
PMTest: A Fast and Flexible Testing Framework for
Persistent Memory Programs

Sihang Liu
University of Virginia

Yizhou Wei
University of Virginia

Jishen Zhao
UC San Diego

Aasheesh Kolli
Penn State University

VMware Research

Samira Khan
University of Virginia

Abstract
Recent non-volatile memory technologies such as 3D XPoint
and NVDIMMs have enabled persistent memory (PM) sys-
tems that can manipulate persistent data directly in memory.
This advancement of memory technology has spurred the
development of a new set of crash-consistent software (CCS)
for PM - applications that can recover persistent data from
memory in a consistent state in the event of a crash (e.g.,
power failure). CCS developed for persistent memory ranges
from kernel modules to user-space libraries and custom ap-
plications. However, ensuring crash consistency in CCS is
difficult and error-prone. Programmers typically employ low-
level hardware primitives or transactional libraries to enforce
ordering and durability guarantees that are required for ensur-
ing crash consistency. Due to the reordering by the hardware,
programmers cannot test whether the order specified in the
CCS will not result in an ordering that violates the crash
consistency requirement.

We believe that there is an urgent need for developing a
testing framework that helps programmers identify crash con-
sistency bugs in their CCS. We find that prior testing tools
lack generality, i.e., they work only for one specific CCS or
memory persistency model and/or introduce significant perfor-
mance overhead. To overcome these drawbacks, we propose
PMTest1, a crash consistency testing framework that is both
flexible and fast. PMTest provides flexibility by providing two
basic assertion-like software checkers to test two fundamental
characteristics of all CCS: the ordering and durability guar-
antee. These checkers can also serve as the building blocks
of other application-specific, high-level checkers. PMTest
enables fast testing by deducing the persist order without
exhausting all possible orders. In the evaluation with eight

1PMTest is available at https://pmtest.persistentmemory.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304015

programs, PMTest not only identified 45 synthetic crash con-
sistency bugs, but also detected 3 new bugs in a file system
(PMFS) and in applications developed using a transactional
library (PMDK), while on average being 7.1× faster than the
state-of-the-art tool.

CCS Concepts • Hardware → Emerging technologies; •
Software and its engineering → Software testing and de-
bugging.

Keywords Persistent Memory, Crash Consistency, Debug-
ging, Testing

ACM Reference Format:
Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira
Khan. 2019. PMTest: A Fast and Flexible Testing Framework for
Persistent Memory Programs. In 2019 Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19),
April 13–17, 2019, Providence, RI, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3297858.3304015

1 Introduction
Persistent Memory (PM) technologies offer the persistence
of disks combined with performance close to that of DRAM,
blurring the divide between memory and storage [34, 40,
45, 67]. PMs are expected to be placed alongside DRAM
on the system’s memory bus and be accessed via a byte-
addressable load/store interface, providing an opportunity
to manipulate persistent data directly in-place in memory.
Programs can recover their updated in-memory persistent
data even in the event of a crash (e.g., power failure). How-
ever, such a recovery requires a guarantee that persistent
data is always in a consistent state – a requirement referred
to as the crash consistency guarantee. A variety of applica-
tions have taken crash consistency into consideration. File
systems carefully orchestrate meta-data management to en-
sure that the files are recoverable [10, 16, 42, 63, 66, 73],
while databases use intricate logging mechanisms to provide
ACID guarantees for transactions [1, 2, 23, 50, 65]. Apart
from relying on file systems and databases for crash con-
sistency [1, 2, 10, 16, 23, 42, 50, 63, 65, 66, 73], the ad-
vent of PMs makes it possible for applications to manage
crash consistency directly using PM’s load/store interface
and thereby, improve performance by avoiding costly system
calls. For this reason, a variety of custom crash-consistent
applications [7, 17, 33, 70, 72] and user-space libraries (e.g.,
NV-Heaps [9], Mnemosyne [64], PMDK [33]) have been de-
veloped for PM systems. Moving forward, we expect that

https://pmtest.persistentmemory.org
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/3297858.3304015

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Sihang Liu et al.

PM systems will spur the development of many more custom
crash-consistent kernel modules (like file systems), storage
applications, and user-space libraries. Collectively, we refer
to them as crash-consistent software (CCS) for PM systems.

However, programming in PM systems for crash consis-
tency is hard and error-prone. The two fundamental guar-
antees required by any CCS are durability and ordering. A
durability guarantee from the PM system is required to en-
force data to reliably reach persistence. As the cache hierar-
chies are volatile in our current systems, simply executing
a store instruction to a PM location does not ensure that the
new value is persistent. To solve this problem, the x86 ISA
introduced new optimized instructions (e.g., clwb [32]) to
efficiently writeback cache lines to memory. We refer to the
act of making a cache line persistent (through a writeback or
other means [39, 52]) as a persist operation.

Enforcing ordering is another fundamental necessity for
any CCS. An ordering guarantee from the PM system is
required for CCS to explicitly order persist operations as
the hardware can reorder instructions in the processor and
cache hierarchy. For example, the commonly used undo log-
ging mechanism [9, 38] requires the undo log entry to be
created and persisted before the associated data gets modified.
x86 systems provide ordering guarantees through the sfence
instruction. However, different architectures provide dura-
bility and ordering guarantees through architecture-specific
instructions [3, 32]. While developing a CCS for PM systems,
programmers must carefully use these low-level primitives for
correctness. Relying on such low-level, architecture-specific
primitives to develop software is hard and error-prone. Even
with the help of transactional libraries that build upon these
low-level primitives [9, 33, 47, 64], programmers still need
to understand the specification of the durability and ordering
guarantees provided by these libraries to properly use them.
The major difficulty arises from the fact that the order of
persist operations executed in the hardware can be different
from the program order. As a result, programmers cannot de-
termine whether the crash consistency algorithm is correctly
implemented, i.e., whether the order specified in the CCS
will not result in a runtime ordering that violates the required
ordering of the persist operations. We refer to the bugs that
cause a CCS to fail recovery as crash consistency bugs.

We argue that CCS developers will greatly benefit from
a testing infrastructure that can help identify the improper
use of low-level primitives or high-level libraries. While prior
works have developed tools to assist CCS development, they
are all specific to certain file systems [43] or user-space li-
braries [55, 59]. These tools rely on exhaustive search space
exploration of all possible ordering or binary instrumentation
of the program, leading to a significant performance overhead.
For example, Yat [43], a tool that tests Intel’s persistent mem-
ory file system (PMFS [16]) can take more than 5 years to
test all possible orderings in a trace with around 100k PM
operations. In this work, we argue that an effective testing

tool needs to meet two requirements. First, the testing mecha-
nism needs to be fast so that programmers can reason about
the durability and ordering of the persistent operations and
detect bugs in the development phase. Second, the testing
must support a myriad of CCS that will be built with vari-
ous architecture-specific low-level primitives and high-level
libraries. It also needs to support different persistency models
that order persists in various ways. For example, Intel and
ARM uses a strict ordering of writes [3, 32], while recent aca-
demic proposals relax this ordering [39, 52, 57]). In this work,
we propose PMTest, a crash consistency testing framework
that is, unlike prior work, both flexible and fast.

Flexible. Our key idea is based on the observation that
regardless the difference in CCS (kernel modules, or custom
applications using architecture-specific low-level primitives
or high-level libraries), they all fundamentally rely on two
types of operations in order to provide the durability and
ordering guarantee: enforcing persisting a write and enforc-
ing ordering between writes. To this end, we propose two
low-level checkers that developers can debug their CCS with:
isPersist() and isOrderedBefore(), that check whether
(i) certain persistent objects have been persisted since their
last update and (ii) if a certain persist operation has been
ordered before another, enabling testing of the two funda-
mental properties of any CCS. Similar to assertions [20, 71]
used in programs, these two checkers can be instrumented
in the code, which provides a way to expose the ordering
and durability of the persistent operations to the software
(details in Section 4.4). On top of that, programmers can use
the PMTest framework to build custom, high-level checkers
in the software based on the two low-level checkers for dif-
ferent libraries and persistency models (details in Section 5).
High-level checkers can automate the process of debugging
CCS built with PM libraries.

Fast. PMTest enables high-speed testing by inferring the
ordering of persist operations without exhaustively testing all
possible orders. The key idea is to track the PM operations
(e.g., writes, cache writeback, fence) at runtime and deduce
the time interval during which a write may persist. An over-
lapping time interval for two write operations implies that
the two writes are not strictly ordered; the ending time of the
interval determines at what point in the program the write is
guaranteed to persist.

We evaluate the capability of PMTest bug detection in
two ways. First, PMTest detects 45 manually created bugs
(synthetic and reproduced from the commit history) in WHIS-
PER [52], a benchmark suite for PM. Second, PMTest de-
tected 3 new bugs in a file system (PMFS) and in applications
developed using a transactional library (PMDK). These bugs
have been reported to Intel and have been fixed with proper
credit to PMTest [30, 31]. Further, our experiments also re-
veal that PMTest checkers can help programmers understand
the persistency guarantees of PM libraries.

PMTest ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Contributions. Our main contributions are as follows:
• We design and implement PMTest, a tool to detect crash

consistency bugs in PM applications. To our knowledge,
PMTest is the first tool that is both flexible and fast.

• PMTest is flexible as it enables the design of specific
checkers in the software for different libraries and per-
sistency models. Currently, PMTest supports user-space
transaction memory libraries Mnemosyne [64] and PMDK
[33] and Intel’s kernel-space PM-optimized file system
PMFS [16] under the x86 persistency model [32].

• PMTest is fast as it detects the violation in durability and
ordering of PM operations without exhaustively testing all
possible reorderings. Our evaluation shows that PMTest
is 7.1× faster than the state-of-the-art tool [59].

• PMTest detects 45 synthetic/reproduced bugs and found
3 new bugs in PMDK applications [33] and PMFS [16].

2 Motivation
In this section, we first discuss the difficulties in programming
crash-consistent software for persistent memory systems and
then introduce the requirements for testing these programs.

2.1 Difficulties in Programming CCS
There are two fundamental guarantees required by any crash-
consistent software (CCS). (i) A durability guarantee to make
data reliably persistent, and (ii) an ordering guarantee to
explicitly enforce the ordering of writes. For example, the
commonly used undo logging mechanism [9, 38] requires
its log entry to be durable before the in-place update. As the
cache hierarchy of processors is volatile, hardware vendors
provide PM-specific instructions to writeback data from the
cache to memory to ensure durability. For example, Intel
extends the x86 ISA with new instructions (e.g. clwb) to en-
force persistent data writeback to PM [32]. Similarly, ARM
implements the DC CVAP instruction [3] that writes back data
to the persistence. We refer to the act of making a cache line
persistent (through a writeback or other means [39, 52]) as a
persist. Similarly, as the processor can reorder instructions in
the pipeline and memory hierarchy, Intel provides ordering
guarantees through the sfence instruction [32] which ensures
a strict ordering between persists before and after the fence.
Therefore, the combination of a clwb and an sfence issued
after a write to a cache line ensures that the new value of the
cache line has persisted before any subsequent instructions.
In the rest of this paper, we will refer to the combination of
“clwb; sfence;” as a persist_barrier for simplicity. Apart
from industry implementations, there have been proposals
from the academia that target better performance with relaxed
ordering and durability guarantee. For example, a recent work,
hands-off persistence system (HOPS) [52], proposed new re-
laxed fences to decouple the ordering guarantee (provided by
ofence) from the durability guarantee (provided by dfence).

void ArrayUpdate(int index, item_t new_val) {
 backup.val = array[index]; //Backup the old value
 backup.valid = true; //Set the backup as valid
 persist_barrier();
 array[index] = new_val; //Update to the new value
 backup.valid = false; //Set the backup as invalid
 persist_barrier();
}

void appendList(item_t new_val) {
 TX_BEGIN {
 node_t *new_node = makeNode(new_val);//Create a new node
 TX_ADD(list.head, sizeof(node_t*)); //Backup old head in log
 List.head = new_node; //Update head
 List.length++; //Increment length of list
 } TX_END
}

1
2
3
4
5
6
7
8

TX_ADD(&list.length,sizeof(int));

persist_barrier()

1
2
3
4
5
6
7
8

Figure 1. Buggy examples using (a) low-level functions and
(b) a transactional interface.

Programming with Low-level Primitives. With the sup-
port from these low-level primitives, programmers can ensure
crash consistency by enforcing a specific order of persists.
Unfortunately, it is hard to implement the intended ordering
using these low-level primitives even when the programmers
understand the semantic of the crash-consistency support. We
provide a simple example to show the difficulty associated
with using these low-level primitives. Figure 1a shows a func-
tion that tries to update the value of an array element in a
crash-consistent manner. The program takes the undo logging
approach that backs up the data before performing the modi-
fication in-place, such that there is always a consistent copy
(either the backup or the original data) for recovery. Follow-
ing this approach, it first creates a backup copy (line 2) and
sets it to be valid (line 3). Then, it persists the backup (line
4), followed by updating the array index in place (line 5), and
invalidates the backup copy (line 6). Finally, it persists the
in-place update and invalidation (line 7). This example seems
correct as it places a persist_barrier after the backup and
after the in-place update assuming that these barriers will
ensure that the update is only performed after the backup gets
persisted. However, it still misses two persist_barriers: (i)
one right after the creation of the backup copy (between line
2 and 3), and (ii) another right after updating the new array
index (between line 5 and 6). Omitting any one can render the
array unrecoverable in event of a failure. If a failure occurs
at line 6, it is possible that due to hardware reordering valid
has persisted while the actual data has not. Therefore, after
recovery, the array will treat the stale value in memory as
the updated one. As the example shows, using such low-level
primitives is hard, especially for complex code bases. There
is a need for a testing framework to identify and resolve such
bugs. Next, we will show that using high-level crash consis-
tency mechanisms like transactions are no panacea.

Programming with High-level Interface. To abstract away
the low-level implementations and improve programmability,
prior works have provided libraries for CCS [9, 33, 64]. For
example, with the transactional interface from PMDK [33],
programmers can create a failure-atomic transaction with a

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Sihang Liu et al.

pair of TX_BEGIN and TX_END, and use TX_ADD() to create a
backup (snapshot) of the persistent object before modifying
it such that the object can roll back to its old data value if
the transaction fails to complete due to a crash. The exam-
ple in Figure 1b shows an insertion function of a linked list
using a transactional interface that appends a new node to
the head. The code seems correct as the programmer wraps
up the entire procedure into a transaction and adds the head
to the log for recovery. However, this function is not crash
consistent as the programmer mistakenly assumes that the
length of the linked list will get persisted automatically and
misses backing it up (via a TX_ADD()). Therefore, in event
of a failure, the transaction will not be able to recover the
correct length of the list. The correct implementation should
call TX_ADD() to backup the length field before line 6. We
argue that even though transactional libraries are supposed to
make persistent programming easier, it is still very likely to
introduce subtle crash consistency bugs.

In the first example (Figure 1a), the programmer is in-
tended to set/unset the valid bit after persisting the backup/up-
date, but misses the persist_barriers. Similarly, in the
second example (Figure 1b), the programmer intends to make
both the linked list and its length recoverable, but forgets to
backup the length. We conclude that the major difficulty in
detecting crash consistency bugs in CCS is that it is difficult
to ensure the program operates on its persistent data in the
way that programmers intend to. Even if the algorithm for
crash consistency is correct, the implementation can be wrong
as the programmers cannot directly infer how writes to PM
get persisted from looking at the code. Fences and writeback
operations do not provide an intuitive interface for program-
mers to reason about (i) whether a memory location/object
has persisted, and (ii) the order in which different memory
locations/objects persist, the two fundamental requirements
to reason about crash consistency.

2.2 Requirements for CCS Testing Tools
We believe that programmers will greatly benefit from a test-
ing framework to help identify crash consistency bugs. Such
frameworks should ideally meet the following requirements.

Flexible. We expect that PM systems will spur the devel-
opment of many custom CCS and a testing framework must
be flexible to support as many as possible. First, there are
three types of CCS: (i) user-space applications using high-
level libraries such as NV-Heaps [9], Mnemosyne [64], and
PMDK [33], (ii) user-space applications using ISA-specific
low-level primitives, such as PM database [2] and key-value
stores [50], and (iii) kernel-space file systems using low-level
primitives, such as PMFS [16] and NOVA [68]. Second, the
other variation in CCS comes from the different ordering and
durability guarantees provided by different PM systems, or
more specifically, different persistency models that define
the rules for the order of persists [57] (e.g., the strict persis-
tency model from x86 [32] and the relaxed model proposed

Crash-consistent SW
(Kernel Module)

(a)

Mnemosyne Library

Crash-consistent SW

(b) (c)
void ArrayUpdate(...) {
 TX_BEGIN{
 ...
 TX_ADD(array[index]);
 array[index]=new_val;
 ...
 } TX_END
}

void ArrayUpdate(...) {
 ...
 log_append(array[index]);
 log_flush();
 array[index]=new_val;
 ...
}

void ArrayUpdate(...) {
 ...
 bck.val=array[index];
 bck.valid=1;
 clwb(&bck,sizeof(bck));
 sfence();
 array[index]=new_val;
 ...
}

x86 Persistency Model

write, clwb, sfence

log_append, log_flush

PMDK Library

Crash-consistent SW

write, ofence, dfence

TX_BEGIN, TX_END, TX_ADD

 write, clwb, sfence

User Space User Space
Kernel

HOPS x86 Persistency Model

Low-level operations: write access, enforcement of order and writeback
PM AccessPM AccessPM Access

SW
H
W

Figure 2. Different PM system stacks and sample codes.

by HOPS [52]). The persistency model is enforced using
low-level primitives from the underlying hardware, e.g., clwb
and sfence in x86, and ofence and dfence in HOPS. In
the future, we expect to see a great variety of CCS running
on various PM systems. Figure 2 shows three possible sys-
tem stacks and their code examples: (a) a CCS developed
on top of the Mnemosyne library [64] runs on a system with
x86 persistency model, (b) a CCS built with the PMDK li-
brary [33] runs on the HOPS persistency model that supports
more relaxed fences [52], and (c) a persistent kernel module
using low-level functions (e.g., PMFS [16]). Ideally, a testing
framework should be flexible enough to support all kinds of
CCS running on a variety of PM systems.

Fast. We identify that an efficient crash consistency test-
ing mechanism needs to meet two performance requirements.
First, a crash-consistency testing solution for CCS needs to be
able to identify issues in the programs as fast as possible. Sec-
ond, an efficient crash-consistency testing mechanism needs
to maintain a low performance overhead to the target pro-
gram; it is favorable that programmers can reason about their
code at runtime and modify the code as necessary to reduce
the overhead of post-production patching [53]. However, no
prior tools can meet both the flexibility and fast requirements.

We categorize the prior tools into three groups. First, there
is a large body of crash consistency bug detection tools de-
veloped for conventional file systems running on block de-
vices [6, 18, 19, 41, 51, 61]. Unfortunately, these tools are
designed for block-addressable file systems [6, 18, 19, 41,
51, 61], and therefore, cannot be applied to PM-specific CCS.
Second, the tool, Yat [43], that tests Intel’s PM-based file
system PMFS [16] executes at an extremely slow speed be-
cause it takes an exhaustive method in bug detection. It per-
mutes all possible persist reorderings to detect if a particu-
lar ordering can recover consistently after a crash. Such an
exhaustive method is extremely slow and according to the
authors, can take more than five years to test an application
with around 100k PM operations [43]. Third, there have been
faster testing tools developed for specific PM libraries. For
example, Pmemcheck [59] (around 20x slowdown) and Per-
sistence Inspector [55] are binary instrumentation platforms

PMTest ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

designed specifically for the PMDK library. They provide
built-in checkers for PMDK operations and cannot be easily
extended for other user-space libraries or kernel-space system
software. Table 1 summarizes the capabilities of these tools
and it is evident that they cannot satisfy both requirements of
speed and flexibility.

Tool Name Speed Flexibility Target Software Kernel?
Yat [43] Low Low PMFS [16] Yes
Pmemcheck [59] Medium Low PMDK [33] No

PMTest (this work) High High Any CCS Yes

Table 1. Tools for testing CCS.

3 Key Ideas of PMTest
In this work, we propose PMTest, a framework for detecting
crash consistency bugs in different CCS running on a variety
of PM systems. First, we present our high-level ideas in test-
ing CCS. Then, we discuss how these key ideas are applied
to PMTest.

3.1 Key Ideas in Testing Crash Consistency
The goal of this work is to design a crash consistency testing
framework that is, unlike prior works, both flexible and fast.
Our keys ideas to meet these requirements are:

Flexible. We observe that regardless of the difference in
the CCS (kernel module, user-space library, or custom appli-
cation using architecture-specific low-level primitives), they
all fundamentally rely on two types of operations in order
to provide the durability and ordering guarantee: enforcing
a memory location persists and enforcing ordering between
persists. Figure 2 shows that at the lowest level, all three CCS
rely on low-level primitives that provide these two guarantees
(shown by the blue arrows). Our key idea is to provide two
generic “checkers” that programmers can instrument their
code with to verify whether certain memory locations/objects
have been persisted since the last write to them and the or-
der in which certain memory locations/objects have persisted.
These generic checkers allow programmers to ascertain the
state of the PM on any kind of PM system, making it easy
to reason about crash consistency. The two generic checkers
are: (i) isPersistent() checks whether certain memory lo-
cations/objects have been persisted since their last update; (ii)
isOrderedBefore() checks whether a certain address has
been persisted before another (details in Section 4.4).

Similar to the commonly used assertions [20, 71], these
two checkers can be placed in the code, providing a way
to expose the ordering and durability of the PM operations
at the application level. Figure 3a and 3b demonstrate how
these two checkers make the ordering information visible to
applications in systems using the x86 and HOPS persistency
model, respectively. Even though the systems are different,
the same two basic, low-level checkers in both examples
checks: (i) whether A persists before B, and (ii) whether both

A and B have been persisted at the end. PMTest, under-the-
hood uses PM system-specific information to determine if the
checker conditions have been met on the system under test.

write A
clwb A
sfence
write B
clwb B
sfence
isOrderedBefore A B
isPersist A
isPersist B

write A
ofence
write B
dfence
isOrderedBefore A B
isPersist A
isPersist B

(a) (b)

Figure 3. Checking mechanism based on the semantics of
(a) the x86 persistency model [32] and (b) HOPS [52].

Fast. Our key idea is to track the PM operations (e.g., write,
clwb, sfence in x86 systems) at runtime and deduce the time
interval during which a write may persist. We refer to this time
interval as a persist interval. PMTest’s superior performance
comes from validating the programmer specified checkers
from the inferred persist interval, rather than checking all
possible orderings of relevant persists. The rules that deduce
the persist interval and validate the checking of durability
and ordering guarantee for a certain persistency model are
referred to as checking rules. For example, in x86 systems, a
PM write may persist any time between its execution and a
subsequent sfence, assuming that there exists an intervening
clwb to the associated cache line in between the write and
sfence. This is due to the fact that the hardware can reorder
operations as long as they are executed before the sfence.
Note that even though the hardware can re-order instructions,
x86 implicitly guarantees the ordering of a write operation
and a subsequent clwb to the same address [32]. Therefore,
the persist interval of a write can span from the last sfence to
the subsequent sfence that comes after the associated clwb.
To validate checkers, we use the persist intervals for the rel-
evant memory locations to infer if the checker conditions
are being met. We break a thread’s execution into epochs
separated by an sfence. We use an epoch as a unit of time
and have a timestamp increment at every sfence. A persist
interval of

(
E1,E2

)
suggests the corresponding write may

persist any time between epoch number E1 and E2. Therefore,
the checking rule for isPersist() is defined as determin-
ing if the persist interval of the associated memory location
ends before the checker. Similarly, the isOrderedBefore()
is checked by determining if one persist interval ends before
the other starts.

We provide an example to show how to infer the persist
interval from the trace and how it can be used by our two
basic checkers in an x86 system. Figure 4a shows a trace
of PM operations, where the programmers want to check
two issues: if A always persists before B, and if B has been
persisted after the last sfence. Assuming the first sfence
starts the first epoch (E = 1), the persist interval for address A
is
(
1,2

)
, as the write to address A, and the subsequent clwb

are both issued before the next sfence (the start of the second

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Sihang Liu et al.

epoch, E = 2). For address B, the persist interval is
(
1,∞

)
as

the write to B is in the first epoch, so it may persist as early
as the first epoch. However, without a subsequent clwb for
address B, it is never guaranteed to persist (at least in the
code snippet). As the persist intervals of A and B overlap, the
checker, isOrderedBefore() for A persisting before B fails.
The subsequent isPersist() for address B also fails as the
persist interval for B extends to ∞,

sfence
write A
clwb A
write B
sfence
isOrderedBefore A B
isPersist B

E = 1

E = 2

Persist Interval

sfence

sfence

addrA addrB

(b) (c)

Persist interval overlap:
Persist A may not persist
before B!

(a)

1
2
3
4
5
6
7

B may not persist!

sfence

3
4

Implicit
ordering
by ISA

sfence
FAIL!

2

Figure 4. (a) A trace of PM operations. (b) The order
between PM operations. (c) The persist interval of writes.

3.2 Integrating the Key Ideas into PMTest
So far, we have introduced the key ideas that ensure both
flexibility and high-speed testing. Next, we introduce how we
apply our key ideas to the two major steps of PMTest:

Program Annotation. The assertion-like, low-level check-
ers: isOrderedBefore() and isPersist(), provide a system-
independent interface for testing. Figure 5a shows how to
place these checkers to detect crash consistency bugs. Similar
to using low-level primitives for programming CCS, using
these low-level checkers requires manual effort. Therefore,
to ease programmers’ burden, PMTest provides high-level
checkers that are built on top of the low-level ones. Figure 5b
shows a pair of high-level checkers placed before and after
a transaction, which automatically detects whether all modi-
fied persistent objects have been written back at the end of a
transaction. Programmers (e.g., PM library developers) can
also build their custom checkers using our low-level checkers
(details in Section 5.1). We show that these high-level check-
ers can effectively detect bugs with minimal programmer’s
effort in Section 6.3.
...
sfence
write A
clwb A
write B
sfence
isOrderedBefore A B
isPersist B
...

(b)(a)

Check if A persists before B

Check if B has been written back

TX_CHECK_START();
TX_BEGIN {
 ...
 write A
 write B
 ...
} TX_END
TX_CHECK_END();

Check if all persistent objects
have been written back

Automatically Injected:
 isPersist A
 isPersist B

Figure 5. Examples of testing programs using (a) the
fundamental checkers and (b) checkers for transactions.

Runtime Testing. PMTest determines whether the injected
checkers are met or not by inferring the interval in which a
write to PM can become persistent based on the underlying
persistency model. The superior performance makes it pos-
sible to perform testing during execution time. For better
efficiency, PMTest pipelines the execution of CCS (the test

program) and the checking engine by running them on dif-
ferent threads. The test program under execution produces a
trace of all the key events. Meanwhile, the checking engine
lags behind program execution and consumes the trace pro-
duced (details in Section 4.4). Decoupling program execution
from checker validation provides a marked improvement in
performance.

4 Implementation of PMTest
This section describes the implementation of PMTest and how
it can be integrated into a real system to perform testing.

Annotation

Testing Results
WARN/FAIL

@<file>:<line>

Checking
Engine

Checking Rules

❷
❶ CCS

Offlin
e

Online

Track
PM Ops

Trace Result

❸

Figure 6. A high-level view of PMTest (shaded components
can be customized by programmers).

4.1 Overview of PMTest
Figure 6 illustrates a high-level view of PMTest. The proce-
dure of testing a program consists of offline and online steps.
In the offline step, programmers annotate the CCS using low-
level and/or high-level checkers following the program spec-
ification of the crash consistency mechanism (step ➊). For
example, low-level checkers should be inserted to check the
programmer intended crash-consistent behavior, where the
high-level checkers for transactions can be added by wrap-
ping up the transactions (as shown in Figure 4). In the online
step, PMTest executes with the annotated (and compiled)
CCS. During execution time, PMTest tracks PM operations
in the application and passes the trace to the checking engine
(step ➋, details in Section 4.3). The checking engine tests
whether the trace meets the requirements specified by the
checkers (step ➌, details in Section 4.4). The checking engine
depends on the checking rules to detect the bugs. We discuss
the rules for x86 systems in Section 4.4 (already integrated
in PMTest) and the rules for HOPS [52] in Section 5.2. The
new checking rules for other persistency models can be in-
tegrated into PMTest by programmers. The checking engine
reports WARNING outputs for performance bugs (e.g., redun-
dant writebacks) and FAIL outputs for crash consistency bugs
(e.g., missing a fence), together with the file names and line
numbers of the failing checkers.

4.2 PMTest Interface
PMTest incorporates a flexible software interface that is C
and C++ compatible. Table 2 summarizes the functions of-
fered by PMTest. There are four types of functions. The
first category is for initializing and enabling the testing
functionalities of the framework. Programmers can select
the region for testing by wrapping the code with a pair
of PMTest_START and PMTest_END functions. The second

PMTest ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Function Name Description

Fr
am

ew
or

k PMTest_INIT Initialize PMTest
PMTest_EXIT Exit and clean up PMTest
PMTest_THREAD_INIT Initialize per thread PMTest tracking
PMTest_START Enable PMTest tracking and testing
PMTest_END Disable PMTest tracking and testing

PM
O

bj
ec

t PMTest_EXCLUDE Remove a persistent object from testing scope
PMTest_INCLUDE Add a persistent object back to testing scope
PMTest_REG_VAR Register the address and size of a variable name
PMTest_UNREG_VAR Unregister a variable name
PMTest_GET_VAR Get the address and size of a variable by its name

C
om

m
.

PMTest_SEND_TRACE
Send the current trace to PMTest checking
engine and start a new trace

PMTest_GET_RESULT
Block the program execution until all existing
traces have been tested

C
he

ck
er

isPersist Check if a persistent object has been persisted
isOrderedBefore Check the order of two persists
TX_CHECKER_START Start checking transactions
TX_CHECKER_END End checking transactions

Table 2. Summary of PMTest functions.

category of functions allows programmers to operate on
persistent objects. By default, all accesses to PM between
PMTest_START and PMTest_END are tracked by PMTest.
Programmers may exclude objects from tracking using
PMTest_EXCLUDE() function. Already excluded objects
can be tracked again using PMTest_INCLUDE(). To allow pro-
grammers check the persistency status of a variable outside its
scope (e.g., outside the function where it is declared), we pro-
vide three functions: PMTest_REG_VAR, PMTest_UNREG_VAR,
and PMTest_GET_VAR that allow programmers to register the
address of a persistent object with a name and check its per-
sistency status later. The third category of functions enables
the communication from the test program to the checking
engine. Programmers can divide a program into indepen-
dent sections (e.g., transactions) using PMTest_SEND_TRACE
for better testing speed. Once the execution of a section is
complete, PMTest can start testing it on a separate thread
while the program is executing the next section. The func-
tion PMTest_GET_RESULT blocks the program execution until
all previously generated traces have been tested. The last
category of functions are checkers, including two low-level
checkers: isOrderedBefore() and isPersist(), and the
high-level checkers for transactions. The high-level checkers
for PMDK test three issues: (i) if a transaction has completed,
(ii) if the persistent objects within the transaction have been
added to the undo log before modification, and (iii) if there
are unnecessary writebacks and redundant logs that constitute
the performance bugs.

4.3 Operation Tracking
A trace in PMTest consists of the PM operations executed
by CCS and the checkers placed by programmers. Each
PM operation in the trace has associated metadata that
consists of the operation type, memory address, operation
size and the file and line number of this operation. Simi-
larly, the metadata for each checker consists of the type of

checker, the address and size of the persistent object that the
checker is testing in PMTest. All PM operations and check-
ers are recorded in the trace in program order. When the
program calls PMTest_SEND_TRACE(), PMTest passes the
current trace to the backend checking engine and starts a
new trace. In our evaluation with testing the PM benchmark
suite, WHISPER [52], we extend the tracking mechanism of
WHISPER by adding PMTest tracking functions that generate
the aforementioned metadata for PM operations (e.g., writes,
clwb and sfence in x86) to the WHISPER’s PM operation
macros. For other CCS, it is possible to either integrate a
WHISPER-like tracking mechanism or use a toolchain (e.g.,
through an LLVM [44] pass) that injects a tracking function
for each PM operation.

4.4 The Checking Engine
After generating a trace of PM operations and checkers from
the application, the next step is to validate the trace against
the specified checkers. At the high-level, the checking en-
gine tracks a persistency status for each persistent object
in the trace. During testing, PMTest sequentially iterates
over the trace. If the trace component is a PM operation,
PMTest updates the persistency status; if the trace component
is a checker, PMTest examines the persistency status to deter-
mine whether the asserted condition is met or not. Next, we
describe the details of maintaining the persistency status in
PMTest, and discuss how it updates and checks the status in
an x86 system.

Persistency Status. PMTest maintains a shadow memory
that represents the persistency status of each modified ad-
dress. As PMTest traces and checks PM operations at a coarse
granularity, it maintains the shadow memory as an interval
tree [13], where the address is the interval and persistency
status is the value in the interval, As a result, update and
lookup operations to the shadow memory have a complexity
of O(log n), where n is the length of the trace. As traces are
independent, every trace has its shadow memory. To track the
persistency status, the shadow memory keeps two types of
structures, a global status for the entire system, and a local
status for each address in the shadow memory. The following
is the description of the fields for x86 systems:
• global_timestamp (global status): A global epoch
counter that is incremented on every sfence encountered
in the trace.
• persist_interval (local status): The interval in which
certain memory location(s) may persist.
• flush_interval (local status): The interval in which cer-
tain memory location(s) may be explicitly written back to
PM.

Update to Persistency Status. PMTest iterates over the
trace and performs the following updates to the persistency
status for each PM operation:
• write(addr,size) modifies an address range of[
addr,addr+ size

)
in the shadow memory. It first clears all

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Sihang Liu et al.

existing persist_intervals and flush_intervals within
the address range and sets the persist_intervals as(
global_timestamp,∞

)
. That is, this write may persist at any

time moving forward.
• clwb(addr,size) writes back an address range of[
addr,addr+ size

)
and the flush_interval is set as(

global_timestamp,∞
)
. That is, a writeback for these ad-

dresses has been issued and it may happen at any time
moving forward. If there is an existing flush_interval,
PMTest raises a WARNING (Section 5.1.2).
• sfence enforces the ordering of prior write and clwb op-
erations. First, it increments the global_timestamp. Second,
it updates the flush_interval of prior clwbs so that the
intervals end at the current global_timestamp, i.e, the write-
back is complete. Third, it updates the persist_interval
of prior clwbs so that the intervals end at the current
global_timestamp, i.e, the write persisted.

Checking Rules. Similarly, when encountered a checker
in the trace, PMTest applies the following checking rules:
• isPersist(addr,size) checks whether data in the ad-
dress range

[
addr,addr+ size

)
has been written to PM by

checking whether the persist_intervals in this address
range end before the current global_timestamp.
• isOrderedBefore(addrA,sizeA,addrB,sizeB) checks
whether all writes to

[
addrA,addrA+ sizeA

)
can persist be-

fore any write to
[
addrB,addrB+ sizeB

)
by checking if any

of the persist_intervals in
[
addrB,addrB+ sizeB

)
over-

lap with any of the those in
[
addrA,addrA+ sizeA

)
.

write(0x10,64)
clwb(0x10,64)
sfence()
write(0x50,64)
isPersist(0x50,64)
isOrderedBefore
 (0x10,64,0x50,64)

1
2
3
4
5
6

(a) Trace (b) Update steps

❶
❷
❸
❹

0
0
1
1

(0,∞)
(0,∞) (0,∞)
(0,1)
(0,1)

(0,1)

FIOp# T

(0,1) (1,∞)

FI
0x10~0x4f 0x50~0x8f

❺ Not persistent
❻ 0x10 will persist before 0x50

PI PI

Figure 7. An example of checking a trace.

Example. Figure 7a shows a sample trace, and Fig-
ure 7b shows how each operation (OP#) updates the
PMTest persistency status, including global_timestamp (T),
persist_intervals (PIs), and flush_intervals (FIs). Ini-
tially, T is 0.
Line 1: The write updates the PI for address 0x10 to

(
0,∞

)
.

Line 2: The clwb updates the FI for address 0x10 to
(
0,∞

)
.

Line 3: The sfence first increments the timestamp T. Then,
it updates the FI of its preceding clwb to

(
0,1

)
, indicating

this writeback will take effect before line 3. It also updates the
PI for 0x10 to

(
0,1

)
, indicating that this write has persisted.

Line 4: The write updates the PI for address 0x50 to
(
1,∞

)
.

Line 5: The isPersist() checker examines the PI of 0x50.
As

(
0,∞

)
does not end before the current T, this checker re-

ports a FAIL output as indicated by the red arrow.
Line 6: The isOrderedBefore() checker compares the PIs

of 0x10 and 0x50. As they do not overlap, this checker passes
as indicated by the green arrow.

Execution of The Checking Engine. To reduce the over-
head in the runtime testing, PMTest adopts a multithreaded
checking mechanism consists of a master thread and a pool
of worker threads, as shown in Figure 8a. The master thread
dispatches the traces passed from the program under test-
ing (details about communication between the program and
PMTest in Section 4.5) to the task queue of the worker threads
following a round-robin scheduling algorithm. Each worker
thread tests its trace independently and sends the testing re-
sult back to the result queue in the master thread. Figure 8b
demonstrates the workflow of this mechanism. The program
first creates and initializes an instance of PMTest by calling
PMTest_INIT() (step ➊). Then, the program starts the exe-
cution of transaction 1 (step ➋). After transaction 1 (TX1)
completes, the program passes its trace to PMTest by calling
PMTest_SEND_TRACE() (step ➌). Then, PMTest immediately
dispatches this trace to a worker (worker 1) thread in the
worker pool. The worker thread tests the trace and completes
(step ➎). In the meanwhile, PMTest receives and tests the
trace of TX2 using worker 2 (step ➏).

(a)
PMTest_INIT()❶

❷
❸

❹
❺

❻

PMTest_SEND_TRACE()

(b)

Figure 8. (a) The master and worker threads and (b) the
workflow of PMTest.

4.5 System Integration
In this section, we describe PMTest’s mechanism for user-
space programs and kernel modules.

User-Space CCS. Figure 9a shows the system stack of
testing a user-space CCS. The user-space CCS runs in the
same process as the PMTest checking engine. To efficiently
pass traces from CCS to the checking engine, we use a thread-
safe, concurrent queue, where CCS pushes the traces to the
queue and the testing module pops the head of the queue.
PMTest also supports multithreaded programs. To manage
the tracking of traces on different threads, PMTest maintains
a per-thread data structure that maintains the trace of different
threads. To initialize this structure, the programmers need to
call PMTest_THREAD_INIT() when a thread is created. Note
that PMTest only detects crash consistency bugs that is due

PMTest ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

to incorrect PM operations in one thread. We leave the crash
consistency issues due to improper thread synchronization as
a future work.

Pass via
kernel FIFO

Kernel

User SpacePMTest

(b)(a)

User Space

Persistent MemoryPersistent Memory

Pass via shared memory
PMTest
LibraryPMTest

Testing Input

Workload

PMTest
LibraryCrash-consistent SW

Crash-consistent SW
(Kernel Module)

Figure 9. System integration of PMTest for (a) user-space
programs and (b) kernel modules.

Kernel Modules. Crash-consistent kernel modules typi-
cally manage persistent data for user-space applications run-
ning on top (e.g., serve as a file system). Figure 9b illustrates
how PMTest is integrated to test kernel modules. During exe-
cution, PMTest performs tracking in the kernel module in the
same way as user-space programs. However, kernel program-
ming has limited library support and has a strict constraint
on the runtime performance. Therefore, PMTest checks the
traces in the user space. To efficiently pass the trace from
the kernel to the user-space checking engine, we use a kernel
FIFO [12, 62] (created as /proc/PMTest) with 1024 trace
entries. Currently, PMTest only tracks PM operations in one
thread of the kernel module due to the limitation of kernel
thread libraries. To prevent an exceptional case where the ker-
nel FIFO becomes full and rejects new traces, PMTest main-
tains an interruptible wait queue [12] in the library. The kernel
module put itself on the wait queue if the kernel FIFO is full.
It gets interrupted and resumes execution when the FIFO is
less than half full.

5 Flexibility of PMTest
So far, we have discussed the design of PMTest that enables
fast testing for both user-space CCS and kernel modules. In
this section, we discuss how PMTest further enables testing
of different libraries and systems.

5.1 Implementation of Customized Checkers.
Customizing checkers can ease programmers’ burden on de-
bugging and improving the capability of PMTest. To imple-
ment more checkers, programmers need to add new methods
to the checking engine module, which can be built on top
of the existing low-level checkers. If the customized checker
requires tracking more operations than the ones have been
tracked by PMTest, the programmer can extend our tracking
interface. We first present our high-level checkers designed
for PMDK [33], and then present other checkers that detects
performance bugs.

5.1.1 Library-Specific Checkers.
Library-specific, high-level checkers can automate the de-
bugging for CCS developed with high-level libraries. We

implement the following checkers for PMDK transactions.
While these two checkers are designed for the PMDK trans-
actions, they can be easily extended to other transactional
libraries.

Check Incomplete Transactions. A typical bug in using
transactions is the program fails to persist all updates when
the transaction ends. To detect this type of bugs, we provide a
pair of functions TX_CHECKER_START and TX_CHECKER_END
that let programmers label the scope of the transaction. The
TX_CHECKER_END automatically injects isPersist() for all
modified persistent objects at the end of the trace for this
scope. Using this checker, programmers can make sure that all
transaction updates have persisted. Programmers can exclude
the updates that do not require crash consistency protection
in the transaction using the PMTest_EXCLUDE() function.

Check Missing Backup Logs. Another typical bug in us-
ing transactions is that programmers forget to log persistent
objects before they get modified (e.g., the bug in Figure 1b).
The correct implementation should use TX_ADD() to log per-
sistent objects before modifying them, such that these objects
can be recovered in event of a failure and be written back
when the transaction ends. To detect such bugs, we extend the
PMTest library to track the objects logged by TX_ADD() (or
functions with similar functionality), together with other op-
erations. The checking engine maintains another interval tree,
log tree, that stores and tracks the logged memory addresses.
When testing a trace from a transaction, the checking engine
examines if the addresses under modification exist in the log
tree before they get modified by a write.

5.1.2 Performance Checkers.
We provide the implementation of two checkers that detects
unnecessary operations that can cause performance slowdown.
PMTest reports a warning (WARN) when detecting such perfor-
mance bugs.

Check Unnecessary Writeback. Enforcing the writeback
of unmodified data can cause performance degradation. A
typical scenario is coarse-grain writeback of persistent objects.
Another possible scenario is that programmers writeback the
same persistent object twice. The checking engine detects this
types of bugs automatically when testing traces. The first case
can be detected if a clwb operates on a memory location that
does not yet have a persist_interval, i.e., writing back a
PM location that has not been modified. The second case can
be detected if a clwb operates on a memory location with an
existing flush_interval, i.e., placing a second clwb after
an existing one to the same PM location.

Check Duplicated Log. Logging the same persistent ob-
ject more than once is unnecessary and can cause performance
degradation. We implement a checker to detect this perfor-
mance bug for PMDK transactions. When the program logs a
persistent object, PMTest looks up the address of this object
in the log tree. If it already exists, PMTest reports a WARNING.

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Sihang Liu et al.

5.2 Adaption to Other Persistency Models.
To adapt PMTest to other persistency modules, programmers
need to track new system-specific PM operations and add
new checking rules for these operations. Implementation new
checking rules may require changing the global and local
status fields in the shadow memory.

Recent works have proposed alternative persistency models
that feature better performance and flexibility [37, 39, 52].
The hands-off persistence system (HOPS) [52] introduces
two new primitives: ofence and dfence. The light-weight
ofence guarantees all preceding write accesses reach PM
prior to all write accesses after it; the heavier dfence stalls
the processing until all writes to PM have been persisted.
As PMTest provides a generic API for checkers, we only
need to change the fields in the shadow memory and im-
plement new rules in the backend checking engine. In the
shadow memory, we still keep the global_timestamp and
the persist_interval, but remove the flush_interval as
HOPS does not use clwb and sfence to enforce ordering and
durability. Then, we make the following updates to the rules
in Section 4.4:
• ofence ensures the persist order without writing back the
data from cache to PM. Therefore, this operation increments
the global_timestamp.
• dfence ensures both ordering and writeback. It first
increments the global_timestamp, and then updates the
persist_intervals of prior writes to end at the current
global_timestamp.
• isPersist(addr,size) checks if a write has per-
sisted by checking whether the persist_intervals in
address range

[
addr,addr+ size

)
end before the current

global_timestamp.
• isOrderedBefore(addrA,sizeA,addrB,sizeB) checks
whether the write to addrA persists before the one
to addrB. As the fences already ensure persist order,
PMTest checks whether all the persist_intervals in
range

[
addrA,addrA+ sizeA

)
start before those in[

addrB,addrB+ sizeB
)
.

6 Evaluation
In this section, we evaluate the performance and bug detection
capability of PMTest on a real system.

6.1 Methodology
To evaluate the performance and bug detection of PMTest, we
use a real system as shown in Table 3. We use a set of battery-
backed NVDIMMs as the PM and map them to the system
following the method in [58]. We use CCS from the WHIS-
PER benchmark suite [52] to evaluate both performance and
bug detection. PMTest performs testing using one worker
thread unless explicitly indicated. The execution times shown
in this section are the average of ten runs.

Server HP ProLiant DL360 Gen10
Processor Intel Skylake, 2.1GHz, 8 cores, 16 threads, 11MB L3 [28]
Memory Volatile: 64GB DDR4, 2666MHz

Non-Volatile: 64GB Battery-backed NVDIMM
OS Ubuntu 14.04, Linux kernel 4.4.135
Compiler gcc/g++ 4.8.4, O3 optimization

Table 3. System Configuration.

6.2 Performance Evaluation
6.2.1 Microbenchmark
We evaluate PMTest using five PMDK-based single-threaded
microbenchmarks. We test each program with 100K inser-
tions (each insertion is a transaction). Figure 10a compares
PMTest with Pmemcheck. It is important to note the checkers
used for PMTest provides higher bug-detection capabilities
than those present in PMDK. The x-axis varies the size of
the transaction and the y-axis shows the execution time nor-
malized with the original versions without any testing tool.
First, PMTest is 5.2-8.9× faster than Pmemcheck (7.1× avg.).
Second, as the transaction size increases, the overhead in
PMTest decreases as it tracks PM operations at a coarse gran-
ularity. In comparison, the slowdown from Pmemcheck does
not change noticeably as it is based on the low-level binary in-
strumentation. Third, the overhead from the non-transactional
HashMap is higher than other cases due to its more intensive
use of low-level PM operations. We further present the over-
head breakdown of PMTest as a stack diagram in Figure 10b,
where the bottom bar shows the basic overhead from track-
ing PM operations and running the PMTest framework, and
the top bar shows the extra overhead from the checkers. As
PMTest decouples the checking from program’s execution,
checking only contributes 18.9%-37.8% of the total overhead.
We conclude that PMTest has a relatively low performance
overhead.

0
5

10
15
20
25
30

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

S
lo

w
d

o
w

n

Transaction Size (Byte)

PMTest Pmemcheck

C-Tree B-Tree RB-Tree
HashMap
(w/ TX)

HashMap
(w/o TX)

(a) Performance of PMTest vs. Pmemcheck.

0
1
2
3
4
5

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

S
lo

w
d

o
w

n

Transaction Size (Byte)

PMTest Framework Checker

C-Tree B-Tree RB-Tree HashMap
(w/ TX)

HashMap
(w/o TX)

(b) Overhead breakdown of PMTest.

Figure 10. Performance of testing microbenches.

6.2.2 Real Workloads.
We evaluate three real workloads shown in Table 4, where
each of them has its own load-generating client(s). We place

PMTest ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

the checkers to test whether all updates in the transactions
(as specified by WHISPER) are persistent in PMFS [16] and
Mnemosyne [64], and use our transaction checkers in Redis.
Figure 11 shows the performance of these workloads running
with PMTest. The y-axis shows the execution time normal-
ized to the original versions without any testing tool. The
slowdown from PMTest is between 1.33-1.98× (1.69× avg.).
As Redis is based on PMDK, we also test it with Pmemcheck
and observes a 22.3× slowdown (13.6× slower than PMTest).
Compared to the previous microbenchmarks, the slowdown
is much lower as the real workloads are less intensive in ac-
cessing PM. We conclude that PMTest is efficient at testing
real workloads.

Workload Library Input Client

Memcached Mnemosyne
Memslap (100k ops/client, 5% set),
YCSB (100k ops/client, 50% update)

Redis PMDK redis-cli (LRU test, 1M keys)
PMFS Low-level NFS (Filebench, 8 clients),
(kernel module) primitives MySQL (OLTP-complex, 4 clients)

Table 4. Real workloads from WHISPER benchmark
suite [52] (YCSB from [11]).

1.00
1.25
1.50
1.75
2.00

Memcached Memcached Redis PMFS PMFS Average

S
lo
w
d
o
w
n

+Memslap +YCSB +LRU +OLTP +Filebench

Figure 11. Performance of testing real workloads.

6.2.3 Scalability.
We further analyze the scalability of PMTest using Mem-
cached. We set the number of clients equal to the number
of Memcached threads. We manually place checkers to its
underlying library, Mnemosyne, to check the consistency of
its persistent map. Figure 12a presents the result with variable
Memcached threads. As the number of threads in Memcached
increases, the slowdown from PMTest increases with both
Memslap and YCSB clients due to an increased number of
traces generated by the workload. To perform testing more
efficiently, we increase the number of PMTest worker threads,
as shown in Figure 12b. As the number of workers increases,
the slowdown decreases. Then, we increase both the number
of workers and Memcached threads at the same time. Fig-
ure 12c shows the slowdown slightly increase as both threads
increase due to the inter-thread communication overhead. We

1
2
3
4
5

1 2 4

S
lo

w
d

o
w

n

#Memcached threads

(Single PMTest worker)

Memslap YCSB

(a)

1
2
3
4
5

1 2 4

S
lo
w
d
o
w
n

#PMTest workers (Four
Memcached threads)

Memslap YCSB

(b)

1
2
3
4
5

1 2 4

S
lo
w
d
o
w
n

Same # PMTest workers

and Memcached threads

Memslap YCSB

(c)

Figure 12. Execution time of Memcached with PMTest.

conclude that PMTest can effectively reduce the testing time
when testing PM-operation intensive programs.

6.3 Bug Detection Evaluation

Bug Type Description #Cases #Checkers

L
ow

-le
ve

l Ordering
Missing or misplacement of
ordering enforcement

4
18

(Low-level
checkers)

Writeback
Missing or misplacement of the
writeback operations

6

Performance
Writeback the same persistent
object more than once

2

Tr
an

sa
ct

io
n Backup

Missing or misplaced backup
of persistent objects

19
2

(Transaction
checkers)

Completion
Incomplete transactions due to
improper termination

7

Performance
Log the same persistent object
more than once

4

Table 5. Summary of synthetic bugs for PMTest validation.

File Line Description

K
no

w
n xips.c [26] 207, 262 Flush the same persistent buffer twice

files.c [24] 232 Flush an unmapped buffer
rbtree_map.c [25] 379 Modify a tree node without logging it

N
ew

journal.c [27] 632 Flush redundant data when committing

btree_map.c [29]
201 Modify a tree node without logging it
367 Log the same object twice

Table 6. Summary of the known bugs in the commit history
and new bugs detected by PMTest.

To validate the bug detection capability of PMTest, we first
systematically create random synthetic bugs in PMDK work-
loads [33]. Table 5 lists the synthetic bugs we have validated
(total 42)2. For the programs that uses transactions, we use
two pairs of TX_CHECKER_START and TX_CHECKER_END; for
the one uses low-level functions, we place 12 isPersist()
and 6 isOrderedBefore() checkers (the overall benchmark
codebase is about 2.6k LOC). PMTest reported all the syn-
thetic bugs we introduced. Then, we reproduced the bugs
from the developers’ commit history of the workloads that
we have previously tested. PMTest also reported these bugs
accurately. And finally, during testing, we found three new
bugs in PMFS and PDMK applications (Table 6). Figure 13
demonstrates the new bugs we have found using PMTest. We
simplify the code for readability.

Bug 1 (performance): Figure 13a shows a snippet of code
from journal.c in PMFS. The function first sets the log entry
(le) at line 3. Then, it flushes the modified log entry to PM at
line 4. Finally, it flushes the entire transaction (trans) at line
6. PMTest reports a WARN of duplicated flush at line 6. Because
the log entry is part of the transaction, the second flush writes
back the log entry again. A better implementation should
flush only the remaining part of the transaction at line 6.

Bug 2 (correctness): Figure 13b shows a snippet of code
from btree_map.c in PMDK. This function modifies a node
2All tested bugs and injected checkers can found at https://pmtest.
persistentmemory.org.

https://pmtest.persistentmemory.org
https://pmtest.persistentmemory.org

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Sihang Liu et al.

void pmfs_commit_logentry(...) {
 ...
 le->gen_id=...; //update log entry
 pmfs_flush_buffer(le,...);
 ... //no update to “le” in between
 pmfs_flush_transaction(...,trans);
 ...
}

1
2
3
4
5
6
7
8

tree_map_node
bree_map_create_split_node(...) {
 ...
 node->items[c-1]=EMPTY_ITEM;
 ...//other updates to node
} //This function is inside a TX

1
2
3
4
5
6

void btree_map_insert_item
 (tree_map_node node,...) {
 TX_ADD(node);
 ... // perform insertion
}

void btree_map_rotate_left(...,node,...) {
 ...
 btree_map_insert_item(node,...);
 ...
 TX_ADD(node);
 ... // perform rotation
 node->slots[0]=... //modify node
 ...
} //Both functions are wrapped in same TX

1
2
3
4
5

6
7
8
9
10
11
12
13
14

node
node

Figure 13. New bugs found in (a) PMFS, and (b, c) PMDK
applications.

without logging it. PMTest reports this bug at line 4 and other
lines that modify this object. The correct implementation
should call TX_ADD(node) before line 4. Bug fix from Intel
can be found at [31].

Bug 3 (performance): Figure 13c is another snippet of
code from btree_map.c. The function on the right side first
calls the function on the left side and then rotates a tree node.
PMTest detects a duplicated TX_ADD() at line 10, that should
be removed. The function on the left side adds node to the log,
while the function on the right side adds the same node to the
log again. As both functions belong to the same transaction,
double logging is unnecessary. This bug is subtle as the two
log operations are not in the same function. Bug fix from Intel
can be found at [30].

We found the two new bugs in PMDK applications us-
ing our high-level checkers for PMDK by placing a pair of
TX_CHECKER_START and TX_CHECKER_END around the outer-
most transaction. We found the bug in PMFS by sending
the current trace to the checking engine when the update in
journal.c commits. The built-in performance-bug checker
reports this unnecessary writeback. Therefore, we conclude
that using the high-level, automated checkers effectively de-
bugs the program and incurs a minimum effort.

7 Discussion
In this section, we discuss the opportunities and potential
issues with using PMTest, and the future works in testing
CCS.

7.1 The Use of PMTest
We find out that PMTest can help programmers demystify
the semantics of library functions. For example, in a program
with nested PMDK transactions (an inner and an outer trans-
action), we first apply a pair of TX_CHECKER_START() and
TX_CHECKER_END() to the inner transaction. PMTest reports
that the updates in the inner transaction are not persisted be-
fore the end of the inner TX_END. However, all updates to
PM are supposed to be persistent when the transaction termi-
nates. Then, we move the checkers to the outer transaction

and found that PMTest does not report any bug. Analyzing
PMDK source code, we found that updates are guaranteed
to be persisted only when the outermost transaction ends.
PMTest can help programmers check whether library seman-
tics are consistent with what they expect.

7.2 Programmer’s Effort using PMTest
Ensuring the crash consistency guarantee relies on two types
of correctness: (i) algorithmic correctness (e.g., redo/undo
logging, checking pointing, etc.), and (ii) implementation cor-
rectness of that algorithm (e.g., placing the writebacks and
fences in the correct place). Even when the programmers use
the algorithm of the logging mechanism in a correct manner,
the reordering of instructions makes it hard for the program-
mers to intuitively infer the correctness of the implementation
(as shown in Figure 1). Placing the low-level checkers in the
code increases the programmer’s effort. However, now pro-
grammers can assert the expected behavior of the program,
and therefore, can ensure the implementation correctness. On
the other hand, programmers who use the high-level checkers
to test programs (built using the high-level libraries) do not
need to understand the low-level algorithm and implemen-
tation to ensure crash consistency. Therefore, the high-level
checkers minimize programmers’ effort. Expert developers of
PM libraries can create high-level checkers for their libraries
to enable an easy-to-use testing interface for future users of
their libraries. This way, ordinary programmers can use those
high-level checkers to test their CCS built with high-level
libraries.

7.3 Impact of incorrect use of PMTest
The low-level checkers exposed by PMTest work in a similar
way as assertions do in conventional programs. Incorrect use
of the checkers can cause false alarms and lead the program-
mer to believe the implementation is incorrect, but will never
introduce any new error or bug to the code. In comparison, the
high-level checkers require minimal programmers’ effort and
can mostly be automated. For example, while checking the
PMDK library in our evaluation, we only added 9 lines of C
code (for initialization, termination, etc.), where the insertion
of the high-level checkers were automated. Therefore, we rec-
ommend that only the expert programmers use the low-level
checkers to avoid any misuse of PMTest interface.

7.4 Future Work
Dynamic v.s. Static Testing of CCS. PMTest takes a dy-

namic approach that detects crash consistency bugs on the
trace that has been executed. This method is limited by the
execution path that the program takes based on the input.
Therefore, PMTest aims for fast testing in order to cover more
input sets. In comparison, static testing methods can over-
come the limitation of coverage, while cannot handle issues

PMTest ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

related to dynamically allocated memory and pointers. There-
fore, static methods tend to set more false alarms compared
to dynamic ones. We leave the research on detecting crash
consistency bugs statically as a future work.

Testing Multithreaded CCS. In this work, we provided
support for multithreaded programs by tracking trace individ-
ually on different threads. This support is sufficient for most
cases. For example, multithreaded transactions in PMDK are
independent as one thread writes back all its persistent data
before releasing the lock. WHISPER also shows that inter-
thread dependency is rare in persistent programs [52]. We
leave debugging crash consistency issues due to improper
thread synchronization as a future work.

8 Related Work
In this section, we discuss prior works that provide crash
consistency support and test persistent programs.

Mechanisms for Crash Consistency. Prior works have
provided a variety of software [2, 4, 5, 7–10, 14, 16, 21–
23, 33, 38, 42, 46, 48, 56, 63, 64, 66, 68, 73] and hardware
supports [15, 35, 36, 39, 47, 49, 52, 54, 60, 74] to maintain
the crash consistency of persistent programs. NV-Heaps [9],
Mnemosyne [64], REWIND [5], NVL-C [14], PMDK [33]
and LSNVMM [22] provide a software interface to allow pro-
grammers to store persistent data on PM in a crash-consistent
manner. PMFS [16], BPFS [10], Mojim [73], Strata [42],
NOVA [68], NOVA-Fortis [69], and SCMFS [66] provide PM-
optimized file systems to store persistent data. PMTest can
assist debugging these software-based solutions based on
their specifications. DPO [39] and HOPS [52] propose ef-
ficient persistency models to allow programmers to main-
tain crash consistency using low-level functions. Kiln [74],
ThyNVM [60], JUSTDO Logging [35] and ATOM [36] pro-
vides transactional interface through hardware support to
ensure crash consistency. PMTest can test programs built on
these hardware-assisted solutions by appropriately extending
the checking engine.

Tools for Testing Crash Consistency. There have been
tools that test the crash consistency of legacy file sys-
tems [6, 18, 19, 41, 51, 61]. For example, Recon [19] adopts
a runtime testing approach to test the metadata consistency of
Ext3 and Btrfs. However, these tools only work for conven-
tional block devices, such as disks. As PM becomes immi-
nent, recent works provide tools to detect crash consistency
issues in PM-based programs. Yat [43] is designed for testing
PMFS [16], a PM-optimized file system, using an exhaustive
test method. As a result, Yat is extremely slow and cannot be
used to test other custom CCS. Pmemcheck [59] and Persis-
tence Inspector [55] are tools designed for testing programs
developed with the PMDK library [33]. However, both tools
only support the PMDK library under x86 persistency model.
PMTest is a more efficient and flexible tool that supports
various PM programs and persistency models.

9 Conclusions
In this work, we demonstrate that developing crash consis-
tent software for PM systems is hard and error-prone as the
programmers cannot reason about the ordering of persistent
operations during the development phase. To this end, we
design and implement PMTest, a crash consistency bug test-
ing mechanism that exposes the ordering and durability of
the persistent operations to the software. To our knowledge,
PMTest is the first tool that is both flexible and fast. We have
demonstrated the effectiveness of PMTest by testing CCS
developed for PM systems and detected new bugs in user-
space applications and in a kernel-space file system. We have
also shown that PMTest can be extended to support differ-
ent persistency models proposed in the literature. We believe
that PMTest is highly useful to persistent memory software
developers for identifying bugs and understanding the crash
consistency guarantees in various types of CCS running on
different persistency models.

10 Acknowledgment
We thank the anonymous reviewers, Andy Rudoff and the
whole PMDK team at Intel, Korakit Seemakhupt, and Nora
Evans for their valuable feedback. This work is supported
in part by NFS grants 1829524, 1817077, 1822965, and the
SRC/DARPA Center for Research on Intelligent Storage and
Processing-in-memory (CRISP).

References
[1] Joy Arulraj and Andrew Pavlo. How to build a non-volatile memory

database management system. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), 2017.

[2] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. Let’s talk
about storage & recovery methods for non-volatile memory database
systems. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2015.

[3] David Brash. Armv8-A architecture evolution. https://community.arm.
com/processors/b/blog/posts/armv8-a-architecture-evolution, 2016.

[4] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
Leveraging locks for non-volatile memory consistency. In Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA), 2014.

[5] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas.
REWIND: Recovery write-ahead system for in-memory non-volatile
data-structures. Proc. VLDB Endow., 8(5):497–508, January 2015.

[6] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using crash hoare logic for certify-
ing the FSCQ file system. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP), 2015.

[7] Shimin Chen and Qin Jin. Persistent B+-trees in non-volatile main
memory. Proc. VLDB Endow., 8(7):786–797, February 2015.

[8] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic crash
consistency. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), 2013.

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making
persistent objects fast and safe with next-generation, non-volatile mem-
ories. In Proceedings of the Sixteenth International Conference on

https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-evolution
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-evolution

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Sihang Liu et al.

Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), 2011.

[10] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. Better I/O through
byte-addressable, persistent memory. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (SOSP),
2009.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC),
2010.

[12] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
Device Drivers, Third Edition. O’Reilly Media, Inc., 3rd edition, 2005.

[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, 3rd edition,
2009.

[14] Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static
analysis techniques for efficient, correct programming of non-volatile
main memory systems. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC), 2016.

[15] K. Doshi, E. Giles, and P. Varman. Atomic persistence for SCM with a
non-intrusive backend controller. In 2016 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2016.

[16] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys), 2014.

[17] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank.
A persistent lock-free queue for non-volatile memory. In Proceedings
of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2018.

[18] Daniel Fryer, Mike Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown,
and Ashvin Goel. Checking the integrity of transactional mechanisms.
Trans. Storage, 10(4):17:1–17:23, October 2014.

[19] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun
Benjamin, Ashvin Goel, and Angela Demke Brown. Recon: Verifying
file system consistency at runtime. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies (FAST), 2012.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, October 1969.

[21] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. NVthreads: Practical persistence for multi-
threaded applications. In Proceedings of the 12th European Conference
on Computer Systems (EuroSys), 2017.

[22] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Mosci-
broda. Log-structured non-volatile main memory. In USENIX Annual
Technical Conference (ATC), 2017.

[23] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. NVRAM-
aware logging in transaction systems. Proc. VLDB Endow., 8(4):389–
400, December 2014.

[24] Intel Corporation. PMFS: Remove unnecessary flushing from
pmfs_fsync(). https://github.com/linux-pmfs/pmfs/commit/
e293e14725aaf36d844bfc4a0cb3d4f99fba1f0b, 2013.

[25] Intel Corporation. Add missing undo log entry in rb-
tree example (PMDK). https://github.com/pmem/pmdk/
commit/04ec84e23ed40be92bd89b9d34c39fbf28cafe0b#diff-
f2692f0bb21a212d07a5d1bc2115c071, 2015.

[26] Intel Corporation. PMFS: Remove duplicate flush
buffer. https://github.com/snalli/PMFS-new/commit/
ded1b075eb911c469233433d83cb678ee800367c, 2015.

[27] Intel Corporation. PMFS. https://github.com/snalli/PMFS-new/blob/
2c62f0a20f98afe128e59d5e7f0aff40489b27f7/journal.c, 2016.

[28] Intel Corporation. Intel Xeon Silver 4110 Processor.
https://ark.intel.com/products/123547/Intel-Xeon-Silver-4110-
Processor-11M-Cache-2_10-GHz, 2017.

[29] Intel Corporation. B-Tree (PMDK). https://github.com/pmem/pmdk/
blob/5ac1f5b882275d1eaf6f488a5a71851cb2fdc1ae/src/examples/
libpmemobj/tree_map/btree_map.c, 2018.

[30] Intel Corporation. Btree: remove not needed snap-
shot (PMDK). https://github.com/pmem/pmdk/
commit/b9232407a794040102e769ed98b967d797c173fd#diff-
f2692f0bb21a212d07a5d1bc2115c071, 2018.

[31] Intel Corporation. Btree: snapshot node before mod-
ifying it (PMDK). https://github.com/pmem/pmdk/
commit/25f5e4f676e3d9cd7a4c9dc7aa8f2f36e83ff6c2#diff-
f2692f0bb21a212d07a5d1bc2115c071, 2018.

[32] Intel Corporation. Intel architecture instruction set exten-
sions programming reference (319433-034 may 2018). https:
//software.intel.com/sites/default/files/managed/c5/15/architecture-
instruction-set-extensions-programming-reference.pdf, 2018.

[33] Intel Corporation. Persistent memory programming. https://pmem.io/,
2018.

[34] Intel Corporation. Revolutionary memory technology.
http://www.intel.com/content/www/us/en/architecture-and-
technology/non-volatile-memory.html, 2018.

[35] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic
persistent memory updates via JUSTDO logging. In Proceedings of the
21st International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2016.

[36] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra. ATOM: Atomic
durability in non-volatile memory through hardware logging. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2017.

[37] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Effi-
cient persist barriers for multicores. In Proceedings of the 48th Interna-
tional Symposium on Microarchitecture (MICRO), 2015.

[38] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.
Wenisch. High-performance transactions for persistent memories. In
Proceedings of the 21st International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
2016.

[39] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M. Chen, and Thomas F. Wenisch. Dele-
gated persist ordering. In the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016.

[40] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and
Onur Mutlu. Evaluating STT-RAM as an energy-efficient main memory
alternative. In IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2013.

[41] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam.
High-performance metadata integrity protection in the WAFL copy-on-
write file system. In Proceedings of the 15th Usenix Conference on File
and Storage Technologies (FAST), 2017.

[42] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A cross media file system. In
Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), 2017.

[43] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,
and Jeff Jackson. Yat: A validation framework for persistent memory
software. In USENIX Annual Technical Conference (ATC), 2014.

[44] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Sympo-
sium on Code Generation and Optimization (CGO), 2004.

[45] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Archi-
tecting phase change memory as a scalable DRAM alternative. In
Proceedings of the 36th Annual International Symposium on Computer

https://github.com/linux-pmfs/pmfs/commit/e293e14725aaf36d844bfc4a0cb3d4f99fba1f0b
https://github.com/linux-pmfs/pmfs/commit/e293e14725aaf36d844bfc4a0cb3d4f99fba1f0b
https://github.com/pmem/pmdk/commit/04ec84e23ed40be92bd89b9d34c39fbf28cafe0b#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/04ec84e23ed40be92bd89b9d34c39fbf28cafe0b#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/04ec84e23ed40be92bd89b9d34c39fbf28cafe0b#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/snalli/PMFS-new/commit/ded1b075eb911c469233433d83cb678ee800367c
https://github.com/snalli/PMFS-new/commit/ded1b075eb911c469233433d83cb678ee800367c
https://github.com/snalli/PMFS-new/blob/2c62f0a20f98afe128e59d5e7f0aff40489b27f7/journal.c
https://github.com/snalli/PMFS-new/blob/2c62f0a20f98afe128e59d5e7f0aff40489b27f7/journal.c
https://ark.intel.com/products/123547/Intel-Xeon-Silver-4110-Processor-11M-Cache-2_10-GHz
https://ark.intel.com/products/123547/Intel-Xeon-Silver-4110-Processor-11M-Cache-2_10-GHz
https://github.com/pmem/pmdk/blob/5ac1f5b882275d1eaf6f488a5a71851cb2fdc1ae/src/examples/libpmemobj/tree_map/btree_map.c
https://github.com/pmem/pmdk/blob/5ac1f5b882275d1eaf6f488a5a71851cb2fdc1ae/src/examples/libpmemobj/tree_map/btree_map.c
https://github.com/pmem/pmdk/blob/5ac1f5b882275d1eaf6f488a5a71851cb2fdc1ae/src/examples/libpmemobj/tree_map/btree_map.c
https://github.com/pmem/pmdk/commit/b9232407a794040102e769ed98b967d797c173fd#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/b9232407a794040102e769ed98b967d797c173fd#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/b9232407a794040102e769ed98b967d797c173fd#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/25f5e4f676e3d9cd7a4c9dc7aa8f2f36e83ff6c2#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/25f5e4f676e3d9cd7a4c9dc7aa8f2f36e83ff6c2#diff-f2692f0bb21a212d07a5d1bc2115c071
https://github.com/pmem/pmdk/commit/25f5e4f676e3d9cd7a4c9dc7aa8f2f36e83ff6c2#diff-f2692f0bb21a212d07a5d1bc2115c071
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://pmem.io/
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html

PMTest ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Architecture (ISCA), 2009.
[46] Eunji Lee, Hyokyung Bahn, and Sam H. Noh. Unioning of the buffer

cache and journaling layers with non-volatile memory. In Proceedings
of the 11th USENIX Conference on File and Storage Technologies
(FAST), 2013.

[47] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei
Wu, Weimin Zheng, and Jinglei Ren. DudeTM: Building durable
transactions with decoupling for persistent memory. In Proceedings
of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017.

[48] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung.
iDO: Compiler-directed failure atomicity for nonvolatile memory. In the
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[49] S. Liu, A. Kolli, J. Ren, and S. Khan. Crash consistency in encrypted
non-volatile main memory systems. In IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2018.

[50] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persis-
tent Memcached: Bringing legacy code to byte-addressable persistent
memory. In Proceedings of the 9th USENIX Conference on Hot Topics
in Storage and File Systems (HotStorage), 2017.

[51] Ashlie Martinez and Vijay Chidambaram. Crashmonkey: A framework
to systematically test file-system crash consistency. In Proceedings of
the 9th USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage), 2017.

[52] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. An analysis of persistent memory use
with WHISPER. In Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017.

[53] NIST. The economic impacts of inadequate infrastructure for software
testing, 2002.

[54] M. A. Ogleari, E. L. Miller, and J. Zhao. Steal but No Force: Efficient
hardware undo+redo logging for persistent memory systems. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2018.

[55] Kevin Oleary. How to detect persistent memory program-
ming errors using Intel Inspector - Persistence Inspector.
https://software.intel.com/en-us/articles/detect-persistent-memory-
programming-errors-with-intel-inspector-persistence-inspector,
2018.

[56] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. Fast crash recovery in ramcloud. In Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[57] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persis-
tency. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture (ISCA), 2014.

[58] Persistent Memory Wiki. Persistent memory. https://nvdimm.wiki.
kernel.org/, 2018.

[59] PMDK. An introduction to pmemcheck. http://pmem.io/2015/07/17/
pmemcheck-basic.html, 2015.

[60] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu. ThyNVM: Enabling software-transparent crash con-
sistency in persistent memory systems. In Proceedings of the 48th
International Symposium on Microarchitecture (MICRO), 2015.

[61] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
Push-button verification of file systems via crash refinement. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI), 2016.

[62] Linus Torvalds. https://github.com/torvalds/linux/blob/master/
include/linux/kfifo.h, 2013.

[63] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.

Swift. Aerie: Flexible file-system interfaces to storage-class memory.
In Proceedings of the 9th European Conference on Computer Systems
(EuroSys), 2014.

[64] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Sixteenth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[65] Tianzheng Wang and Ryan Johnson. Scalable logging through emerging
non-volatile memory. Proc. VLDB Endow., 7(10):865–876, June 2014.

[66] X. Wu and A. L. N. Reddy. SCMFS: A file system for storage class
memory. In SC ’11: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2011.

[67] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang,
S. Yu, and Y. Xie. Overcoming the challenges of crossbar resistive
memory architectures. In IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), 2015.

[68] Jian Xu and Steven Swanson. NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories. In Proceedings of the 14th
Usenix Conference on File and Storage Technologies (FAST), 2016.

[69] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. NOVA-Fortis: A fault-tolerant non-volatile main memory file
system. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), 2017.

[70] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. NV-Tree: Reducing consistency cost for
NVM-based single level systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST), 2015.

[71] Anna Zaks and Jordan Rose. https://llvm.org/devmtg/2012-11/Zaks-
Rose-Checker24Hours.pdf, 2012.

[72] Mingzhe Zhang, King Tin Lam, Xin Yao, and Cho-Li Wang. SIMPO:
A scalable in-memory persistent object framework using NVRAM
for reliable big data computing. ACM Trans. Archit. Code Optim.,
15(1):7:1–7:28, March 2018.

[73] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. Mojim: A reliable and highly-available non-volatile memory
system. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2015.

[74] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln: Closing
the performance gap between systems with and without persistence
support. In the 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2013.

https://software.intel.com/en-us/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector
https://software.intel.com/en-us/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector
https://nvdimm.wiki.kernel.org/
https://nvdimm.wiki.kernel.org/
http://pmem.io/2015/07/17/pmemcheck-basic.html
http://pmem.io/2015/07/17/pmemcheck-basic.html
https://github.com/torvalds/linux/blob/master/include/linux/kfifo.h
https://github.com/torvalds/linux/blob/master/include/linux/kfifo.h
https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf
https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf

	Abstract
	1 Introduction
	2 Motivation
	2.1 Difficulties in Programming CCS
	2.2 Requirements for CCS Testing Tools

	3 Key Ideas of PMTest
	3.1 Key Ideas in Testing Crash Consistency
	3.2 Integrating the Key Ideas into PMTest

	4 Implementation of PMTest
	4.1 Overview of PMTest
	4.2 PMTest Interface
	4.3 Operation Tracking
	4.4 The Checking Engine
	4.5 System Integration

	5 Flexibility of PMTest
	5.1 Implementation of Customized Checkers.
	5.2 Adaption to Other Persistency Models.

	6 Evaluation
	6.1 Methodology
	6.2 Performance Evaluation
	6.3 Bug Detection Evaluation

	7 Discussion
	7.1 The Use of PMTest
	7.2 Programmer's Effort using PMTest
	7.3 Impact of incorrect use of PMTest
	7.4 Future Work

	8 Related Work
	9 Conclusions
	10 Acknowledgment
	References

