can lookup the
intermediate results from the IRB using its ProcAddr (step ➎). Note
that the IRB, the Pre-execution Request Queue, and the Pre-execution
Operation Queue have a fixed number of entries. If the buffer/queue
is full, it drops newer requests. We discuss the software interface
for our hardware mechanism in Section 4.4, and discuss the system
integration and exception handling in Section 4.6. We present the
hardware overhead in Section 5.2.7.

Apart from the performance overhead, maintaining crash con-
sistency is another issue as the BMOs have their own metadata.
The unreconstructable metadata structures, the ones that cannot be
rebuild using the data in NVM, need to be kept up to date in NVM
when data gets updated. In the BMOs we have considered, there are
three structures that cannot be reconstructed: counters for encryp-
tion, the deduplication address remapping table, and the root of the
Merkle Tree. A recent work [53] has proposed counter-atomicity
that atomically writes back both the encrypted data and its counter
to NVM in an encrypted NVM system. In this work, we extend this
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Type Function Description

Common PRE_INIT(pre_obj* obj)
Initialize an pre_objwith a unique PRE_ID, the current
ThreadID and TransactionID.

Immediate
Execution

PRE_BOTH(pre_obj* obj, void* addr, void* data, int size) Pre-execute all sub-operations.
PRE_ADDR(pre_obj* obj, void* addr, int size) Pre-execute address-dependent sub-operations.
PRE_DATA(pre_obj* obj, void* data, int size) Pre-execute data-dependent sub-operations.
PRE_BOTH_VAL(pre_obj* obj, void* addr, int data_val) Use an integer as the data. Pre-execute all sub-operations.

Deferred
Execution

PRE_BOTH_BUF(pre_obj* obj, void* addr, void* data, int size) Buffer pre-execution for all sub-operations.
PRE_ADDR_BUF(pre_obj* obj, void* addr, int size) Buffer pre-execution for address-dependent sub-operations.
PRE_DATA_BUF(pre_obj* obj, void* data, int size) Buffer pre-execution for data-dependent sub-operations.
PRE_START_BUF(pre_obj* obj) Start executing buffered pre-execution requests for pre_obj.

Table 2: Software interface of Janus for pre-execution.

atomicity to a more general metadata atomicity that writes back all
unreconstructable metadata to NVM atomically, ensuring that the
processor can still read correct data during recovery. Note that the
root of the Merkle Tree is typically protected by a non-volatile regis-
ter in the secured processor [76, 106]. Therefore, it does not require
any metadata atomicity. In order to reduce the atomicity overhead,
Janus also follows the selective method on atomicity proposed by
prior work [53], where only the writes that can immediately affect
the crash consistency status (e.g., write that commits a transaction)
requires metadata atomicity.

4.4 Software Support for Optimization
Extensible. the BMOs in NVMs can vary in different systems. A

program developed with a software interface should be compatible
with systems using different BMOs, without a need for additional
software modifications. Therefore, Janus only exposes the two fun-
damental external dependencies to the software: the address and
data of the write access. Table 2 shows the software interface for pre-
executing BMOs. Next, we explain how Janus provides an interface
that can adapt to different NVM programming models.

Programmable. Janus provides a structure, pre_obj, that has
its unique PRE_ID and keeps track of the current ThreadID and
TransactionID. These three elements enables the hardware to dis-
tinguish different pre-execution requests. To perform pre-execution
on a object stored in NVM, the programmer first needs to create a
pre_obj and initialize it using PRE_INIT. Then, Janus provides two
types of interfaces that enables programmers pre-execute the data
structure that have either its address or data value available before
the actual write to NVM. Functions are identified by the field Func
in the Pre-execution Request Queue entry (Figure 7b).

The first type of function is for immediate execution. Janus pro-
vides three functions: PRE_BOTH, PRE_ADDR and PRE_DATA. Pro-
grammers can use them according to the availability of the de-
pendent address or data. The input addresses are all virtual ad-
dresses from the program, andwill be translated to processor-visible
physical address (ProcAddr). Upon calling these functions, the pre-
execution requests will be sent to the backend operation right away.
Janus provides a special function, PRE_VAL, that takes a 64-bit inte-
ger value instead of the pointer to data. This function is designed
to pre-execute transaction commit operations that typically set a
valid bit or switches a pointer.

The second type is for deferred execution. Janus allows programs
to buffer pre-execution requests using a class of functions that

ends with the BUF suffix. These buffered requests can be executed
together with the PRE_START_BUF function. Deferred execution
provides more flexibility in scheduling the requests if the data
structure to be pre-executed does not operate on a huge chunk of
data, rathermanipulates several elements in the structure separately.
By buffering the requests for each element, the pre-execution buffer
can merge the inputs before execution, leading to better efficiency.

Guideline for using the software interface. The hardware
of Janus prevents misuse of the interface from causing any correct-
ness issue. However, improperly placed Janus functions can lead to
slowdown due to unused or discarded pre-execution. To effectively
use the software interface, programmers need to be aware the fol-
lowing issues: (1) Between the pre-execution function call and the
actual write operation, there should not be any update to the same
location, or to the conflicting cache line. Although the underlying
hardware mechanism can detect and fix such violations, the misuse
can lead to a slowdown. (2) When using PRE_DATA alone, the data
block must be cache-line-aligned (e.g., using alignment malloc).
As the hardware tracks the pre_obj at cache line granularity, it is
impossible to determine whether the data block shares its cache
line with other data blocks without the address. Therefore, it is
better to call pre-execution functions with PRE_ADDR or wait until
both address and data become known if the programmer is not
certain about the alignment. (3) As it takes a significant amount
of time to execute the backend operations, it is better to place the
pre-execution function calls sufficiently far away from the actual
write. A simple and reasonable way to insert the pre-execution
function call for a write request is to find the last update at that
location and to insert that function right after that update.

Examples. Figure 8a shows an example using the immediate-
execution interface. First, we observe that the value used in the
update operation (val) is available right after the function call
(assuming nodes are cache-line-aligned). Therefore, a PRE_DATA
function can be placed at line 4 to pre-execute the data-dependent
BMOs. Then, we observe that the program uses an undo log to back
up the node before modification (line 11). Therefore, it is possible
to issue a pre-execution request for the address-dependent BMOs
by inserting a PRE_ADDR function at line 8. Using these two pre-
execution requests, we move the latency from BMOs off the critical
path of the actual write (line 11). Figure 8b shows an example of
using the deferred-execution interface. The address and data for
updates to field1 and field2 are already available after line 4.
However, the two separate updates can be sharing a cache line
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(assuming the fields are not cache-line-aligned). The safe way to
avoid invalidation of requests is to use the PRE_BUF function to
buffer the pre-execution requests for each field and let them coalesce
in the Pre-execution Request Queue. Then, placing a PRE_START_BUF
function afterward will trigger the execution (line 10).

void updateTree(int key, item_t val) {
 pre_t pre_obj;
 // assume val is cache-line-aligned
 PRE_DATA(&pre_obj, &val, 

sizeof(item_t));
 // find tree node with key
 node* location = find(key);
 PRE_ADDR(&pre_obj, location, 

sizeof(item_t));
 // add old val to undo log
 undo_log(location);
 // update val
 location->val = val;
 // writeback updates
 clwb(&location->val, sizeof(item_t));
 sfence();
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

void updateTable(int id, item_t val1, 
   item_t val2) {

 // lookup entry location
 entry* location = tableLookup(id);
 pre_t pre_obj;
 PRE_BOTH_BUF(&pre_obj, &location->field1, 

&val1, sizeof(item_t));
 PRE_BOTH_BUF(&pre_obj, &location->field2, 

&val2, sizeof(item_t));
 PRE_START_BUF(&pre_obj);
 // backup old entry
 undo_log(location);
 // update fields
 location->field1 = val1;
 location->field2 = val2;
 // writeback updates
 clwb(location, sizeof(entry));
 sfence();
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(a) (b)

Figure 8: Two NVM transactions optimized by Janus.

4.5 Compiler Support
The software interface of Janus is easy-to-use, but it still requires
a good understanding of the program. To alleviate programmer’s
effort, we provide a compiler pass that automatically instruments
the program with Janus functions.

4.5.1 Compiler Design. We develop our compiler pass on LLVM
7.0.0 [46]. The compiler pass analyzes and instruments the interme-
diate representation (IR) of the source code in the following steps.
(1) The first step is to locate the blocking writeback operations
(e.g., a clwb() followed by an sfence()), as these operations are
responsible for moving the write latency on the critical path. (2)
The next step is to perform a dependency analysis on the writeback
objects. Our compiler pass takes two different analysis approaches
for the data and the address of these objects. For address, it tracks
dependencies of the address generation IR instructions of the object;
for data, it tracks the modification to the memory address of the
object. (3) The final step is to inject Janus functions (PRE_DATA and
PRE_ADDR). The compiler pass injects them as far away from the ac-
tual writeback as possible in order to provide a better performance
benefit. The injection approach is different for address and data. For
address, it hoists the previously tracked dependent IR instructions
for address generation to the beginning of the function, and places
a PRE_ADDR function after the address generation is complete; for
data, it places a PRE_DATA function between the last two updates on
the object. It inserts the function as close as possible to the pre-last
update using the data value assigned by the last update. Note that
for both data and address, if the writeback operation depends on a
conditional statement (e.g., if/else), our pass conservatively inserts
the pre-execution function under the same conditional statement
to avoid introducing potentially useless pre-execution requests. We
evaluate our compiler pass in Section 5.2.3 and compare it with our
best-effort manual instrumentation.

4.5.2 Limitations. The compiler pass has the following limitations.
First, it conservatively injects pre-execution functions within the
same function as the writeback operation to guarantee correctness.
Second, it can only inject pre-execution functions where both data

and address dependencies can be resolved in compile time. For
example, when a loop writes back an array of data, our pass cannot
inject pre-execution for writebacks in the loop due to the lack
of runtime information about the loop. Third, due to the lack of
dynamic memory information, our compiler pass does not handle
cache line sharing. We discuss future works that can mitigate these
limitations in Section 6.

4.6 Real-World Considerations
This section described various scenarios that might arise while
integrating Janus into real systems.

Unused pre-execution result.A buggy program can issue use-
less pre-execution requests without issuing a subsequent write
access that uses the pre-executed result. Therefore, a useless pre-
execution result can get stuck in the IRB. Janus takes a twofold
approach to solve this problem: (1) Add an age register to each
IRB entry, and discard an entry when the age register reaches its
maximum lifetime. (2) Clear all entries belonging to a certain thread
when that thread terminates.

Unused pre-execution request. A buggy program can also
issue buffered pre-execution requests without starting their exe-
cution with a PRE_START_BUF function, causing congestion in the
Pre-execution Request Queue. Janus solves this problem by using a
fixed size FIFO for this queue. When the queue is full, it discards
the buffered pre-execution requests at the top of the queue to make
space for the new requests. Note that discarding pre-execution
requests will never cause any correctness issue, but can result in
missed opportunities to improve performance.

Memory swap. OS can swap memory to the disk and swap
it back later. In this case, the physical address (ProcAddr) can be
different. Our solution is to let the memory controller clear out all
Intermediate Result Buffer entries that belong to the address range
that will be swapped out.

5 EVALUATION
5.1 Methodology

Processor Out-of-Order, 4GHz
L1 D/I cache 64KB/32KB per core, private, 8-way
L2 cache 2MB per core, shared, 8-way
Counter cache 512KB per core, shared, 16-way
Merkle Tree cache 512KB per core, shared, 16-way
Pre-exec. Request Queue 16 entries per core, shared
Pre-exec. Operation Queue 64 entries per core, shared

BMO Units 4 units per core (execute 4 BMOs in parallel),
shared, perform at cache-line granularity

Intermediate Result Buffer 64 entries per core, shared

Memory
4GB PCM, 533MHz [40, 42, 53],
tRCD/tCL/tCWD/tFAW /tWTR/tWR =

48/15/13/50/7.5/300 ns [103]

Backend Operation Latency
AES-128 (Encryption): 40 ns [53, 85],
SHA-1 (Integrity): 40 ns [85],
MD5 (Deduplication): 321 ns [113]

Table 3: System configuration.

We model and evaluate an NVM system that has three BMOs:
encryption, integrity verification and deduplication (introduced in
Section 3.1 and 4.3) using the cycle-accurate Gem5 simulator [6].
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The system configuration is shown in Table 3. The memory sys-
tem is backed by Intel’s ADR [60] support where all write accesses
accepted by the write queue can drain to NVM in case of a fail-
ure. The encryption and deduplication mechanisms follow a recent
work [113], where the encryption counter and the deduplication
address mapping table share the same metadata entry to minimize
the storage overhead, i.e., if data is duplicated, the metadata entry
stores the address mapping, otherwise, it stores the counter. The
Merkle Tree is built on the co-located counter or deduplication
address mapping to protect the integrity of both. We use selective
counter-atomicity [53] to ensure crash consistency of counter-mode
encryption, and extend this support to the other unreconstructable
metadata, including the address remapping table in the deduplica-
tion mechanism and the message authentication code (MAC) in the
integrity verification mechanism. We store the root of the Merkle
Tree in a non-volatile register in the secured processor, as proposed
in previous works [76, 106]. Similar to the ratio in prior deduplica-
tion works [95, 113], our main results use a deduplication ratio of
0.5. We also present the performance in other deduplication ratios
in Section 5.2.4. We evaluate and compare two system designs:
1. Serialized: Serialized backend operations.
2. Janus: Pre-execute the parallelized BMOs.

Our evaluation uses seven NVM-optimized transactional work-
loads (listed in Table 4), which are inspired by recent works [28,
42, 53], We evaluate the serialized design with the original pro-
gram that only supports metadata atomicity. Then we manually
instrument Janus primitives to evaluate Janus. We compare the
manual and automated instrumentation through our compiler pass
in Section 5.2.3.

Workload Description
Array Sway Swap random items in an array
Queue Randomly en/dequeue items to/from a queue
Hash Table Insert random values to a hash table
RB-Tree Insert random values to a red-black tree
B-Tree Insert random values to a b-tree
TATP Update random records in the TATP benchmark [64]
TPCC Add new orders from the TPCC benchmark [92]

Table 4: Evaluated workloads.

5.2 Results
This section presents the results of our evaluation that compares
the performance of the two design points. The workloads are single-
threaded unless explicitly mentioned.

5.2.1 Single- and Multi-core Performance. In this experiment, we
test the single- and multi-core performance of our design. Fig-
ure 9 presents the speedup of Janus. Janus provides on average
2.35 ∼ 1.87× speedup in 1∼8-core systems, respectively, over the
serialized baseline system. We observe three broad trends from
our results. (1) The speedup from pre-execution decreases as the
number of cores increases because the memory bus contention
increases when there are more threads executing in parallel, lead-
ing to a higher queuing latency in the memory controller. As a
result, the ratio of BMO overhead decreases and the benefit of pre-
executing BMOs also decreases. (2) The gain from pre-execution
depends on the characteristics of the workloads: The speedup in

B-Tree, TATP and TPCC is higher than that in Hash Table and
RB-Tree. The reason is Hash Table and RB-Tree first look up the
update location and then perform the update at that location. As a
result, the address-dependent pre-execution request has a smaller
window to execute and many times cannot complete before the
actual write arrives. (3) Parallelization delivers a lower speedup
compared to pre-execution because parallelization only reduces
BMO latency, while pre-execution moves it off the critical path.
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Figure 9: Speed up of Janus over the serialized design with
different number of cores.

5.2.2 Comparison with Non-blockingWriteback. In this experiment,
we evaluate an ideal case where the writeback requests do not block
the execution. Therefore, the BMO latency is not on writes’ critical
path. We want to evaluate how much performance is lost when
writes move on the critical path in crash consistent software and
how much performance Janus can recover from that. Figure 10
shows the slowdown of the serialized baseline and Janus over the
ideal case. We observe that the serialized baseline introduces almost
4.93× slowdown when the BMO latency falls on the critical path.
Janus improves the performance by 2.35× by pre-execution and
parallelization of the BMOs. However, it still incurs a 2.09× slow-
down compared to the ideal scenario. There are two reasons behind
the performance gap between Janus and the ideal case. First, not
all BMOs can be pre-executed, as sometimes there is not enough
gap between the point where the data and address are known and
where the actual write happens. Second, not all pre-execution re-
quests can complete before the actual write access arrives.We found
that in our experiments, on average, only 45.13% BMOs have been
completely pre-executed.
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Figure 10: Comparison with the ideal case where BMO
latency is not on critical path.

5.2.3 Automated vs. Manual Instrumentation. In this experiment,
we evaluate the performance of the automated instrumentation
of Janus functions using our compiler pass. Figure 11 shows the
speedup of Janus with the manual and automated instrumenta-
tion over the serialized baseline. In most cases, the performance
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Figure 11: Speed up of Janus over the serialized design with
automated andmanual instrumentation.
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difference is within 12%. We notice two special cases. (1) The auto-
mated solution does not provide a significant performance benefit
in RB-Tree and Queue. The static compiler cannot handle loops and
pointers (discussed in Section 4.5), which severely affects these two
workloads. (2) The automated instrumentation is slightly faster in
TPCC. We found that the instrumentation enabled other compiler
optimizations on the program, such as hoisting the address gen-
eration. On average, the automated solution is only 13.3% slower
than our best-effort manual instrumentation. We conclude that our
compiler pass effectively finds opportunities for pre-execution and
improves performance.

5.2.4 Different Deduplication Ratios and Algorithms. In this exper-
iment, we test three deduplication ratios: 0.25, 0.5 and 0.75, and
compare two different hashing algorithms: MD5 and CRC-32. The
design using CRC-32 follows the method in [113], which has a
lower overhead. Figure 12 shows the speedup of Janus in systems
using the MD5 and CRC-32 hashing algorithm. We observe that the
speedup of Janus is almost the same under different deduplication
ratios with MD5. In contrast, a higher deduplication ratio improves
the benefit with the lightweight CRC-32. As MD5 takes around
4× longer than CRC-32, the BMOs dominate the write overhead.
Therefore, the performance gain with MD5 is not impacted by the
deduplication ratio. Even with CRC-32, the increase in speedup is
small because BMOs contribute to most of the overhead, despite
the benefit of deduplication.
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Figure 12: Speedup of Janus over the serialized design with
variable deduplication ratios and different algorithms.

5.2.5 Variable Transaction Sizes. In this experiment, we vary the
size of the data update in each transaction from 64B to 8KB. As
TATP and TPCC are real-world workloads that cannot be easily
scaled without changing their semantics, we scale the first five
workloads in this experiment. Figure 13 shows the speedup of
Janus (parallelized and pre-executed) over the serialized baseline.
We observe that the speedup from pre-execution increase with the
size of transaction in the beginning, then it starts decreasing at a
certain point in all workloads. In comparison to that, the speedup
from parallelization keeps increasing but at a slow rate. The reasons
are as follows: (1) Pre-execution benefits from a larger transaction
size. However, at some point, the units and buffers for BMOs become
full. The benefit is maximum at that point and then starts declining
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Figure 13: Speedup of Janus over the serialized design with
different transaction sizes.

after that. (2) On the contrary, the benefit from parallelization is
not affected by the BMOs resources. Therefore, the more writes the
processor executes, the higher the benefit. We conclude that the
speedup from pre-execution can benefit the performance the most
when the write intensity is within a certain limit.

5.2.6 Variable Pre-execution Units and Buffer Size. The previous
experiment has shown that the units and buffers for BMOs can
become the bottleneck when processing large transactions. There-
fore, in this experiment, we scale the number of units and buffers,
while the size of transaction is fixed (8KB) for each of the five scal-
able workloads. We test the speedup of Janus over the serialized
baseline with 1×, 2× and 4× of the default number of units and
buffers (listed in Table 3). We also include a case with unlimited
resources. Figure 14 shows that as the BMOs units and buffer size
increases, the performance also increases. However, the speedup in
most cases saturates when the BMOs units and buffers are no longer
the performance bottleneck. B-Tree is an exception. It exhibits a
high demand for pre-execution resources and can gain a significant
benefit with unlimited resources.
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Figure 14: Speedup of Janus over the serialized design with
variable number of BMO units and buffer entries.

5.2.7 Overhead Analysis. Table 3 in Section 5.1 lists the size of
buffers and queues that support pre-execution. The size of each
Pre-execution Request Queue entry and Pre-execution Operation
Queue entry is 119 bits and 103 bits, respectively. The size of each
IRB entry is 148B. In Janus, we have 16 Pre-execution Request
Queue entries, 64 Pre-execution Operation Queue entries, and 64
IRB entries. Therefore, the total storage overhead from queues and
buffers is 9.25KB, which is 0.51% of the LLC size. The 4-wide BMOs
in our design take 300k gates (according to [78, 79]), which only
incurs a 0.065mm2 die area with 14nm technology.

6 FUTUREWORKS
More precise compiler instrumentation. The limitation of

our compiler pass boils down to the unavailable dynamic informa-
tion during the static compilation time. There are two directions
to mitigate this limitation. (1) Improving the dependency analy-
sis on pointers can allow safe but more aggressive pre-execution.
Techniques such as SVF [87, 88] can be greatly useful. (2) Utiliz-
ing dynamic analysis techniques can provide runtime information
and enable more optimization opportunities, such as pre-executing
BMOs outside of its function or outside its loop.

Tools for misuse detection. Section 4.4 has described the
guidelines on using Janus interface in order to gain the best perfor-
mance. Future works can provide tools to detect misuse of the inter-
face. There are three typical misuse scenarios: (1) Modifications on
pre-execution object. Tools can detect whether the pre-executed ad-
dress and/or data have been invalidated between the pre-execution
function and the actual write. Address invalidation can be detected
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by monitoring memory de-allocation operations and data invali-
dations can be detected by monitoring assignments to the source
of the data. (2) Useless pre-execution functions. Pre-execution on
objects that do not affect the critical path is unnecessary. Tools can
detect whether the pre-execution matches a subsequent blocking
writeback. (3) Insufficient pre-execution window. The execution of
BMOs takes a significant amount of time. The program should leave
enough window between the pre-execution function and the actual
write in order to maximize the benefit. A static tool can estimate the
number of instructions in this window to determine whether the
BMO latency can be perfectly overlapped; a dynamic tool can mon-
itor the completion status of pre-execution functions and thereby
adjust the instrumentation.

7 RELATEDWORKS
Memory and Storage Supports for NVM. Prior works have

proposed different optimizations for memory and storage support
in NVM systems. Janus efficiently integrates these supports by the
parallelization and pre-execution mechanisms, which is orthogonal
to these prior works. For exmaple, i-NVMM [13], DEUCE [107] and
SecPM [112] design efficient encryption schemes for NVM systems
that guarantee the confidentiality of data. Qureshi et al. [70] propose
Start-Gap wear-leveling for NVM systems that effectively spreads
the writes evenly to the memory cells, improving its lifetime. Error-
correcting pointers [80] provide an effective way of remapping
worn-out NVM cells to an error-free location. Liu et al. [53] inte-
grate counter-mode encryption into an NVM system and ensures
crash consistency by proposing counter atomicity. The authors
further reduce the overhead due to counter-atomic writes by selec-
tively applying counter atomicity to the writes that immediately
mutates the crash consistency status. Osiris [106] provides confiden-
tiality and integrity guarantees for NVM systems with encryption
and integrity verification mechanisms. The authors leverage the
ECC bits to detect inconsistency between the encrypted data blocks
and their counters. DeWrite [113] integrates both encryption and
an efficient deduplication algorithm into an NVM system. By using
a low-overhead hashing algorithm and executing encryption in
parallel with hashing, this mechanism achieves better performance
over the previous schemes.

NVM Crash Consistency. Providing the crash consistency
guarantee is another important aspect in NVM systems. Prior works
have proposed and implemented a variety of software and hardware
solutions to maintain crash consistency. Hardware-based mech-
anisms include implementations of low-level primitives such as
DPO [42] and HOPS [62], and high-level hardware transactions
such as Kiln [110], ThyNVM [72], JUSTDO Logging [37] and ATOM
[38]. Software-based solutions, such as NV-Heaps [16], Mnemosyne
[94], REWIND [10], Intel’s PMDK [35], LSNVMM [31], etc., abstract
away the low-level crash consistency mechanism and provide a
high-level software interface for programmers to manage their
persistent data. There are also NVM-optimized file systems, such
as Intel’s PMFS [24], BPFS [19], NOVA [104], and SCMFS [101].
Janus can be integrated with these crash consistency mechanisms
to improve performance. For example, NVM transactions can over-
lap BMOs latency with other transactional steps using our pre-
execution technique.

Compilers and Tools for NVM. There have been works on
compiler support and toolchains for NVM systems. Atlas [9],
SFR [28] and iDO [52] provide compiler supports that automat-
ically convert the program into failure-atomic regions based on
multithreading synchronization primitives, and thereby guarantee
crash consistency. The conversion approaches in these works follow
the typical NVM transaction programming models. Therefore, it is
possible to integrate Janus interface into these compiler techniques.
Yat [45], Pmemcheck [34] and PMTest [54], provide tools to detect
crash consistency bugs in NVM-based programs. These tools can
be extended to detect the misuse of Janus software interface and
the mistakes in enforcing metadata atomicity.

Pre-execution inConventional Processors. There have been
pre-execution techniques for conventional processors to reduce LLC
misses. The run-ahead execution technique aims to exploit memory-
level parallelism in a large instruction window [61]. Speculative
precomputation techniques generate helper threads to generate new
cache misses [17, 18, 111]. These techniques pre-execute at a coarse
granularity of code blocks or instructions. In comparison, Janus ex-
ploits pre-execution within each write access by pre-executing its
BMOs. Also, these prior works require invasive modification to the
out-of-order core, while the hardware modifications of Janus are
contained within the memory controller.

8 CONCLUSIONS
In this work, we show that backend memory operations (BMOs),
e.g., encryption, integrity verification, deduplication etc., necessary
for NVM systems can cause a significant performance degradation
as they increase the latency of writes that lie on the critical path. To
reduce these overheads, we seek to parallelize and pre-execute the
BMOs in NVM systems. We propose Janus, a general and extensible
software-hardware approach to mitigate the overhead of BMOs.
Over a suite of crash-consistent NVM applications, we observe
that Janus achieves 2.35× and 2.00× speedup over a serialized base-
line NVM system by manual and automated instrumentation of
Janus primitives. We hope that Janus will open up new research
opportunities in optimizing backend memory operations and will
be integrated into real NVM systems.
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